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EMBEDDING SPANNING BOUNDED DEGREE GRAPHS
IN RANDOMLY PERTURBED GRAPHS

JULIA BÖTTCHER, RICHARD MONTGOMERY, OLAF PARCZYK AND YURY PERSON

Abstract. We study the model Gα ∪ G(n, p) of randomly perturbed dense graphs, where Gα is any
n-vertex graph with minimum degree at least αn and G(n, p) is the binomial random graph. We
introduce a general approach for studying the appearance of spanning subgraphs in this model using
absorption. This approach yields simpler proofs of several known results. We also use it to derive the
following two new results.

For every α > 0 and � � 5, and every n-vertex graph F with maximum degree at most �, we
show that if p = ω(n−2/(�+1) ), then Gα ∪ G(n, p) with high probability contains a copy of F . The
bound used for p here is lower by a log-factor in comparison to the conjectured threshold for the
general appearance of such subgraphs in G(n, p) alone, a typical feature of previous results concerning
randomly perturbed dense graphs.

We also give the first example of graphs where the appearance threshold in Gα ∪ G(n, p) is lower
than the appearance threshold in G(n, p) by substantially more than a log-factor. We prove that,
for every k � 2 and α > 0, there is some η > 0 for which the kth power of a Hamilton cycle with
high probability appears in Gα ∪ G(n, p) when p = ω(n−1/k−η ). The appearance threshold of the kth
power of a Hamilton cycle in G(n, p) alone is known to be n−1/k , up to a log-term when k = 2, and
exactly for k > 2.

§1. Introduction and results. Many important results in Extremal Graph Theory and in
Random Graph Theory concern the appearance of spanning subgraphs in dense graphs and in
random graphs, respectively. In Extremal Graph Theory, minimum degree conditions forcing
the appearance of such subgraphs are studied. For example, Dirac’s Theorem [13], one of the
cornerstones of Extremal Graph Theory, states that an n-vertex graph with minimum degree
at least n/2 has a Hamilton cycle when n � 3. In Random Graph Theory, on the other hand,
bounds are sought on the probability threshold for the appearance of subgraphs in a random
graph. Let G(n, p) be the binomial random graph model with vertex set [n], where each
possible edge is chosen independently at random with probability p. We say that G(n, p) has
some property P with high probability (whp) if limn→∞ P[G(n, p) ∈ P] = 1. A key result by
Pósa [35] and Koršunov [26] is that G(n, p) with high probability contains a Hamilton cycle
if p = ω(log n/n), whereas if p = o(log n/n), then G(n, p) with high probability does not.
Here, we write p(n) = ω( f (n)) to signify p(n)/ f (n) → ∞, and p(n) = o( f (n)) to signify
p(n)/ f (n) → 0.

The study of randomly perturbed graphs combines these two approaches by taking the
union of a graph satisfying some minimum degree condition and a random graph G(n, p).
The goal is then to determine which minimum degree conditions and edge probabilities suffice
to guarantee some given subgraph with high probability. Bohman et al. [8], who pioneered
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the study of randomly perturbed graphs, proved that for every α > 0 the union of every
n-vertex graph with minimum degree at least αn and a random graph G(n, p) with p = ω(1/n)

contains whp a Hamilton cycle. This result shows that, compared to Dirac’s Theorem, a much
smaller minimum degree condition suffices in a randomly perturbed graph, and compared to
the random graph G(n, p) alone a log-term improvement in the edge probability is possible.

The recent increased interest in randomly perturbed graphs sparked a collection of results of
a similar flavour, typically featuring a small linear minimum degree condition and a log-term
improvement in the edge probability. In this paper, we contribute to this body of research by
developing a new general method for establishing such results for spanning subgraphs. Our
approach uses an absorbing method. We show that this new approach gives simpler proofs
of a number of known results, whose original proofs often use the regularity method and are
therefore technically more complex. It also allows us to give strong new results concerning
powers of Hamilton cycles and general bounded degree spanning subgraphs in randomly
perturbed graphs. In particular, our result on powers of Hamilton cycles provides the first
example for graphs with an n�(1) improvement in the edge probability compared to G(n, p).
A similar phenomenon was already discovered in the context of hypergraphs by McDowell
and Mycroft [30], which we will return to in our concluding remarks.

Before discussing our techniques and results in more detail, we set our work in context by
summarising related results in random graphs and randomly perturbed graphs.

1.1. Thresholds in G(n, p). We say that the function p̂ : N → [0, 1] is a threshold for a
graph property P , if

lim
n→∞ P[G(n, p) ∈ P] =

{
0 whenever p = o( p̂), and

1 whenever p = ω( p̂) .

If only the latter is known to be true, then we say that p̂ is an upper bound for the threshold
for P in G(n, p). Containing a graph as a (not necessarily induced) subgraph is a monotone
property and therefore it has a threshold by a result of Bollobás and Thomason [10]. In the
following, we will focus on spanning subgraphs.

In their seminal work, Erdős and Rényi [15] proved that the threshold for perfect matchings
in G(n, p) is log n/n. Pósa [35] and Koršunov [26] independently showed that the property
of having a Hamilton cycle has the same threshold.

The problem of finding powers of Hamilton cycles as a subgraph is generally considered a
stepping stone towards results for more general spanning subgraphs. The kth power G(k) of a
graph G is the graph obtained from G by connecting all vertices at distance at most k. Kühn
and Osthus [29] observed that the threshold in G(n, p) for the kth power of a Hamilton cycle
when k � 3 is n−1/k; this follows from a general embedding theorem due to Riordan [36]
(see Theorem 2.4). Similarly, the threshold of the square of a Hamilton cycle is conjectured
to be n−1/2, but this is still open. Currently, the best known upper bound, by Nenadov and
Škorić [33], is off by a O(log4 n)-factor from this conjectured threshold.

For a graph H , an H-factor on n vertices is the vertex disjoint union of copies of H with n
vertices in total. An almost H-factor in an n-vertex graph G is a subgraph of G that is an
H-factor on (1 − ε)n vertices. A breakthrough result was achieved by Johansson et al. [23]
who showed that the threshold for a K�+1-factor, that is n

�+1 vertex-disjoint copies of K�+1,
is given by

p� =
(

log1/� n

n

)2/(�+1)

.
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In fact, their result concerns, more generally, H-factors for strictly balanced graphs H . The
1-density of a graph H on at least two vertices is

m1(H ) = max
H ′⊆H,v(H ′)>1

e(H ′)
v(H ′) − 1

,

and a graph is called strictly balanced if H is the only maximiser in m1(H ). Johansson et al. [23]
proved that for factors of strictly balanced graphs H , the threshold is n−1/m1(H ) log1/e(H ) n.
Gerke and McDowell [20], on the other hand, showed that for certain (but not all) graphs H
which are not strictly balanced, this threshold is n−1/m1(H ).

Let us now turn to larger classes of graphs. For bounded degree spanning trees, the second
author [32] showed that, for each fixed �, log n/n is the appearance threshold for single
spanning trees with maximum degree at most � (see also [31]).

More generally, let F (n, �) be the family of graphs on n vertices with maximum degree
at most �. For some constant C, Alon and Füredi [3] proved that, if p � C(log n/n)1/�, then
G(n, p) contains any single graph from F (n, �) whp. This is far from optimal and, since the
clique-factor is widely believed to have the highest appearance threshold among the graphs
in F (n, �), the following well-known conjecture is natural.

CONJECTURE 1.1. If � ∈ N, F ∈ F (n, �) and p = ω(p�), then G(n, p) whp contains a
copy of F .

For � = 2, this conjecture was very recently resolved by Ferber et al. [16], who in
fact showed a stronger universality statement, where all graphs in F (n, �) are found
simultaneously. For larger �, Riordan [36] gave a general result (see Theorem 2.4), which
requires an edge probability within a factor of n�(1/�2 ) from p�. The current best result
in the direction of Conjecture 1.1 is the following almost spanning version by Ferber
et al. [17].

THEOREM 1.2 (Ferber et al. [17]). Let ε > 0 and � � 5. For every F ∈ F ((1 − ε)n, �)

and p = ω(p�) the random graph G(n, p) whp contains a copy of F .

The approach in [17] is based on ideas from Conlon et al. [12], who proved a stronger
universality statement for the almost spanning case while using the edge probability
n−1/(�−1) log5 n. Theorem 1.2 for � = 3 was thus already known (up to a log-factor),
whereas the case for � = 4 remains open. For spanning subgraphs, very recently, Ferber
and Nenadov [18] showed that for p � (log3 n/n)1/(�−1/2) the random graph G(n, p) whp
contains all graphs in F (n, �) universally.

In the almost spanning case, the log-term in p� is expected to be redundant [17], but this
remains open. In this paper, we will show that the log-term in p� is redundant, even in the
spanning case, if we add G(n, p) to a deterministic graph with linear minimum degree.

1.2. Randomly perturbed graphs. Bohman et al. [9] introduced the following model of
randomly perturbed graphs. For α ∈ (0, 1) and an integer n, we first let Gα be any n-vertex
graph with minimum degree at least αn. We then reveal more edges among the vertices of Gα

independently at random with probability p. The resulting graph Gα ∪ G(n, p) is a randomly
perturbed graph and we are interested in its properties. In particular, research has focused on
comparing thresholds in Gα ∪ G(n, p) to thresholds in G(n, p).

Again, we concentrate on spanning subgraphs. Note that the existence of such subgraphs
in Gα ∪ G(n, p) is a monotone property (in G(n, p)), and thus has a threshold. Of course,
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if α � 1/2, then Gα is itself Hamiltonian by Dirac’s Theorem. For α ∈ (0, 1/2), Bohman
et al. [9] showed the existence of some c = c(α) > 0 so that, if p = c/n, then, for any Gα ,
there is a Hamilton cycle in Gα ∪ G(n, p) whp. They also proved that this is optimal: there
exists some c′ > 0 so that there are graphs Gα such that Gα ∪ G(n, c′/n) is not Hamiltonian
whp. Comparing this threshold to the threshold for Hamiltonicity in G(n, p), we note an extra
factor of log n in the latter. This log n term is necessary to guarantee minimum degree at least 2
in G(n, p)—otherwise clearly no Hamilton cycle exists. In the model Gα ∪ G(n, p), however,
this already holds in Gα alone.

Krivelevich et al. [28] studied the corresponding problem for the containment of spanning
trees of maximum degree � in Gα ∪ G(n, p). For p = c(ε, �)/n, it is already possible to find
any almost spanning bounded degree tree on (1 − ε)n vertices in G(n, p) [4]. The addition
of Gα then ensures there are no isolated vertices, and Krivelevich et al. [28] showed that
this indeed allows every vertex to be incorporated into the embedding. They thus prove that,
for α > 0, maximum degree � and p = c(α, �)/n, every spanning bounded degree tree is
contained in Gα ∪ G(n, p).

Very recently, Balogh et al. [5] determined the threshold of appearance for general factors
in the model Gα ∪ G(n, p). They proved that for every H , if p = ω(n−1/m1(H )), then Gα ∪
G(n, p) contains an H-factor whp. Comparing this to the result of Johansson et al. [23], we
observe again a saving of a log-term. For the graphs H covered by the result of Gerke and
McDowell [20], on the other hand, we see that the thresholds in Gα ∪ G(n, p) and in G(n, p)

are the same.
Other monotone properties considered in the randomly perturbed graph model include

containing a fixed sized clique, having small diameter, being k-connected [8] and being non-
2-colourable [37].

1.3. Our results. Our main contribution to the study of randomly perturbed graphs is the
introduction of a new approach for obtaining results concerning spanning subgraphs. The
basic idea is to use some random edges with the assistance of the deterministic edges to create
so-called reservoir sets. Our key technical result is Theorem 3.3, which gives a condition for
applying this method to spanning subgraphs. We defer the statement of this result along with
the necessary definitions to § 3.

Using our method, we analyse the model Gα ∪ G(n, p) with respect to the containment of
spanning bounded degree graphs, addressing a problem which was highlighted by Krivelevich
et al. in the concluding remarks of [28]. We obtain the following result.

THEOREM 1.3. Let α > 0 be a constant, � � 5 be an integer and Gα be a graph
with minimum degree at least αn. Then, for every F ∈ F (n, �) and p = ω(n−2/(�+1)), whp
Gα ∪ G(n, p) contains a copy of F .

Our bound on p in Theorem 1.3 is best possible in the following sense. In the case where
F is a K�+1-factor on n vertices and Gα is a complete bipartite graph with parts of size αn
and (1 − α)n, we need to find an almost spanning K�+1-factor on (1 − α(� + 1))n vertices
in G(n, p). This can easily be shown to require p = �(n−2/(�+1)). Note in addition that the
edge probability used in Theorem 1.3 is lower by a log-term in comparison to the anticipated
threshold for the graph F to appear in G(n, p) (see Conjecture 1.1).

Our second result deals with powers of Hamilton cycles. Here we can save a polynomial
factor n�(1) compared to the threshold n−1/k in G(n, p).
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THEOREM 1.4. For each k � 2 and α > 0, there is some η > 0, such that if Gα is an
n-vertex graph with minimum degree at least αn, then Gα ∪ G(n, n−1/k−η) whp contains the
kth power of a Hamilton cycle.

It was proved by Komlós et al. [25] that Gα on its own contains the kth power of a Hamilton
cycle, provided that α � k/(k + 1) and v(Gα) is large enough. Bedenknecht et al. [6] showed
that for any k � 3 there is an η so that Gα ∪ G(n, n−1/k−η) whp contains the kth power of a
Hamilton cycle if α > ck for some absolute constant ck > 0.

Bennett et al. [7] provide the following lower bound. With Gα the complete bipartite graph
with αn and (1 − α)n vertices in the classes, they show that p has to be at least n−1/k(1−2α)

for Gα ∪ G(n, p) to contain the kth power of a Hamilton cycle. It would be interesting to
determine the optimal dependence between α, k and η in Theorem 1.4.

Organisation. We finish this section by providing some further notation, before outlining
our general embedding method for randomly perturbed graphs in § 3. We then prove
Theorem 1.4, the less technical of our implementations of this method, in § 4. Theorem 1.3
is proved in § 5, with the proofs of two auxiliary lemmas given in § 6. Finally, we make some
concluding remarks and sketch how our methods can give simpler proofs of other results in
the literature concerning randomly perturbed graphs in § 7.

Notation. A graph G has vertex set V (G), edge set E (G) and we let v(G) = |V (G)| and
e(G) = |E (G)|. For a vertex v ∈ V (G), NG(v) is the set of neighbours of v in G, and for
a vertex set A ⊆ V (G), NG(A) = (∪v∈ANG(v)) � A. Where no confusion is likely to occur,
we simply write N (v) and N (A). For graphs G and H , G ∩ H is the graph on vertex set
V (G) ∩ V (H ) with edge set E (G) ∩ E (H ). For a graph G, and a vertex set A ⊆ V (G), G[A]
is the induced subgraph of G on A, and G − A = G[V (G) � A].

§2. Tools. Our results concern the embedding of certain graphs F in Gα ∪ G(n, p). For
obtaining such an embedding, our first step will always be to embed an almost spanning
subgraph F ∗ of F , and our second step then (working in an auxiliary graph on [2n] vertices)
extends this to an embedding of F .

For the second step, we shall use the following hypergraph matching theorem of Aharoni
and Haxell [1]. The setup will be as follows. F � F ∗ consists of t well-separated subgraphs
S1, . . . , St of F , and we shall encode all valid embeddings of Si that extend the embedding
of F ∗ as the edges of a hypergraph Li. The goal then is to find a hypergraph matching using
exactly one edge from each Li. A hypergraph is r-uniform if each of its edges has cardinality r.

THEOREM 2.1 (Hall’s condition for hypergraphs [1])). Let {L1, . . . , Lt } be a family of
s-uniform hypergraphs on the same vertex set. If, for every I ⊆ [t], the hypergraph

⋃
i∈I Li

contains a matching of size greater than s(|I| − 1), then there exists a function g : [t] →⋃t
i=1 E (Li) such that g(i) ∈ E (Li) and g(i) ∩ g( j) = ∅ for i �= j.

When we want to use this theorem, we need to verify the condition on Li. For this purpose,
we shall use Janson’s inequality (see, e.g., [22, Theorem 2.18]).

LEMMA 2.2 (Janson’s inequality). Let p ∈ (0, 1) and consider a family {Hi}i∈I of
subgraphs of the complete graph on the vertex set [n] = {1, . . . , n}. For each i ∈ I, let Xi

denote the indicator random variable for the event that Hi ⊆ G(n, p) and, write Hi ∼ Hj for
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each ordered pair (i, j) ∈ I × I with i �= j if E (Hi) ∩ E (Hj ) �= ∅. Then, for X = ∑
i∈I Xi,

E[X ] = ∑
i∈I pe(Hi ),

δ =
∑

Hi∼Hj

E[XiXj] =
∑

Hi∼Hj

pe(Hi )+e(Hj )−e(Hi∩Hj )

and any 0 < γ < 1, we have

P[X � (1 − γ )E[X ]] � exp

(
− γ 2E[X ]2

2(E[X ] + δ)

)
.

This result will also be useful for the first step described above, in which we embed an
almost spanning subgraph. In particular, the appearance of almost H-factors in G(n, p)

for p � Cn−1/m1(H ) is a straightforward consequence of Janson’s inequality (see, e.g.,
[22, Theorem 4.9]). Here we need a minor modification of this result. For two
graphs H1 and H2, an (H1, H2)-factor is any graph that consists only of vertex disjoint
copies of H1 and H2. The following theorem concerning the appearance of an almost
(H1, H2)-factors in G(n, p) can be proved with trivial modifications to the proof of [22,
Theorem 4.9].

THEOREM 2.3 (Almost factors in G(n, p)). For every pair of graphs H1 and H2, and
every ε > 0 there is a constant C such that, if p � Cn−1/m1(Hi ) for i = 1, 2, then for every
(H1, H2)-factor F ∗ on at most (1 − ε)n vertices, whp G(n, p) contains F ∗.

For our result on spanning bounded degree subgraphs, we shall also use the following result
of Riordan [36], which allows the embedding of spanning subgraphs that are not locally too
dense in G(n, p). For a graph H , let

γ (H ) = max
S⊆H,v(S)�3

e(S)

v(S) − 2
.

Riordan’s Theorem can be found in the following form in [34]. We shall use this theorem for
a subgraph H of F which excludes the “dense spots” of F .

THEOREM 2.4 (Riordan [36]). Let � � 2 be an integer, H ∈ F (n, �) and p = ω(n− 1
γ (H ) ).

Then, a copy of H is contained in G(n, p) whp.

Finally, we shall use the following submartingale-type inequality to handle weak depen-
dencies in the proof of our main technical result. A proof of this lemma can, for example, be
found in [2, Lemma 2.2].

LEMMA 2.5 (Sequential dependence lemma). Let � be a finite probability space, and let
F0, . . . ,Fm be partitions of �, with Fi−1 refined by Fi for each i ∈ [m]. For each i ∈ [m], let
Yi be a Bernoulli random variable on � which is constant on each part of Fi. Let δ be a real
number, γ ∈ (0, 1), and X = Y1 + · · · + Ym. If E[Yi|Fi−1] � δ holds for all i ∈ [m], then

P[X � (1 − γ )δm] � exp

(−γ 2δm

3

)
.

§3. Main technical theorem. We start with an outline of the main idea of our strategy for
embedding some spanning graph F into Gα ∪ G(n, p). Recall that G(n, p) has vertex set [n].
We use two-round exposure. In the first round, we will find an F ∗-copy for some almost



428 J. BÖTTCHER et al.

spanning induced subgraph F ∗ of F . One key idea in our proof is that, by symmetry, the
F ∗-copy we find is random among all possible F ∗-copies in the complete graph on vertex
set [n] (see § 3.1). Hence, it remains to complete such a random F ∗-copy to an F -copy using
only edges in Gα and the second round (see § 3.2.). It is the additional edges of Gα in this
second step that allow us to gain on the bound for embedding F in a random graph alone.

For the second round, we use an absorbing method, relying on the following family of
reservoir sets.

Definition 3.1 (Reservoir sets). Given a graph Gα on vertex set [n], a copy F̂ of a subgraph F ∗

of F in the complete graph on vertex set [n] and an independent set W of vertices of F̂ , we
define the family of (Gα, F̂ ,W )-reservoir sets(R(u))u∈[n] by setting

R(u) = {
w ∈ W : NF̂ (w) ⊆ NGα

(u)
}
. (1)

The crucial property of these reservoir sets is as follows. Assume that F̂ is a copy of F ∗

in G(n, p). Then, for any vertex u ∈ [n] � V (F̂ ) exchanging u with any vertex w ∈ R(u)

gives us a different copy of F ∗ in Gα ∪ G(n, p), now using u. In this case, we also say that
we can switch u and w. Moreover, since W is an independent set, switching several vertices
simultaneously in this manner does not create conflicts. As part of our proof we will show
(see Lemma 3.5) that, for a random F̂ and a suitably chosen set W , the sets R(u) are likely to
have linear size intersections with neighbourhoods in Gα . This will give us “enough room”
to complete F̂ to F .

Next, we will state the technical embedding theorem, Theorem 3.3, that formalises this
method. Theorems 1.4 and 1.3 will be inferred from this result. In our technical theorem, we
are given, along with F , a family F of almost spanning subgraphs of F . This family is chosen
such that whp one of these subgraphs appears in our first round and such that in our second
round whp each subgraph in F can be extended to F , using vertex switching. We call a set F
with these properties suitable, defined formally as follows.

Definition 3.2 (Suitability). Let F be an n-vertex graph with maximum degree �. A set F
of induced subgraphs of F is called (α, p)-suitable if, with

ε =
( α

4�

)2�

, (2)

each graph in F has at least (1 − ε)n vertices and the following two properties hold.
(A1) P(∃F ∗ ∈ F with some F ∗-copy in G(n, p/2)) = 1 − o(1).
(A2) Suppose that F ∗ ∈ F and G is a graph with vertex set [2n] which contains a copy

F̂ of F ∗. For each v ∈ V (F ) � V (F ∗), let B(v) ⊆ [2n] � V (F̂ ) be a set such that
|B(v) ∩ NG(w)| � 4εn for each w ∈ [2n]. Then whp F̂ can be extended to a copy of F
in G ∪ G(2n, p/6) such that each vertex v ∈ V (F ) � V (F ∗) is mapped to a vertex in
B(v).

Observe that in (A2) we consider auxiliary graphs on [2n]. These encode all the information
we need from Gα and our second round of randomness. The sets B(v) then are the
corresponding auxiliary versions of our reservoir sets. This setup, using [2n], allows us to
keep the auxiliary reservoir sets disjoint from the F ∗-copy. The idea is, if F ∗ can be extended
to F in this auxiliary graph, then this corresponds to a homomorphism of F in the original
setting on [n], and we can use switches to turn this homomorphism into an embedding.
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We remark that in the proof of our first result, Theorem 1.4 on squares of Hamilton cycles,
the family F only contains a single graph. In the proof of Theorem 1.3, however, the use of
a larger family is crucial.

THEOREM 3.3 (Main technical result). Let α > 0 and � ∈ N be constant and let p = p(n).
If Gα and F are n-vertex graphs such that
(i) V (Gα) = [n] and δ(Gα) � αn;

(ii) �(F ) = � and F has an (α, p)-suitable set of subgraphs F;
then Gα ∪ G(n, p) whp contains a copy of F .

The main work for deducing our main results from this theorem will go into finding
an (α, p)-suitable family F . Verifying (A1) corresponds to finding an almost spanning
embedding for some F ∗ ∈ F , which is usually not too hard, because εn vertices remain
uncovered. To show (A2), by the definition of the B(v) there is a linear number of options for
the embedding of every vertex, which makes this step again be somewhat similar to an almost
spanning embedding (and we can also use the edges of G).

We will argue in § 7 that using this theorem we can also easily derive short proofs for a
number of related results from the literature. We now turn to the proof of Theorem 3.3.

3.1. Reducing the problem to completing a random subgraph copy. In this section we show
that, using two-round exposure and (A1), we can reduce the problem of embedding F in
Gα ∪ G(n, p) to extending a random copy of an almost spanning subgraph.

LEMMA 3.4. Let α, �, p and Gα , F , and F be as in the hypothesis of Theorem 3.3. For
each F ∗ ∈ F , let F̂ be a random F ∗-copy in the complete graph on vertex set [n], and assume

P(∃ an F-copy in Gα ∪ F̂ ∪ G(n, p/2)) = 1 − o(1) . (3)

Then Gα ∪ G(n, p) whp contains a copy of F .

Proof. Let G1 and G2 be two independent copies of G(n, p/2). For finding a copy of F in
G(n, p), we want to use the edges of G1 to find a copy of F ∗ ∈ F , and then use (3) to complete
such a copy to F using the edges of G2 and Gα . For the second step, we will condition on the
success of the first step. For this purpose, we define the following events. Let F ∗

1 , . . . , F ∗
r be

the graphs in F . For each 1 � i � r, let Ei be the event that there is a copy of F ∗
i in G1, but no

copy of F ∗
j for every j < i. Note that this event is empty if F ∗

j is a subgraph of F ∗
i for some

j < i. These events are chosen such that
r∑

i=1

P(Ei) = P(∃i with some F ∗
i -copy in G1) = 1 − o(1) , (4)

where the second equality uses (A1).
In order to use (3) in the second step, it is essential that we obtain a random copy of F ∗ ∈ F

in the first step. Here, the crucial observation is that for each i ∈ [r] and a random F ∗
i -copy F̂i

in the complete graph on vertex set [n], we have

P(∃ an F -copy in Gα ∪ G1 ∪ G2|Ei) � P(∃ an F -copy in Gα ∪ F̂i ∪ G2) . (5)

Indeed, this follows from the fact that G1 is independent of Gα ∪ G2, and that, if we condition
on Ei, then G1 contains an F ∗

i -copy by definition and by symmetry each possible F ∗
i -copy is

equally likely to appear in G1. It follows that
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P(∃ an F -copy in Gα ∪ G(n, p)) � P(∃ an F -copy in Gα ∪ G1 ∪ G2)

�
r∑

i=1

P(∃ an F -copy in Gα ∪ G1 ∪ G2|Ei) · P(Ei)

(5)

�
r∑

i=1

P(∃ an F -copy in Gα ∪ F̂i ∪ G2) · P(Ei)
(3)= (1 − o(1)) ·

r∑
i=1

P(Ei)
(4)= 1 − o(1) ,

as desired. �

3.2. Completing a random subgraph copy. In this section, we provide the proof of our main
technical theorem, Theorem 3.3. By Lemma 3.4, it remains to show that whp we can complete
a random F ∗-copy into a copy of F . For this we will choose a large 2-independent set W in the
F ∗-copy, which has no neighbours outside F ∗ (this is with respect to F ∗ as a subgraph of F ),
construct the according reservoir sets and perform switches. Recall that a set W of vertices in
a graph is called 2-independent, if it is independent and no pair of distinct vertices in W have
a common neighbour. The following lemma, whose proof we defer to the end of the section,
states that these reservoir sets are well distributed with respect to Gα-neighbourhoods.

LEMMA 3.5. Let α, �, p and Gα , F and F be as in Theorem 3.3. Let F ∗ ∈ F and let W ∗

be a maximally 2-independent set in F ∗, which has no neighbours outside F ∗. Let F̂ be a
random copy of F ∗ in the complete graph on vertex set [n] and W be the image of W ∗ in F̂ .
Then whp the (Gα, F̂ ,W )-reservoir sets (R(u))u∈[n] satisfy that for each u, v ∈ [n], we have

|NGα
(v) ∩ R(u)| � 4εn ,

where ε = ( α
4�

)2�, as in (2).

This lemma in particular implies that the sets R(u) are linear in size.

Proof of Theorem 3.3. Assume that we are given graphs Gα and F satisfying the assumptions
and a suitable set of almost spanning subgraphs F of F . Fix F ∗ ∈ F and let F̂ be a random
copy of F ∗ in the complete graph on vertex set [n] and let g0 be the embedding that maps F ∗

to F̂ .
By Lemma 3.4, it suffices to prove (3). For this purpose, we will use the reservoir sets

and (A2). So, let W ∗ be a maximally 2-independent set in F ∗, which has no neighbours outside
F ∗, let W be the image of W ∗ under g0, and let (R(u))u∈[n] be the (Gα, F̂ ,W )-reservoir sets.
By Lemma 3.5, whp, for all u, v ∈ [n] we have |NGα

(v) ∩ R(u)| � 4εn.
We now start by mapping the remaining vertices of F arbitrarily to the unused vertices

[n] � V (F̂ ). Our goal then is to use switchings to turn this mapping into an embedding of F .
So, label the vertices in [n] � V (F̂ ) arbitrarily as {zv : v ∈ V (F ) � V (F ∗)}. In order to appeal
to (A2), we now define an auxiliary graph G on vertex set [2n] together with a collection of
auxiliary reservoir sets B(u), which encode the embedding g0 of F ∗ and the edges of Gα as
well as the reservoir sets R(u).

Let G be the auxiliary graph on the vertex set [2n] that contains all edges of F̂ in addition to
exactly the following edges. For each edge uw of Gα , the graph G contains the edges {u + n, w},
{u, w + n} and {u + n, w + n}. For each v ∈ V (F ) � V (F ∗), we define the auxiliary reservoir
set B(v) = {w + n : w ∈ R(zv)}. Since |NGα

(v) ∩ R(u)| � 4εn for all u, v ∈ [n], we have for
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each v ∈ V (F ) � V (F ∗) and w ∈ [2n] that |B(v) ∩ NG(w)| � 4εn. So the graph G and the
sets B(v) fit the setup in (A2).

Now let G′
2 be a copy of G(2n, p/6) on vertex set [2n]. Hence, by (A2) the following event E

holds whp: F̂ can be extended to a copy of F in G ∪ G′
2 such that each v ∈ V (F ) � V (F ∗) is

mapped to B(v). The corresponding embedding g′ of F into G ∪ G′
2 extends g0. In particular,

this F -copy in the auxiliary graph encodes which vertices get switched where (as we detail
below).

Now we need to translate this back to our original setting on n vertices. For this, let G2

be the graph on vertex set [n] and with all edges uw such that {u, w + n}, {u + n, w} or
{u + n, w + n} is an edge in G′

2. Hence, G2 is distributed as a random graph in which each
edge appears independently and with probability at most p/2. Therefore, in order to show (3),
it is sufficient to prove that whenever the event E holds for G′

2, then there also is an F -copy
in Gα ∪ F̂ ∪ G2.

Indeed, assume that E holds and define for each v ∈ V (F )

g(v) =

⎧⎪⎨
⎪⎩

g′(v) − n if v ∈ V (F ) � V (F ∗),
zu if g′(v) = g′(u) − n for some u ∈ V (F ) � V (F ∗),
g′(v) otherwise .

In other words, the first line states that all vertices v in V (F ) � V (F ∗), which by the definition
of B(v) are embedded by g′ in [2n] � [n], are mapped by g to the corresponding vertex in [n].
The third line guarantees that vertices v in V (F ∗) usually are embedded by g′ as by g, unless
this creates a conflict with the rule from the first line for a vertex u, in which case they are
switched to zu by the second line.

We claim that g is an embedding of F into Gα ∪ F̂ ∪ G2. To see this, let

Z0 = V (F ) � V (F ∗) and Z1 = {v : g′(v) = g′(u) − n for some u ∈ Z0}.
Note that gagrees with g′ outside of Z0 ∪ Z1, so that g(appropriately restricted) is an embedding
of F − (Z0 ∪ Z1) into Gα ∪ F̂ . Now consider any v ∈ Z1 and let u ∈ Z0 = V (F ) � V (F ∗) be
such that g′(v) = g′(u) − n. Since u is embedded by g′ into B(u) = {w + n : w ∈ R(zu)}, we
have g′(v) = g′(u) − n ∈ R(zu). Recall that R(zu) ⊆ W by the definition of the reservoir sets,
and W is the image under g′ of W ∗. We conclude that Z1 ⊆ W ∗, that is, Z1 is 2-independent
and has no neighbours outside F ∗. It follows that vertices in Z1 have no F -neighbours in Z0

or Z1. Thus, for each v ∈ Z1,

g(NF (v)) = g′(NF (v)) = NF̂

(
g′(v)

) ⊆ NGα
(zu) ,

where the last step uses g′(v) ∈ R(zu). This shows that vertices in Z1 are properly embedded
by g.

It remains to consider vertices v ∈ Z0. We prove that all neighbours of v are mapped to
neighbours of g(v), distinguishing three cases. Firstly, for u ∈ NF (v) � (Z0 ∪ Z1), there is
an edge between g(v) = g′(v) − n and g(u) = g′(u) in Gα ∪ G2, because there is an edge
between g′(v) and g′(u) in G ∪ G′

2. Secondly, for u ∈ NF (v) ∩ Z0, there is an edge between
g(v) = g′(v) − n and g(u) = g′(u) − n in Gα ∪ G2, because there is an edge between g′(v)

and g′(u) in G ∪ G′
2. Finally, NF (v) ∩ Z1 is empty, because vertices in Z1 do not have any

F -neighbours in Z0.
We conclude that g is an embedding of F into Gα ∪ F̂ ∪ G2, completing the proof of

Theorem 3.3. �
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It remains to prove Lemma 3.5, which is based on the fact that the reservoir sets R(u) are
random sets.

Proof of Lemma 3.5. Note that, as F has maximum degree at most �, we have

|W ∗| � (|F ∗| − �|V (F ) � V (F ∗)|)/�2 � n/(2�2).

Let g0 be the (random) mapping of F ∗ to F̂ , and observe that, by symmetry, W = g0(W ∗) is
a uniformly random set of size |W ∗| in [n].

Fix u, v ∈ V (Gα). For each w∗ ∈ W ∗, note that |NF ∗ (w∗)| � � and that the sets {w∗} ∪
NF ∗ (w∗) are all disjoint. Let Iw∗ be the indicator variable for the event g0(w∗) ∈ NGα

(v) and
NF̂ (g0(w∗)) ⊆ NGα

(u). Since by definition R(u) = {w ∈ W : NF̂ (w) ⊆ NGα
(u)} = {g0(w∗) :

w∗ ∈ W ∗, NF̂ (g0(w∗)) ⊆ NGα
(u)}, it follows that

|NGα
(v) ∩ R(u)| =

∑
w∗∈W ∗

Iw∗ . (6)

Let r = αn
3�2 � |W | and pick distinct vertices w∗

1, . . . , w∗
r in W ∗. Consider revealing the

random copy F̂ by, firstly, revealing the mapping of vertices in {w∗
1} ∪ NF ∗ (w∗

1 ), then revealing
the mapping of vertices in {w∗

2} ∪ NF ∗ (w∗
2 ), and so on, until {w∗

r } ∪ NF ∗ (w∗
r ), before finally

revealing the rest of the vertices in F̂ . Note that, for each 1 � i � r, when the location of the
vertices in {w∗

i } ∪ NF̂ (w∗
i ) is revealed there are at least αn/2 vertices both in NGα

(u) and NGα
(v)

which are not occupied by a vertex in {w∗
j } ∪ NF ∗ (w∗

j ) with j < i. Hence, for each 1 � i � r,
if m = |NF ∗ (w∗

i )| and Hi is the history of the location of the vertices in {w∗
j } ∪ NF ∗ (w∗

j ) with
j < i, then

E(Iw∗
i
|Hi) �

αn/2 · (
(αn/2)−1

m

)
n
(n

m

) �
(α

4

)m+1
�

(α

4

)�+1
. (7)

Therefore, by (6) and Lemma 2.5 applied with δ = ( α
4 )�+1, we have

|NGα
(v) ∩ R(u)| � 3δr/4 � α�+2n

4�+2�2
� 4

( α

4�

)2�

n = 4εn ,

with probability 1 − exp(−�(δr)) = 1 − o(n−2). Using a union bound, we conclude that
with probability 1 − o(1) for each u, v ∈ V (Gα), we have |NGα

(v) ∩ R(u)| � 4εn. �

§4. Powers of Hamilton cycles. Let F = C(k)
n be the kth power of the cycle with n vertices,

and let P(k)
n denote the kth power of a path with n vertices. To prove Theorem 1.4, it is sufficient,

by Theorem 3.3, to find an η = η(α) > 0, such that there exists an (α, p)-suitable set F of
subgraphs of F with

p = n−1/k−η .

In fact, we will use only one subgraph, which will consist of disjoint copies of the kth power
of long (but constant length) paths, which we connect by shorter kth powers of paths to form
a copy of F .

In the following, we shall explain how we choose F , and show that F satisfies (A1)
and (A2) for p = n−1/k−η, which implies that F is (α, p)-suitable. We use the following
constants. Given k and α > 0, let � = 2k and ε = ( α

4�
)2�. Pick large integers m and �, and

a small constant η > 0 such that

α,
1

k
� 1

�
� 1

m
� η > 0 ,
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where, for example, by 1
m � η we mean that the following proof works if we choose η

sufficiently small compared to 1/m. In particular, we require �2 � εm.

4.1. Choosing F . Let F solely contain F ∗, the following (P(k)
m , P(k)

m+1)-factor on at least
(1 − ε)n vertices, which is a subgraph of F . Let s and t be the unique integers such that
n = s(m + �) + t and t < (m + �). Let F ∗ be the graph on v(F ∗) = sm + t = t (m + 1) +
(s − t )m vertices consisting of the following vertex disjoint kth powers of paths: t copies
of P(k)

m+1, which we denote by P∗
1 , . . . , P∗

t , and s − t copies of P(k)
m , which we denote by

P∗
t+1, . . . , P∗

s . This leaves exactly v(F ) − v(F ∗) = s� � sεm � εn vertices of F uncovered.
Observe that we obtain F from F ∗ by connecting for each i ∈ [s] the paths P∗

i and P∗
i+1

(respectively, P∗
1 if i = s) by a kth power of a path with � vertices, which we denote by

w∗
i,1, . . . , w∗

i,�, such that the following is satisfied. For i ∈ [s], let u∗
i,1, . . . , u∗

i,k be the end
k-tuple of P∗

i and v∗
i,1, . . . , v∗

i,k be the start k-tuple of P∗
i+1 (respectively, P∗

1 if i = s). We
require that

u∗
i,1, . . . , u∗

i,k, w∗
i,1, . . . , w∗

i,�, v∗
i,1, . . . , v∗

i,k

is the kth power of a path with � + 2k vertices.

4.2. Proof that F satisfies (A1). We use Theorem 2.3 to find a copy of F ∗ in G(n, p/2).
Since for m′ � 2k, we have e(P(k)

m′ ) = km′ − (k+1
2

)
, it is easy to check that for k � 2 we have

m1(P(k)
m ), m1(P

(k)
m+1) < k. Since F ∗ is an (P(k)

m , P(k)
m+1)-factor on at most (1 − ε)n vertices, it

follows directly from Theorem 2.3 that G(n, p/2) contains a copy of F ∗, and hence (A1)
holds for F .

4.3. Proof that F satisfies (A2). Suppose that G is a graph with vertex set [2n] which
contains a copy F̂ of F ∗. For each v ∈ V (F ) � V (F ∗), assume we are given a set
B(v) ⊆ [2n] � V (F̂ ) such that for each w ∈ [2n] we have |B(v) ∩ NG(w)| � 4εn. Let G′ =
G(2n, p/6). Our goal is to extend F̂ to a copy of F in G ∪ G′ such that each vertex v in
V (F ) � V (F ∗) is mapped to B(v).

For each i ∈ [s] and j ∈ [k], let ui, j be the image of u∗
i, j in F̂ , and vi, j be the image of v∗

i, j

in F̂ . Hence, to extend F̂ to a copy of F we need to embed all vertices w∗
i, j with i ∈ [s] and

j ∈ [�] to distinct vertices wi, j so that

ui,1, . . . , ui,k, wi,1, . . . , wi,�, vi,1, . . . , vi,k (8)

is the kth power of a path with 2k + � vertices.
We would like to appeal to Hall’s condition for hypergraphs, Theorem 2.1, to show

that this is possible. For this purpose, we define the following auxiliary hypergraphs. Let
W = [2n] � V (F̂ ). For each i ∈ [s], let Li be the �-uniform hypergraph with vertex set W
where e ∈ (W

�

)
is an edge exactly if there is some ordering of e as wi,1, . . . , wi,� so that (8)

is the kth power of a path in G ∪ G′ and wi, j ∈ B(w∗
i, j ) for each j ∈ [�]. We shall argue

that the following lemma, whose proof we defer to § 4.4, guarantees that the assumption of
Theorem 2.1 is satisfied.

LEMMA 4.1. For each r ∈ [s] and A ⊆ [s] with |A| = r and U ⊆ W with |U | � �2r, the
following holds with probability at least 1 − exp(−ω(r log n)). There exists some i ∈ A and
an edge e ∈ E (Li) with V (e) ⊆ W � U.
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The property in Lemma 4.1 fails for some r ∈ [s] and A ⊆ [s] with |A| = r and U ⊆ W
with |U | � �2r with probability at most

∑
r∈[s]

(
s

r

)(
2n

�2r

)
· exp(−ω(r log n)) = o(1),

so we may assume the property holds for all such sets.
To apply Theorem 2.1, we need to show that, for every A ⊆ [s], the hypergraph

⋃
i∈A Li

contains a matching with size greater than �(|A| − 1). Indeed, let A ⊆ [s] and r = |A|, and
let U be the vertex set of a maximal matching in

⋃
i∈A Li. This means that there is no i ∈ A

and edge e ∈ E (Li) with V (e) ⊆ W � U . Thus, by the property from Lemma 4.1, we have
|U | � �2|A|, so that

⋃
i∈A Li contains a matching with size at least �|A|. Therefore, we can

apply Theorem 2.1, and obtain a function π : [s] → ⋃
i∈[s] E (Li) such that π(i) ∈ E (Li) for

each i ∈ [s] and the edges in π([s]) are vertex disjoint. Observe that, by the definition of the
hypergraphs Li, embedding the vertices w∗

i,1, . . . , w∗
i,� to the vertices of π(i) in an appropriate

order yields the desired completion of F̂ to an embedding of F . Thus, subject only to the
proof of Lemma 4.1, (A2) holds as required.

4.4. Proof of Lemma 4.1. We will prove Lemma 4.1 using Janson’s inequality, Lemma 2.2.
Recall that the hyperedges of each hypergraph Li represent legitimate connections in G ∪ G′

between the images of the kth power of paths P∗
i and P∗

i+1 in F̂ .

Proof of Lemma 4.1. Fix r ∈ [s] and A ⊆ [s], U ⊆ W with |A| = r and |U | � �2r � �2s �
εn. Let j = ��/2�. Let P be the kth power of the path with vertex set

u1, . . . , uk, w1, . . . , w�, v1, . . . , vk, (9)

with all the edges between the vertices ui removed and all the edges between the vertices
vi removed. Furthermore, remove from P the edges ukw1, w�v1 and all the edges wiwi+1,
i ∈ [� − 1], except for wjwj+1. The edges that we have removed will come from the
deterministic graph G, while we will find a copy of P in G′. The edge wjwj+1 is included in
P so that we do not need to find a path between vk and w1 in G.

To simplify our calculations for the application of Janson’s inequality, let us first prove
three simple claims concerning the density of subgraphs of P. Let U = {u1, . . . , uk} and
V = {v1, . . . , vk}.

CLAIM 4.2. e(P) � �(k − 1/2).

Proof of Claim 4.2. In the ordering of the vertices in P in (9), ignoring the edge wjwj+1,
each vertex has at most k − 1 neighbours to the right. Therefore, including the edge wjwj+1,
we have e(P) � (� + 2k)(k − 1) + 1 � �(k − 1/2), since we chose � � k. �

CLAIM 4.3. For each subgraph P′ ⊆ P − (U ∪ V ) with e(P′) � 1, we have p−e(P′) ·
n1−v(P′) = o(log−1 n).

Proof of Claim 4.3. Removing the edge wjwj+1 if necessary, we have that each vertex
in P′ has at most (k − 1) neighbours to the right in the labelling in (9). As the rightmost
vertex in P′ has no such neighbours, if v(P′) � 3, then we have e(P′) � (k − 1)(v(P′) −
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1) + 1 � k(v(P′) − 1) − 1. If v(P′) = 2, then e(P′) = 1 � k(v(P′) − 1) − 1. Therefore, as
η � 1/�, 1/k,

p−e(P′) · n1−v(P′) � p(pkn)1−v(P′) = n−1/k−η(n−kη)1−v(P′) � n−1/k−η+k�η = o(log−1 n).

�

CLAIM 4.4. For each subgraph P′ ⊆ P with P′ �= P, e(P′) � 1 and U,V ⊆ V (P′), we
have p−e(P′) · n2k−v(P′) = o(log−1 n).

Proof of Claim 4.4. For such a subgraph P′, let W0 = V (P′) � (U ∪ V ). We enumerate the
vertices from W0 by wi1, . . . , wit from left to right in the ordering (9). If there is an index a with
ia+1 − ia � k + 1, then we estimate the number of edges in P′ through (k − 1)|W0| + 1. This
is so because we can enumerate all the edges of P′ by identifying at least one vertex adjacent
to every edge of P′ as follows: every vertex wic (c � a) is adjacent to the left to at most k − 1
vertices, and every vertex wic (c > a) is adjacent to the right to at most k − 1 vertices, the
only exception being possibly the vertices wj and wj+1 along with the edge wjwj+1, thus
contributing one more possible edge. Therefore, if |W0| � 2, then

e(P′) � (k − 1)|W0| + 1 � k|W0| − 1 � k(v(P′) − 2k) − 1.

If |W0| = 1, then, as � � k, the vertex in W0 cannot have neighbours in both U and V , so that
e(P′) � (k − 1) = k(v(P′) − 2k) − 1.

If there is no such index a as above, then note that v(P′) � |W0| � (� − k)/k � k2. Then,
counting from the edges of P′ from their leftmost vertex in (9), and remembering that wjwj+1

may be an edge, e(P′) � (k − 1)v(P′) + 1 � k(v(P′) − 2k) + 2k2 − v(P′) + 1 � k(v(P′) −
2k) − 1. Thus, in all cases, e(P′) � k(v(P′) − 2k) − 1.

Therefore, as η � 1/�,

p−e(P′) · n2k−v(P′) � p(pkn)2k−v(P′) = n−1/k−η(n−kη)2k−v(P′) � n−1/k−η+k�η = o(log−1 n).

�

For each i ∈ [A], let Pi be the set of copies of P in the graph G′ with vertices in order (to
match (9))

ui,1, . . . , ui,k, wi,1, . . . , wi,�, vi,1, . . . , vi,k,

where wi,1 ∈ B(w∗
i,1) ∩ NG(ui,k ), wi, j′+1 ∈ B(w∗

i, j′+1) ∩ NG(wi, j′ ) for each j′ ∈ [ j − 1],
wi,� ∈ B(w∗

i,�) ∩ NG(vi,1) and wi, j′−1 ∈ B(w∗
i, j′−1) ∩ NG(wi, j′ ) for each j′ ∈ { j + 1, . . . , �}.

That is, if such a copy of P exists in G′, then the edge {wi,1, . . . , wi,�} is in Li.
Note that, choosing the vertices in order wi,1, . . . , wi, j, wi,�, wi,�−1, . . . , wi, j+1, there are

at least 4εn − |U | − s � 2εn options for each vertex, and therefore |Pi| = �(n�). Let
P = ∪i∈APi, so that |P| = �(r · n�).

For each Q, Q′ ∈ P , with Q �= Q′, let Q ∼ Q′ if Q and Q′ share some edge. Let q = p/6,
the edge probability in G′. Denote the expectation for the number of graphs from P in G′ by
μ = |P|qe(P) and let

δ =
∑

Q,Q′∈P: Q∼Q′
q2e(P)−e(Q∩Q′ ).

Note that, as η � 1/k and p = n−1/k−η, we have q(k−1/2)n = ω(log n). As |P| = �(r · n�),
we then have, using Claim 4.2,

μ = �(r · qe(P)n�) = �(r · (q(k−1/2)n)�) = ω(r · log n).
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Recall that for j ∈ [k] the vertices ui, j and vi, j denote the images of the end-k-tuples of
the graph P∗

i from F ∗ given through the copy F̂ of F ∗ and moreover that all these k-tuples
contain distinct vertices (cf. § 4.3). Let i ∈ A and Q ∈ Pi, and let Ui = {ui,1, . . . , ui,k} and
Vi = {vi,1, . . . , vi,k}. For each P′ � Q with Ui,Vi ⊆ V (P′), there are at most n�+2k−v(P′) graphs
Q′ ∈ P with Q ∩ Q′ = P′ (all of which are inPi). For each subgraph P′ ⊆ Q − (Ui ∪ Vi), there
are at most r · n�−v(P′) � n�+1−v(P′) graphs Q′ ∈ P with Q ∩ Q′ = P′. Thus,

δ � |P| ·
⎛
⎝ ∑

P′⊆P−(U∪V ): e(P′)�1

q2e(P)−e(P′)n�+1−v(P′) +
∑

P′�P:U,V ⊆V (P′)

q2e(P)−e(P′)n�+2k−v(P′)

⎞
⎠.

Therefore, as |P| = O(rn�) and μ = �(rqe(P)n�),

δr

μ2
= O

⎛
⎝ ∑

P′⊆P−(U∪V ):e(P′)�1

q−e(P′) · n1−v(P′) +
∑

P′�P:U,V ⊆V (P′)

q−e(P′)n2k−v(P′)

⎞
⎠ = o(log−1 n),

using Claims 4.3 and 4.4. Thus, as μ = ω(r log n) and δ
μ2 = o(r−1 log−1 n), we can infer from

Janson’s inequality, Lemma 2.2, that with probability at least 1 − exp(−ω(r log n)) there is
some i ∈ A and Q ∈ Pi in G′, and hence V (Q) � (Ui ∪ Vi) ∈ E (Li), as required. �

§5. Spanning subgraphs with bounded maximum degree. Let F ∈ F (n, �) and
p = ω(n− 2

�+1 ). As before, we find a suitable set F of large subgraphs of F such that we
can whp embed one of these subgraphs F ∗ ∈ F in G(n, p/2) ((A1) in Definition 3.2), and
then extend any such F ∗-copy (in an auxiliary graph) to cover all of F ((A2) in Definition 3.2).
To do this, we adapt the strategy of Ferber et al. [17] to decompose F . In [17], each graph
F ∈ F (n, �) is decomposed into a sparse part and many dense spots. Our set F will consist
of subgraphs of F covering the sparse part and most of the dense parts.

Recall that the parameter

γ (H ) = max
S⊆H,v(S)�3

e(S)

v(S) − 2

determines when we can apply Riordan’s theorem, Theorem 2.4, to embed a spanning subgraph
in G(n, p). In the following, we call a graph H dense if γ (H ) > �+1

2 and sparse otherwise.
We can now define, following [17], a good decomposition of a graph.

Definition 5.1 (ε-good decomposition)). Let ε > 0, F ∈ F (n, �) and let S1, . . . ,Sk

be families of induced subgraphs of F . For F ′ = F − (
⋃

h

⋃
S∈Sh

V (S)), we say that
(F ′,S1, . . . ,Sk ) is an ε-good decomposition if the following hold.
(P1) F ′ is sparse, that is, γ (F ′) � �+1

2 .
(P2) Each S ∈ ⋃

h Sh is minimally dense, that is, γ (S) > �+1
2 and S′ is sparse for all S′ ⊆ S

with 3 � v(S′) < v(S).
(P3) For each 1 � h � k, all the graphs in Sh are isomorphic.
(P4) Every Sh contains graphs on at most εn vertices, that is |⋃S∈Sh

V (S)| � εn.
(P5) All the graphs in

⋃
i Si are vertex disjoint and, for each 1 � h � k and S, S′ ∈ Sh with

S �= S′, there are no edges between S and S′ in F , and S and S′ share no neighbours in
F .

We call the graphs in S1, . . . ,Sk the dense spots of the decomposition.
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We remark that our definition is slightly less restrictive than that from [17], where (P3 )
is replaced by a stronger condition. An ε-good decomposition can easily be found using a
greedy algorithm. The following lemma is proved in [17].

LEMMA 5.2 [17, Lemma 2.2]. For each ε > 0 and � > 0, there exists some k0 such that,
for each F ∈ F (n, �), there is some k � k0 and an ε-good decomposition (F ′,S1, . . . ,Sk )

of F .

In the following, we shall use this lemma to define a familyF of subgraphs of F ∈ F (n, �).
We shall then show that this family F satisfies (A1) and (A2) and hence is (α, p)-suitable,
which by Theorem 3.3 implies Theorem 1.3 as desired.

5.1. Choosing F . Fix F ∈ F (n, �). Let ε = ( α
4�

)2�, and let k0 be large enough for the
result of Lemma 5.2 to hold with ε and �. By Lemma 5.2, for some k � k0, there is an ε-good
decomposition (F ′,S1, . . . ,Sk ) of F , which we fix.

For each 1 � h � k, let sh be the size of the graphs in Sh (possible by (P3)), and, picking
some representative S ∈ Sh, note that, by (P2) and as �(S) � �, we have

(� + 1)(sh − 2) < 2e(S) � �sh,

so that sh < 2� + 2. Thus, we may consider α, �, ε, k � k0 and the maximum size of each
dense spot (2� + 1) to be constant, while n tends to infinity.

LetF contain exactly those induced subgraphs of F which cover F ′ and, for each 1 � h � k,
all but at most εn

s2
hk

of the graphs from Sh.

5.2. Proof that F satisfies (A1). We shall embed the copy of F ′ using Riordan’s theorem,
Theorem 2.4. In [17], the embedding of F ′ is then extended step by step to include the graphs
in Sh, for 1 � h � k. We proceed similarly, but in each step only include most of the graphs
Sh, for 1 � h � k. This allows us to work at a lower probability than that used in [17], as we
aim to find a copy of only some graph in F .

To find such a copy of a graph inF , we expose the graph G(n, p/2) in a total of k + 1 rounds,
revealing Gh ∼ G(n, q) for 0 � h � k, where q = p/(6k) and thus (1 − q)k+1 � 1 − p/2.
Every edge is thus present with probability at most p/2 in

⋃
h Gh. We use G0 to embed F ′

and then iteratively use G1, . . . , Gk to embed as many subgraphs from S1, . . . ,Sk as possible,
and show that this results whp in an embedding of a subgraph from F .

Since, by (P1), γ (F ′) � �+1
2 , and thus q = ω(n− 1

γ (F ′ ) ), by Theorem 2.4, we can whp embed
F ′ into G0. Let f0 : V (F ′) → V (G0) be such an embedding and let F ′

0 = f0(F ′).
For 1 � h � k, we want to (whp) use edges from Gh to extend the embedding fh−1 to cover

all but at most εn
s2

hk
graphs from Sh. We then let fh be the extended embedding and let F ′

h be the

subgraph of F embedded by fh. We use the following lemma, which allows us to extend the
current embedding to one more dense spot S ∈ Sh, even if we restrict its image to a small but
linearly sized set U , using only edges of Gh. This lemma is proved along with another lemma
from this section in § 6.

LEMMA 5.3. For each 1 � h � k, the following holds whp for anyS ⊆ Sh andU ⊆ V (Gα)

with |S| � εn
s2

hk
and |U | � εn

shk . There is some S ∈ S and a copy S′ of S in Gh[U ] with an

embedding π : V (S) → V (S′) such that, for each v ∈ V (S),

fh−1(NF (v) ∩ V (F ′
h−1)) ⊆ NGh (π(v)). (10)
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Start with f0 and F ′
0 . For each 1 � h � k, we construct fh and F ′

h , as follows. The property
in Lemma 5.3 whp holds for h. We extend the embedding fh−1 to fh using edges from Gh to
cover as many of the graphs in Sh as possible (with any edges to F ′

h−1 correctly embedded),
and call the resulting graph F ′

h . By the property in Lemma 5.3, this leaves at most εn
s2

hk
graphs

in Sh unembedded. Indeed, if there is a set S of at least εn
s2

hk
unembedded graphs in Sh, then, let

U = V (Gα) � V (F ′
h ) and note that |U | � sh · |S| � εn

shk . There then exists some S ∈ S and
a copy S′ of S in Gh[U ] with isomorphism π : V (S) → V (S′) such that (10) holds for each
v ∈ V (S). As, by (P5), no two subgraphs in Sh have an edge between them, π can be used to
embed S and extend the embedding fh, a contradiction.

From this, we obtain (whp) the embedding fk of a subgraph of F , covering F ′ and all but
at most εn

s2
hk

graphs from each Sh, 1 � h � k, into
⋃

h Gh. Such a subgraph embedded by fk is

thus in F , and therefore (A1) holds.

5.3. Proof that F satisfies (A2). Let F ∗ ∈ F and let the graph G be as described in (A2)
containing the copy F̂ of F ∗.

For each 1 � h � k, let S ′
h ⊆ Sh be those dense parts not in F ∗, so that |S ′

h| � εn
s2

hk
. We

have, for each 1 � h � k, that the graphs in S ′
h are isomorphic, minimally dense, disjoint and

neither have edges between them nor share any neighbours. Furthermore, the sets in {V (F ∗)} ∪
{V (S) : S ∈ S ′

h, 1 � h � k} form a partition of V (F ). Note that |V (F ) � V (F ∗)| � εn. For
each 0 � h � k, let Fh be the induced subgraph of F with vertex set V (F ∗) ∪ (∪h′�h ∪S∈Sh′
V (S)).

Let G′
1, . . . , G′

k be independent random graphs with G′
i ∼ G(2n, q), where q = p/(6k).

Starting with g0 and F0 = F ∗, for each 1 � h � k in turn, we will (whp) inductively find a
function

gh : V (Fh) → [2n]

such that
(Q1) gh is an embedding of Fh into G ∪ (

⋃
h′�h G′

h′ ), which extends gh−1 and
(Q2) for each vertex v ∈ Fh � Fh−1, we have gh(v) ∈ B(v).
Note that g0 satisfies these properties, and that, once we find gk whp, we will have an embedding
of Fk = F into G ∪ (

⋃
1�h�k G′

h), satisfying the conditions in (A2). Noting that each edge
in

⋃
h Gh appears independently at random with probability at most p/6, we then have that

(A2) holds.
Suppose then that 1 � h � k and we have found the function gh−1 satisfying (Q1) and (Q2).

Let Wh−1 = [2n] � gh−1(Fh−1). For each S ∈ S ′
h, label V (S) = {zS,1, . . . , zS,sh}, and let LS be

the sh-uniform auxiliary hypergraph with vertex set Wh−1, where e is an edge of LS if, for some
labelling e = {wS,1, . . . , wS,sh}, the map zS,i �→ wS,i is an embedding of S into G ∪ G′

h, where,
for each 1 � i � sh we have wS,i ∈ B(zS,i) and gh−1(NFh (zS,i) ∩ (V (Fh−1))) ⊆ NG∪G′

h
(wS,i).

Each hyperedge e = {wS,1, . . . , wS,sh} of LS then corresponds to a possible extension of gh−1

to cover S ∈ S ′
h.

We wish to show that whp there exists a function π : S ′
h �→ ⋃

S∈S ′
h

E (LS ) such that π(S) ∈
E (LS ) for each S ∈ S ′

h, and the edges in π(S ′
h) are pairwise vertex disjoint. This is possible,

as shown below, using Theorem 2.1 and the following lemma.

LEMMA 5.4. For each 1 � h � k, 1 � r � |S ′
h|, S ⊆ S ′

h and U ⊆ Wh−1, with |S| = r and
|U | � s2

hr, the following holds with probability at least 1 − exp(−ω(r log( n
r ))). There exists

some S ∈ S and an edge e ∈ E (LS ) with V (e) ⊆ Wh−1 � U.
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The property in Lemma 5.4 then holds for each 1 � h � k, 1 � r � |S ′
h|, S ⊆ S ′

h and
U ⊆ Wh−1, with |S| = r and |U | � s2

hr with probability at least

1 − k · n ·
|S ′

h|∑
r=1

(
n

r

)
·
(

n

s2
hr

)
· exp(−ω(r log( n

r ))) = 1 − o(1).

Similarly to our deductions from Lemma 4.1, it then follows that, for every S ⊆ S ′
h, the

hypergraph
⋃

S∈S LS contains a matching with size greater than sh(|S| − 1). Therefore, by
Theorem 2.1, a functionπ as described above exists. Thus, we can extend gh−1 to an embedding
gh of Fh satisfying (Q1) and (Q2) as required.

Subject to the proof of Lemma 5.4, this completes the proof that (A2) holds.

§6. Proofs of auxiliary lemmas. In this section, we give the proofs of the lemmas from § 5.

6.1. Proof of Lemma 5.3. We prove Lemma 5.3 with Janson’s inequality, using similar
calculations to Ferber et al. [17].

Proof of Lemma 5.3. Fixing h, note that there are certainly at most 2n · 2n choices for S
and U . Therefore, it is sufficient to prove, for fixed S ⊆ Sh and U ⊆ V (Gα) � fh−1(V (F ′

h−1))

with |S| � εn
s2

hk
and |U | � εn

shk , the property in the lemma holds with probability 1 − e−ω(n).

Let s = sh. Pick some S0 ∈ S , so that, by (P3), each graph inS is isomorphic to S0, and label
V (S0) = {v1, . . . , vs}. Let H be a set of

(|U |
s

)
copies of S0 in the complete graph with vertex set

U , where each copy of S0 has a different vertex set. Note that |U | = �(n) and |H| = �(ns).
For each S ∈ S and H ∈ H, label V (S) = {zS,1, . . . , zS,s} and V (H ) = {vH,1, . . . , vH,s} so that
vi �→ zS,i and vi �→ vH,i are embeddings of S0.

Each graph in S is isomorphic to S0 in F , but, when we come to extend an embedding of
F ′

h−1 to F ′
h by embedding “most” of the copies from Sh, the number of edges between a copy

from Sh and the already embedded F ′
h−1 may differ. We now distinguish two cases: Case I

where each copy S from S has some edge between S and F ′
h−1 in F ′

h and Case II where there
is some copy S from S for which there is no such edge.

Let us assume first that we are in Case I. For each S ∈ S , let WS = fh−1(
⋃

v∈V (S) NF (v) ∩
V (F ′

h−1)) be the images of the already embedded neighbours of vertices in S. Note that these
sets WS are nonempty by the definition of Case I and by (P5) are disjoint. For each H ∈ H and
S ∈ S , let H ⊕ WS be the graph with vertex set V (H ) ∪ WS containing exactly those edges
that we need in order to extend the partial embedding we have to embed S into H . That is,
H ⊕ WS has edge set

E (H ) ∪ {vH,iv : 1 � i � s, v ∈ fh−1(NF (zS,i) ∩ V (F ′
h−1))}.

For each S ∈ S , H ∈ H and J ⊆ H , let J ⊕ WS = (H ⊕ WS )[V (J ) ∪ WS]. Let H+ = {H ⊕
WS : H ∈ H, S ∈ S}, and note that if any graph from H+ appears in Gh, then we can indeed
extend our current embedding to one more dense spot in S , and hence are done.

Let J = {H ∩ H ′ : H, H ′ ∈ H, e(H ∩ H ′) > 0} and J ′ = {H ∩ H ′ : H, H ′ ∈ H,

H �= H ′} � ∅. We will show that P(∃H ∈ H+ with H ⊆ Gh) = 1 − exp(−ω(n)) follows
from Lemma 2.2 and the following claim, which we then prove.

CLAIM 6.1.
(i) For each J ∈ J , 2e(J ) < (� + 1)(v(J ) − 1).
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(ii) For each H ∈ H and S ∈ S , 2e(H ⊕ WS ) � (� + 1)s.
(iii) For each J ∈ J ′ and S ∈ S , 2e(J ⊕ WS ) < (� + 1)v(J ).

Note that, by (ii) of Claim 6.1, each graph in H+ has at most (� + 1)s/2 edges. We will
now consider a subfamily S ′ of size at least 2|S|

(�+1)s = �(n) of those copies of S from S so
that S ⊕ WS has the same number of edges, say m, where 1 � m � (� + 1)s/2. Using (ii) of
Claim 6.1, and that q = ω(n− 2

�+1 ), let the expected number of copies from H+
S ′ = {H ⊕ WS :

H ∈ H, S ∈ S ′} in Gh be denoted by μ, where

μ =
∑
S∈S ′

∑
H∈H

qe(H⊕WS ) = �(ns+1qm) = �(ns+1q(�+1)s/2) = ω(n).

Let

δ =
∑

S,S′∈S ′

∑
H,H ′∈H

H⊕WS∼H ′⊕WS′

qe(H⊕WS )+e(H ′⊕WS′ )−e((H⊕WS )∩(H ′⊕WS′ ))

= q2m
∑

S,S′∈S ′

∑
H,H ′∈H

H⊕WS∼H ′⊕WS′

q−e((H⊕WS )∩(H ′⊕WS′ ))

� q2m
∑
J∈J

∑
S,S′∈S ′

S �=S′

∑
H,H ′∈H
H∩H ′=J

q−e(J ) + q2m
∑
J∈J ′

∑
S∈S ′

∑
H,H ′∈H
H∩H ′=J

q−e(J⊕WS )

� q2m
∑
J∈J

|S ′|2n2s−2v(J )q−e(J ) + q2m
∑
J∈J ′

∑
S∈S ′

n2s−2v(J )q−e(J⊕WS ).

(11)

Then, using (i) and (iii) of Claim 6.1, and as μ = �(ns+1qm), we have

δ

μ2
= O

(∑
J∈J

|S ′|2n−2v(J )−2q−e(J ) +
∑
J∈J ′

∑
S∈S ′

n−2v(J )−2q−e(J⊕WS )

)

= O

(∑
J∈J

n−2v(J )q−(�+1)(v(J )−1)/2 +
∑
J∈J ′

|S ′| · n−2v(J )−2q−(�+1)v(J )/2

)

= o

(∑
J∈J

n−2v(J )nv(J )−1 +
∑
J∈J ′

n−2v(J )−1nv(J )

)
= o(n−1).

Therefore, as μ = ω(n) and δ
μ2 = o(n−1), by Lemma 2.2, the probability that there is no graph

in H+
S ′ in Gh is at most exp(− μ2

4(μ+δ)
) = exp(−ω(n)), as required. For Case I, it is left then

only to prove Claim 6.1.

Proof of Claim 6.1. For (i), let H ∈ H be such that J ⊆ H . If J �= H , and v(J ) � 3, then,
by (P2), we have 2e(J ) � (� + 1)(v(J ) − 2) < (� + 1)(v(J ) − 1), as required. If v(J ) = 2,
then (� + 1)(v(J ) − 1) = � + 1 > 2 � 2e(J ).

Suppose then that |J| = |H |, so v(J ) = s. If s � �, then 2e(J ) � s(s − 1) < (s +
1)(s − 1) � (� + 1)(s − 1), and if s > � + 1, then 2e(J ) � s� < s� + s − (� + 1) =
(� + 1)(s − 1), as required. If s = � + 1, note that, as there is some edge between S0

and Fh−1 in Fh, we have that S0, and hence J , is not a clique with � + 1 vertices. Thus,
2e(J ) < s(s − 1) = (� + 1)(s − 1).
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For (ii), suppose s � � + 1. As H is dense, we have 2e(H ) > (� + 1)(s − 2), and thus

2e(H ⊕ WS ) � 2�s − 2e(H ) < 2�s − (� + 1)(s − 2) = (� + 1)s + 2(� + 1 − s)

� (� + 1)s,

as required.
So suppose s � �. If 4 � s � � − 1, then, as 2e(H ) > (� + 1)(s − 2), we must have

s(s − 1) > (� + 1)(s − 2) � (s + 2)(s − 2) = s(s − 1) + s − 4 � s(s − 1),

a contradiction. If s = 3, then 2e(H ) > � + 1 contradicts � � 5.
Finally, if s = �, then H must be the clique on � vertices because 2e(H ) > (� + 1)(� −

2) = �(� − 1) − 2. Therefore,

2e(H ⊕ WS ) � 2�2 − 2e(H ) = �(� + 1) = (� + 1)s.

For (iii), let H, H ′ ∈ H be such that H ∩ H ′ = J and H �= H ′, which exist by the definition
of J ′. Observe that v(J ) < s (since by our choice of H the vertex sets of any two copies are
distinct). Let I = H − V (J ), and let e(I, J ) be the number of edges between I and J in H .
Then,

2e(J ⊕ WS ) � 2(�v(J ) − e(J ) − e(J, I )) = 2(�v(J ) − e(H ) + e(I ))

= (� + 1)v(J ) + (� − 1)v(J ) − 2e(H ) + 2e(I ).

Thus, to prove the claim it is sufficient to show that (� − 1)v(J ) < 2e(H ) − 2e(I ).
As H is dense, we have 2e(H ) > (� + 1)(v(J ) + v(I ) − 2). If v(I ) � 3, then, from (P2),

we have 2e(H ) > (� + 1)v(J ) + 2e(I ). If v(I ) = 2, then 2e(H ) > (� + 1)v(J ) �
(� − 1)v(J ) + 2e(I ).

Finally, suppose v(I ) = 1, so that e(I ) = 0 and v(J ) = s − 1. By the reasoning in the
proof of (ii), s � �, otherwise we reach a contradiction. Thus, 2e(H ) > (� + 1)(s − 2) �
(� − 1)(s − 1) = (� − 1)v(J ) − 2e(I ).

In each case, then, 2e(H ) − 2e(I ) > (� − 1)v(J ) as required. �

It remains to consider Case II. In this case, there is some graph from S ⊆ Sh with no edges
to F ′

h−1. Therefore, it is sufficient for some graph in H to exist. Let m = e(S0) be the size
of each (isomorphic) graph in H, and note that 2m � min{s�, s(s − 1)} � (s − 1)(� + 1).
Thus, we may take

μ =
∑
H∈H

qm = �(nsqm) = �(nsq(s−1)(�+1)/2) = ω(n).

Let J = {H ∩ H ′ : H, H ′ ∈ H, e(H ∩ H ′) > 0, H �= H ′} and note that, if J ∈ J and
v(J ) � 3, then 2e(J ) � (� + 1)(v(J ) − 2) by (P2). Let

δ =
∑

H,H ′∈H
H∼H ′,H �=H ′

qe(H )+e(H ′)−e(H∩H ′) = q2m
∑
J∈J

∑
H,H ′∈H
H∩H ′=J

q−e(J ) � q2m
∑
J∈J

n2s−2v(J )q−e(J )

� q2m−1n2s−2 + q2m
∑

J∈J :v(J )�3

n2s−2v(J )q−(�+1)(v(J )−2)/2.
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Then, as μ = �(nsqm), we have

δ

μ2
= O

⎛
⎝q−1n−2 +

∑
J∈J :v(J )�3

n−2v(J )q−(�+1)(v(J )−2)/2

⎞
⎠ = o

⎛
⎝n−1 +

∑
J∈J :v(J )�3

n−v(J )−2

⎞
⎠

= o(n−1).

Therefore, as μ = ω(n), and δ
μ2 = o(n−1), by Lemma 2.2, the probability that there is no

graph in H in Gh is at most exp(− μ2

2(μ+δ)
) = exp(−ω(n)), as required. �

6.2. Proof of Lemma 5.4. Again, we use Janson’s inequality and similar calculations to
Ferber et al. [17].

Proof of Lemma 5.4. Recall thatWh−1 = [2n] � gh−1(Fh−1). Let 1 � h � k, 1 � r � |S ′
h| �

εn
s2

hk
,S ⊆ S ′

h and U ⊆ Wh−1 with |S| = r and |U | � s2
hr. Note that, as |U | � s2

hr � εn, we have

|U ∪ (W0 � Wh−1)| � 2εn. Therefore, by the property stated in (A2), for each v ∈ V (F ) �

V (F ∗) and each u ∈ [2n], we have

|NG(u, B(v)) ∩ (Wh−1 � U )| � 2εn, (12)

and, in particular, |B(v) ∩ (Wh−1 � U )| � 2εn and we set B′(v) = B(v) ∩ (Wh−1 � U ).
Let s = sh. As in the proof of Lemma 5.3, we will consider two cases: Case I where each

copy S from S has some edge between S and Fh−1 in Fh and Case II when for some copy S
from S there is no such edge.

Suppose first that we are in Case I. For all S ∈ S , since �(F ) � � and |S| = s, there are
certainly at most �s vertices in Fh−1 with some edge in S, and at most 2s ways of attaching
such a vertex to S. Thus, we can consider a subfamily S ′ of at least 1

2�s2 |S| = �(n) copies
of S from S which are all isomorphic when the edges from S to Fh are added to S. Pick
S0 ∈ S ′. Label V (S0) = {v1, . . . , vs} so that v1 has a neighbour in Fh−1. Recall that for S ∈ S
we labelled V (S) = {zS,1, . . . , zS,sh}. Without loss of generality, we can assume for each S ∈ S
that vi �→ zS,i is an isomorphism from S0 into S, and that zS,1 has a neighbour in Fh in V (Fh−1)

(possible as we are in Case I). Let H be a set of
(|U |

s

)
copies of S0 in the complete graph

with vertex set U , where each copy of S0 has a different vertex set. For each H ∈ H, label
V (H ) = {vH,1, . . . , vH,s} so that vi �→ vH,i is an isomorphism of S0 to H .

For each S ∈ S ′, pick the image wS of an already embedded neighbour of the vertex zS,1

corresponding to v1, that is, pick wS ∈ gh−1(NFh (zS,1) ∩ V (Fh−1)). For each S ∈ S ′, let

HS = {H ∈ H : vH,1 ∈ NG(wS ) and vH,i ∈ B′(vS,i) for each 1 � i � s}.
For each S ∈ S ′, note that, from (12), we have |HS| = �(ns).

For each S ∈ S ′, let WS = gh−1(
⋃

v∈V (S) NFh (v) ∩ V (Fh−1)) be the set of images of already
embedded neighbours of vertices in S. For each H ∈ HS and S ∈ S ′, let H ⊕ WS be the graph
with vertex set V (H ) ∪ WS and edge set

E (H ) ∪ ({vH,iv : 1 � i � s, v ∈ gh−1(NFh (wS,i) ∩ V (Fh−1))} � {vH,1wS}).
These are exactly the edges we need in order to extend our embedding of Fh−1 to contain S
embedded into H , as vH,1wS ∈ E (G). Let H+ = {H ⊕ WS : S ∈ S ′, H ∈ HS}, and note that
if any graph H ⊕ WS ∈ H+ appears in G′

h then, as vH,1wS ∈ E (G), V (H ) ∈ E (LS ), and we
are done.

Let J = {H ∩ H ′ : H, H ′ ∈ H, e(H ∩ H ′) > 0} and J ′ = {H ∩ H ′ : H, H ′ ∈ H,

H �= H ′} � ∅. Note that (i) and (iii) of Claim 6.1 hold here as well. For each H ∈ H
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and S ∈ S ′, E (H ⊕ WS ) does not include vH,1wS, and, therefore, in place of (ii), the following
holds.
(ii’) For each S ∈ S and H ∈ HS , 2e(H ⊕ WS ) � (� + 1)s − 2.

Note that, by our choice of S ′, each graph in H+ has the same number of edges, m say. Note
that, as the property we are looking for is monotone, we may assume that q−1/2 = ω(log n).
Using (ii’), let

μ =
∑
S∈S ′

∑
H∈HS

qm = �(rnsqm) = �(rnsq(�+1)s/2−1) = �(rq−1) = ω(r log n).

We remark that this is the only place where we use that the edge vH,1wS is not included in
H ⊕ WS, since it is already present in G.

Defining δ as follows, and using similar deductions to those used to reach (11), we have

δ =
∑

S,S′∈S ′

∑
H∈HS,H ′∈HS′

H⊕WS∼H ′⊕WS′

qe(H⊕WS )+e(H ′⊕WS′ )−e((H⊕WS )∩(H ′⊕WS′ ))

� q2mr2
∑
J∈J

n2s−2v(J )q−e(J ) + q2m
∑
J∈J ′

∑
S∈S ′

n2s−2v(J )q−e(J⊕WS ).

Then, using (i) and (iii) of Claim 6.1, and that μ = �(rnsqm), we have

δ

μ2
= O

(∑
J∈J

n−2v(J )q−e(J ) + r−2
∑
J∈J ′

∑
S∈S ′

n−2v(J )q−e(J⊕WS )

)

= O

(∑
J∈J

n−2v(J )q−((�+1)(v(J )−1)−1)/2 + r−2
∑
J∈J ′

∑
S∈S ′

n−2v(J )q−((�+1)v(J )−1)/2

)

= o

(
q1/2

∑
J∈J

n−2v(J )nv(J )−1 + q1/2r−2
∑
J∈J ′

∑
S∈S ′

n−2v(J )nv(J )

)

= o(q1/2n−1 + q1/2r−1) = o(r−1 log−1 n).

Therefore, as μ = ω(r log n), and δ
μ2 = o(r−1 log−1 n), by Lemma 2.2, the probability that

there is no graph in H+ in G′
h is at most exp(− μ2

2(μ+δ)
) = exp(−ω(r log n)), completing the

proof of Lemma 5.4 in Case I.
Let us assume now we are in Case II, with some S0 with no edges between S0 ∈ S ′ and Fh−1

in Fh. Label V (S0) = {v1, . . . , vs}. Let H be a maximal set of copies of S0 in the complete
graph with vertex set U , where each copy H of S0 has a different vertex set, {vH,1, . . . , vH,s}
say, so that vi �→ vH,i is an embedding of S0, and vH,i ∈ B′(vS0,i) for each 1 � i � s.

Note that if we have some graph H ∈ H in G′
h, then we are done, as then V (H ) ∈ E (LS0 ).

From (12), we have |H| = �(ns), so, with very similar calculations to Case II in the proof of
Lemma 5.3, we have that the probability that there exists no graph from H in G′

h is at most
exp(−ω(n)) � exp(−ω(r log(n/r)), as required. �

§7. Concluding remarks.

Extending Theorem 1.3 to smaller maximum degrees. Theorem 1.3 can be easily extended
to � � 3 using basically the same approach as in § 5. The definition of the “dense spots,”
however, has to be slightly adapted to each case, but since it is straightforward, we omit the
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details. There is no extension to � = 4 of Theorem 1.2 due to the existence of one problematic
dense spot: a triangle attached to the rest of the graph with two pendant edges at each vertex.
This means that, using a similarly defined set of subgraphs F as in the proof of Theorem 1.3,
we cannot show that one of these subgraphs appears whp in G(n, ω(n−2/5)) (i.e., we cannot
prove (A1) in Definition 3.2), and this prevents our approach from extending to this case.

Using our method. Our main technical theorem, Theorem 3.3, provides a new general
purpose tool for finding spanning structures F in randomly perturbed graphs Gα ∪ G(n, p).
To use Theorem 3.3, it is sufficient to show that F has a collection of subgraphs which is
(α, p)-suitable. Our approach avoids the regularity lemma, which appears in many previous
proofs for results concerning spanning structures in Gα ∪ G(n, p) [5, 27, 28]. In particular,
our approach provides simpler proofs for recent results concerning bounded degree spanning
trees and factors, as we sketch in the following.

Spanning trees. Krivelevich et al. [28] showed that, for any α, � > 0, if p = ω(1/n) and
T is an n-vertex tree with maximum degree at most �, then Gα ∪ G(n, p) contains a copy of
T whp. We can reprove this result using Theorem 3.3 as follows. Fixing α > 0 and � > 0, let
ε = ε(α, �) be as given in Definition 3.2. Let p = ω(1/n) and let T be a tree with n vertices
and maximum degree at most �. Clearly T contains some subtree T ′ with just over (1 − ε)n
vertices, pick such a subtree and let F = {T ′}. By the work of Alon et al. [4], we know that
G(n, p/2) whp contains a copy of T ′, and therefore (A1) holds for F . Furthermore, (A2)
easily holds without even recourse to the random edges in G(2n, p/6). The copy of T ′ can
be extended by iteratively adding leaves. When we wish to add a leaf to a vertex w, say, to
embed v ∈ V (F ) � V (F ′), as |B(v) ∩ NG(w)| � 4εn, there will be many vertices to choose
from in B(v) ∩ NG(w) which are not yet in the embedding. Thus, F is (α, p)-suitable and
Theorem 3.3 applies.

Factors. Balogh et al. [5] showed that for every H , if p = ω(n−1/m1(H )), then Gα ∪ G(n, p)

contains an H-factor whp. Again, we can use Theorem 3.3 to easily reprove this result. Indeed,
let F be an H-factor andF be the set of subgraphs of F consisting of disjoint copies of H which
cover at least (1 − ε)n vertices. By Theorem 2.3, we have that (A1) holds for F . Another
simple application of Janson’s inequality gives that (A2) holds as well.

Randomly perturbed hypergraphs. Recently generalisations of the model of randomly
perturbed graphs to hypergraphs attracted much attention. Again, the union of a binomial
random r-uniform hypergraph G(r)(n, p) and a deterministic r-uniform hypergraph Gα

satisfying a certain minimum degree condition is considered. In the hypergraph setting, several
different notions of minimum degree are possible.

The study of randomly perturbed hypergraphs was initiated by Krivelevich et al. [27]
who considered hypergraphs Gα with collective minimum degree αn, that is, each (r − 1)-
set of vertices of Gα is contained in at least αn edges. A loose Hamilton cycle in an
r-uniform hypergraph on n = (r − 1)k vertices for some integer k, is a labelling of its
vertices by 0, . . . , n − 1 such that {i, . . . , i + (r − 1)} is an edge for each i = (r − 1) j with
j ∈ {0, . . . , k − 1}, where indices are taken modulo n. In other words, consecutive edges of
a loose Hamilton cycle overlap in exactly one vertex. We remark that, for loose Hamilton
cycles, a Dirac-type theorem is known [24]. Krivelevich et al. [27] proved that, for any
Gα with collective minimum degree αn, the addition of random edges with edge probability
c(α)n−r+1 (where c(α) > 0 depends on α only) is sufficient to create whp perfect matchings
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as well as loose Hamilton cycles. Comparing this to the threshold for matchings and loose
Hamilton cycles in random hypergraphs, which is n−r+1 log n [14, 19, 23]), this again differs
by a factor of log n.

Different minimum degree conditions were considered by McDowell and Mycroft [30]. An
r-uniform hypergraph Gα has minimum �-degree at least αnr−� if each �-set of vertices of Gα

is contained in at least αnr−� edges. An �-overlapping cycle is defined analogously to a loose
Hamilton cycle, but with consecutive edges overlapping in exactly � vertices. A tight Hamilton
cycle in an r-uniform hypergraph is an (r − 1)-overlapping Hamilton cycle. McDowell and
Mycroft [30] showed that for �-overlapping Hamilton cycles with � � 3 it is possible to save
a polynomial factor nε on the edge probability in randomly perturbed r-uniform hypergraphs
Gα ∪ G(r)(n, p) compared to G(r)(n, p) alone, under the assumption that Gα has minimum
�-degree at least αn� and minimum (r − �)-degree at least αnr−�. This result was extended
by Bedenknecht et al. [6] to powers of tight Hamilton cycles, with the additional assumption
of collective minimum degree at least αn with α > cr,�.

The weaker notion of minimum 1-degree was studied in the context of randomly perturbed
hypergraphs by Han and Zhao [21]. It is not difficult to see that an r-uniform hypergraph with
minimum collective degree at least αn has minimum 1-degree at least α

(n−1
r−1

)
. Hence, Han and

Zhao [21] strengthen the results of Krivelevich,et al. by proving that adding c(α)n random
edges to Gα , whp creates a perfect matching and a loose Hamilton cycle. Furthermore, adding
c(α)nr−1 random edges to Gα gives rise to a tight Hamilton cycle. Both these results, as well
as those from [27], use the regularity method.

The absorption technique we introduce in this paper can be extended to the randomly
perturbed hypergraph model, and may allow some progress. In particular, we have confirmed
that an easy extension of our method gives the appearance threshold for a perfect matching
and a loose Hamilton cycle in this model, recovering the results of [21, 27].

We note that the third and fourth of the current authors [34] have extended the result of
Riordan [36] to hypergraphs. Similar extensions of Theorems 1.2 and 1.3 however remain
open and would be very interesting.

Universality. We believe that a universality result corresponding to our main theorem
holds as well. That is, we believe that when p = ω(n− 2

�+1 ) the randomly perturbed graph
Gα ∪ G(n, p) contains whp a copy of every graph in F (n, �) simultaneously. However,
our use of Riordan’s result [36], which was proved by second moment calculations, makes
it unlikely that our techniques can be used to obtain such a result. Thus, new ideas are
required. Similarly, p� is commonly believed to be the threshold for G(n, p) to contain a
copy of every graph inF (n, �) simultaneously, but the current methods to attack this problem
(see the discussion after Theorem 1.2) require an edge probability in distinct excess of this
conjectured threshold.

In the case of spanning bounded degree trees, in joint work with Han and Kohayakawa,
we establish the following universality result in [11]. We show that Gα ∪ G(n, c(α, �)/n)

simultaneously contains all spanning trees of maximum degree at most �.
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