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Summary. We propose a new, generic and flexible methodology for non-parametric function
estimation, in which we first estimate the number and locations of any features that may be
present in the function and then estimate the function parametrically between each pair of
neighbouring detected features. Examples of features handled by our methodology include
change points in the piecewise constant signal model, kinks in the piecewise linear signal
model and other similar irregularities, which we also refer to as generalized change points. Our
methodology works with only minor modifications across a range of generalized change point
scenarios, and we achieve such a high degree of generality by proposing and using a new
multiple generalized change point detection device, termed narrowest-over-threshold (NOT)
detection. The key ingredient of the NOT method is its focus on the smallest local sections of
the data on which the existence of a feature is suspected. For selected scenarios, we show the
consistency and near optimality of the NOT algorithm in detecting the number and locations of
generalized change points. The NOT estimators are easy to implement and rapid to compute.
Importantly, the NOT approach is easy to extend by the user to tailor to their own needs. Our
methodology is implemented in the R package not.
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1. Introduction

This paper considers the canonical univariate statistical model

Yt =ft + "t , t =1, : : : , T , .1/

where the deterministic and unknown signal ft is believed to display some regularity across
the index t, and the stochastic noise "t is exactly or approximately centred at zero. Despite the
simplicity of model (1), inferring information about ft remains a task of fundamental importance
in modern applied statistics and data science. When the interest is in the detection of ‘features’
in ft such as jumps or kinks, then non-linear techniques are usually required.

If ft is modelled as piecewise constant and it is of interest to detect its change points, several
techniques are available, and we mention only a selection. For Gaussian noise "t , both non-
penalized and penalized least squares approaches were considered by Yao and Au (1989). For
specific choices of penalty functions, see for example Yao (1988), Lavielle (2005) and Davis
et al. (2006). The Gaussianity assumption on "t was relaxed to exponential family distributions
in Lee (1997), Hawkins (2001) and Frick et al. (2014). In particular, Frick et al. (2014) also
provided confidence intervals for the location of the estimated change points. Often this penalty-
type approach requires a computational cost of at least O.T 2/. However, there are exceptions,
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such as the pruned exact linear time (PELT) method (Killick, Fearnhead and Eckley, 2012),
which achieves a linear computational cost, but requires the further assumption that change
points are separated by time intervals drawn independently from some probability distribution:
a scenario in which considerations of statistical consistency are not generally possible. A non-
parametric version of the PELT method was investigated by Haynes et al. (2017). Another
general approach is based on the idea of binary segmentation (BS) (Vostrikova, 1981), which
can be viewed as a greedy approach with a limited computational cost. Its popular variants
include circular binary segmentation (CBS) (Olshen et al., 2004) and wild binary segmentation
(WBS) (Fryzlewicz, 2014). A selection of publications and software can be found in the on-line
repository changepoint.info maintained by Killick, Nam, Aston and Eckley (2012).

More general change point problems, in which ft is modelled as piecewise parametric (not
necessarily piecewise constant) between ‘knots’, the number and locations of which are unknown
and need to be estimated, have attracted less interest in the literature and overwhelmingly focus
on linear trend detection. Among them, we mention the approach based on the least squares
principle and Wald-type tests by Bai and Perron (1998), dynamic programming using the L0-
penalty (Maidstone et al., 2017) and trend filtering (Tibshirani, 2014; Lin et al., 2017). Finally,
we mention a related problem of jump regression, where the aim is to estimate the points of sharp
cusps or discontinuities of a regression function. As investigated in, for example, Wang (1995)
and Xia and Qiu (2015), it proceeds by estimating the locations of features non-parametrically
via wavelets or local kernel smoothing.

The aim of this work is to propose a new generic approach to the problem of detecting an
unknown number of ‘features’ occurring at unknown locations in ft . By a feature, we mean a
characteristic of ft , occurring at a location t0, that is detectable by considering a sufficiently
large subsample of data Yt around t0. Examples include change points in ft when it is modelled
as piecewise constant, change points in the first derivative when ft is modelled as piecewise
linear and continuous, and discontinuities in ft or its first derivative when ft is modelled as
piecewise linear but without the continuity constraint. We shall provide a precise description of
the type of features that we are interested in later. Moving beyond ft only, our approach will also
permit the detection of similar features in some distributional aspects of "t , e.g. in its variance.
Since all types of features that we consider describe changes in a parametric description of ft ,
we use the terms ‘feature detection’ and ‘change point detection’ interchangeably throughout
the paper. Occasionally, for precision, we shall be referring to change point detection in the
piecewise constant model as the ‘canonical’ change point problem, whereas our general feature
detection problem will sometimes be referred to as a ‘generalized’ change point problem.

Core to our approach is a particular blend of ‘global’ and ‘local’ treatment of the data Yt in the
search for the multiple features that may be present in ft : a combination that gives our method
a multiscale character. At the first global stage, we randomly draw a number of subsamples
.Ys+1, : : : , Ye/

′, where 0� s < e�T . On each subsample, we assume, possibly erroneously, that
only one feature is present and use a tailor-made contrast function derived (according to a
universal recipe that we provide later) from the likelihood theory to find the most likely location
of the feature. We retain those subsamples for which the contrast exceeds a certain user-specified
threshold and discard the others. Among the subsamples retained, we search for the subsample
that is drawn on the narrowest interval, i.e. one for which e − s is the smallest: it is this step
that gives rise to the name narrowest over threshold (NOT) for our methodology. The focus on
the narrowest interval constitutes the local part of the method and is a key ingredient of our
approach which ensures that, with high probability, at most one feature is present in the interval
selected. This key observation gives our methodology a general character and enables it to be
used, only with minor modifications, in a wide range of scenarios, including those described in
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the previous paragraph. Having detected the first feature, the algorithm then proceeds recursively
to the left and to the right of it, and stops, on any current interval, if no contrasts can be found
that exceed the threshold.

Besides its generic character, other benefits of the methodology proposed include low compu-
tational complexity, ease of implementation, accuracy in the detection of the feature locations
and the fact that it enables parametric estimation of the signal on each section delimited by
a pair of neighbouring estimated features. Regarding the computational complexity, the fact
that typical contrasts are computable in linear time leads to a computational complexity of
O.MT/ for the entire procedure; typically, only a limited number of data subsamples, M, need
to be drawn (we provide precise bounds later; with finitely many change points, we can take
M = O{log.T/} in general). Moreover, the entire threshold-indexed solution path can also be
computed efficiently, in typically close-to-linear time, as observed from our numerical experi-
ments. Regarding the estimation accuracy, in the scenarios that we consider theoretically, our
procedure yields nearly optimal rates of convergence for the estimators of feature locations.

On a broader level, our methodology promotes the idea of fitting simple models on subsets
of the data (the local aspect), and then aggregating the results to obtain the overall fit (the
global aspect): an idea that is also present in the WBS method of Fryzlewicz (2014). However,
we emphasize that the way that the simple models (here: models containing at most one change
point or feature) are fitted in the NOT and WBS methods are entirely different and have different
aims. Unlike WBS, the NOT methodology focuses on the narrowest intervals of the data on which
it is possible to locate the feature of interest. It is this focus that enables NOT detection to extend
beyond change point detection for a piecewise constant ft , the latter being the sole focus of the
WBS method. The lack of the narrowest interval focus in the WBS and BS methods means that
they are not applicable to more general feature detection, and we explain the mechanics of this
important phenomenon briefly in the following simple example.

Consider a continuous piecewise linear signal that has two change points:

ft =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
350

t, t =1, : : : , 350,

1, t =351, : : : , 650,
1001
350

− 1
350

t, t =651, : : : , 1000.

.2/

If we approximate ft by using a piecewise linear signal with only one change point in its derivative,
then the best approximation (in terms of minimizing the l2-distance) will result in an estimated
change point at t = 500, which is away from the true change points at t = 350 and t = 650, as
is illustrated in Fig. 1. Therefore, taking the entire sample of data and searching for one of its
multiple change points by fitting, via least squares, a triangular signal with a single change point
does not make sense. It is this issue that leads to the failure of the BS and WBS methods for
signals that are not piecewise constant. In contrast, NOT detection avoids this issue because
of its unique feature of picking the narrowest intervals, which are likely to contain only one
change point. To understand the mechanics of this key feature, imagine that now ft is observed
with noise. Through its pursuit of the narrowest intervals, NOT detection will ensure that, with
high probability, some suitably narrow intervals around the change points t = 350 and t = 650
are considered. More precisely, by construction, they will be sufficiently narrow to contain only
one change point each, but sufficiently wide for the designed contrast (see Section 2.3 for more
on contrasts) to indicate the existence of the change point within both of them. The designed
contrast function will indicate the correct location of the change point (modulo the estimation
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(a) (b) (c)

Fig. 1. Best l2-approximation ( ) of the true signal ( ) via a triangular signal with a single change
point, the location of which is fixed at (a) the left change point, (b) halfway between the true change points
and (c) at the right change point (approximation errors are given in terms of squared l2-distance): (a) τ D350,
errorD15.0; (b) τ D500, errorD6.3; (c) τ D651, errorD15.0

error) if only one change point is present in the data subsample that is considered, unlike in the
situation that was described earlier in which multiple change points were included in the chosen
interval. More details on this example are presented in section C.3 of the on-line supplementary
materials.

This example is different from the canonical change point detection problem (i.e. piecewise
constant signal with multiple change points) where, if we approximate the signal by using a
piecewise constant function with only one change point, the change point of the fitted signal
will always be among the true change points (Venkatraman, 1992). Since the latter property
does not hold in most generalized change point detection problems, this highlights the need
for new methods with better localization of the feature of interest, such as our NOT algorithm.
Fang et al. (2019) independently considered a related shortest interval idea in the context of the
canonical change point detection problem. However, they did not consider it as a springboard
to more general feature detection problems, which is the key motivation behind NOT detection
and its most valuable contribution.

The remainder of this paper is organized as follows. In Section 2, we give a mathematical de-
scription of the NOT algorithm. In particular, we consider the NOT approach in four scenarios,
each with a different form of structural change in the mean and/or variance. For the development
of both theory and computation, in selected scenarios, we introduce the tailor-made contrast
function that is derived from the generalized likelihood ratio (GLR). Theoretical properties of
the NOT algorithm, such as its consistency and convergence rates are also provided. In Section
3, we propose to use the NOT method with the strengthened Schwarz information criterion sSIC
and discuss its computational aspects and theoretical properties. Section 4 discusses possible ex-
tensions of the NOT method. A comprehensive simulation study is carried out in Section 5, where
we compare NOT with the state of the art change point detection tools. In Section 6, we consider
data examples of global temperature anomalies and London housing data. All proofs, together
with details on the construction of the contrast functions, the computational aspects and exten-
sion of the NOT method and further discussion on model misspecification, as well as additional
simulations and a real data example, can be found in the on-line supplementary materials.

2. The narrowest-over-threshold framework

2.1. Set-up
To describe the main NOT framework, we consider a simplified version of model (1), where
Y = .Y1, : : : , YT /′ is modelled through
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Yt =ft +σt"t , t =1, : : : , T , .3/

where ft is the signal, and where σt is the noise’s standard deviation at time t. To facilitate the
technical presentation of our results, in Sections 2 and 3, we assume that "t ∼IID N .0, 1/. In
Section 4, we extend our framework to other types of noise.

We assume that .ft ,σt/ can be partitioned into q + 1 segments, with q unknown distinct
change points 0 = τ0 < τ1 < : : : < τq < τq+1 =T . Here the value of q is not prespecified and can
grow with T . For each j = 1, : : : , q + 1 and for t = τj−1 + 1, : : : , τj, the structure of .ft ,σt/ is
modelled parametrically by a local (i.e. depending on j) real-valued d-dimensional parameter
vector Θj (with Θj �=Θj−1), where d is known and typically small. To fix ideas, in what follows,
we assume that each segment of ft and σt follows a polynomial. In addition, we require the
minimum distance between consecutive change points to be d or greater for the purpose of
identifiability. (Otherwise, for example, take ft to be piecewise linear with a known constant
σt , in which case d = 2; if we had a segment of length 1, then we would not be able to define a
line based on a single point.) In other words, .ft ,σt/ can be divided into q different segments,
each from the same parametric family of much simpler structure. Some commonly encountered
scenarios are listed below, where the following assumptions hold inside the jth segment for each
j =1, : : : , q+1.

(a) Constant variance, piecewise constant mean (scenario 1): σt =σ0 and ft =θj for t = τj−1 +
1, : : : , τj.

(b) Constant variance, continuous and piecewise linear mean (scenario 2): σt = σ0 and ft =
θj,1 +θj,2t for t = τj−1 +1, : : : , τj, with the additional constraint of

θj,1 +θj,2 τj =θj+1,1 +θj+1,2 τj

for j =1, : : : , q.
(c) Constant variance, piecewise linear (but not necessarily continuous) mean (scenario 3):

σt = σ0 and ft = θj,1 + θj,2t for t = τj−1 + 1, : : : , τj. In addition, fτj + θj,2 �= fτj+1 for
j =1, : : : , q.

(d) Piecewise constant variance, piecewise constant mean (scenario 4): ft =θj,1 andσt =θj,2 >0
for t = τj−1 +1, : : : , τj.

Since σ0 in scenarios 1–3 acts as a nuisance parameter, in the rest of this paper, for sim-
plicity we assume that its value is known. If it is unknown, then it can be estimated accu-
rately by using the median absolute deviation (MAD) method (Hampel, 1974). More specifi-
cally, with independent and identically distributed (IID) Gaussian errors, the MAD estimator
of σ0 is defined as σ̂= median.|Y2 − Y1|, : : : , |YT − YT−1|/={Φ−1. 3

4 /
√

2} in scenario 1, and as
σ̂= median.|Y1 − 2Y2 +Y3|, : : : , |YT−2 − 2YT−1 +YT |/={Φ−1. 3

4 /
√

6} in scenarios 2 and 3. Here
Φ−1.·/ denotes the quantile function of the standard normal distribution. Note that the MAD
estimator is robust to any change points in the underlying signal ft , because of its combination
of working with the differenced data, and its use of the median. Finally, we note that a different
procedure is proposed to estimate σ0 with dependent errors; see Section 4.1 for more details.

2.2. Main idea
We now describe the main idea of the NOT method formally; more details can be found in
Section 2.4, where the pseudocode of the NOT algorithm is given.

In the first step, instead of directly using the entire data sample, we randomly extract subsam-
ples, i.e. vectors .Ys+1, : : : , Ye/

′, where .s, e/ is drawn uniformly from the set of pairs of indices
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in {0, : : : , T − 1}×{1, : : : , T} that satisfy 0 � s < e�T . Let l.Ys+1, : : : , Ye;Θ/ be the likelihood
of Θ given .Ys+1, : : : , Ye/

′. We then compute the GLR statistic for all potential single change
points within the subsample and pick the maximum, i.e.

Rb
.s,e].Y/=2 log

[
supΘ1,Θ2{l.Ys+1, : : : , Yb;Θ1/l.Yb+1, : : : , Ye;Θ2/}

supΘ l.Ys+1, : : : , Ye;Θ/

]
;

R.s,e].Y/= max
b∈{s+d,:::,e−d}

Rb
.s,e].Y/:

.4/

Here we also implicitly require e − s � 2d, which comes from the identifiability condition, be-
cause typically we need at least d observations to determine Θ1, and another d observations to
determine Θ2.

If constraints are in place between Θj and Θj+1 for any j =1, : : : , q (e.g. as in scenario 2), the
supremum in the numerator of equation (4) is taken over the set that contains only elements of
form Θ1 ×Θ2 satisfying these constraints. Otherwise, as in scenarios 1, 3 and 4, equation (4)
can be simplified to

Rb
.s,e].Y/=2 log

{
supΘ l.Ys+1, : : : , Yb;Θ/ supΘ l.Yb+1, : : : , Ye;Θ/

supΘ l.Ys+1, : : : , Ye;Θ/

}
:

This procedure is repeated on M randomly drawn pairs of integers .s1, e1/, : : : , .sM , eM/.
In the second step, we test all R.sm,em].Y/ for m=1, : : : , M against a given threshold ζT . Among

those significant R.sm,em].Y/s, we pick the one corresponding to the interval .smÅ , emÅ ] that has
the smallest length. Once a change point has been found in .smÅ , emÅ ] (i.e. bÅ that maximizes
Rb

.smÅ ,emÅ ].Y/: a function of b), the same procedure is then repeated recursively to the left and
to the right of it, until no further significant GLRs can be found. In each recursive step, we
could reuse the previously drawn intervals, provided that they fall entirely within each current
subsegment considered.

After the process of estimating the change points has been completed, we can estimate the
signals within each segment by using standard methods such as least squares or maximum
likelihood. Note that the estimation of knot locations in spline regression can be viewed as a
multiple-change-point detection problem set in the context of polynomial segments that are
continuously differentiable but have discontinuous higher order derivatives at the change points
between these segments; NOT detection can be used for this purpose.

Admittedly, in our framework, one could also use a deterministic scheme (e.g. that in Ru-
fibach and Walther (2010)) to pick a sufficiently rich family of intervals for multiscale inference.
However, one advantage of our approach is that, through the use of randomness in drawing
the intervals, we avoid having to make a subjective choice of a particular fixed design. Never-
theless, with a very large number of intervals drawn, the difference in performance between the
random and deterministic designs is likely to be minimal: an observation that was also made in
Fryzlewicz (2014).

2.3. Log-likelihood ratios and contrast functions
In many applications, the GLR (4) in NOT detection can be simplified with the help of ‘contrast
functions’ under the setting of Gaussian noise. In particular, these constructions mainly involve
taking inner products between the data and other deterministic vectors, which greatly facilitates
the development of both theory and computation, especially if these deterministic vectors are
mutually orthonormal. In fact, the form of these contrast functions is crucial in our theoretical
development.
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More precisely, for every integer triple .s, e, b/ with 0 � s < e�T , our aim is to find Cb
.s,e].Y/

such that

(a) arg maxb Cb
.s,e].Y/=arg maxb Rb

.s,e].Y/,
(b) heuristically speaking, the value of Cb

.s,e].Y/ is relatively small if there is no change point
in .s, e] and

(c) the formulation of Cb
.s,e].Y/ mainly consists of taking inner products between the data and

certain contrast vectors.

In what follows, we give the contrast functions corresponding to scenarios 1 and 2, where the
aforementioned properties are satisfied. Their details under scenarios 3 and 4, as well as a com-
prehesive discussion on the construction, can be found in section B of the on-line supplementary
materials. We note that this approach recovers the cumulative sum statistic in scenario 1, which
is popular in this canonical change point detection setting. One can view the resulting statistics
as generalizations of cumulative sum statistics under other scenarios.

2.3.1. Scenario 1
Here ft is piecewise constant. For any integer triple .s, e, b/ with 0� s < e�T and s < b < e, we
define the contrast vector ψb

.s,e] = .ψb
.s,e].1/, : : : ,ψb

.s,e].T//′ as

ψb
.s,e].t/=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√{
e−b

.e− s/.b− s/

}
, t = s+1, : : : , b,

−
√{

b− s

.e− s/.e−b/

}
, t =b+1, : : : , e,

0, otherwise:

.5/

Also, if b �∈{s + 1, : : : , e− 1}, then we set ψb
.s,e].t/= 0 for all t. As an illustration, plots of ψb

.s,e]
with various .s, e, b/ are shown in Fig. 2(a).

For any vector v = .v1, : : : , vT /′, we define the contrast function as

Cb
.s,e].v/=|〈v,ψb

.s,e]〉|: .6/

(a)

(b)

Fig. 2. Plots of (a)ψb
.s,e] and (b)φb

.s,e] given by respectively equation (5) and equation (7) for sD0, eD1000
and several values of b: , bD125; , bD500; , bD750
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2.3.2. Scenario 2
Here ft is piecewise linear and continuous. For any triple .s, e, b/ with 0� s<e�T and s+1 <

b<e, consider the contrast vector φb
.s,e] = .φb

.s,e].1/, : : : ,φb
.s,e].T//′ with

φb
.s,e].t/=

⎧⎪⎪⎨
⎪⎪⎩

αb
.s,e]β

b
.s,e][{3.b− s/+ .e−b/−1}t −{b.e− s−1/+2.s+1/.b− s/}], t = s+1, : : : , b,

−αb
.s,e]

βb
.s,e]

[{3.e−b/+ .b− s/+1}t −{b.e− s−1/+2e.e−b+1/}], t =b+1, : : : , e,

0, otherwise,
.7/

where

αb
s,e =

[
6

l.l2 −1/{1+ .e−b+1/.b− s/+ .e−b/.b− s−1/}

]1=2

,

βb
s,e =

{
.e−b+1/.e−b/

.b− s−1/.b− s/

}1=2

and l= e− s. If b �∈{s+2, : : : , e−1}, then we set φb
.s,e].t/=0 for all t. We illustrate the structure

of φb
.s,e] in Fig. 2(b). The contrast function is then defined as

Cb
.s,e].v/=|〈v,φb

.s,e]〉|: .8/

2.4. The narrowest-over-threshold algorithm
Here we present the pseudocode of a generic version of the NOT algorithm. The main ingredient
of the NOT procedure is a contrast function Cb

.s,e].·/, which is chosen by the user, depending on
the assumed nature of change points in the data, e.g. as exemplified by our scenarios 1 and 2
above, and scenarios 3 and 4 in section B of the on-line supplementary materials. In addition,
some tuning parameters are needed: ζT > 0 is the threshold with respect to which the contrast
should be tested, whereas M is the number of the intervals that are drawn in the procedure.
Guidance on the choice of ζT and M is given in Section 3. In particular, there we advocate an
automatic choice of ζT by combining the NOT algorithm with an information-based criterion,
thus making our procedure threshold free.

To sum up, the input includes the data vector Y, the set of FM
T that contains all randomly

drawn subintervals for testing and the global variable S for the set of estimated change points
initialized with S =∅. Then the NOT algorithm is started recursively with .s, e] = .0, T ] and a
given ζT . Here the entire set of FM

T that contains all random intervals is generated before we
start running algorithm 1 (Table 1). In this way, we are better able to control the computational
complexity of the entire procedure.

2.5. Theoretical properties of narrowest-over-threshold method
In this section, we analyse the theoretical behaviour of the NOT algorithm in scenarios 1 and
2. We use infill asymptotics, which are standard in the literature on a posteriori change point
detection. An attractive feature of our methodology is that proofs for other scenarios can in
principle be constructed ‘at home’ by the user, by following the same generic proof strategy as
the strategy that we use for these two scenarios.

First, we revisit the canonical change point detection problem, scenario 1, where the signal
vector f = .f1, : : : , fT /′ is piecewise constant. Here σ0 is assumed to be known. Otherwise, one
can plug in the MAD estimator, which was described in Section 2.1, without affecting the validity
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Table 1. Algorithm 1—NOT algorithm

Input: data vector Y = .Y1, : : : , YT /′, FM
T being a set of M left open and right closed intervals, with each pair

of start and end points drawn independently and uniformly from the set of pairs of indices in {0, : : : , T −1}×
{1, : : : , T} that satisfy the conditions outlined at the beginning of Section 2.2, S =∅

Output: set of estimated change points S ⊂{1, : : : , T}
To start the algorithm: call NOT..0, T ], ζT /

procedure NOT..s, e], ζT /
if e− s�1 then STOP
else

M.s,e] :={m : .sm, em]∈FM
T , .sm, em]⊂ .s, e]}

if M.s,e] =∅ then STOP
else

O.s,e] :={m∈M.s,e] : maxsm<b�em Cb
.sm,em].Y/> ζT }

if O.s,e] =∅ then STOP
else

mÅ :∈arg minm∈O.s,e]
|em − sm|

bÅ :=arg maxsmÅ <b�emÅ Cb
.sÅ

m,eÅ
m].Y/

S :=S ∪{bÅ}
NOT..s, bÅ], ζT /
NOT..bÅ, e], ζT /

end if
end if

end if
end procedure

of our theory. For notational convenience, we set σ0 =1. For other values of σ0, our theorems
are still valid with only minor adjustments to the constants therein. Explicit expressions for
all the constants (i.e. C, C1, C2 and C3) are given in section I.2 of the on-line supplementary
materials.

Theorem 1. Suppose that Yt follow model (3) in scenario 1. Let δT =minj=1,:::,q+1.τj −τj−1/,
Δf

j =|fτj+1 −fτj |, f
T

= minj=1,:::,q Δf
j. Let q̂ and τ̂1, : : : , τ̂ q̂ denote respectively the number

and locations of change points, sorted in increasing order, estimated by algorithm 1 with
the contrast function given by equation (6). Then there are constants C, C1, C2, C3 > 0 (not
depending on T ) such that, given δ1=2

T , f
T

�C
√

log.T/, C1
√

log.T/� ζT <C2δ
1=2
T f

T
and M �

36T 2δ−2
T log.T 2δ−1

T /, as T →∞,

P
[
q̂=q, max

j=1,:::,q
{|τ̂ j − τj|.Δf

j/2}�C3 log.T/
]
→1: .9/

Given two sequences {AT }∞
T=1 and {BT }∞

T=1, we write AT ∼BT when AT =O.BT / and BT =
O.AT /. In the simplest canonical case where we have finitely many change points with δT ∼T

and f
T

∼ 1, so the condition δ
1=2
T f

T
� C

√
log.T/ is always satisfied for a sufficiently large T .

Theorem 1 indicates that the NOT procedure requires M =O{log.T/} many random intervals
for consistent detection of all the change points, which leads to a total computational cost of
O{T log.T/} for the entire procedure. Furthermore, maxj=1,:::,q.|τ̂ j − τj|/=Op{log.T/}, which
trails the minimax rate of Op.1/ by only a logarithmic factor. In addition, we note that the NOT
procedure allows for δ1=2

T f
T

, which is a quantity that characterizes the level of difficulty of the
problem, to be of order

√
log.T/. As argued in Chan and Walther (2013), this is the smallest

rate that permits change point detection for any method from a minimax perspective.
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Next, we revisit scenario 2, in which the signal is piecewise linear and continuous. Again, we set
σ0 =1 for notational convenience. Explicit expressions of the constants in the following theorem
(i.e. C, C1, C2 and C3) can be found in section I.3 of the on-line supplementary materials.

Theorem 2. Suppose that Yt follow model (3) in scenario 2. Let δT =minj=1,:::,q+1.τj −τj−1/,
Δf

j =|2fτj −fτj−1 −fτj+1|, f
T

=minj=1,:::, q Δf
j. Let q̂ and τ̂1, : : : , τ̂ q̂ denote respectively the

number and locations of change points, sorted in increasing order, estimated by algorithm 1
with the contrast function given by equation (8). Then there are constants C, C1, C2, C3 > 0
(not depending on T ) such that, given δ3=2

T f
T

�C
√

log.T/, C1
√

log.T/� ζT < C2δ
3=2
T f

T
and

M �36T 2δ−2
T log.T 2δ−1

T /, as T →∞,

P
[
q̂=q, max

j=1,:::,q
{|τ̂ j − τj|.Δf

j/2=3}�C3 log.T/1=3
]
→1: .10/

In the case in which we have finitely many change points with δT ∼ T , we again need M =
O{log.T/} random intervals for consistent estimation of all the change points, leading to the total
computational cost of O{T log.T/}. In addition, when f

T
∼T −1 (a case in which ft is bounded),

our theory indicates that the resulting change point detection rate of the NOT algorithm is
Op{T 2=3 log.T/1=3}, which is different from the rate of Op.T 2=3/ that was derived by Raimondo
(1998) by only a logarithmic factor; moreover, under additional assumptions and with a more
careful but restrictive choice of ζT , this rate can be further improved to Op{T 1=2 log.T/1=2}; see
Section 3.4 and lemma 9 in the on-line supplementary materials for more details. Furthermore,
we remark that, in more general cases (i.e. the number of change points increasing with T ) in
scenario 2, the level of difficulty of the problem in scenario 2 can be characterized by δ3=2

T f
T

,
which is a quantity that is analogous to δ1=2

T f
T

in the setting of scenario 1.
Both theorem 1 and theorem 2 imply that there is an admissible range of thresholds that

would ensure consistent change point detection. They pave the way for establishing theorem
3 and theorem 4 in Section 3, which promote the automatic selection of the threshold via an
information criterion.

Finally, we emphasize again that WBS will fail to estimate change points consistently in
scenario 2, for reasons that were described in Section 1.

3. Narrowest-over-threshold method with the strengthened Schwarz information
criterion

3.1. Motivation
The success of algorithm 1 depends on the choice of the threshold ζT . Although theorem 1 and
theorem 2 state that there are ζT that guarantee consistent estimation of the change points, this
choice still typically depends on some unobserved quantities; furthermore, there are many more
general scenarios where a theoretically optimal threshold might be difficult to derive.

For a given Y and FM
T , each threshold ζT corresponds to a candidate model produced by the

NOT algorithm. Therefore, if we could produce a ‘solution path’ of candidate models obtained
from the NOT algorithm along all possible thresholds, we could then try to select the best model
along the solution path via minimizing an information-based criterion. In this sense, the task
of selecting the best threshold is equivalent to selecting the best model on the solution path.

3.2. Algorithm 2: the narrowest-over-threshold solution path algorithm
Denote by T .ζT / = {τ̂1.ζT /, : : : , τ̂ q̂.ζT /.ζT /} the locations of change points estimated by al-
gorithm 1 with threshold ζT and define the threshold-indexed solution path as the family of
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sets {T .ζT /}ζT �0. This threshold-indexed solution path has the following important proper-
ties. First, as a function ζT �→ T .ζT /, it changes its value only at discrete points, i.e. there
are 0 = ζ

.0/
T < ζ

.1/
T < : : : < ζ

.N/
T , such that T .ζ

.i/
T / �= T .ζ

.i+1/
T / for any i = 0, 1, : : : , N − 1, and

T .ζT /=T .ζ
.i/
T / for any ζT ∈ [ζ.i/

T , ζ.i+1/
T /; second, T.ζT /=∅ for any ζT � ζ

.N/
T .

However, the thresholds ζ.i/
T are unknown and depend on the data; therefore naively applying

algorithm 1 on a range of prespecified thresholds typically does not recover the entire solution
path. Moreover, from the computational point of view, repeated application of algorithm 1 to
find the solution path is not optimal either, because intuitively we would expect the solutions
for ζ.i+1/

T and ζ.i/
T to be similar for most i. These issues are circumvented by algorithm 2, which

can compute the entire threshold-indexed solution path quickly, thus facilitating the study of
a data-driven approach to the choice of ζT in Section 3.3. The key idea of algorithm 2 is to
make use of information from T .ζ

.i/
T / to compute both ζ.i+1/

T and T .ζ
.i+1/
T / iteratively for every

i=0, : : : , N −1. The pseudocode of algorithm 2, as well as other relevant details, can be found
in section C.2 of the on-line supplementary materials.

3.3. Choice of ζT via the strengthened Schwarz information criterion
Suppose that we have T .ζ.1//, : : : , T .ζ.N// that form the NOT solution path, i.e. the collec-
tion of candidate models that is produced by algorithm 2. We propose to select T .ζ.k// that
minimizes the strengthened Schwarz information criterion sSIC (Liu et al., 1997; Fryzlewicz,
2014) defined as follows. Let k = 1, : : : , N, q̂k = |T .ζ

.k/
T /| and Θ̂1, : : : , Θ̂q̂k+1 be the maximum

likelihood estimators of the segment parameters in model (3) with the estimated change points
τ̂1, : : : , τ̂ q̂k

∈T .ζ
.k/
T /. Here, for notational convenience, we have suppressed the dependence of

τ̂1, : : : , τ̂ q̂k
on ζ.k/

T . Further, denote by nk the total number of estimated parameters, including the
locations of the change points and free parameters in Θ1, : : : ,Θq̂k+1 (note that the total number
of the latter can be different from the dimensionality of each Θj multiplied by the number of
segments, as for example in scenario 2). Then the strengthened Schwarz information criterion
is

sSIC.k/=−2
q̂k+1∑
j=1

log{l.Yτ̂ j−1+1, : : : , Yτ̂ j
; Θ̂j/}+nk logα.T/, .11/

for some pregiven α� 1, with τ̂0 = 0 and τ̂ q̂k+1 = T . When α= 1, we recover the well-known
Schwarz information criterion.

One reason why we use sSIC here is to facilitate our theoretical development below. In fact,
once we have obtained the NOT solution path via algorithm 2, other criteria, such as the
modified Bayes information criterion (Zhang and Siegmund, 2007), the minimum description
length (Davis et al., 2006) or the steepest drop to low levels (Fryzlewicz, 2018a), could conceivably
be used for model (or, equivalently, threshold) selection.

3.4. Theoretical properties of narrowest-over-threshold method with the strengthened
Schwarz information criterion
In this section, we analyse the theoretical behaviour of the NOT algorithm with sSIC in scenarios
1 and 2. Here we focus on the situation where the number of change points q is fixed (i.e. does not
increase with T ). This is typical for the theoretical development of information-criterion-based
approaches and reflects the fact that such approaches tend to work better in practice for signals
with at most a moderate number of change points. See also Yao (1988). Again, for notational
convenience, we setσ0 =1. Our results below provide theoretical justifications for using the NOT
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algorithm with sSIC. Crucially, in contrast with algorithm 1, here we do not need to supply a
threshold.

Theorem 3. Suppose that Yt follow model (3) in scenario 1. Let δT =minj=1,:::,q+1.τj −τj−1/,
Δf

j = |fτj+1 − fτj | and f
T

= minj=1,:::,q Δf
j. Furthermore, assume that q does not increase

with T , δT = log.T/α
′ �C1, f

T
�C2 and maxt=1,:::,T |ft|� C̄ for some C1, C2, C̄ >0 and α′ >1.

Let q̂ and τ̂1, : : : , τ̂ q̂ denote respectively the number and locations of change points, sorted in
increasing order, estimated by the NOT algorithm (via algorithm 2) with the contrast function
given by equation (6) and ζT picked via sSIC using α∈ .1,α′/. Then there is a constant C (not
depending on T ) such that, given M �36T 2δ−2

T log.T 2δ−1
T /, as T →∞,

P
{

q̂=q, max
j=1,:::,q

|τ̂ j − τj|�C log.T/
}

→1:

Theorem 4. Suppose that Yt follow model (3) in scenario 2. Let δT = minj=1,:::,q+1.τj −
τj−1/, Δf

j = |2fτj − fτj−1 − fτj+1|, f
T

= minj=1,:::, q Δf
j. Furthermore, assume that q does

not increase with T , δT =T � C1, f
T

T � C2 and maxt=1,:::,T |ft| � C̄ for some C1, C2, C̄ > 0.
Let q̂ and τ̂1, : : : , τ̂ q̂ denote respectively the number and locations of change points, sorted in
increasing order, estimated by the NOT algorithm (via algorithm 2) with the contrast function
given by equation (8) and ζT picked via sSIC using α> 1. Then there is a constant C (not
depending on T ) such that, given M �36C−2

1 log.C−1
1 T/, as T →∞,

P
[
q̂=q, max

j=1,:::,q
|τ̂ j − τj|�C

√{T log.T/}
]
→1:

For a discussion of the optimality of the rates that are obtained in theorems 3 and 4 regarding
the accuracy of the estimated change point locations, see Section 2.5.

3.5. Computational complexity
Here we elaborate on the computational complexity of algorithm 1 (see Section 2.4) and al-
gorithm 2 (see Section 3.2 and section C.2 of the on-line supplementary materials). For both
algorithms, the task of computation can be divided into two main parts. First, we need to eval-
uate a chosen contrast function for all points in the M randomly picked left open and right
closed intervals with their start and end points in {0, : : : , T −1} and {1, : : : , T} respectively. In
the second part, we find potential locations of the change points for a single threshold ζT in the
case of algorithm 1 and for all possible thresholds in the case of algorithm 2.

Naturally, the computational complexity of the first part depends on the cost of computing
the contrast function for a single interval. In all the scenarios that are studied in this paper, this
cost is linear in the length of the interval, i.e. the cost of computing {Cb

.s,e].Y/}e−1
b=s+1 is O.e− s/.

This is explained in detail in section C.1 of the on-line supplementary materials. The intervals
drawn in the procedures have approximately O.T/ points on average; therefore the computational
complexity of the first part of the computations is O.MT/ in a typical application. Importantly, as
the calculations for one interval are completely independent of the calculations for another, it is
straightforward to run these computations in an ‘embarrassingly parallel’ manner. In addition,
for the second part, as mentioned in detail in the section C.2 of the on-line supplementary
materials, its computational complexity is typically less than O.MT/, thus bringing the total
computational complexity of both algorithm 1 and algorithm 2 to O.MT/.

Fig. 3 shows execution times for the implementation of algorithm 2, the NOT solution path
algorithm, implemented in the R package not, with the data {Yt}T

t=1 being IID N .0, 1/. The
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Fig. 3. Execution times for the implementation of algorithm 2 available in R package not (Baranowski
et al., 2016a), for various feature detection problems with the data Yt, t D1,. . . , T , IID N .0, 1/ (in a single run,
computations for the input of the algorithm are performed in parallel, using eight cores of an Intel Xeon 3.6-GHz
central processor unit with 16 Gbytes of random-access memory; the computation times are averaged over
10 runs in each case) ( , scenario 1; , scenario 2; , scenario 3; , scenario 4): (a) fixed M D 10000; (b)
fixed T D10000

running times appear to scale linearly both in T (Fig. 3(a)) and in M (Fig. 3(b)), which pro-
vides evidence that the computational complexity of algorithm 2 in this particular example is
practically of order O.MT/.

Finally, we remark that the memory complexity of algorithm 2 is also O.MT/, which combined
with its low computational complexity implies that our approach can handle problems of size
T in the range of millions.

3.6. Other practical considerations
3.6.1. Choice of M

As can be seen in theorem 1 and theorem 2, the minimum required value for M grows with T (i.e.
at O{log.T/}, for a fixed number of well-spaced change points). In practice, when the number
of observations is of the order of thousands, we would recommend setting M =10000. With this
value of M, the implementation of algorithm 1 provided in the R not package (Baranowski
et al., 2016a) achieves an average computation time not longer than 2 s in all the examples in
Section 5 by using a single core of an Intel Xeon 3.6-GHz central processor unit. This can be
accelerated further, as the not package allows for computing the contrast function over the
intervals drawn in parallel by using all available central processor unit cores.

However, caution must be exercised for signals with a large expected number of change points,
for which M may need to be increased. For example, Maidstone et al. (2017) found that the
NOT algorithm with M = 105 offered better practical performance on the change point rich
signals that they considered. In the most extreme scenario where we expect change points to
occur very frequently with a large T , we would recommend picking M as large as possible to
match the available computational power and applying a penalty that is less stringent than sSIC.
See section F of the on-line supplementary materials.
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3.6.2. Early stopping for narrowest-over-threshold method with the strengthened Schwarz
information criterion
If the number of change points in the data is expected to be quite moderate, then it may not
be necessary to calculate sSIC for all k. In practice, solutions on the path corresponding to
very small values of ζT contain many estimated change points. Such solutions are unlikely to
minimize equation (11). By considering |T .ζ

.k/
T /|�qmax, we could achieve some computational

gains without adversely impacting the overall performance of the methodology. As such, in all
applications that are presented in this work we compute sSIC only for k such that |T .ζ

.k/
T /|�qmax

with qmax =25.

4. Narrowest-over-threshold method under different noise types

In this section, we discuss how the NOT method can be extended to handle different types of
noise. Section 4.1 deals with dependent noise, whereas Section 4.2 covers heavy-tailed noise. In
addition, we investigate the case of noise with slowly varying variance in section D of the on-line
supplementary materials.

4.1. Narrowest-over-threshold method under dependent noise
When the errors "t in model (3) are dependent with E."t/=0 and var."t/=1, the aforementioned
NOT procedure can still be applied as a quasi-likelihood-type procedure. Conceivably, using
the NOT algorithm here would incur information loss. As is shown in corollaries 1 and 2 in
scenarios 1 and 2, the NOT method is still consistent if we replace the noise’s assumption of IID
data in theorems 1 and 2 by stationarity with short memory. This new dependence assumption
is satisfied by a large class of stationary time series models, including auto-regressive moving
average models. See also the numerical examples in section E of the on-line supplementary
materials, where we again select the thresholds automatically via sSIC. Here we assume that
σ0 = 1. However, if not, MAD-type estimators based on simple differencing are no longer
appropriate for dependent data. We comment on this issue later. The following corollaries give
guidelines on the choice of the threshold, as well as a guarantee on the performance of the NOT
algorithm from a theoretical perspective.

Corollary 1. Suppose that Yt follow model (3) in scenario 1, but with {"t} being a stationary
short memory Gaussian process, i.e. the auto-correlation function of {"t}, denoted by ρk for any
lag k ∈Z, satisfies Σ∞

k=−∞|ρk|<∞. Then, the conclusion of theorem 1 still holds (with different
constants).

Corollary 2. Suppose that Yt follow model (3) in scenario 2, but with {"t} being a stationary
short memory Gaussian process. The conclusion of theorem 2 holds (with different constants).

In our theoretical development for the dependent noise setting, the smallest permitted thresh-
old to be used in the NOT algorithm depends linearly on σ0.Σ∞

k=−∞|ρk|/1=2. This quantity can
also be viewed as a generalization of the independent noise setting, where the threshold is pro-
portional to σ0 (since Σ∞

k=−∞|ρk|=1). More details of its derivation are provided in section 1.6
of the on-line supplementary materials.

This poses a few challenges in the practical application of NOT detection to signals with
dependent noise:

(a) the (pre-)estimation of the residuals "t in preparation for the estimation of their long-run
variance;

(b) the estimation of σ0;
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(c) the estimation of σ0.Σ∞
k=−∞|ρk|/1=2.

These problems are known to be difficult in time series analysis in general. A possible solution
is outlined below.

For problem (a), we have had some success with the wavelet-based method of Johnstone
and Silverman (1997), which was implemented in the R package wavethresh (Nason, 2016);
its advantages are that it is specifically designed for dependent noise and that, being based
on non-linear wavelet shrinkage, it is particularly suited for signals with irregularities, such
as (generalized) change points. Here the Haar wavelet transform of the data is appropriate in
scenario 1, whereas a transform with respect to any wavelet that annihilates linear functions is
appropriate in scenarios 2 and 3. Once the empirical residuals have been obtained from problem
(a) we could then estimateσ0 in problem (b) by its sample version and estimateσ0.Σ∞

k=−∞|ρk|/1=2

in problem (c) in a model-based way (e.g. using the auto-regressive model with its order p chosen
by an information criterion).

Another possibility to estimate change points under dependent noise is to use self-normalizing-
based statistics. See, for instance, Shao and Zhang (2010), Betken (2016), Pešta and Wendler
(2018) and Zhang and Lavitas (2018). These statistics could potentially be fed into our NOT
approach as well.

Finally, we mention two practical ways of reducing the dependence and making the series
closer to Gaussian, before applying NOT detection:

(a) preaverage the data over non-overlapping moving windows of size h, creating a new data
set of length �T=h�; the hope is that, by the law of large numbers, the preaveraged noise
will be closer to Gaussian and also less serially dependent than the original noise;

(b) add additional IID Gaussian noise to the data, with mean 0 and suitably chosen standard
deviation; this will have a similar effect to that previously, i.e. it will bring the distribution
of the data closer to Gaussian and reduce the serial dependence within the data.

4.2. Extension of narrowest-over-threshold method under heavy-tailed noise
NOT detection appears to be relatively robust under noise misspecification. As is demonstrated
later in Section 5, it offers reasonable estimates when the noise is non-Gaussian but the Gaussian
contrast functions are used. We now discuss how its performance can be improved further in
the presence of heavy-tailed noise.

In scenario 1, we propose to apply the following new contrast function, which is defined for
Y and 0� s<b<e�T as

C̃b

.s,e].Y/=〈S.s,e].Y/,ψb
.s,e]〉 .12/

in our NOT procedure. Here, for any vector v= .v1, : : : , vT /′, the i-component of S.s,e].v/ is given
by S.s,e].v/i = sgn{vi − .e− s/−1Σe

t=s+1vt} andψb
.s,e] is defined by equation (5). (For certain noise

distributions, subtracting the sample median of v instead of the sample mean would appear more
appropriate.) The rationale behind function (12) is to assign

Ys+1 − 1
e− s

e∑
t=s+1

Yt , : : : , Ye − 1
e− s

e∑
t=s+1

Yt

(i.e. residuals for fitting a curve with no change point on a given interval) into two classes (±1, i.e.
a two-point distribution, thus with light tails) and apply the contrast function to their ±1-labels.
The empirical performance of the NOT approach (via algorithm 2) combined with equation
(12) and sSIC is also illustrated in section E of the on-line supplementary materials.
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5. Simulation study

5.1. Settings
We consider examples following scenarios 1–4 that were introduced in Section 2.3, as well as an
extra example satisfying σt =σ0 and ft is a piecewise quadratic function of t (scenario 5).

We simulate data according to equation (3) by using the test signals M1 teeth, M2 blocks,
M3 wave1, M4 wave2, M5 mix, M6 vol and M7 quad, with the noise following

(a) IID N .0, 1/,
(b) IID N .0, 2/,
(c) IID scaled Laplace with zero mean and unit variance,
(d) IID scaled Student t5-distribution with unit variance and
(e) a stationary Gaussian AR(1) process of ϕ=0:3, with zero mean and unit variance.

A detailed specification of our test models can be found in section A of the on-line supplementary
materials. Fig. 4 shows the examples of the data generated from models M1–M7, as well as the
estimates produced by the NOT algorithm in a typical run.

5.2. Estimators
We apply algorithm 2 to compute the NOT solution path and pick the solution minimizing sSIC
introduced in Section 3.3 with α=1 (which is equivalent to the Schwarz information criterion).
In each simulated example, we use the contrast function that was designed to detect change
points in the scenario that the example follows, given in Section 2.3 and section B of the on-line
supplementary materials under the assumption that "t is IID Gaussian. The resulting method
is referred to simply as ‘NOT’. In addition, for scenario 1 only, we also apply algorithm 2
combined with equation (12) and the Schwarz information criterion, which we call ‘NOT HT’.
Here ‘HT’ stands for ‘heavy tails’. The number of intervals drawn in the procedure and the
maximum number of change points for the Schwarz information criterion are set to M =10000
and qmax =25 respectively.

We then compare the performance of NOT and NOT HT against the best competitors avail-
able in the Comprehensive R Archive Network. To the best of our knowledge, none of the
competing packages can be applied in all of scenarios 1–5.

For change point detection in the mean, the selected competitors from the Comprehen-
sive R Archive Network are changepoint (Killick and Eckley, 2014; Killick et al., 2016)
implementing the PELT methodology that was proposed by Killick, Fearnhead and Eckley
(2012), changepoint.np (Haynes et al., 2016) implementing a non-parametric extension of
the PELT methodology that was studied in Haynes et al. (2017), wbs (Baranowski and Fry-
zlewicz, 2015) implementing WBS proposed by Fryzlewicz (2014), ecp (James and Matteson,
2014) implementing the e.cp3o method that was proposed by James and Matteson (2015),
strucchange (Zeileis et al., 2002) implementing the methodology of Bai and Perron (2003),
Segmentor3IsBack (Cleynen et al., 2013) implementing the technique that was proposed by
Rigaill (2015), nmcdr (Zou and Lancezhange, 2014) implementing NMCD, the non-parametric
multiple change point detection methodology of Zou et al. (2014), stepR (Pein et al., 2018)
implementing the simultaneous multiscale change point estimator SMUCE that was proposed
by Frick et al. (2014) and FDRSeg (Li et al., 2017) implementing the method called FDRSeg
proposed by Li et al. (2016). We refer to the corresponding methods as PELT, NP-PELT, WBS,
e.cp3o, B&P, S3IB, NMCD, SMUCE and FDRSeg respectively.

Note that e-cp3o, NMCD, NOT, PELT and NP-PELT can be used also for change point
detection in scenario 4, where change points occur in the mean and variance of the data. In
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addition, for scenario 4, we also include the heterogeneous SMUCE method (Pein et al., 2017)
implemented in stepR (Pein et al., 2018) and the segment neighbourhoods method (Auger and
Lawrence, 1989) implemented in changepoint (Killick and Eckley, 2014; Killick et al., 2016).
We refer to them as HSMUCE and SegNeigh respectively.

Only B&P allows for change point detection in piecewise linear and piecewise quadratic signals
(in particular, WBS is not suitable for these settings as described in Sections 1 and 2.5); hence we
also study the performance of the trend filtering methodology of Kim et al. (2009) termed TF
hereafter, using the implementation that is available from the R package genlasso (Taylor and
Tibshirani, 2014), to have a broader comparison. See also Lin et al. (2017). TF aims to estimate a
piecewise polynomial signal from the data, not focusing on the change point detection problem
directly. Let f̂

.TF/
t denote the TF estimate of the true signal ft ; then the TF estimates of the

change points in scenario 2 are defined as those τ for which |2f̂ .TF/
τ − f̂

.TF/
τ−1 − f̂

.TF/
τ+1 |> ε, where

ε> 0 is a very small number being the numerical level of tolerance (more precisely, we set
ε= 1:11 × 10−15 in our study). In the piecewise quadratic case, the change points are defined
as those τ for which the third-order differences |f̂ .TF/

τ+2 − 3f̂
.TF/
τ+1 + 3f̂ .TF/

τ − f̂
.TF/
τ−1 |> ε. We note

that both B&P and TF require a substantial amount of computational resources in this study.
Finally, we remark that the tuning parameters for the competing methods are set to the values

that were recommended by the corresponding R packages, and the R code for all simulations
can be downloaded from our GitHub repository (Baranowski et al., 2016b).

5.3. Results
Here we present only the results under the setting where the noise is (a) IID standard normal
in Table 2. Additional results under the other above-mentioned noise settings can be found in
section E of the on-line supplementary materials.

For each method, we show a frequency table for the distribution of q̂ − q, where q̂ is the
number of the estimated change points and q denotes the true number of change points. We
also report Monte Carlo estimates of the mean-squared error of the estimated signal, given by

MSE=E

{
1
T

T∑
t=1

.ft − f̂ t/
2
}

:

For all methods except TF, f̂ t is calculated by finding the least squares approximation of the sig-
nal of the appropriate type depending on the true ft , between each consecutive pair of estimated
change points. For TF, f̂ t used in the definition of the mean-squared error is the penalized least
squares estimate of ft returned by the TF algorithm.

To assess the performance of each method in terms of the accuracy of the estimated locations
of the change points, we report estimates of the (scaled) Hausdorff distance

dH =T −1E[max{ max
j=0,:::,q+1

min
k=0,:::,q̂+1

|τj − τ̂ k|, max
k=0,:::,q̂+1

min
j=0,:::,q+1

|τ̂ k − τj|}],

where 0= τ0 < τ1 <: : :< τq < τq+1 =T and 0= τ̂0 < τ̂1 <: : :< τ̂q < τ̂q+1 =T denote respectively
true and estimated locations of the change points. From the definition above, it follows that
0�dH �1. An estimator is regarded as performing well when its dH is close to 0. However, dH
would be large when the number of change points is underestimated or some of the estimated
change points are far from the real change points. In addition, we also report estimates of the
inverse V -measure dV defined as

dV =1−E[V.{τ̂ k}q̂+1
t=0 , {τk}q+1

t=0 /],
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where ‘V.·, ·/’ is the V -measure (with β=1) proposed by Rosenberg and Hirschberg (2007) for
the evaluation of segmentation. An estimator is regarded as performing well when its dV is close
to 0. More specifically, 0 � dV � 1, and a perfect estimator has dV = 0, whereas dV = 1 means
that none of the features are detected (i.e. q̂=0).

We find that, in most of the simulated scenarios, the NOT method is among the most compet-
itive methods in terms of the estimation of the number of change points and their locations, as
well as the true signal. Importantly, it is very fast to compute, which gives it a particular advan-
tage over its competitors in scenarios 2, 3 and 5. Finally, the NOT algorithm with the contrast
function derived under the assumption that the noise is IID Gaussian is relatively robust against
the misspecification in "t , when the truth is either correlated or heavy tailed.

6. Real data analysis

6.1. Temperature anomalies
We analyse the Goddard Institute for Space Studies surface temperature anomalies data set
that is available from GISTEMP Team (2016) (http://data.giss.nasa.gov/gistemp
/tabledata v3/GLB.Ts+dSST.csv), consisting of monthly global surface temperature
anomalies recorded from January 1880 to June 2016. The anomaly here is defined as the dif-
ference between the average global temperature in a given month and the baseline value, being
the average calculated for that time of the year over the 30-year period from 1951 to 1980; for
more details see Hansen et al. (2010). This and similar anomalies series are frequently studied
in the literature with a particular focus on identifying change points in the data; see for example
Ruggieri (2013) or James and Matteson (2015).

The plot of the data (Fig. 5(a)) indicates the presence of a linear trend with several change
points in the temperature anomalies series. The corresponding changes are not abrupt; therefore
we believe that scenario 2 with change points in the slope of the trend is the most appropriate
here. To detect the locations of the change points, we apply the NOT algorithm (via algorithm
2) with the contrast given by equation (8), combined with the Schwarz information criterion to
determine the best model on the solution path.
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Fig. 5. Change point analysis for the GISTEMP data set introduced in Section 6.1: (a) data series Yt ( )
and f̂ t estimated by using change points returned by the NOT algorithm ( ); (b) residuals "̂t DYt � f̂ t
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Table 2. Distribution of q̂ � q for data generated according to model (3) with the noise term "t IID N .0, 1/
for various choices of ft and σt given in section A of the on-line supplementary materials and competing
methods listed in Section 5†

Model Method Results for the following values of q̂−q: MSE dH ×10 2 dV Time (s)

�−3 −2 −1 0 1 2 �3

M1 B&P 0 0 0 97 3 0 0 0.051 0.59 0.019 15.335
e-cp3o 0 0 0 100 0 0 0 0.088 0.62 0.041 0.124
FDRSeg 0 0 0 83 14 1 2 0.089 1.18 0.044 0.035
NMCD 0 0 0 96 4 0 0 0.098 0.9 0.046 1.098
NOT 0 0 0 99 1 0 0 0.05 0.54 0.019 0.046
NOT HT 0 0 0 97 3 0 0 0.055 0.62 0.021 0.059
NP-PELT 0 0 0 83 12 4 1 0.067 0.99 0.028 0.018
PELT 0 0 0 100 0 0 0 0.05 0.51 0.019 0.002
S3IB 0 0 0 92 5 2 1 0.052 0.67 0.02 0.075
SMUCE 0 0 0 100 0 0 0 0.085 0.59 0.04 0.046
WBS 0 0 0 96 4 0 0 0.052 0.59 0.02 0.072

M2 B&P 0 4 34 62 0 0 0 0.021 1.27 0.022 382.524
e-cp3o 100 0 0 0 0 0 0 0.177 6.35 0.127 2.403
FDRSeg 0 1 30 54 10 5 0 0.029 1.58 0.032 1.189
NMCD 1 13 61 24 1 0 0 0.036 2.21 0.039 4.807
NOT 0 3 49 44 3 1 0 0.026 1.66 0.026 0.082
NOT HT 3 8 54 27 7 0 1 0.034 2.52 0.038 0.149
NP-PELT 0 3 16 53 23 5 0 0.028 1.64 0.03 0.226
PELT 7 34 47 12 0 0 0 0.033 3.01 0.036 0.002
S3IB 0 4 37 56 2 1 0 0.024 1.43 0.024 0.348
SMUCE 58 35 7 0 0 0 0 0.071 3.4 0.061 0.019
WBS 1 3 32 56 6 2 0 0.026 1.5 0.027 0.15

M3 B&P 0 0 0 98 2 0 0 0.068 2.46 0.117 87.917
NOT 0 0 0 100 0 0 0 0.015 0.89 0.051 0.621
TF 0 0 0 0 0 0 100 0.017 8.31 0.219 49.933

M4 B&P 0 0 1 99 0 0 0 0.074 2.98 0.156 102.579
NOT 0 0 0 100 0 0 0 0.016 1.25 0.07 0.609
TF 0 0 0 0 0 0 100 0.016 4.31 0.147 49.876

M5 B&P 0 0 0 100 0 0 0 0.021 2.53 0.089 201.256
NOT 0 0 0 100 0 0 0 0.02 2.46 0.086 0.372
TF 0 0 0 0 0 0 100 0.027 6.03 0.26 60.866

M6 e-cp3o 15 6 8 29 14 17 11 0.156 6.72 0.17 1.857
HSMUCE 98 2 0 0 0 0 0 0.097 12.66 0.216 0.123
NMCD 0 0 17 73 9 1 0 0.06 3.75 0.068 4.403
NOT 0 0 16 82 2 0 0 0.049 3.15 0.051 0.474
NP-PELT 0 0 0 20 27 27 26 0.127 3.45 0.072 0.29
PELT 9 16 30 42 3 0 0 0.071 7.62 0.083 0.008
SegNeigh 0 0 7 59 26 5 3 0.05 2.45 0.048 18.452

M7 B&P 0 0 1 98 1 0 0 0.021 2.47 0.073 48.711
NOT 0 0 1 98 1 0 0 0.022 2.33 0.07 0.468
TF 0 0 0 0 0 0 100 0.05 23.37 0.442 45.981

†Also tabulated are the average mean-square error of the resulting estimate of the signal ft , average Hausdorff
distance dH, average inverse V-measure dV and average computation time by using a single core of an Intel Xeon
3.6-GHz central processor unit with 16 Gbytes of random-access memory, all calculated over 100 simulated data
sets. Methods with the largest empirical frequency of q̂−q=0 or smallest average of dH or dV , and those within
10% of the highest or lowest accordingly, are given in italics.



Narrowest-over-threshold Detection 669

(a
)

(d
)

(b
)

(e
)

(c
)

(f
)

Monthly percentage change

Monthly percentage change
F

ig
.6

.
C

ha
ng

e
po

in
t

an
al

ys
is

fo
r

th
e

m
on

th
ly

pe
rc

en
ta

ge
ch

an
ge

s
in

th
e

U
K

H
P

I
fr

om
Ja

nu
ar

y
19

95
to

M
ay

20
16

:(
a)

–(
c)

m
on

th
ly

pe
rc

en
ta

ge
ch

an
ge

s
Y t

an
d

th
e

fit
te

d
pi

ec
ew

is
e

co
ns

ta
nt

m
ea

n
f̂ t

,b
et

w
ee

n
th

e
ch

an
ge

po
in

ts
es

tim
at

ed
w

ith
th

e
N

O
T

m
et

ho
d;

(d
)–

(f
)

jY t
�f̂

tja
nd

th
e

fit
te

d
pi

ec
ew

is
e

co
ns

ta
nt

st
an

da
rd

de
vi

at
io

n
σ̂

t,
be

tw
ee

n
th

e
ch

an
ge

po
in

ts
es

tim
at

ed
w

ith
th

e
N

O
T

m
et

ho
d;

(a
),

(d
)

H
ac

kn
ey

;(
b)

,(
e)

N
ew

ha
m

;(
c)

,(
f)

To
w

er
H

am
le

ts



670 R. Baranowski, Y. Chen and P. Fryzlewicz

The NOT estimate of the piecewise linear trend and the corresponding empirical residuals are
shown in Fig. 5. We identify eight change points at the following dates: March 1901, December
1910, July 1915, June 1935, April 1944, December 1946, June 1976 and May 2015. Previous
studies, conducted on similar temperature anomalies series (observed at a yearly frequency
and obtained from a different source), report change points around 1910, 1945 and 1976 (see
Ruggieri (2013) for an overview of some related analyses). In addition to the change points
around these dates, the NOT algorithm identifies two periods, 1901–1915 and 1935–1946, with
local deviations from the baseline. We also observe a long-lasting upward trend in the anomalies
series starting in December 1946. Finally, NOT detection indicates that the slope of the trend
is increasing, with the most recent change point in May 2015.

6.2. UK house price index
We analyse monthly percentage changes in the UK house price index (HPI) (https://www.
gov.uk/government/statistical-data-sets/uk-house-price-index-data-
downloads-january-2017), which provides an overall estimate of the changes in house
prices across the UK. The data and a detailed description of how the index is calculated are
available on line from UK Land Registry (2016). Fryzlewicz (2018b), who proposed a method
for signal estimation and change point detection in scenario 1, used this data set to illustrate
the performance of his methodology. We perform a similar analysis, assuming the more flexible
scenario 4, allowing for changes both in the mean and in the variance, which, we argue, leads
to additional insights and better interpretable estimates for this data set.

As in Fryzlewicz (2018b), we analyse the percentage changes in the HPI for three London
boroughs, namely Hackney, Newham and Tower Hamlets, all of which are in East London.
Hackney and Tower Hamlets border on the City of London, which is a major business and
financial district, and home to Canary Wharf, which is another important financial centre. In
contrast Newham, to the east of Hackney and Tower Hamlets, hosted the London 2012 Olympic
Games, which involved large-scale investment in that borough.

Fig. 6 shows monthly percentage changes in the HPI for the boroughs analysed and the
corresponding NOT estimates, obtained by using the contrast function for scenario 4. As rec-
ommended in Section 3.3, we set the number of intervals drawn in the procedure to M =10000
and choose the threshold that minimizes the Schwarz information criterion. For better compa-
rability, the NOT algorithm is applied with the same random seed for each data series.

In contrast with Fryzlewicz (2018b), whose tail greedy unbalanced Haar method estimates at
least 10 change points in each HPI series, we detect just a few change points in the data, facili-
tating the interpretation of the results. Furthermore, for all three boroughs, the NOT algorithm
estimates two change points (one around March 2008 and one around September 2009) that
could possibly be linked to the 2008–2009 financial crisis and its effect on the housing market.
Estimated standard deviations for that period are much larger than the estimates corresponding
to the other segments of piecewise constancy, suggesting that the market is more volatile during
2008–2009, and thus in this example scenario 4 may be more relevant than scenario 1 considered
in Fryzlewicz (2018b).
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