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Abstract
The Bayes Blind Spot of a Bayesian Agent is, by definition, the set of probability
measures on a Boolean σ -algebra that are absolutely continuous with respect to the
background probability measure (prior) of a Bayesian Agent on the algebra and which
the Bayesian Agent cannot learn by a single conditionalization no matter what (pos-
sibly uncertain) evidence he has about the elements in the Boolean σ -algebra. It is
shown that if the Boolean algebra is finite, then the Bayes Blind Spot is a very large
set: it has the same cardinality as the set of all probability measures (continuum); it
has the same measure as the measure of the set of all probability measures (in the
natural measure on the set of all probability measures); and is a “fat” (second Baire
category) set in topological sense in the set of all probability measures taken with its
natural topology. Features of the Bayes Blind Spot are determined from the perspec-
tive of repeated Bayesian learning when the Boolean algebra is finite. Open problems
about the Bayes Blind Spot are formulated in probability spaces with infinite Boolean
σ -algebras. The results are discussed from the perspective of Bayesianism.

Keywords Probability theory · Conditionalization · Bayesianism

1 Themain claims

The notion of Bayes Blind Spot of a Bayesian Agent was introduced in Gyenis and
Rédei (2017): The Bayes Blind Spot is, by definition, the set of probability measures
on a Boolean σ -algebra that are absolutely continuous with respect to the background
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probabilitymeasure (prior) of a BayesianAgent on the algebra andwhich the Bayesian
Agent cannot learn by a single conditionalization no matter what (possibly uncertain)
evidence he has about the elements in the Boolean σ -algebra. Conditionalization in the
most general case involving uncertain evidence is to be understood as conditionalizing
using the technique of conditional expectations, of which the usual Bayes rule and
Jeffrey conditionalization are special cases (Huttegger 2013; Gyenis and Rédei 2017;
Gyenis et al. 2017). The aim of this paper is to determine the properties of the Bayes
Blind Spot.

It was shown in Gyenis and Rédei (2017) that the Bayes Blind Spot is a nonempty
set in so-called standard probability measure spaces (Definition 4.5 in Petersen 1989).
Standard probability spaces include probability spaces with a Boolean algebra having
a finite number of elements and also probability spaces on IRn where the probability
measure is given by a density function with respect to the Lebesgue measure on IRn .
These results lead naturally to the question (formulated already in Gyenis and Rédei
2017) of how large the Bayes Blind Spot is. This is a non-trivial problem and there
is no unique answer to it in general: The answer depends on both what one takes
as the “measure of size” of a set and on the specific properties of the probability
measure space. We show in this paper that if the Boolean algebra of the probability
space representing the Bayesian Agent’s propositional knowledge has a finite number
of elements then the Bayes Blind Spot of this Agent is a very large set, no matter
what the prior of the Agent is: The Bayes Blind Spot has the same cardinality as
the cardinality of the set of all probability measures on the finite Boolean algebra
(continuum); it has the same measure as the measure of the set of all probability
measures (in the natural measure on the set of all probability measures); and it is
a “fat” (second Baire category) set in topological sense in the set of all probability
measures taken with its natural topology.

The large size of the Bayes Blind Spot displays an aspect of the crucial role of
priors in Bayesian learning that to our best knowledge has not been noted in the large
literature on Bayesian statistical inference so far. The main focus of discussion about
priors in Bayesianism is typically about how to chose the prior. Different positions
about how to select a prior range from strict subjectivism through objectivism [see
Williamson (2010, p. 2) for a brief summary of typical positions]. A large variety
of formal methods aiming at selecting priors in Bayesian statistical inference in a
disciplined manner also have been developed [see Kaas and Wasserman (1996) for a
review]. Our result shows that, irrespective ofwhere the prior comes from, any selected
prior is extremely restrictive from the perspective of how many probability measures
are in principle accessible for the Bayesian agent as posterior obtained as a result of
a single act of conditionalization—if the propositional knowledge of the Bayesian
Agent is represented by a finite Boolean algebra. (This will be further discussed in
Sect. 8.)

The very large size of the Bayes Blind Spot in the finite case leads naturally to the
following questions:

(a) How much can a finite Bayesian Agent learn as a result of repeated conditional-
ization?

(b) How large is the Bayes Blind Spot of a non-finite Bayesian Agent?
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Question (a) will be dealt with in Sect. 5. We will see that the answer to it depends
very sensitively on how precisely Bayesian repeated learning and the associated Bayes
Blind Spot of repeated learning are defined. We will define two types of Bayesian
learning dynamics and learning paths, called, respectively, “conservative” and “bold”.
These two dynamics differ in whether the Bayesian Agent is ready to give up his prior
after each conditionalizing and accept the inferred probability measure as new prior
(bold Agent) or not (conservative Agent). We will show that given any fixed, infinite
conservative or bold Bayes learning paths of a finite BayesianAgent, their Bayes Blind
Spots, understood as the intersection of all the Bayes Blind Spots along the learning
steps, remain a large set (Proposition 5.3).

Given the notions of conservative and bold Bayesian dynamics, one also can define
Bayes N -Blind Spotswith respect to both conservative and boldBayes dynamics (Def-
inition 5.4): The Bayes N -Blind Spot is the set of probability measures to which there
does not lead any (conservative, respectively bold) Bayesian learning path of length
less than or equal to N starting from any evidence (N being a natural number). The
corresponding infinite Bayes Blind Spots are the intersection of all the (conservative,
respectively bold) Bayes N -Blind Spots (N = 1, 2 . . .). We will see that the infinite
conservative Bayes Blind Spot is a very large set if the Boolean algebra is finite. In
sharp contrast, the bold Bayes 2-Blind Spot (hence also the bold infinite Bayes Blind
Spot) of a Bayesian Agent is empty if the Boolean algebra is finite (Proposition 5.5).
Thus, given any probability on a finite Boolean algebra, an Agent having a faithful
prior can learn this probability from some specific (possibly uncertain) evidence in
only two steps of conditioning—if the Agent discards his prior after the first condi-
tioning and performs the second conditioning using as prior the probability learned in
the first step. While this is in principle an attractive feature of Bayesian conditioning,
it should be emphasized that the Agent must have access to very specific evidence to
be able to infer the given probability in only two steps.

Determining the size of the Bayes Blind Spot of a Bayesian Agent represented by a
general probabilitymeasure space (question (b) above) seems to be a difficult problem.
In Sect. 8 we collect the known results proved on this problem in Gyenis and Rédei
(2017). This section formulates some further possible lines of inquiry.

2 Learning by conditionalizing

ABayesian Agent is an abstract, ideal person having degrees of belief p(C) about (the
truths of) propositionsC in a set S forming a Boolean σ -algebra. The degrees of belief
p(C) behave like probabilities: p is an additive map on S formed by (some) subsets
of the set X of elementary propositions. The triplet (X ,S, p) is a probability measure
space (Billingsley 1995; Rosenthal 2006). For monographic works on Bayesianism
we refer to Howson and Urbach (1989), Bovens and Hartmann (2004) andWilliamson
(2010); for papers discussing basic aspects of Bayesianism, including conditionaliza-
tion, see Howson and Franklin (1994), Howson (1996, 2014), Hartmann and Sprenger
(2010), Easwaran (2011a, b) and Weisberg (2011, 2015); for a discussion of Jeffrey
conditionalization, see Diaconis and Zabell (1982) and Huttegger (2015). From now
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on it is assumed that the Boolean algebra S has a finite number of elements. (In Sect. 8
we will comment on the situation when S is infinite.)

A Bayesian Agent is able to perform probabilistic inference on the basis of learning
evidence: Suppose the Agent learns that proposition A ∈ S is true (but he knows
nothing else about other propositions in S). Using his background probability p, if
p(A) �= 0, the Agent can infer from this information probabilities q(B) of events B
other than A by conditionalizing p via A using Bayes’ rule:

q(B) = p(B ∩ A)

p(A)
for all B ∈ S (1)

q is a new probability measure on S; it can be viewed as the probability measure
that the Agent has inferred, on the basis of his prior p, from the probability measure
qA that is defined on the four element Boolean subalgebra {∅, A, A⊥, X} of S that is
generated by A and A⊥ and which has the feature that it takes values qA(A) = 1 and
qA(A⊥) = 0 on the non-trivial elements ofA. The probability measure qA represents
certain evidence (Howson and Franklin 1994, p. 452). Note that q has value 0 on every
element B which has p-probability zero. The technical expression of this feature of q
is that q is absolutely continuous with respect to p (Billingsley 1995, p. 422).

Remark 2.1 A note on terminology: we used the phrase “conditionalizing p via A
using Bayes’ rule” above, rather than just saying “conditionalizing on A”, which
would be more standard. We do this because we take the position that conditionalizing
is a concept and technique in probability theory that is much more general than the
Bayes’ rule (1) [also called “ratio formula” (Rescorla 2015)]: Both the Bayes’ rule and
Jeffrey rule (see below) are special cases of conditioning with respect to a σ -field [see
Billingsley (1995, Chapters 33–34) andGyenis andRédei (2017) for further discussion
of the relation of Bayes’ and Jeffrey rules to the theory of conditionalization via
conditional expectation determined by σ -fields]. We will also say that the “Bayesian
Agent learns q on the basis of evidence qA”. This terminology is common in the
literature of machine learning/artificial intelligence (Neal 1996; Barber 2012), and it
might be slightly confusing because one also says the “Agent learns” the evidence.
But the conceptual structure of the situation is clear: The Agent’s “learning” q means
the Agent infers q from evidence qA using conditionalization as inference device.

Suppose that the Agent receives information about A and A⊥ that is given by a
probability measure qA which does not have the extreme values 1 and 0 but the values
qA(A) = r �= 1 and qA(A⊥) = 1 − r �= 0. What probability measure can the Agent
infer from this evidence on the basis of the background measure p? The standard
answer to this question is: If neither p(A) nor p(A⊥) is equal to zero, then the Agent
can use the Jeffrey conditionalization rule (Jeffrey 1965) to obtain the measure q given
by:

q(B)
.= p(B ∩ A)

p(A)
qA(A) + p(B ∩ A⊥)

p(A⊥)
qA(A⊥) for all B ∈ S (2)

More generally, if the evidence the Agent has are the probabilities qA(Ai ) of mutually
disjoint events Ai (i = 1, 2 . . . N ) forming a non-trivial partition inS, which generates
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Fig. 1 Example of probabilities in die throwing

the proper, non-trivial Boolean subalgebra A of S, and if these events have non-zero
prior probability p(Ai ) �= 0 (for all i), then the Agent can infer from this so-called
uncertain evidence (Chapter 11 in Jeffrey 1965; Bradley 2005; Weisberg 2009) a
probability measure q using the general Jeffrey conditionalizing rule:

q(B)
.=

∑

i

p(B ∩ Ai )

p(Ai )
qA(Ai ) for all B ∈ S (3)

Just like in the case of conditionalization via Bayes’ rule, q obtained this way is
absolutely continuouswith respect to the prior probability p. To simplifymatters, from
now on we assume that the prior probability of the Agent is non-zero on every element
{x} for x ∈ X . In this case, obviously, every probability measure on S is absolutely
continuous with respect to p (see Remark 4.5 for general prior probability).

Remark 2.2 Note that the requirement that the uncertain evidence is given by a proba-
bility measure on a proper, non-trivial partition (equivalently: on a proper, non-trivial
Boolean subalgebra S) is important: if the evidence were taken to be a probability
measure q ′ on the whole S, then for every element x in X the Jeffrey rule (3) would
entail

q({x}) =
∑

i

p({x} ∩ Ai )

p(Ai )
q ′(Ai ) = p({x})

p({x})q
′({x}) = q ′({x}) (4)

This equation says that every probability measure can be obtained from itself as evi-
dence via the Jeffrey rule—a triviality. But the philosophically relevant question is
whether a Bayesian Agent can learn a probability measure from a “genuine evidence”,
i.e. from evidence that contains only partial, incomplete information about the prob-
ability to learn. This partial information is contained in the values of the probability
on a proper subalgebra of the set of all events/propositions.

As an elementary example for the Jeffrey conditionalization consider die throwing:
Let X6 = {x1, x2, . . . , x6} represent the possible outcomes of throwing a die, and
let S6 be the Boolean algebra of subsets of X6. Assume that the Agent’s background
probability p is given on elements x ∈ X6 according to Fig. 1 below.

Consider the partition

A1 = {x1, x2} A2 = {x3, x4, x5} A3 = {x6} (5)

indicated in Fig. 2. Suppose the Agent receives the information qA, where the proba-
bility measure qA is given on the elements of the partition A1, A2, A3 by

qA(A1) = 2

6
qA(A2) = 3

6
qA(A3) = 1

6
(6)
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Fig. 2 Example of inferring probabilities using Jeffrey conditionalization

Fig. 3 Is q Bayes accessible?

Using the Jeffrey conditionalization rule (3), the Agent can infer from evidence qA
the probability measure q indicated in Fig. 2.

3 The Bayes Blind Spot

Consider now the question: Suppose the probability distribution describing the results
of throws with a die is q given by Fig. 3 above. Can the Bayesian Agent (having p
as his background measure) infer this probability q from some probability measure
as evidence by conditionalizing using the Jeffrey rule (3)? If so, we call q Bayes
accessible or Bayes learnable.

The question whether q is Bayes accessible is asking whether there exists a non-
trivial partition of the 6 element set X6 and a probability measure qA defined on
elements of this partition such that q can be obtained from qA in the manner (3). The
question is not trivial: there exist 203 different partitions in S [203 is the 6th Bell
number (Conway and Guy 1996, pp. 91–93)]. Thus, if one would try to answer the
question by “brute force”, one would have to consider all the 203 partitions and, for
each partition, write out Eq. (3) for every B to obtain a large number of equations to
solve with qA(Ai ) as unknowns to see if the system of equations admits a solution.
While doable, this procedure becomes intractable in the general situation when the
number of elements in the Boolean algebra is very large. One can however find a
simple, compact condition that can be used to decide whether a probability measure
can be obtained as a conditional probability via Jeffrey conditionalization:

Suppose we have found a partition {Ai } and a qA for which q can be written in the
form (3). If the partition {Ai } is non-trivial, then at least one of Ai has more than one
element from X6. Suppose Ai has two elements x1 and x2. Then (3) entails

q({x1}) =
∑

i

p({x1} ∩ Ai )

p(Ai )
qA(Ai ) = p({x1})

p(Ai )
qA(Ai ) (7)

q({x2}) =
∑

i

p({x2} ∩ Ai )

p(Ai )
qA(Ai ) = p({x2})

p(Ai )
qA(Ai ) (8)

123



Synthese

Equations (7)–(8) entail that a necessary condition for q to be Bayes accessible is that
the following condition holds:

q({x1})
p({x1}) = q({x2})

p({x2}) (9)

One can verify easily that the probability measure q describing the distribution of
throws with a die with values indicated in Fig. 3 violates condition (9). Consequently,
this probability measure is not Bayes accessible: A Bayesian Agent having his back-
ground knowledge represented by the probability measure p given in Fig. 3 is not able
to learn this q distribution via conditionalizing no matter what (possibly uncertain)
evidence he is presented with.

The reasoning leading to the necessary condition (9) for Bayes accessibility gen-
eralizes easily from S6 to an arbitrary finite Boolean algebra. This, in turn leads to a
sufficient condition entailing that a probability measure is not Bayes accessible: If for
a probability measure q on S we have

q({xi })
p({xi }) �= q({x j })

p({x j }) i �= j; 1 ≤ i, j ≤ n (10)

then q is not Bayes accessible for the Bayesian Agent having p as his background
degree of belief.

The function dq
dp defined by

X 	 xi 
→ dq

dp
(xi )

.= q({xi })
p({xi }) (11)

is known as the Radon–Nikodym derivative (also called the density) of q with respect
to p (Billingsley 1995, p. 423). Thus, the content of the sufficient condition (10) can
be expressed compactly by saying that q is not Bayes accessible for the Bayesian
Agent having background probability p if the Radon–Nikodym derivative dq

dp of q
with respect to p is an injective function. We show now that this condition also is
necessary, i.e. we will prove

Proposition 3.1 (cf. Gyenis and Rédei 2017) Let (X ,S, p) be a probability space
with a finite set X having n elements and S the Boolean algebra of subsets of X. A
probability measure q on S is not Bayes accessible if and only if its Radon–Nikodym
derivative dq

dp is an injective function.

Proof Since we have seen that injectivity of the Radon–Nikodym derivative is suffi-
cient for Bayes inaccessibility, we only have to show that injectivity is also necessary,
i.e. that non-injectivity entails Bayes accessibility. Let the range of dq

dp be {y1, . . . , yk}.
If dq

dp is not injective, then the partition

Ai = {
x ∈ X : dq

dp
(x) = yi

}
for i = 1 . . . k
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is a non-trivial partition of X i.e. there is at least one Ai containing at least two
elements. Note that dq

dp is constant on every Ai . We define the probability measure r
on the Boolean subalgebra generated by the partition Ai by defining the values of r
on the blocks of the partition and requiring r to be additive:

r(Ai ) = q({x})
p({x}) p(Ai ) for any x ∈ Ai

Then, for all x ∈ X there is a unique j such that x ∈ A j and thus we have

∑

i

p
({x} ∩ Ai

)

p(Ai )
r(Ai ) = p({x})

p(A j )
r(A j ) = q({x}) �


As the example of die throwing shows, Bayes inaccessible probabilitymeasures can
exist.More generally, one can show that given any background probability p on a finite
Boolean algebra, there exists a q on that Boolean algebra that is Bayes inaccessible
(Gyenis and Rédei 2017). Following the terminology introduced in Gyenis and Rédei
(2017) we will call the set of probability measures on S that are not Bayes accessible
for the BayesianAgent (with respect to the fixed background probability p) the “Bayes
Blind Spot” of the Agent. If the p-dependence of the Bayes Blind Spot needs to be
made explicit, we say “Bayes p-Blind Spot”.

Remark 3.2 Note that we assumed the background probability p to be faithful, which
entails that each probabilitymeasure on theBoolean algebraS is absolutely continuous
with respect to p. If p is not faithful, then there exist probability measures on S that
are not absolutely continuous with respect to p, and these are trivially not obtainable
as conditional probabilities using p as prior. To exclude these trivially non-Bayes
accessible probability measures from the Bayes Blind Spot in case when p is not
faithful, we define the p-Bayes Blind Spot for such a general p as the set of those
probability measures that are absolutely continuous with respect to p and are not
Bayes accessible for the Bayesian Agent (with respect to p). Since the main results of
the paper state the large size of the Bayes Blind Spot, defining the Bayes Blind Spot
more restrictively strengthens the results presented.

4 Size of the Bayes Blind Spot

How large is theBayesBlind Spot? There is no unique answer to this question: The size
of a set can be gauged using conceptually different “yardsticks”. Given a yardstick,
one can compare the size of a set to the sizes of other sets, measured by the same
yardstick. There are three standard ways to measure the size of a set (Rudin 1987, p.
170) and thus also the size of the Bayes Blind Spot:

Cardinality One can ask what the cardinality of the Bayes Blind Spot is and how its
cardinality is related to the cardinality of the set of all probability measures.

Topological size One can ask whether the Bayes Blind Spot is a meager (Baire first
category) or nonmeager (Baire second category) set in the set of all probability
measures with respect to a natural topology.
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Measure theoretical size One can ask what the size of the Bayes Blind Spot is with
respect to a measure on the set of all probability measures.

We show now that the Bayes Blind Spot is a very large set in the sense of all the three
measures—cardinality, topological and measure theoretical size.

4.1 Cardinality

The sufficient condition (10) for Bayes inaccessibility makes it clear that if q ′ is Bayes
inaccessible, then for all small enough positive real numbers ε the probabilitymeasures
qε such that

|qε({x}) − q ′({x})| ≤ ε for all x ∈ X (12)

also satisfy (10) and thus are not Bayes accessible. It follows from this that the Bayes
Blind Spot has at least continuum cardinality (Gyenis and Rédei 2017). On the other
hand, the cardinality of the set of all probability measures on a finite Boolean algebra
is at most the continuum: a probability measure is a function from the finite set X
having n elements into the unit interval [0, 1]; so the set of all probability measures
on X is a subset of the cartesian product ×n

1[0, 1], cardinality of which is the same as
the cardinality of [0, 1]. It follows that we have the following
Proposition 4.1 The Bayes Blind Spot of a finite Bayesian Agent has the cardinality
of the continuum, and, consequently, for such a Bayesian Agent there exist exactly
as many Bayes inaccessible probability measures as the number of all probability
measures (in the sense of cardinality), namely a continuum number.

4.2 Topological size—Baire category

Recall that, given a subset E of a topological space T , point x in T is an interior point
of E if there is an open set O such that x is belongs to O and O is contained in E .
The set of all interior points of E is called the interior of E . A subset E of T is said to
be nowhere dense if its closure has empty interior. The sets of the first Baire category
in T are those that are countable unions of nowhere dense sets (Rudin 1991, p. 42).
Any subset of T that is not of the Baire first category is said to be of the second Baire
category. A set E is nowhere dense if and only if its complement T \ E contains an
open set that is dense in T . Thus a subset of T which is open and dense is of the second
Baire category.

Sets of first category are “meager”, whereas sets of second category are regarded
as nonmeager (“fat”) in a topological sense. To see why, it is useful to have examples.

Consider the real line R with its usual topology. Any finite set of points on the line
is a nowhere dense set. The set Q of rational numbers is a meager set because Q is a
countable union of single rational numbers.

Non-countable meager sets also exists: the Cantor set is uncountable, closed, com-
pact and nowhere dense in R (see Steen and Seebach 1978). The Cantor set is large
in cardinality (within the set of real numbers), small in the sense of topology and also
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small measure theoretically: it is a null-set with respect to the Lebesque measure. But
a meager set can have large measure: the real line can be decomposed into two disjoint
sets, one being of first Baire category, the other having measure zero with respect to
the Lebesgue measure (Theorem 1.6 in Oxtoby 1980). Such a set is the fat Cantor set
(Steen and Seebach 1978), which is meager but can have arbitrary large measure.

Open dense sets are easy to come up with: obviously R is open and dense in itself.
Removing a finite number of points from R one obtains an open dense set. Less
obvious example is the complement of the Cantor set: since the Cantor set is closed
and nowhere dense, its complement is open and dense.

To assess the topological size of the Bayes Blind Spot in the set M(S) of all
probability measures on S, we need to specify a topology on M(S). Topologies can
be defined bymetrics (distance functions), and this is howone can specify a topology in
the set of probability measures. There exist several types of metrics among probability
measures that one can consider. The Appendix lists five typical ones that occur in
different contexts. It turns out (and this is proved in the Appendix) that they all are
equivalent in the sense that they determine the same topology, which we will call the
standard uniform topology. The content of this topology can be expressed in different
ways, one of which is the formulation in terms of the distance d3 of the Appendix: if
the probability measure q is d3-close to the probability measure q ′ then the supremum
of the difference of the expectation values of random variables with respect to q and
q ′ is small among all the random variables whose expectation values with respect to
the background probability p are close.

Given the standard uniform topology, the topological size of the Bayes Blind Spot is
characterized by the following proposition (proof of which we give in the Appendix):

Proposition 4.2 The Bayes Blind Spot of a finite Bayesian Agent is an open and dense
set in the set M(S) of all probability measures equipped with the standard uniform
topology on the probability measures.

Corollary 4.3 The complement of the Bayes Blind Spot of a finite Bayesian Agent, the
set of Bayes accessible probability measures is a closed, nowhere dense set in the
standard uniform topology on the probability measures.

Proposition 4.2 says that the Bayes Blind Spot is a very large, a “fat” set in topo-
logical sense, much larger than the set of Bayes accessible states. Viewed from the
perspective of topology, there exist much more Bayes inaccessible states than Bayes
accessible ones.

Corollary 4.3 entails that the limit of Bayes accessible probability measures is again
Bayes accessible. Consequently, a Bayes inaccessible probability measure cannot be
approximated with arbitrary precision by Bayes accessible probability measures. Thus
one cannot “neutralize” the presence ofBayes inaccessible states by taking the position
that the Bayesian Agent can in principle be presented with a series of evidences that
can get him arbitrarily close to a Bayes inaccessible probability measure.

Furthermore, the set of Bayes accessible probability measures, being the comple-
ment of a dense open set, is not only a closed set but a meager set: a closed set
with empty interior. Thus, while there exist an uncountably infinite number of Bayes
inaccessible probability measures arbitrary close to every Bayes accessible one, every
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Bayes inaccessible probability measure has a neighborhood in which there are only
Bayes inaccessible probability measures.

The Bayes inaccessible probability measures “dominate” the set of all probability
measures completely in a topological sense.

4.3 Measure theoretical size

To assess the measure theoretical size of the Bayes Blind Spot in the setM(S), one has
to specify a σ -algebra in M(S) and a measure over this algebra. The natural algebra
and measure is the one arising from the Lebesgue measure in the following way:

We can identify measures in M(S) with functions f : X → [0, 1] such that∑
x∈X f (x) = 1. Under this identification each probability measure is identified with

a point in [0, 1]n (recall: n is the number of elements in X ). Thus M(S) ⊆ [0, 1]n .
The equation

X1 + X2 + · · · + Xn = 1 (Xi ∈ R a variable) (13)

defines an n − 1-dimensional hyperplane H in Rn ; thus M(S) is the simplex which is
the intersection of this hyperplane with the unit cube [0, 1]n (see the picture below).

For any finite dimension d the d-dimensional Lebesguemeasureλd is defined on the
Borel sets of the d-cube [0, 1]d . Since M(S) ⊆ H is a subset of an n− 1 dimensional
hyperplane in R

n , we have λn(M(S)) = 0. On the other hand with λn−1 being the
Lebesgue measure on the Borel sets of H ∩ [0, 1]n we have

λn−1(M(S)
) = λn−1(H ∩ [0, 1]n) > 0 (14)
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The measure

μ ≡ λn−1

λn−1(M(S))
(15)

is the normalized area (Lebesgue) measure on M(S); in this measure the whole set
M(S) of probability measures has measure equal to 1. The next proposition (proved
in the Appendix) states the size of the Bayes Blind Spot in this measure.

Proposition 4.4 The Bayes Blind Spot has μ measure equal to 1. The set of Bayes
accessible states is a μ measure zero set.

Proposition 4.4 says that the Bayes Blind Spot is a very large set in the set of
all probability measures, with respect to the natural (Lebesgue) measure in which
the set of all probability measures has non-zero measure.1 “Very large” means here:
as large as possible: having the same size as the size of the set of all probability
measures. This entails that the Bayes accessible states form a measure zero set in this
measure.

Remark 4.5 Propositions 4.1, 4.2 and 4.4 are proved under the assumption that the
background probability measure p is faithful. These propositions remain true however
if the faithfulness assumption is dropped: If p is not a faithful probability measure,
then it has zero probability on some elements in X . In terms of the geometrical picture
of figure (Sect. 4.3) this means that the point in the simplex representing p is on an
“edge” E of the simplex. All the probability measures that are absolutely continuous
with respect to p, hence all the potentially Bayes p-accessible probability measures,
are also on E . This edge can be regarded as the set of all probability measures on
the Boolean algebra that is obtained from S by removing from S the one-element
sets on which p is zero, and the restriction p′ of p to this Boolean algebra is faithful.
Proposition 4.2 entails then, that the set of Bayes p′-accessible probability measures
is a nowhere dense set in E in the relative topology on E inherited from M(S). But
then this set also is a nowhere dense set in M(S), and its complement, the Bayes
p′-Blind Spot, contains an open dense set, and is thus a set of Baire second category.
It follows that the Bayes p-Blind Spot is a set of second Baire category, irrespective
of wether p is faithful or not. Since an open and dense set in a complete metric
space has to have uncountable cardinality, the Bayes p-Blind Spot has uncountable
cardinality irrespective of wether p is faithful or not. Furthermore, since the edge E
lies in a proper linear subspace of the linear space in which M(S) has non-zero λn−1

(Lebesgue) measure, the measure of the set of Bayes p′-accessible measures in E
also has λn−1 measure zero. It follows that the Bayes p-Blind spot has measure 1
in the measure μ in which M(S) has measure 1 too—irrespective of whether p is
faithful.

1 One could in principle consider a measure μ on the set of all probability measures different from the
Lebesque measure. Then the μ-size of the Bayes Blind Spot would be different. We do not see a principled
way of choosing such a μ but it might be interesting to explore this possibility.
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5 Bayesian dynamics and the Bayes Blind Spot

5.1 Bayes Blind Spots of Bayes learning paths

Once the Bayesian Agent with background measure p has inferred a probability mea-
sure q from evidence qA using the Jeffrey rule (3), he can do one of two things: He
can look for further evidence to check which of the inferred probabilities are cor-
rect, and, keeping his background probability p, he can perform a second inference
that takes into account the new evidence. This learning move, identified and analyzed
briefly in Gyenis and Rédei (2017), gives rise to a dynamic of Bayesian learning,
which we call here the conservative Bayes dynamic—conservative because the Agent
keeps his background probability while repeating conditionalization on the basis of
new evidence. “Correct” means in this context that the inferred probability measure is
equal to a specific probability measure p∗ that the Agent wishes to learn (for instance
because p∗ represents objectively given frequencies). The other thing the Agent can
do is to transform himself into a different Agent by replacing his background belief
p with the inferred probability measure q, and, on the basis of this new background
measure, he can infer probability measures from new evidences, based on his new
prior. This defines a dynamic of Bayesian learning we call bold Bayes dynamic—bold
because the Agent accepts the inferred probability measure as background in spite of
the fact that the inferred probability might not be the correct p∗ the Agent wants to
learn. In this section we analyze the Bayes Blind Spot from the perspective of these
two types of dynamics.

The precise definitions of the two dynamics are as follows:

Definition 5.1 Let (X ,S, p) be a probability space and {An}n∈IN be an infinite series
of (not necessarily different) Boolean σ -subalgebras of S, each An generated by a
Kn-element partition Cn = {An

i : i = 1, 2, . . . Kn}. We call (X ,S, p, {An}n∈IN) a
Bayesian dynamical system.

1. Given a probability measure q in M(S), the sequence of probability measures
{qcn}n∈IN in M(S) is called a conservative Bayes learning path from q determined
by the Bayesian dynamical system (X ,S, p, {An}n∈IN) (the superscript c standing
for “conservative”) if qc0 = q, and for all n > 0 the qcn is obtained from qcn−1 via
the Jeffrey rule (3) using Cn ; i.e. for all n > 0 we have

qcn(B)
.=

Kn∑

i

p(B ∩ An
i )

p(An
i )

qcn−1(A
n
i ) for all B ∈ S (16)

where for all i the set An
i is an element of the partitionCn = {An

i : i = 1, 2, . . . Kn}.
2. Given a sequence {rn}n∈IN of probability measures in M(S), the sequence of prob-

ability measures {qbn }n∈IN inM(S) is called a bold Bayes learning path determined
by the Bayesian dynamical system (X ,S, p, {An}n∈IN) (the superscript b standing
for “bold”) based on the evidence sequence {rn}n∈IN if qb0 = p, and for all n > 0
the qbn is obtained from qbn−1 via the Jeffrey rule (3) using Cn and evidence rn with
the prior being the probability measure qbn−1 inferred in the preceding step, i.e. if
for all n > 0 we have
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qbn (B)
.=

Kn∑

i

qbn−1(B ∩ An
i )

qbn−1(A
n
i )

rn(A
j
i ) for all B ∈ S (17)

where for all i the set An
i is an element of the partitionCn = {An

i : i = 1, 2, . . . Kn}.
To simplify notation, in what follows we use {qα

n }n∈IN to refer to both conservative
(α = c) and bold (α = b) Bayes learning paths.

The bold Bayesian learning is risky in the following sense: When the Bayesian
Agent infers qb1 from r1 on the basis of his prior p via a Jeffrey conditionalization in
the first step of the learning process specified by Eq. (17), he cannot be certain that the
inferred probability measure qb1 is correct in the sense of being equal to p∗ because
p∗ might be in the Bayes p-Blind Spot and we know from the propositions in Sect. 4
that it is “overwhelmingly likely” (as measured in terms of the measure μ defined
by Eq. (15) in which the Bayes accessible measures are measure zero) that p∗ is in
the Bayes p-Blind Spot hence that qb1 is not correct; yet, the Agent adopts qb1 as his
new prior, on the basis of which he performs the second inference. The same holds
for the second, third, and any subsequent inferences via Jeffrey conditionalization:
if p∗ happens to be in the Bayes qbn−1-Blind Spot, then qbn obtained via (17) will be
incorrect. It follows that the risk of adopting a wrong probability measure as prior
is present at every step in a bold Bayes learning path. To see whether this risk gets
reduced as the Agent moves along a Bayes learning path one has to look at the Bayes
Blind Spot of the whole learning path, defined as the intersection of the Bayes Blind
Spots the Agent has at every step:

Definition 5.2 Let {qα
n }n∈IN be Bayes Learning paths (α = c, b). The Bayes Blind

Spots denoted by BBS[{qα
n }n∈IN] of these Bayes Learning paths are defined as

BBS[{qα
n }n∈IN] .= ∩∞

n=0BBS(qα
n ) α = c, b (18)

(Recall that BBS(p) denotes the Bayes p-Blind spot of a probability measure p.)
Since in a conservative Bayes learning path the backgroundmeasure stays the same,

at every step on such a conservative learning path the Bayes Blind Spot remains the
same and is identical to the Bayes p-Blind Spot: BBS[{qcn}n∈IN] = BBS(p). Thus we
can conclude that moving alone a conservative Bayes Learning path does not reduce
the size of the Bayes Blind Spot.

In a bold Bayes Learning Path {qbn }n∈IN the priors entering the Jeffrey formula may
change at every step: for any j , at step j + 1 in a bold Bayes learning path {qbn }n∈IN,
the probability qbj is the Agent’s background measure on the basis of which qbj+1 is

inferred. For j > 0, qbj may not be faithful even if qb0 = p is; however, by Remark 4.5

the Bayes qbj -Blind Spot also is a large set topologically: it contains an open dense
set and is therefore of second Baire category. Since in a complete metric space the
intersection of a countable number of open and dense sets is open and dense by the
Baire category theorem (Oxtoby 1980), and since the set M(S) of all probability
measures is a metric space with respect to any of the metrics discussed in Sect. 8.1, it
follows that the intersection of all the Bayes qbj -Blind Spots contains an open dense
set and is thus a fat (nonmeager) set in the topological sense. Also by Remark 4.5
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the Bayes qbj -accessible states are measure zero for all j [in the measure defined by
(15)]. Thus their (countable) union also has measure zero, and it thus follows that the
intersection of all the Bayes qbj -Blind Spots, i.e. BBS[{qbn }n∈IN], has measure 1. Thus
what we have shown is the next proposition:

Proposition 5.3 Given any Bayesian dynamical system (X ,S, p, {An}n∈IN) with a
finite Boolean algebra S, and given any conservative or bold Bayes Learning Paths
{qcn}n∈IN and {qbn }n∈IN, the Bayes Blind Spots BBS[{qcn}n∈IN] and BBS[{qbn }n∈IN] of
both the conservative and bold Bayes Learning Paths are large sets: in cardinality,
in the sense of topology and with respect to the natural measure on the set of all
probability measures.

5.2 Bayes N-accessibility and the infinite Bayes Blind Spot

Given the notions of conservative and bold Bayesian dynamics, one also can define
Bayes N -accessibility with respect to both conservative and bold learning paths of
length N . This in turn makes it possible to define the corresponding Bayes N -Blind
Spots and an infinite Bayes Blind spot. In this section we define these notions and
investigate their properties.

Definition 5.4 Let (X ,S, p) represent a Bayesian Agent having degree of belief rep-
resented by p.

i. We say that the probability measure r on S is Bayes N -accessible for the Bayesian
Agent via a conservative (respectively bold) Bayes learning path if there exists a
series of (proper, non-trivial) Boolean subalgebras {An}n∈IN of S and a conser-
vative {qcn}n∈IN (respectively bold {qbn }n∈IN) Bayes learning path (in the sense of
Definition 5.1) such that r = qcN (respectively r = qbN ) for some natural number
N .

ii. The conservative (respectively bold) Bayes (p, N )-Blind Spots denoted by
BBSc(p, N ) and BBSb(p, N ) of the Bayesian Agent is the set of probability
measures on S that are absolutely continuous with respect to p and which are not
Bayes N ′-accessible via a conservative (respectively bold) Bayes learning path of
length N ′ smaller than or equal to N . The infinite Bayes Blind Spots BBSα∞(p)
(α = c, b) are defined as the intersection:

BBSα∞(p) ≡ ∩N∈INBBSc(p, N ) α = c, b (19)

Since in a conservative Bayes learning path the backgroundmeasure stays the same,
at every step on such a conservative learning path the Bayes Blind Spot remains the
same and is identical to the Bayes p-Blind Spot. Thus BBSc∞[{qcn}n∈IN] = BBS(p)—
the infinite conservative Bayes Blind Spot is a very large set if the Boolean algebra is
finite. The situation is radically different in the case of bold Bayes learning:

Proposition 5.5 Let (X ,S, p) be a probability measure space with a finite Boolean
algebra S having at least 3 atoms on each of which p has non-zero values. Then the
bold Bayes (p, 2)-Blind Spot is empty. As a consequence, the infinite bold Bayes Blind
Spot is also empty: BBSb∞(p) = ∅.
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Proposition 5.5 states that, given any prior p of a finite Bayesian Agent, for any
probability measure p∗ (absolutely continuous with respect to the prior) there exists
an ordered pair (r1, r2) of two probability measures r1, r2 as (uncertain) evidence such
that p∗ can be obtained as a result of only two subsequent Jeffrey conditionalizations
using evidences r1 and r2—provided the prior p used in the first conditionalization is
replaced by the inferred probability in the second conditionalization that uses evidence
r2. We prove Proposition 5.5 in the “Appendix”.

6 The Bayes Blind Spot in infinite probability spaces

The results presented in the previous sections lead to several questions concerning the
Bayes Blind Spot in probability measure spaces (X ,S, p) with an infinite Boolean
σ -algebra S. In this more general situation the general conditioning rule yielding
conditional probabilities with respect to arbitrary sub-σ -fields A of S is given by the
concept of (A, p)-conditional expectation E (·|A) (Billingsley 1995, p. 445), of which
the Jeffrey rule (and henceBayes’ rule) is just particular cases (Gyenis andRédei 2017;
Gyenis et al. 2017). Ep(·|A) is a linear map (projection) on the set L1(X ,S, p) of
p-integrable real valued random variables defined on X . In complete analogy with the
Bayes accessibility relation in Sect. 3, this map Ep(·|A) defines a Bayes accessibility
relation in the set of probability measures that are absolutely continuous with respect
to p, and the notion of p-Bayes Blind Spot also can be defined exactly as in Sect. 3 [for
an explicit definition see also Gyenis and Rédei (2017)]. Determining the size of the
Bayes p-Blind Spot of a general probability measure space (X ,S, p) is a non-trivial
problem, with a number of questions still open. At this point, the following partial
results are known in the general case:

One can give an abstract, general characterization of probability spaces with a non-
emptyBayes Blind Spot (Gyenis andRédei 2017). On the basis of that characterization
one can show the following:

• There exist probability spaces with an empty Bayes Blind Spot. The only example
of such a probability space known to us is the one constructed in Gyenis and
Rédei (2017). The set of elementary events X of this probability space is very
large: its cardinality |X | has to satisfy |X | > 22

ℵ0 (with ℵ0 being the countable
cardinality).

• The “usual” (technically speaking: the “standard”, see Definition 4.5 in Petersen
1989) infinite probability spaces that occur in applications can be shown to
have a Bayes Blind Spot that has the cardinality of the continuum (Gyenis
and Rédei 2017). Such probability spaces include the probability measures on
IRn given by a density function with respect to the Lebesgue measure in IRn .
Work is in progress to determine the topological and measure theoretical size
of the Bayes Blind Spot of these standard probability spaces (Gyenis and Rédei
2019).

Since the concept ofBayes learning pathsmake perfect sense in arbitrary probability
spaces if one uses the technique of conditional expectations to conditionalize, one also
can ask about the properties of the Bayes Blind Spot BBS[{qbn }n∈IN] of bold learning
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paths {qbn }n∈IN in the case of infinite Boolean algebras S. We do not have results in
this direction; in particular we do not know whether the “bold part” of Proposition 5.3
remains true in the infinite case. It also is not knownwhether Proposition 5.5 is true for
probability measure spaces with an infinite Boolean σ -algebra; in particular whether
the infinite bold Bayes Blind Spot is empty for probability spaces with an infinite
Boolean σ -algebra. Since the proof of Proposition 5.5 relies heavily on the atomicity
of finiteBoolean algebras, onemay conjecture that the infiniteBayesBlind Spotmaybe
non-empty for certain large (but not too large—seeProposition 6.5 inGyenis andRédei
2017) probability spaces. Of special importance would be to knowwhether the infinite
bold Bayes Blind Spot is empty in case of standard probability measure spaces.

7 Some Bayesianmodels of learning and the Bayes Blind Spot

“Bayesian learning” is not a unique concept. There exist different understandings of
learning and learning scenarios and they have different mathematical models based
on probability theory; in particular the mathematical notion of conditioning is used
in those models in different ways. In this section we comment on the relation of the
concept of Bayesian learning as understood in this paper to two other interpretations of
learning in a Bayesian manner: Bayesian parameter estimate and merging of probabil-
ities (opinions). Themathematically explicit and precise description of these scenarios
requires a lot of technical definition. Giving those details would go way beyond the
framework of this paper; hence we just summarize here the main ideas with minimal
notation and only to the extent needed to make some points about the relation of the
notion of Bayesian learning used in our paper to these scenarios. We also make brief
comments on the phenomenon of non-empty Bayes Blind Spots from the perspective
of these other ideas about Bayesian learning.

7.1 Bayesian parameter estimate

A classic Bayesian learning scenario is Bayesian parameter estimate. Suppose a prob-
ability measure space (X ,B(X), pθ0) describes some situation probabilistically. One
wishes to find out, from some “evidence”, what the objective probability measure pθ0

is. Not knowing what pθ0 is, one assumes that there is a parameter set � such that for
each θ ∈ � there is a probability measure pθ on B(X) that is a possible description of
the phenomenon, and parameter θ0 is a specific element in this set. Assuming further-
more that the parameter set � has some structure that allows forming a probability
measure space (�,B(�),�) with � being a probability measure on the Boolean
algebra B(�), one interprets � as the prior probability of the Bayesian agent about
what the “true” parameter is, i.e. about what the true probability measure on B(X)

is. One then assumes that observations are made, which result in an infinite sequence
(x1, x2, . . . , xn, . . .) of random events from X . For any pθ (θ ∈ �) one then forms
the infinite product probability measure space

(X∞,B(X)∞, p∞
θ )

.= ×∞
i (X ,B(X), pθ ) (20)
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with p∞
θ being the product measure on B(X)∞. One regards this infinite probability

space as one that describes probabilistically the observations of identically distributed
independent random events (x1, x2, . . . , xn, . . .). One then forms the product proba-
bility measure space

(
X∞ × �, B(X)∞ ⊗ B(�), P�

)
(21)

where the measure P� is a specific combination of the objective probabilities p∞
θ and

of the subjective prior �. One can apply techniques of conditioning via conditional
expectation in the large probability space (21) to obtain the following type of result,
first obtained by Doob (1949) (also see Miller 2018; Freedman 1963): Conditioning
the prior � with respect to the observation of the finite segment (x1, x2, . . . , xn) of
the infinite sequence of observations, the conditioned prior tends to the probability
measure which concentrates on the parameter θ0 as n → ∞, if the distribution of the
elements in the infinite sequence is given by the product measure p∞

θ0
. This holds for

all parameters θ0 in a set of parameters having probability 1 with respect to the prior�.
The Bayesian interpretation of this result is that if one conditionalizes subjective

priors defined on the parameter space on the basis of objective probabilities obtained
in independent identically distributed trials, then the conditioned subjective prior will
concentrate more and more on the parameter that corresponds to the objective prob-
ability. While the technical result described above does lend some support to this
interpretation, one should not forget about the constraint on this interpretation entailed
by the condition that the tendency of the prior to concentrate more and more on θ0
does not hold for all θ0 in �: it holds only for parameters in a set of probability 1 with
respect to the subjective prior �. And, as Belot (2013) argues (and as the discussion
of size in Sect. 4 also indicates), a probability 0 set need not be small in some other,
relevant senses of size (cardinality, topological size). Thus the subjective prior does
constrain what can be learned in a Bayesian parameter estimate, and the constraint
can be very significant. The precise content of the constraint depends on the specific
properties of the prior � [see Belot (2013) for a detailed analysis and Barron et al.
(1999) for further technical results on this dependence]. This limitation is not exactly
the same as the limitation of Bayesian learning displayed by large Bayes Blind Spots
of a prior but is similar in kind: showing limits of a specific Bayesianmodel of learning
entailed by the need of fixing a specific prior in Bayesian learning.

From the perspective of the relation of Bayesian parameter estimate and the exis-
tence of large Bayes Blind Spots in finite probability spaces and the notion of Bayesian
learning as understood in our paper the following should be noted:

1. The conditioning in Bayesian parameter estimate is carried out on a probability
space which is the product of the (infinite product of the) “objective” probability
measure space and of the space of parameters (= of probability measures on the
Boolean algebra of objective random events). This product space, in which condi-
tioning takes place, is infinite. In our framework the prior is not over the joint space
of the parameters and outcomes, but only over the space of outcomes. Learning is
understood as taking place within this probability space—this is a standard con-
cept of learning, see Diaconis and Zabell (1982). In harmony with this, the main
results on the size of the Bayes Blind Spot in our paper hold for finite spaces only.
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2. The evidence in Bayesian parameter estimate is an infinite sequence of random
events with a specific distribution reflecting the probability to be learned. In our
framework the evidence is a sharply defined probability measure on a proper, non-
trivial subalgebra of the whole Boolean algebra of random events. It is assumed
that this probability is given, i.e. that it is known, and we take Bayesian learn-
ing as inference from this given, probabilistically accurate, precise and sharp but
(from the perspective of the whole set of random events) partial information. In
Bayesian parameter estimate the elements in the sequence (x1, x2, . . . , xn, . . .)
are not restricted to a proper subset of the set of all elementary random events. In
harmony with this, at no point in the process of the Agent’s prior approaching the
measure concentrating on the true parameter θ0 will the Agent know necessarily
the precise values of the probabilities pθ0(A) on any element A, hence on any
subalgebra.

The above points make it clear that the model of Bayesian learning considered in our
paper is different from Bayesian parameter estimate. The difference can be illustrated
on the die throwing example in Sect. 3. To be learned there is the parameter θ0, which
in this case is the ordered 6-tuple (1/16, 2/16, 3/16, 4/16, 5/16, 1/6) represented by
the probability measure q (Fig. 3). In Bayesian parameter estimate one assumes that
one has as evidence an infinite series of outcomes of throws with the die to find out the
value θ0. The agent’s prior is then on the set of all probability measures on the algebra
generated by the six sides of the die, and then the agent proceeds with the parameter
estimate as described above. The learning situation we consider in our paper is that the
die has been thrown, possibly only a finite number of times, with q giving the actual
frequencies of the results of throws. No further throws are allowed. The Agent is asked
to infer q, via conditionalization from some evidence, which in this case is the true
distribution of the actual outcomes on a proper subalgebra. Such an inference can be
made using conditioning but the result depends on a reference measure (prior) used
in the conditioning. This prior is on the algebra generated by the six sides of the die.
The question we are asking is whether such an inference can always be successful in
the sense of yielding q if the agent can have access to any evidence (so interpreted).
And the answer is “no” (due to non-empty Bayes Blind Spots).

This example of die throwing shows that the learning scenario we consider is trivial
in the case when the Boolean algebra is trivial. This happens in coin-flipping: here the
Boolean algebra has only four elements, hence there are no non-trivial sub-Boolean
algebras and thus one cannot learn the distribution (frequency) of heads/tails obtained
in a series of flips in a non-trivial manner via conditionalization in this simple, meagre
probability space, in the way we define Bayesian learning. To put it differently: The
Bayes Blind Spot of the probability space (X ,S, p) where X has only two random
events, is (vacuously) the set of all probability measures on the four element algebra
S.

Yet, the kind of Bayesian learning situation we are considering is not exceptional or
artificial. It occurs every time one has the task of inferring probabilities from coarse-
grained probabilities. Suppose one has aggregate frequency data of occurrence of a
certain property P in a population and one wishes to infer from these numbers the
frequency of occurrence of P data in other portions of the population. For instance
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given car accident frequency data (P) in large counties, one may wish to infer car
accident frequency data in other (in particular: smaller) municipalities. One canmake
such an inference by conditioning, and the result of the inferences might be factually
correct in an infinite number of cases: whenever the true distribution is not in the Bayes
Blind Spot of the prior chosen. But in such a situation our results apply: no matter
what the prior, there will be a lot of probability measures (the ones in the Bayes Blind
Spot) to which one cannot infer in such situations, and the true probability might be
among these.

As described under 2. above, the kind of learning investigated in this paper differs
in two significant ways from learning in a Bayesian parameter estimate: (i) input
information is stronger, since the agent receives precise probability values of elements
in a proper sub-algebra; and (ii) the success criteria is more demanding since it asks
that the target measure be learned exactly and not just approximated as sample sizes
increase. Since in both of these Bayesian learning models the selected prior constrains
what can be learned, the question arises2 what the relation of the two constraints
are. Specifically: is it true that (some) elements in the Bayes Blind Spot belong to
the set of parameters on which the Agent’s prior does not concentrate in the limit?
This is an interesting but difficult question to which we do not know the answer.
Part of the difficulty is that in Bayesian parameter estimate the probability spaces
are infinite and very little is known about the size of the Bayes Blind Spot in the
infinite case (cf. Sect. 6). But clarifying the situation would be interesting because one
would like to know whether the constraints imposed by the priors in the two models
of Bayesian learning strengthen or compensate each other. This could be a topic for
further investigation.

7.2 Merging of probabilities

Another type of result discussed in Bayesianism is merging of opinions (Blackwell
and Dubins 1962; Kalai and Lehrer 1994) [also see Ryabko (2011, Theorem 2.2)]: Let
(X ,S) be a measurable space and p, q be two probability measures on S. A countable
set {Pn} of measurable partitions of S is called an information sequence for (X ,S) if

(i) partition Pi is finer than partition P j for i > j ;
(ii) the union of the Boolean algebras An generated by partition Pn generate S;
(iii) if q(A) > 0 for an A in a partition Pn , then p(A) > 0.

Let v(q, q ′) denote the total variation distance between probability measures q and q ′
on S. We say that p merges q in the information sequence {Pn} if

lim
n→∞ v(p(·|An), q(·|An)) = 0

if event An is in the partition Pn . Roughly: p merges q in the information sequence if
the conditional probabilities of p and q with respect to ever finer information become
close in the total variation metric.

The major result on merging probability measures is:

2 We thank an anonymous referee for raising this question.
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Proposition 7.1 (Theorems 1 and 2 in Kalai and Lehrer 1994) p merges q if and only
if q is absolutely continuous with respect to p.

If one interprets p and q as priors of two Bayesian Agents, and one assumes mutual
absolute continuity of p and q, then the standard interpretation of this result is that
Bayesian agents’ views converge after conditioning:

[...] if the opinions of two individuals, as summarized by p and q, agree only in
that p(D) > 0 ↔ q(D) > 0 [mutual absolute continuity of p and q], then they
are certain that after a sufficiently large finite number of observations [...] their
opinions will become and remain close to each other, where close means that
for every event E the probability that one man assigns to E differs by at most ε
from the probability that the other man assigns to it, where ε does not depend
on E . Blackwell and Dubins (1962, p. 885)

One also can regard p as the Agent’s prior (i.e. the Agent’s assumption about what
the objective probability is) and q as the objective probability describing some phe-
nomenon. Then even if the merging of p and q is interpreted as “learning q” (an
interpretation that needs further supporting arguments), this merging is fully com-
patible with the presence of non-empty Bayes Blind Spots: If p merges q in some
information sequence, then q must be absolutely continuous with respect to p by
Proposition 7.1; hence q is given by a density function f with respect to p. If f
is injective then q is in the Bayes Blind Spot of p [Proposition 3.1 and Gyenis and
Rédei (2017, Lemma 6.3)]. This simply means that after any conditionalization based
on p as prior (i.e. after extending q from its restriction to any proper Boolean sub-
algebra A to the whole Boolean algebra using the Ep(·|A) conditional expectation)
the conditioned probability (i.e. the extension) will not be equal to q—in spite of the
conditioned probabilities p(·|An) and q(·|An) of p and q getting closer to each other
asymptotically (merging).

The main results in our paper concern the question of what can be learned in
a single act of conditioning. But one can in principle take the position that what
matters from the perspective of learning probability distributions via conditioning is
whether a probability distribution can be “learned approximately”, i.e. approached
with arbitrary precision by repeated conditioning. The results in our paper on the
behavior of Bayes Blind Spots from the perspective of some specifications of repeated
learning show that what can be approximately learned depends very sensitively on how
the repeated learning/conditionalization is specified. There is a natural specification
of repeated learning via conditioning according to which every probability q that is
absolutely continuous with respect to a prior p can be learned approximately in the
sense understood in our paper, i.e. via conditioning based on this prior: Let An be a
series of proper Boolean subalgebras of S such that Ai ⊂ A j (i < j) [such a series
is called a “filtration” (Billingsley 1995, p. 458)] and assume that the union ∪∞

n An

generates S. Let f be the density of q with respect to p. Then the upward martingale
theorem (Theorem 35.6 in Billingsley 1995) says

f = lim
n

Ep( f | An) (22)
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(the limit pointwise p-a.e.). This means that the probability q can be obtained as the
limit of conditioningwith respect to the conditional expectationEp(· | An) determined
by p and the larger and larger subalgebrasAn . But the existence of non-empty Bayes
Blind Spots is also compatible with asymptotic Bayesian learning via conditionaliza-
tion in this sense in an infinite probability space: if q is in the Bayes Blind Spot of p,
then

f �= E ( f | Ai )) for any i such that Ai ⊂ S (23)

(where the inequality is on a non-p-measure zero set). That is to say, at any step while
going to the infinite limit we do not obtain (hence, strictly speaking have not learned)
q—if at that stage the conditionalization is with respect to a proper subalgebra of S.

In a finite algebra any filtration generating S must include the whole set X as the
last element; so the martingale equation holds trivially in this case. Accordingly, q
cannot be approached in the way (22) if all the elements in the filtration are proper
subalgebras of S. This lies at the heart of the large size of the Bayes Blind Spot in
finite probability spaces.

8 Concluding remarks

The results presented in the previous section contribute to a better understanding of
the role of prior probability in Bayesian learning; more generally of the role of prior
probability in any application of probability theory where conditionalization is used.

One lesson of the presented results is that the limits of what can be learned in a
single probabilistic inference on the basis of a prior are extremely restrictive in case
of a probability theory with a finite set of random events. It should be noted that from
the perspective of validity of the results presented in this paper it makes no difference
whether the probability measures that are Bayes inaccessible for a Bayesian Agent
with a specific prior p are viewed as objectively given or whether they are interpreted
as representing subjective degrees of belief: If both the prior probabilitymeasure p and
the probabilitymeasures in theBayes p-BlindSpot BBS(p) are viewedas representing
objective state of affairs (for example frequencies, or some sort of ratios), then the
Bayes inaccessibility of the probability measures in BBS(p) presents difficulty for
the statistical inference based on p because the objective state of affairs represented
by probabilities in BBS(p) are simply not inferable from any incomplete evidence on
the basis of p.

In particular this poses a problem for objectiveBayesianism, which intends to avoid
the arbitrary subjectivism in probabilistic inference; furthermore, the larger the size
of BBS(p) the more serious the problem is because less is inferable then via condi-
tionalizing. Thus the large size of the Bayes Blind Spot can be taken as strengthening
the arguments against (Bayes or Jeffrey) conditionalization in Williamson’s version
of objective Bayesianism (Williamson 2010). If the probability measures are all inter-
preted subjectively as degrees of belief, then the results on the size of Bayes p-Blind
spot and its behavior under repeated inferences contribute to a better understanding
of the nature and limits of Bayesian learning dynamic. In particular the fact that (in
the finite case) the Bayes p-Blind spot is very large for any prior p whatsoever dis-
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plays a difficulty that is not related to the arbitrariness of the subjective prior: the
difficulty is not that an Agent possibly selects a prior that is biased in a particular
way which might distort the posterior probabilities in an unacceptable manner. The
problem is that any prior of the Agent prohibits him to obtain an enormously large
set of probabilities via conditioning. And this fact is rooted deeply in the concept
of (Bayes/Jeffrey) conditionalization; it is a structural, inherent feature of Bayesian-
ism that cannot be “cured” by restricting priors on the basis of some arguments of
plausibility or rationality.

One can try to weaken the significance of the large size of Bayes Blind Spot. One
way of doing this is to say that not all probability measures on the Boolean algebra
are epistemologically relevant, and as a consequence, not all probability measures in
the Bayes Blind Spot might be epistemically relevant either. The inaccessibility for
the Agent of those irrelevant measures is thus not troubling. For instance, one might
say that in a specific context all the epistemologically relevant probability measures
are such that they take on values that are rational numbers (e.g. because they represent
relative frequencies in finite ensembles). More generally, given some condition of
epistemic relevance that restricts the set of all probabilities on a Boolean algebra to a
subsetR, one could try to determine the size of the intersection ofR and of the Bayes
Blind Spot. And this set might be small. It seems plausible that in specific applications
of probability theory such restricting epistemic relevance conditions arise naturally.
Another way of curtailing the significance of the large size of the Bayes Blind Spot
would be to say that the notions of size used in this paper (cardinality, topological
size, size in the natural measure) are arbitrary from an epistemological perspective. To
articulate this line or reasoningwould require the specificationof an “epistemologically
relevant size”. It’s not clear how one could do this in the abstract; at any rate we do not
have any suggestion for such a “size”. But of the three sizes used in our paper to assess
the size of the Bayes Blind Spot the topological one does have a clear epistemological
interpretation: it is based on closeness of probability measures as this closeness is
measured in any of the standard metrics in the set of all probability measures. So the
topological largeness of the Bayes Blind Spot has a clear epistemological significance.

Another lesson one can draw from the results is that, in a specific sense, repeated
learning via Bayesian/Jeffrey conditionalization modeled by either a conservative or
bold Bayes learning path does not mitigate the heavy constraint represented by large
Bayes Blind Spots on what can be learned in a Bayesian manner in a finite con-
text: Given any starting prior and given any infinite series of (certain or uncertain)
evidences, the set of probability measures learnable via an arbitrary long series of
conditionalizations based on this given set of evidence is a very meager set—just as
meager as the set that can be learned in a single act of conditioning. Note that this
is not in contradiction with the phenomenon known as “washing out of priors”. The
relation of washing out of priors [understood in terms of Doob’s upward martingale
theorem (Earman 1992, Chapter 6, Sect. 4)] to the inaccessibility of certain probability
measures via a possibly infinite series of conditionalization was clarified in Gyenis
and Rédei (2017) (see especially Sect. 7 therein).

From the perspective of the power of Bayesian learning a positive result is however
Proposition 5.5: This proposition says that given any non-trivial prior, any probability
measure p∗ (absolutely continuous with respect to the prior) can be learned in not
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more than two bold steps of (Jeffrey) conditioning on the basis of suitable evidence
(if the Boolean algebra is finite). In order not to overestimate this positive feature of
bold Bayesian learning one should however keep in mind the following: A look at
the proof of Proposition 5.5 makes it clear that the two pieces of evidence r1 and r2
on which the inferences leading to p∗ are based have to be very specific: The two
sub-Boolean algebras of S on which r1 and r2 are defined must be perfectly fine-tuned
in the sense that they have to generate the whole S. In other words: values of p∗
must be revealed on each atom of S during the two steps of inferences. Thus it pays
off to be bold in Bayesian learning indeed—but only if the Agent is confident that
he has access to evidence rich enough to yield information about all the values of
the probability measure to be learned. This is in harmony with the fact that Bayesian
learning understood as statistical inference via conditionalization is an ampliative
inference, not a deductive one. This feature Bayesian inference also is reflected by the
non-axiomatizability of certain modal logics that are defined semantically in terms of
the Bayes accessibility relation (Brown et al. 2018).
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Appendix

8.1 Metrics and topology in the set of probability measures on a finite Boolean
algebra

Definition 8.1 For q, r ∈ M(S)we define the following metrics.Chebysev distance:

d0(q, r) = max
x∈X |q({x}) − r({x})| (24)

Total variation distance I:

d1(q, r) = 1

2

∑

x∈X
|q({x}) − r({x})| (25)

Total variation distance II:

d2(q, r) = sup

{∣∣∣∣∣
∑

x∈X
f (x)q({x}) −

∑

x∈X
f (x)r({x})

∣∣∣∣∣ : f = χE , E ∈ S
}

= max
E∈S

|q(E) − r(E)|
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‖ · ‖1-distance:

d3(q, r) = sup
{ ∣∣∣∣∣

∑

x∈X
f (x)q({x}) −

∑

x∈X
f (x)r({x})

∣∣∣∣∣ :

f ∈ L1(X ,S, p), ‖ f ‖1 ≤ 1
}

(26)

‖ · ‖∞-distance of density functions:

d4(q, r) = sup
x∈X

∣∣∣∣
dq

dp
(x) − dr

dp
(x)

∣∣∣∣ (27)

Hellinger distance:

d5(q, r) =
∑

x∈X

⎛

⎝
(√

dq

dp
(x) −

√
dr

dp
(x)

)2

· p(x)
⎞

⎠ (28)

Euclidean distance:

d6(q, r) =
(

∑

x∈X
(q({x}) − r({x}))2

) 1
2

(29)

Two metrics d and d ′ on a set M are said to be equivalent if there are constants A
and B such that

A · d(x, y) ≤ d ′(x, y) ≤ B · d(x, y) for all x, y ∈ M

Equivalent metrics generate the same topology on M [see Carothers (2000, p. 121)].

Proposition 8.2 di generate the same topology on M(S) for all i = 0 . . . 6.

Proof It is straightforward to check d0 ≤ 2d1 ≤ |X |d0. That d0 and d6 are equivalent
follows from d0 ≤ d6 ≤ 2d1. Next, we show d1 = d2. Let A = {x ∈ X : q({x}) ≥
r({x})}. Then

d1(q, r) = 1

2

∑

x∈X
|q({x}) − r({x})|

= 1

2

⎛

⎝
∑

x∈A

q({x}) − r({x}) +
∑

x∈X\A
r({x}) − q({x})

⎞

⎠

= 1

2
(q(A) − r(A) + r(X \ A) − q(X \ A)) = q(A) − r(A)

= max
E⊆X

|q(E) − r(E)| = d2(q, r).
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That d1 and d5 are equivalent follows from the Cauchy–Schwartz inequality:

d1(q, r) ≤ 2d5(q, r) ≤ 2d1(q, r)1/2

Next, we claim d3 = d4. Any probability measure q on S defines a linear functional
φq on L1(X ,S, p) by assigning to any f ∈ L1(X ,S, p) its expectation value with
respect to q:

φq( f ) =
∫

X
f dq =

∑

x∈X
f (x)q({x})

The space L1(X ,S, p)∗ of all linear functionals on L1(X ,S, p) is a normed space
with the norm ‖φ‖ defined by

‖φ‖ = sup
‖ f ‖1≤1

|φ( f )|

Recall (see e.g. Chapter 3 in Rudin 1987) that the space L1(X ,S, p)∗ is isomorphic
to L∞(X ,S, p) (with the ‖ · ‖∞-norm); that is, there is an isometric isomorphism h :
L1(X ,S, p)∗ → L∞(X ,S, p). The h-image of φq is the Radon–Nikodym derivative
dq
dp of q. Now, we have

d3(q, r) = sup
‖ f ‖1≤1

∣∣∣∣
∫

f dq −
∫

f dr

∣∣∣∣ = sup
‖ f ‖1≤1

∣∣φq( f ) − φr ( f )
∣∣

= ‖φq − φr‖ = ‖h(φq) − h(φr )‖∞ = sup
x∈X

∣∣∣∣
dq

dp
(x) − dr

dp
(x)

∣∣∣∣ = d4(q, r)

To complete the proof it is enough to show that d1 and d3 are equivalent.

d1(q, r)

= d2(q, r) = sup
E⊆X

∣∣∣∣
∫

χEdq −
∫

χEdr

∣∣∣∣
‖χE‖1≤1≤ sup

‖ f ‖1≤1

∣∣∣∣
∫

f dq −
∫

f dr

∣∣∣∣

= sup
‖ f ‖1≤1

∣∣∣∣∣
∑

x∈X
f (x)(q({x}) − r({x}))

∣∣∣∣∣ ≤ sup
‖ f ‖1≤1

∑

x∈X
| f (x)||(q({x}) − r({x}))|

= sup
‖ f ‖1≤1

(
∑

x∈X
| f (x)| ·

∑

x∈X
|q({x}) − r({x})|

)
≤ 2d1(q, r) · sup

‖ f ‖1≤1

∑

x∈X
| f (x)|

Now ‖ f ‖1 ≤ 1 means
∑

x∈X | f (x)|p(x) ≤ 1 and thus there is a constant (depending
only on p) such that

∑
x∈X | f (x)| ≤ K holds for all ‖ f ‖1 ≤ 1. Thereforewe obtained

d1(q, r) ≤ d3(q, r) ≤ 2Kd1(q, r)

which completes the proof. �
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Recall that for finite X , a sequence (qn) ⊆ M(S) of measures is said to weak∗-
converge [cf. Billingsley (1995, p. 335)] to q ∈ M(S) if for all f : X → R we
have

∣∣∣∣∣
∑

x∈X
f (x)

(
qn({x}) − q({x}))

∣∣∣∣∣ −→ 0 as n → ∞

The topology of weak∗-convergence is the same as the topology generated by d1 (and
hence by any of the di ’s). Indeed, suppose qn weak∗-converges to q. Choose f = 1.
Then

∣∣∣∣∣
∑

x∈X

(
qn({x}) − q({x}))

∣∣∣∣∣ = 2d1(qn, q) −→ 0 as n → ∞

Thus we see that it does not matter which of the metrics di we use when studying
topological properties ofM(S). For conveniencewe let (M(S), d) to be ametric space
with

d(q, r) = max
x∈X |q({x}) − r({x})|

Later we will need the following Lemma, proof of which is left to the reader.

Lemma 8.3 For all ε > 0 there is δ > 0 such that

max
x∈X |q({x}) − r({x})| < δ �⇒ max

x∈X

∣∣∣∣
q(x)

p(x)
− r(x)

p(x)

∣∣∣∣ < ε.

8.2 Proof of Proposition 4.2

Proof Recall thatq is notBayes learnable if andonly if dqdp is injective (Proposition 3.1).

Also recall that the Radon–Nikodym derivative dq
dp is the function x 
→ q({x})

p({x}) . Let
BBS(p) denote the Bayes p-Blind Spot.

BBS(p) is open: Take any q ∈ BBS(p). We shall prove that there is δ > 0 such that
for any q ′ ∈ M(S) with d(q, q ′) < δ we have q ′ ∈ BBS(p). Since q ∈ BBS(p) the
density function dq

dp is not injective. It is enough to prove that for small enough δ, if

d(q, q ′) < δ, then dq ′
dp is not injective. Let

ε = 1

2
min
x �=y

∣∣∣∣
q({x})
p({x}) − q({y})

p({y})
∣∣∣∣

be the half of the minimal difference of different values of dq
dp . Injectivity of

dq
dp implies

ε > 0. Using Lemma 8.3 there is δ > 0 such that

d(q, q ′) < δ implies max
x∈X

∣∣∣∣
q(x)

p(x)
− q ′(x)

p(x)

∣∣∣∣ < ε

And this latter inequality ensure that dq ′
dp must be injective and thus q ′ ∈ BBS(p).
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BBS(p) is dense: We need to verify that for all q ∈ M(S) and δ > 0 there is
q ′ ∈ BBS(p) such that d(q, q ′) < δ. Let us fix q and δ and chose a function ε :
X → (−δ, δ) such that

∑
x∈X ε(x) = 0 and if q({x}) = 0, then ε(x) > 0. Define the

measure q ′ on the singletons x ∈ X by

q ′({x}) = q({x}) + ε(x) for all x ∈ X

Then q ′ is a probability measure as
∑

x∈X ε(x) = 0, and we obtain d(q, q ′) < δ. It is
straightforward to see that ε can be chosen in such a manner that

q({x}) + ε(x)

p({x}) �= q({y}) + ε(y)

p({y}) for all x �= y ∈ X

whence injectivity of dq ′
dp follows. Therefore q ′ ∈ BBS(p) and the proof is complete.

�


8.3 Proof of Proposition 4.4

Proof Let L ⊆ M be the set of Bayes learnable measures. We claim λn−1(L) = 0.
q ∈ M is Bayes learnable if and only if its Radon–Nikodym derivative dq

dp is not
injective, i.e.

L =
{
q ∈ M : q

p
(x) is not injective

}

LetA ⊆ P(X) be a partition of X and callA a non-trivial partition ifA �= {{x} : x ∈
X}, i.e. there is at least one block A ∈ A that contains at least two elements. Write

LA =
{
q ∈ M : q(x)

p(x)
is constant on every A ∈ A

}
⊆ M

Then we have

L =
⋃

{LA : A is a non-trivial partition of X}

The proof proceeds as follows: we show that for each non-trivial partition A the
dimension dim LA is at most n − 2. Consequently λn−1(LA) = 0 and since there are
only finitely many partitions of X , we obtain

λn−1 (L) = λn−1
(⋃

LA
)

≤
∑

λn−1 (LA) = 0

Take a non-trivial partitionA and pick a block A ∈ A in this partition that contains at
least two elements, say xi and x j . For any q ∈ LA the function dq

dp should be constant
on A. The equation

Xi

p(xi )
= X j

p(x j )
(Xi , X j ∈ R variables) (30)
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Fig. 4 The non-trivial partition

defines a hyperplane H ′ and LA ⊆ H ′. Clearly none of H ′ or H contains the other,
therefore the intersection H ∩ H ′ has dimension at most n − 2. Since LA ⊆ H ∩ H ′,
we obtain the desired inequality dim LA ≤ n − 2 and the proof is complete. �


8.4 Proof of Proposition 5.5

Proof Let S be a finite Boolean algebra on set X and M(S) be the set of all probability
measures onS. We have to show that for any two probability measures p0, p2 inM(S)

such that p2 is absolutely continuous with respect to p0 there exist two non-trivial
partitions E,F and probability measures q, r ∈ M(S) such that using the Jeffrey rule
with p0 as prior and with the restriction of q to E as evidence we obtain a probability
measure p1 having the property that, using the Jeffrey rule with p1 as prior and with
the restriction of r to F as evidence we obtain the probability measure p2.

Without loss of generality we may assume that X = {a, b, x1, x2, . . . , xn} is such
that n > 1, and

p0({a}) �= 0 �= p0({b}) and p2({a}) �= 0 �= p2({b}) (31)

and p0({xi }) �= 0 for at least one 1 ≤ i ≤ n. In what follows, for notational conve-
nience we omit the brackets { and } in p0({xi }) etc. whenever this causes no confusion.

Let us define the partitions E and F as follows (see also the Fig. 4):

E =
{
E1 = {a}, E2 = {b}, E3 = {x1, x2, . . . , xn}

}
(32)

F =
{
F0 = {a, b}, F1 = {x1}, . . . , Fn = {xn}

}
(33)

Note that p0 is non-zero on every element of the partition E . We have to find non-
negative numbers (qi ) and (r j ) assigned to the elements Ei ∈ E and Fj ∈ F of the two
partitions such that the measures q and r obtained from these numbers are probability
measures and that for all H ∈ S we have

p1(H) = q1 · p0(H | E1) + q2 · p0(H | E2) + q3 · p0(H | E3) (34)

p2(H) = r0 · p1(H | F0) +
∑

j≥1

r j · p1(H | Fj ) (35)
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Note that for j ≥ 1 we must have r j = p2(x j ) because

p2(x j ) = r j · p1(x j | Fj ) = r j · p1(x j ∩ Fj )

p1(Fj )
= r j · p1(Fj )

p1(Fj )
= r j for j ≥ 1

Thus we only have to find qi (i = 1, 2, 3) and r0. The following are straightforward
calculations:

p2(a) = r0 · p1(a | F0) = r0
p1(a)

p1(F0)
= r0

q1 p0(a | E1)

p1(F0)
= r0

q1
p1(F0)

(36)

p2(b) = r0 · p1(b | F0) = r0
p1(b)

p1(F0)
= r0

q2 p0(b | E2)

p1(F0)
= r0

q2
p1(F0)

(37)

Therefore we must have

r0 = p2(a)p1(F0)

q1
= p2(b)p1(F0)

q2
�⇒ p2(a)

q1
= p2(b)

q2
(38)

We can now find the numbers (qi ) (i = 1, 2, 3) and (r0) as follows. Choose q1, q2 and
q3 in such a manner that qi > 0 and q1 +q2 +q3 = 1, and Eq. (38) holds. With such a
choice we have p1(E1) = q1, p1(E2) = q3 and p1(E3) = q3. Next, let r j = p2(x j )
for j ≥ 1 and

r0
.= p2(a)p1(F0)

q1

(
= p2(b)p1(F0)

q2

)
(39)

r0 is well-defined by the choice of q1 and q2 and by (31) (note that p1(F0) = p1(E1)+
p1(E2) = q1 + q2 > 0). We only need to verify

r0 + r1 + · · · + rn = 1 (40)

But r0 = p2(F0) and thus (40) follows from the fact that p2 is a probability measure:
p2(F0) + p2(x1) + · · · + p2(xn) = 1. �
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