
 1 

Are kin and group selection rivals or friends? 
 

Jonathan Birch 
Department of Philosophy, Logic and Scientific Method, 

London School of Economics and Political Science,  
Houghton Street, London, WC2AE 2AE, UK. 

 
j.birch2@lse.ac.uk 

personal.lse.ac.uk/birchj1 
 

For Current Biology. 
 

30 October 2018 
 

Abstract: Kin selection and group selection were once seen as competing 
explanatory hypotheses but now tend to be seen as equivalent ways of describing 
the same basic idea. Yet this “equivalence thesis” seems not to have brought 
proponents of kin selection and group selection any closer together. This may be 
because the equivalence thesis merely shows the equivalence of two statistical 
formalisms without saying anything about causality. W. D. Hamilton was the first 
to derive an equivalence result of this type. Yet Hamilton was aware of its 
limitations, and saw that, while illuminating, it papered over some biologically 
important distinctions. Attending to these distinctions helps us see where the 
biological disagreements between proponents of kin selection and group selection 
really lie. 

 
 
Once upon a time, kin selection and group selection seemed like competing explanations for 
the evolution of social behaviour. John Maynard Smith, in the 1964 article in which he 
coined the term “kin selection”, set out the difference like this: 
 

By kin selection I mean the evolution of characteristics which favour the survival 
of close relatives of the affected individual, by processes which do not require any 
discontinuities in population breeding structure. […] The distinction between kin 
selection and group selection as here defined is that for kin selection the division 
of the population into partially isolated breeding populations is a favourable but 
not essential condition, whereas it is an essential condition for group selection, 
which depends on the spread of a characteristic to all members of a group by 
genetic drift. ([1], p. 1145) 

 
Maynard Smith’s exemplar of kin selection was W. D. Hamilton’s original 1964 model, in 
which organisms are able to act differently towards different categories of close genetic 
relative (sibling, parent, first cousin, etc.) but in which no discrete groups are posited [2]. His 
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exemplar of group selection was his own “Haystacks” model, in which discrete, stable groups 
come to differ genetically from each other due to random drift. These models are strikingly 
different: they seem to be models of qualitatively different biological processes. 
 
This way of drawing the distinction between kin and group selection has an important 
advantage: it tells empirical biologists what questions to ask about the cases of social 
behaviour they care about. Do the benefits of the behaviour fall on close genetic relatives of 
the actor? Are partially isolated breeding populations essential to the evolution of the 
behaviour, or are they inessential? If the answers are “Yes” and “No”, kin selection is at 
work. If the answers are “No” and “Yes”, group selection is at work. If the answers are “Yes” 
and “Yes”, we have an interesting hybrid case in which both processes are at work. This is a 
great example of how theory can guide and inform empirical biology. 
 
Half a century later, things are no longer so simple, and the connections between theoretical 
and empirical work on kin and group selection often seem less direct. When we compare 
today’s social evolution literature to Maynard Smith’s article, the difference that jumps out is 
that, for many social evolution theorists today, kin selection and group selection (or multi-
level selection, as it is now commonly called) are not competing explanations at all. They are 
seen as two equivalent ways of expressing the same basic idea. I’ll call this the equivalence 
thesis. It is a point on which key figures in the kin selection tradition, such as Andy Gardner 
and Stuart West, and key figures in the group selection tradition, such as David Sloan 
Wilson, seem to agree. 
 
There is an interesting story to tell here about how two ideas which initially seemed so 
different came to be seen as equivalent (I’ll turn to that below). What’s particularly odd about 
the current situation is that this broad consensus regarding the equivalence thesis has done 
very little to neutralize the animosity between the two camps. Proponents of multi-level 
selection theory use the equivalence thesis to argue that kin selection, although it sounds 
different, is really just multi-level selection by another name, and they argue that multi-level 
selection theory captures the biologically important features of the process in a more 
perspicuous way [3]. Proponents of kin selection theory use the equivalence thesis to argue 
that any problem analysable using multi-level selection theory can also be analysed using kin 
selection theory—and they usually proceed to argue that kin selection theory is 
mathematically richer and better able to handle complexities like class structure [4-7]. 
 
As I see it, this failure of the equivalence thesis to reconcile the two camps should lead us to 
reconsider the equivalence thesis itself. I have come to the view that the equivalence thesis is 
not a very deep result, biologically speaking. It results from stripping kin selection theory and 
group selection theory of most of their biological content, and then noting an equivalence 
between two very abstract statistical formalisms. Somewhere along the line, the literature has 
lost sight of the importance of articulating explicitly causal hypotheses about the evolution of 
social behaviour. “Kin selection” and “group selection”, if they mean anything, should label 
causal hypotheses about the drivers of change in a population. And I think both Maynard 
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Smith and Hamilton were originally correct to think that it’s useful to have these separate 
labels to describe two broad types of causal hypothesis: one that makes a claim about the 
causal importance of genealogical kinship, and one that makes a claim about the causal 
importance of discrete and stable groups. The distinction is not sharp by any means, but it’s 
still important. Returning to this older way of drawing the distinction helps us see more 
clearly the biological issues that are really at stake when theorists from the two camps debate 
the origins of eusociality and human cooperation. 
 
The quest for generality 
How did the equivalence thesis arise? As we’ve seen, Maynard Smith regarded 
reproductively isolated groups as the mark of group selection. George Price, in what has 
come to be seen as one of the most important papers on group selection, still assumed the 
groups to be reproductively isolated [8]. But later work saw a substantial broadening of the 
concept and a shift in focus towards groups induced by the interaction structure of a 
population rather than its mating structure.  
 
David Sloan Wilson’s trait-group concept was an important innovation here [9]. A trait-
group is a group of organisms who affect each other’s fitness by expressing a focal trait: this 
could be a group of beavers making a dam, or a group of insects constructing a nest, or even 
just a single pair of organisms interacting on a single occasion. In contrast to Maynard 
Smith’s haystacks, trait-groups can be extremely ephemeral, coming into existence and 
vanishing again many times within a single generation. An organism can participate in many 
different trait-groups over the course of its life. 
 
At face value, the trait-group concept still implies discreteness: it’s natural to assume that 
trait-groups, like haystacks, must have clear boundaries, so that the population can be 
subdivided into fewer trait-groups than there are individuals. But Wilson, while focussing 
mainly on discrete groups, also introduced the concept of a continuous trait-group, which 
does not involve positing any discrete boundaries. Each organism’s local interaction 
neighbourhood is its own personal trait-group, and trait-groups blur seamlessly into each 
other. In this scenario, there are as many trait-groups in the population as there are individual 
organisms. The advantage of the continuous trait-group concept was that cases of social 
evolution in viscous populations, with no discernible groups, could be re-described as cases 
of group selection. The disadvantage was that group selection theory no longer seemed to 
attach any great significance to the existence, or non-existence, of biologically meaningful 
groups. 
 
During the same period, kin selection theory was also undergoing a process of generalization. 
Hamilton had always thought of the “coefficient of relatedness” in inclusive fitness theory as 
something that was not simply dependent on family trees. He argued that, when selection is 
weak, it could be approximated by Wright’s coefficient of relationship, which can be read off 
family trees. But he thought it should be defined in a more general way, as a regression 
coefficient capturing the genetic similarity between social partners at the genomic loci of 
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interest. He argued that “kinship should be considered just one way of getting positive 
regression of genotype in the recipient”, leading him to make the striking claim that “the 
inclusive-fitness concept is more general than ‘kin selection’” ([10], p. 337). This more 
general way of thinking about relatedness was promoted by Alan Grafen and David Queller 
and became orthodox in social evolution research.  
 
Meanwhile, Queller’s “general model for kin selection” also generalized the meaning of 
“cost” and “benefit” in inclusive fitness theory [11]. Hamilton had attached an explicitly 
causal meaning to these properties, and saw them as properties of individual social 
interactions, but they came to be seen as population statistics similar to the coefficient of 
relatedness: partial regression coefficients in a statistical model of fitness. The advantage was 
that Hamilton’s famous rb > c rule (see Box 1) could now be said to apply to all processes of 
evolution by natural selection, not just some. The long-running industry of trying to find 
exceptions to Hamilton’s rule mostly ground to a halt. This allowed Hamilton’s rule to shift 
from the status of a “rule of thumb” to the status of an organizing framework for the whole 
field of social evolution research [12]. The disadvantage was that kin selection theory no 
longer seemed to attach any great significance to the existence, or non-existence, of 
interactions between genealogical kin. 
 
The disappearance of causality from general theory 
These processes of generalization made heavy use of the Price equation, a popular way of 
representing evolution by natural selection. Price showed that the effects of natural selection 
can be captured by the covariance between the allele of interest and individual fitness. By 
substituting a regression model of fitness into this covariance, one can very quickly derive 
Hamilton’s rule, as Hamilton himself showed in 1970 [13]. By breaking up this covariance in 
a different way, one can very quickly derive a partition of the effects of selection into a 
“within-group” and a “between-group” component, as Price showed in 1972 ([8], Box 1). 
 
Although Price’s work was extremely insightful, one downside to the adoption of his ideas 
was that, to put it bluntly, causality went missing from general theory in social evolution 
research [14, 15]. Researchers did not stop thinking about causality, and they didn’t stop 
making models of particular scenarios based on causal assumptions, but when it came to the 
most general statements of their theoretical commitments, they turned to a purely statistical 
formalism. Neither the “kin selection partition” of the Price equation nor the “multi-level 
partition” is explicitly a causal partition, even though both tend to be given a causal 
interpretation [16, 17]. These causal interpretations have always been rather questionable. 
It’s a general message from the causal inference literature that regression coefficients only 
quantify causality under very special conditions, and this is still true in the case of social 
evolution, as recent work by Okasha and Martens has shown [18]. Part of the problem here is 
that R. A. Fisher called partial regression coefficients “average effects”, and this usage has 
stuck, even though they only capture causal effects under special conditions. They are really 
statistical notions. 
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Price’s multi-level partition of the Price equation does not even purport to represent causality: 
it just splits one covariance into two. This led to the development within multi-level selection 
theory of regression-based methods, under the heading of “contextual analysis” [15], that do 
purport to represent causality—but these regression-based methods are no more causal than 
their near-identical counterparts in the kin selection literature. 
 
The statistical nature of the equivalence thesis 
The quest for generality, combined with the disappearance of causality from general theory, 
is what has led to the new consensus that kin selection and group selection are equivalent 
descriptions of the same process (Box 1).  
 
It is a correct result as far as it goes: it is true that the kin selection partition and the multi-
level partition of the Price equation can’t disagree about the direction and magnitude of 
change. They split the change into different statistical components, but either approach can be 
applied correctly in any population. Price’s multi-level partition looks as though it assumes 
discrete groups, so cannot be applied in a population without discrete groups, but no such 
assumption is in fact needed from a mathematical point of view. The multi-level partition, 
being purely statistical, is still possible even if we assign organisms to groups arbitrarily. 
There’s no formal requirement that the groups have any biological reality. 
 
However, we are now in a position to see why this is a fairly shallow result from a biological 
point of view. It is only possible because explicitly causal assumptions have been avoided. It 
does not show kin selection and group selection to be equivalent causal hypotheses. It shows 
that they are equivalent when formulated not as causal hypotheses at all, but rather as 
statistical descriptions of change. 
 
Hamilton’s view 
Hamilton was the first to note that there is a sense in which kin and group selection are 
equivalent when formulated using the Price equation. Interestingly, though, he did not take 
this result to obliterate any useful distinction between kin and group selection. He instead 
offers a subtler view: 
 

If we insist that group selection is different from kin selection the term should be 
restricted to situations of assortation definitely not involving kin. But it seems on 
the whole preferable to retain a more flexible use of terms; to use group selection 
when groups are clearly in evidence and to qualify with mention of ‘kin’ (as in the 
‘kin group’ selection referred to by Brown), ‘relatedness’ or ‘low migration’ 
(which is often the cause of relatedness in groups), or else ‘assortation’, as 
appropriate. The term ‘kin selection’ appeals most where pedigrees tend to be 
unbounded and interwoven, as is so often the case with humans. ([10], p. 337) 

 
In the first sentence, Hamilton sounds sceptical of there being a useful distinction to be drawn 
between kin and group selection. However, what he means is that there is no sharp 
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distinction, or dichotomy. He thinks there is an unsharp distinction, admitting of overlap, and 
he proceeds to set out a nuanced way of thinking about that distinction.  
 
As I read it, he takes the view that there are real and biologically important differences here: 
it matters whether the population is subdivided into discrete groups, and it matters whether 
genetic correlations between social partners are explained by genealogical kin interacting 
preferentially or by something else, such as a greenbeard effect. But the differences that 
matter are differences of degree in aspects of population structure. The degree to which 
groups are “clearly in evidence” matters, as does the degree to which genetic correlation is 
explained by kinship as opposed to other causes, but the distinction is not clean or neat. This 
seems to me to be exactly the right way to think about kin and group selection, and it should 
guide us in how we use these labels today. 
 
Thinking about kin and group selection using “K-G space” 
In recent work, I have tried to update and improve on Hamilton’s proposal by finding ways of 
quantifying the degree to which groups are “clearly in evidence” in a population and the 
degree to which the genetic assortment is explained by genealogical kin interacting 
preferentially [12, 19]. 
 
Concepts from network theory, such as the “clustering coefficient” and the “relative density” 
[20], can help us quantify, at any particular moment, the “groupiness” of a social network—
the extent to which it contains real, non-arbitrary social groups at that time. If we choose an 
appropriate measure and take a time-average for the whole population over one generation, 
we have a rough measure of the extent to which groups are “clearly in evidence”. We can 
define a quantity G that takes the value 1 when social groups are fully discrete and isolated 
from each other for long periods (as in the Haystacks model) and the value 0 when there is no 
population structure at all, with more realistic cases in between. 
 
Meanwhile, the extent to which genetic correlation is explained by kinship can be quantified 
by comparing the locus-specific correlation with respect to gene of interest to the average 
correlation across the entire genome, since only kinship can generate correlation at every 
locus. We can define a quantity K that takes the value 1 when all the correlation is whole-
genome correlation and 0 when all the correlation is specific to the locus in question. 
 
Empirical studies of social evolution tend not to measure K or G, but they seem to me to be 
variables that are worth trying to measure. Both are of intrinsic interest in their own right, but 
they also help us draw inferences about the sort of social phenomena that are likely or 
unlikely to evolve in the population.  
 
K matters because it is a guide to how stable any altruism that evolves is likely to be. 
Kinship-based sources of assortment are more likely to lead to stable altruism because they 
lead to correlation at every locus in the genome; kinship-independent sources, such as 
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greenbeards and horizontal gene transfer, lead to locus-specific correlations and less stable 
altruism [21].  
 
By contrast, G matters because it provides some insight into whether or not the population 
might be undergoing, or about to undergo, an evolutionary transition in individuality [22]. 
All transitions require well-defined groups: in a transition, stable, well-bounded groups of 
entities at level n become individuals at level n+1. “High G” populations that are also “high 
K” are candidates for a fraternal transition, in which a reproductive division of labour arises 
through kin-based altruism [23]. The evolution of multicellularity is a credible example of 
this. “High G” populations that are “low K” may be candidates for an egalitarian transition, 
driven by increasingly close mutualistic cooperation between unrelated entities [23]. 
 
These variables lead naturally to the representational device of “K-G space”. A population’s 
place in K-G space depends on the extent to which real groups are clearly in evidence and the 
extent to which genetic correlation is explained by kinship. As Hamilton himself said in other 
words, selection in high K, low G populations seems aptly described as “kin selection”, 
whereas selection in high G, low K populations seems aptly described as “group selection”. 
In the high K, high G region we have hybrid cases that are aptly described as “kin-group 
selection”, because assortment is kin-based and groups are clearly in evidence. In these cases, 
there really is no meaningful debate to be had about which process is at work. 
 
In the low K, low G region we have various interesting processes of social evolution (such as 
selection driven by greenbeard effects and by horizontal gene transfer) that it would be 
misleading to call either “kin selection” or “group selection”. Figure 1 illustrates the general 
idea and labels four broad regions of the space. It is possible in principle to locate a 
population exactly in K-G space, given a choice of measure of K and G and information 
about genetic correlations and interaction structure. 
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Figure 1: K-G space. “Kin selection” and “group selection” can be visualized as 
overlapping regions of the space defined by K and G [12]. 

 
 
Why is K-G space useful? 
What’s the use of K-G space? It is an unorthodox way of thinking about the relation between 
kin and group selection, so there had better some payoff for adopting this unorthodox way of 
thinking. Otherwise it will just lead to confusion. 
 
The payoff, in my view, is that this representational tool helps us see what is really at stake 
when proponents of kin selection and group selection debate particular cases, such as the 
origins of eusociality or the evolution of human cooperation. These are not just non-empirical 
debates about which mathematical formalism we should use to describe the process. But nor 
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are they black-and-white clashes between vastly different alternatives. They tend to be 
debates about where the population of interest should be located in K-G space. 
 
Consider eusociality. Obviously, once eusociality has evolved, groups are clearly in evidence. 
But there is an empirical debate to be had about whether high G populations are needed for 
the origin of eusociality, or whether the starting point is a fluid and flexible population 
structure in which insects aggregate facultatively, which only later transitions into a 
population of well-bounded nests that the workers cannot leave.  
 
Moreover, once eusociality has evolved, kinship-based assortment clearly exists. But there is 
an empirical debate to be had about whether the origin of eusociality was based on kinship or 
on a kinship-independent, greenbeard-like source of assortment. When E. O. Wilson and Bert 
Hölldobler write “what counts is the common possession of eusociality alleles, not 
relatedness” ([24], p. 13368), they seem to be suggesting, controversially, that assortment 
was initially not kinship-based (and using “relatedness” in a narrower sense than Hamilton’s). 
Their hypothesis, in short, is that eusociality originated in low K populations (their views 
about G are somewhat harder to interpret). 
 
Now consider humans. Hamilton made the intriguing observation that human pedigrees tend 
to be “unbounded and interwoven”, which I take to mean “not such as to form stable, well-
bounded kin groups”. This foreshadows recent work on the structure of hunter-gatherer 
populations, which has pointed to the great fluidity of population structure, with frequent 
migration between residential camps [25]. If early human populations were similarly fluid, 
then early human populations were not high K, high G populations.  
 
What, then, drove the evolution of altruism in these populations? One possibility is: intense 
competition between tribal groups mostly consisting of non-kin, combined with repression of 
competition within groups. This is roughly the hypothesis of Samuel Bowles and Herbert 
Gintis in A Cooperative Species [26], and it amounts to the claim that early human 
populations were low K, high G at the tribal level. E. O. Wilson also defends a view like this 
in The Social Conquest of Earth [27]. What all such hypotheses have in common is that they 
must have story to tell about how competition within groups was repressed, because 
otherwise the default assumption is that selection within groups will overpower selection 
between them.  
 
A contrasting causal hypothesis is the following: despite the fluid population structure, 
people were still able to seek out and preferentially interact with kin. Each individual, while 
cooperating with campmates for mutual benefit, had their own kinship network spanning 
multiple camps, and genuinely altruistic behaviour mostly occurred within kinship networks, 
not across them. This is, in effect, the hypothesis that early human populations were high K, 
low G. Studies of contemporary hunter-gatherers show that interactions between kin from 
different camps are more frequent than interactions between non-kin [28]. This is hardly 
surprising, but it suggests the high K, low G hypothesis merits further exploration. 
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These examples show how K-G space can help us articulate and compare empirical 
hypotheses. Like Maynard Smith’s original proposal, it points empirical biologists towards 
the questions that matter, though the questions are not quite the same as Maynard Smith’s: To 
what extent is genetic correlation between social partners explained by kinship? Are groups 
clearly in evidence, and how stable and well-bounded are they?  
 
We need to move away from the 1960s view of kin selection and group selection as wholly 
different processes. But theorists also need to move away from insisting that, because these 
concepts are equivalent when viewed as statistical partitions of change, one of them can be 
dispensed with altogether. This has led to a stalemate in which theorists from the two camps 
continue to disagree, but without being clear as to where the disagreement lies. We should 
hold on to both terms as useful labels for overlapping regions of K-G space, while being 
pluralistic about the methods we use to analyse the processes in those regions. 
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Box 1: The equivalence thesis 
 
The best-known argument for the ‘equivalence’ of kin and group selection involves 
comparing a generalized version of Hamilton’s rule [11] with the multi-level version of the 
Price equation [8] and noting that both provide correct conditions for positive gene frequency 
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change in a group-structured population given a small number of assumptions (for details, see 
[14, 29]).  
 
The route to the generalized version of Hamilton’s rule involves mathematically 
decomposing the overall change in allele frequency between generations into a ‘direct’ and 
an ‘indirect’ component: 
  

  (Kin selection partition) 
 

 
Here, pi denotes the individual gene frequency, with respect to the allele of interest, of the ith 
individual in the population (i.e. its number of copies of the allele divided by its ploidy); and 
Var (pi) is the variance of pi in the ancestral population. ∆p is the change in the frequency of 
the allele between the ancestral and descendant populations, and  is the mean fitness in the 
ancestral population. r is the coefficient of relatedness, defined as a measure of the statistical 
association between the genotypes of social partners. c and b are, respectively, the 
coefficients of cost and benefit, defined as partial regression coefficients in a regression 
model of fitness.  
 
The above decomposition implies the following condition for positive change: 
 

  (Hamilton’s rule) 
 
Now compare this with the multi-level Price equation (Price [1972]). This provides an 
alternative mathematical decomposition of change that applies whenever organisms are 
sorted into groups. It partitions change into a ‘between-group’ and ‘within-group’ 
component: 
 

  (Multi-level partition) 
 

 
Here, wjk and pjk denote the fitness and individual gene frequency (respectively) of the jth 
member of the kth group; while Wk and Pk denote (respectively) the mean fitness and group 
gene frequency (respectively) of the kth group. Cov (Wk, Pk) captures the covariance between 
a group’s gene frequency and its mean fitness, while Ek [Covk (wjk, pjk)] captures the average 
across groups of the within-group covariance between an individual’s gene frequency and its 
fitness.  
 
This decomposition also implies a condition for positive change, which we might call 
‘Price’s rule’:  
 

 w
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(Price’s rule) 
 
The argument for the ‘equivalence’ of the two conditions relies on the fact that both are 
derived from the Price equation (Price [1970]) with few additional assumptions. In all 
populations that satisfy the assumptions of both derivations (that is, in all group-structured 
populations in which alleles are transmitted without bias, c and b are well-defined, and Var 
(pi) ≠ 0) both decompositions are correct and the following equivalence holds:  
 

 

(Equivalence 
thesis) 

 
To understand the intuitive rationale for the equivalence thesis, imagine the typical 
circumstances under which each condition is satisfied for an altruistic trait controlled by a 
single gene. First, consider what is required for rb > c. It must be that bearers of the gene 
cluster together, so that the benefits of altruism fall differentially on other bearers of the gene. 
Second, consider what is required for the selection against the trait within groups to be 
outweighed by selection for the trait between groups. Again, it must be that bearers of the 
gene cluster together, so that the heritable variation in fitness within groups is suppressed and 
the heritable variation in fitness between groups is boosted. Hamilton’s rule and Price’s rule 
are alternative ways of capturing the fundamental requirement that there is correlated 
interaction between bearers of the gene for altruism.  
 
 


