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Given D and γ > 0, whenever c > 0 is sufficiently small and 
n sufficiently large, if G is a family of D-degenerate graphs of 
individual orders at most n, maximum degrees at most cn

log n
, 

and total number of edges at most (1 − γ)
(
n
2

)
, then G packs 

into the complete graph Kn. Our proof proceeds by analysing 
a natural random greedy packing algorithm.
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1. Introduction

A packing of a family G = {G1, . . . , Gk} of graphs into a graph H is a colouring of the 
edges of H with the colours 0, 1, . . . , k such that the edges of colour i form an isomorphic 
copy of Gi for each 1 ≤ i ≤ k. The packing is perfect if no edges have colour 0. We will 
often say an edge is covered in a packing if it has colour at least 1, and uncovered if it 
has colour zero.

Packing problems have been studied in graph theory for several decades. Many clas-
sical theorems and conjectures of extremal graph theory can be written as packing 
problems. For example, Turán’s theorem can be read as the statement that if the n-vertex 
G does not have too many edges (depending on r), then G and Kr pack into Kn. Putting 
extremal statements into this context often suggests interesting generalisations, such as 
asking for packings of more graphs. However packings in this context are usually very 
far from being perfect packings, with a large fraction of E(H) uncovered. By contrast, in 
this paper we are interested in near-perfect packings, that is, packings in which o

(
e(H)

)
edges are uncovered.

The first problems asking for perfect packings in graphs actually predate modern 
graph theory: Plücker [23] in 1835 found perfect packings of 1

3
(
n
2
)

copies of K3 into 
Kn for various values of n, and more generally, Steiner [26] in 1853 asked the following 
question (phrased then in set-theoretic terms).

Question 1. Given 2 ≤ k ≤ r, for which values of n does the complete k-uniform hyper-
graph K(k)

n have a perfect packing with copies of K(k)
r ?

A packing of this form is called a combinatorial design. There are some simple di-
visibility conditions on n which are necessary for an affirmative answer. Recently and 
spectacularly, Keevash [19] proved that for sufficiently large n these conditions are also 
sufficient. This result was reproved, using a more combinatorial method, by Glock, Kühn, 
Lo and Osthus [14], who were also able to extend the result to pack with arbitrary fixed 
hypergraphs in [15]. A related problem tracing back to Kirkman [21] in 1846 asks for 
packings with copies of the n-vertex K(k)

r -factor (Kirkman posed specifically the case 
k = 2, r = 3, asking for Kn to be packed with n−1

6 copies of the graph consisting 
of n3 disjoint triangles). Such packings are called resolvable designs, and although Ray-
Chaudhuri and Wilson [24] solved Kirkman’s problem (Kirkman’s designs exist if and 
only if n is congruent to 3 modulo 6), in general the problem is wide open.

The focus of this paper is in packings of large connected graphs. In 1963 Ringel [25]
conjectured that if T is any (n +1)-vertex tree, then 2n +1 copies of T pack into K2n+1, 
and in 1976 Gyárfás [16] made the Tree Packing Conjecture, that if Ti is an i-vertex tree 
for each 1 ≤ i ≤ n then {T1, . . . , Tn} packs into Kn. Note that both conjectures ask for 
perfect packings. These problems are both unsolved, although there are many partial 
results. It is easy (in both cases) to verify that the conjecture holds when the trees are 
all stars, or all paths. In both cases, the conjectures were also settled for some specific 



P. Allen et al. / Advances in Mathematics 354 (2019) 106739 3
families of trees (see a rather outdated survey by Hobbs [17]), but until recently there 
existed no general results.

Intuitively, perfect packing results are hard precisely because every edge must be used. 
If the graphs G were embedded in order to H, on coming to the last graph of G we would 
need to find that a hole is left in H of precisely the right shape to accommodate it; this 
clearly requires some foresight in the packing. If some edges will remain uncovered at 
the end, this difficulty decreases. Bollobás [5] was the first to utilise this, making the 
observation that one can pack the 2−1/2n smallest trees of the Tree Packing Conjecture, 
and assuming the Erdős–Sós Conjecture6 even the 

√
3n/2 smallest trees. More recently 

Balogh and Palmer [3] showed that for large n the 14n
1/3 largest trees pack, provided their 

maximum degree is at most 2n2/3, and without degree restriction that the 1
10n

1/4 largest 
trees pack in Kn+1 (i.e. using an extra vertex). These results do not give near-perfect 
packings — a significant fraction of the complete graph is uncovered — but until recently 
they were the only general results on the Tree Packing Conjecture allowing high-degree 
trees.

The first approximate result on the tree packing conjectures is due to Böttcher, 
Hladký, Piguet and Taraz [6], who showed that one can pack into Kn any family of 
trees whose maximum degree is at most Δ, whose order is at most (1 − δ)n, and whose 
total number of edges is at most (1 − δ)

(
n
2
)
, provided that n is sufficiently large given 

Δ and δ > 0. This provides approximate versions of both Ringel’s Conjecture and the 
Tree Packing Conjecture for bounded degree graphs. A flurry of generalisations followed, 
beginning with Messuti, Rödl and Schacht [22], who showed that one can replace trees 
with graphs from any nontrivial minor-closed family (but still requiring the other condi-
tions), and then by Ferber, Lee and Mousset [10] who showed that the restriction to at 
most (1 −δ)n vertex graphs is unnecessary. Then, Kim, Kühn, Osthus and Tyomkyn [20]
proved a near-perfect packing result for families of graphs with bounded maximum degree 
which are otherwise unrestricted. At last, Joos, Kim, Kühn and Osthus [18] obtained 
exact solutions of both Ringel’s conjecture and the Tree Packing conjecture when all 
trees have degree bounded by a constant Δ and n is sufficiently large compared to Δ. 
This is an impressive and difficult result: what remains (which, unfortunately, is almost 
all cases) is to consider trees with some vertices of large degree.

Generalising in the direction of removing the restriction to bounded degree graphs, 
Ferber and Samotij [11] showed two near-perfect packing results for trees, one for span-
ning trees of maximum degree O

(
n1/6 log−6 n

)
, and one for almost spanning trees of 

maximum degree O
(
n/ logn

)
. The latter result also follows in the particular case of 

Ringel’s Conjecture from the work of Adamaszek, Allen, Grosu, Hladký [1]. The focus 
of [1] is the so-called Graceful Tree Conjecture but there is a well-known observation 
that this conjecture would imply Ringel’s Conjecture, see [1, Section 1.1].

6 The Erdős–Sós Conjecture states that if an n-vertex graph has more than 1
2 (k − 1)n edges then it 

contains each tree of order k + 1. A proof (of a slightly weaker form of) the Erdős–Sós Conjecture was 
announced by Ajtai, Komlós, Simonovits and Szemerédi in the 1990s.
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To state our main result, we need to define the degeneracy of a graph G. An ordering 
of V (G) is D-degenerate if every vertex has at most D neighbours preceding it, and G
is D-degenerate if V (G) has a D-degenerate ordering. Every graph from a non-trivial 
minor-closed class has bounded degeneracy. In particular, trees are 1-degenerate, pla-
nar graphs are 5-degenerate. Of course, every bounded-degree graph has automatically 
bounded degeneracy.

Our main result then reads as follows.

Theorem 2. For each γ > 0 and each D ∈ N there exists c > 0 and a number n0 such 
that the following holds for each integer n > n0. Suppose that (Gt)t∈[t∗] is a family of 
D-degenerate graphs, each of which has at most n vertices and maximum degree at most 
cn

log n . Suppose further that the total number of edges of (Gt)t∈[t∗] is at most (1 − γ)
(
n
2
)
. 

Then (Gt)t∈[t∗] packs into Kn.

Theorem 2 thus strengthens the main results about packings into complete graphs 
from [6,22,10,20,11].7 The main features of the result are that guest graphs may be 
spanning, expanding, and have very high maximum degree.

Moving away from packing into complete graphs, there are several classical conjectures 
which ask for packing results similar to the above when Kn is replaced by a graph of suf-
ficiently high minimum degree, perhaps with additional constraints (such as regularity). 
Advances have recently been made on several of these, especially by the Birmingham 
Combinatorics group (see for example [8,4,13]). In particular, we should observe that 
the near-perfect packing for bounded degree graphs [20] mentioned above actually works 
in the setting of ε-regular partitions, which turned out to be necessary for the perfect 
packing results of [18].

Finally, in line with the current trend in extremal combinatorics of asking for random 
analogues of classical extremal theorems, one can ask for packing results when Kn is 
replaced by a typical binomial random graph G(n, p). This is actually the focus of the 
paper of Ferber and Samotij [11], and they are able to prove near-perfect packing results 
even in G(n, p) when p is not much above the threshold for connectivity. Our approach 
also proves near-perfect packing results (for the same family of graphs) in sufficiently 
quasirandom graphs of any positive constant edge density (see Theorem 11), and hence 
in Erdős–Rényi random graphs (see Theorem 12). It might be possible to modify our 
approach to work in somewhat sparse random graphs as well, but certainly not sparse 
enough to compete with [11].

Although our current progress with actually proving exact packing conjectures is 
limited, at least we have not found counterexamples. The existing conjectures point in 
the following direction.

7 Some of these papers deal also with packings into non-complete graphs, and most of these results are 
summarised below.
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Meta-Conjecture 3. Let G be any family of sparse graphs, and H be an n-vertex dense 
graph. If there is no simple obstruction to packing G into H, then a packing exists.

Some obvious examples of obstructions include the total number of edges in the family 
G being larger than e(H), or any graph in G having more vertices than H. Certainly 
more subtle obstructions exist. For example it is possible that the total number of edges 
in graphs of G equals e(H), but all graphs in G have only vertices of even degree, while 
some vertices of H have odd degree, so that there is a parity obstruction to packing G
into H, or that G contains two graphs with vertices of degree n − 1 (or more generally 
too many vertices of very high degree). More such examples exist, see for example the 
discussions in [6] (Section 9.1) and [18] (after Theorem 1.7). The meta-conjecture can be 
read as claiming that there is nevertheless a finite list.

Note that without restriction the problem of packing a given G into a given H is 
NP-complete (the survey [27] gives several NP-completeness results of which the one 
in [9] is arguably the most convincing), so in particular we do not expect to find any 
finite list of simple obstructions to the general packing problem. It follows that ‘dense’ 
in the meta-conjecture cannot simply mean large edge-density: one can artificially boost 
edge density without changing the outcome of this decision problem by taking the disjoint 
union with a very large clique and adding large connected graphs to G which perfectly 
pack the very large clique. However a typical random, or quasirandom, graph seems to 
be a reasonable candidate for ‘dense’, as does a graph with high minimum degree (in this 
case, the minimum degree bound must depend on parameters of the graphs G such as 
chromatic number, otherwise a reduction similar to the edge-density reduction exists).

Finally, on the topic of what constitutes a ‘sparse graph’, observe that bounded de-
generacy is a fairly common and unrestrictive notion. One might ask whether degeneracy 
growing as a function of n is reasonable (of course, in Theorem 2 one can have a very 
slowly growing function). However, observe that we do not know the answer to Ques-
tion 1 when r grows superlogarithmically, even for k = 2, and it seems reasonable to 
believe that the answer will often be ‘no’ even when the simple divisibility conditions 
are met. It is less clear that the maximum degree restriction of Theorem 2 is necessary, 
and we expect that it can at least be relaxed. However, with no degree restriction at all 
Theorem 2 becomes false, see Section 8.2.

Proof outline and organisation of the paper. Our proof of Theorem 2 amounts to the 
analysis of a quite natural randomised algorithm. We first describe a procedure which 
works if each graph in G has order at most (1 − δ)n. We take graphs in G in succession. 
For each G, we embed vertex by vertex into Kn in a degeneracy order, at each time 
embedding to a vertex of Kn chosen uniformly at random subject to the constraints that 
we do not re-use a vertex previously used in embedding G, or an edge used in embedding 
a previous graph. This procedure succeeds with high probability, and after each stage of 
embedding a graph, the unused edges in Kn are quasirandom (in a sense we will later 
make precise).
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To allow for spanning graphs, we modify this slightly. We adjust the degeneracy order 
so that the last δn vertices are independent and all have the same degree; this can 
be done while at worst doubling the degeneracy of the order. Then for each graph we 
follow the above procedure to embed the first (1 − δ)n vertices, and finally complete 
the embedding arbitrarily using a matching argument. We will see that this last step is 
with high probability always possible. The only slight subtlety is that we have to split 
E(Kn) into a very dense main part, whose edges we use only for the embedding of the 
first (1 − δ)n vertices, and a sparse reservoir which we use only for the completion; we 
do this randomly.

This paper is organised as follows. In Section 2 we introduce martingale concentra-
tion inequalities needed for the analysis of our algorithm. We also establish some basic 
properties of degenerate graphs. In Section 3 we state our main technical result (Theo-
rem 11) and show how to deduce Theorem 2 from it. In Section 4 we describe in detail 
our packing algorithm, PackingProcess, and outline the main steps of its analysis. We 
also state our main lemmas and show how they imply Theorem 11. In Sections 5, 6 and 7
we prove these lemmas. Finally in Section 8 we give some concluding remarks.

2. Notation and preliminaries

2.1. Notation

When we write x = y±α, we mean x ∈ [y− α, y + α]. When we write y± α = z ± β, 
we mean [y−α, y+α] ⊆ [z−β, z+β]. Note that the latter convention is not symmetric, 
that is, y ± α = z ± β is not the same as z ± β = y ± α.

The neighbourhood of a vertex v in the graph G is denoted NG(v). We write NG(U) =⋂
v∈U NG(v) for the common neighbourhood of the set U ⊆ V (G).
The definition of degenerate graphs naturally suggests to label the vertices of a graph 

by integers. Suppose that the vertices of a graph G are V (G) = [�]. Suppose that i ∈
V (G). We write N−(i) = N(i) ∩ [i − 1] and deg−(i) = |N−(i)| for the left-neighbourhood
and the left-degree of i. We make use of the natural order on [�] also in other ways, like 
referring to sets of the form [�1] ⊆ V (G) and {�2, �2 +1, . . . , �} ⊆ V (G) as initial vertices
and final vertices, respectively. The density of a graph H is the quantity e(H)/

(
v(H)

2
)
.

The graphs to be packed in Theorem 2 are denoted Gt because they are guest graphs. 
By contrast, during our packing procedure, we shall work with host graphs Hs which 
are obtained from the original Kn by removing what was used previously.

2.2. Probability

2.2.1. Probability basics
All probability spaces considered in this paper are finite. The implicit sigma-algebra 

underlying each such space is the sigma-algebra generated by all singletons; in particular, 
the notion of measurability is trivial in this setting. Recall that if Ω is finite probability 
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space then a sequence of partitions F0, F1, . . . , Fn of Ω is a filtration if each partition Fi

refines its predecessor Fi−1.8 In this setting, a function f : Ω → R is called Fi-measurable
if f is constant on each part of Fi.

Recall also that if Ω is a finite probability space and f : Ω → R is a function, then the 
conditional expectation E(f |F) : Ω → R and the conditional variance Var(f |F) : Ω → R

of f with respect to a given partition F of Ω are defined by

E(f |F)(x) = E(f |X),

Var(f |F)(x) = Var(f |X),
where X ∈ F is such that X � x.

2.2.2. Sequential dependence and concentration
In this section we introduce some convenient consequences of standard martingale 

inequalities. These are generally useful in the analysis of randomised processes, so we 
try to provide some brief background and motivation.

Suppose that we have a randomised algorithm which proceeds in m rounds. We can 
then denote by Ω :=

∏m
i=1 Ωi the probability space that underlies an execution of the 

algorithm. Here Ωi is the set of all possible choices the algorithm may make in step 
i. It is important, however, that Ω as a probability space is not necessarily a product 
of probability spaces Ωi; in other words, the algorithms can (and typically will) make 
choices for the step i depending on the choices it made in steps 1, . . . , i − 1. By history 
up to time t we mean a set of the form {ω1} ×· · ·×{ωt} ×Ωt+1 ×· · ·Ωm, where ωi ∈ Ωi. 
We shall use the symbol Ht to denote any particular history of such a form. By a history 
ensemble up to time t we mean any union of histories up to time t; we shall use the 
symbol L to denote any one such. Observe that there are natural filtrations associated 
to such a probability space: given times t1 < t2 < . . . we let Fti denote the partition 
of Ω into the histories up to time ti. We introduce formally a probability space of this 
type, which we use for the key part of our argument, in Section 4.1.

We recall that if Y1, . . . , Yn are a collection of independent random variables, whose 
ranges are not too large compared to n, we have Hoeffding’s inequality for the tails of 
such sums:

P
( n∑

i=1

(
Yi − E(Yi)

)
≥ 	

)
≤ exp

(
− 2	2∑n

i=1(max Yi − minYi)2
)
, (2.1)

for each 	 > 0. One should think of the squared range of Yi as a crude upper bound for 
Var(Yi). There are various improvements, such as the Bernstein inequalities, which take 
into account the actual values Var(Yi) in order to obtain stronger concentration results 
such as

8 Readers familiar with measure-theoretic probability will notice that the standard definition is a se-
quence of σ-algebras, namely those generated by our partitions; in the finite setting this is an unnecessary 
complication.
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P
( n∑

i=1

(
Yi − E(Yi)

)
≥ 	

)
≤ exp

(
− 	2

2R	/3 + 2
∑n

i=1 Var(Yi)

)
, (2.2)

valid when 0 ≤ Yi ≤ R for each i. When the sum of variances is much larger than R	, 
this probability bound is optimal up to small order terms in the exponent; for most 
applications this means it cannot usefully be improved.

However when analysing randomised algorithms, usually one has to deal with a sum 
of random variables which are not independent, but rather are sequentially dependent, 
meaning that they come in an order in which earlier outcomes affect the later random 
variables. A good example is the following procedure (a variant of which we use in this 
paper) for embedding a graph G on vertex set [n/2] into a graph H on n vertices. We 
simply embed vertices in order 1, . . . , n/2, at each time t embedding vertex t uniformly 
at random to the set of all valid choices: that is, choices which give an embedding of 
G[1, . . . , t]. In order to show that this procedure is likely to succeed (which is true if G has 
small degeneracy and H is sufficiently quasirandom) we will want to know how vertices 
are embedded over time to some subsets S ⊆ V (H). In other words, we define (in this 
case, Bernoulli) random variables Yt to be 1 if t is embedded to S and 0 otherwise, and 
we want to know how the partial sums of these random variables, which are certainly 
not independent but are sequentially dependent, behave. The point of this section is to 
observe that in fact more or less the same concentration bounds hold as for independent 
random variables, except that one has to replace the sum of expectations with a sum of 
observed expectations, that is, 

∑n
i=1 E

(
Yi|Hi−1

)
, where Hi−1 denotes the history up to 

time i − 1, and the sum of variances with a sum of observed variances, similarly defined.
In combinatorial applications, one is usually interested in showing that a sum of 

random variables (which might in general not be Bernoulli) is close to its expectation μ. 
It is not a priori obvious that concentration bounds such as the above help: after all, the 
sum of observed expectations is itself a random variable and might not be concentrated 
near μ (it is easy to come up with examples in which it is not). We deal with this in what 
follows by defining a good event E , within which the observed sum of expectations is μ ±ν

for some (small) ν > 0. In applications E will often be a combinatorial statement about 
the process, and hence we refer to ν as the combinatorial error, to distinguish it from the 
probabilistic error 	 > 0, as in (2.1) and (2.2). It is important to note that E is usually 
not determined before the random variables Yi (i.e. it may well not be Fi-measurable for 
any member Fi of the filtration), so we do not condition on E , rather we aim to estimate 
the probability that E holds and yet 

∑n
i=1 Yi 
= μ ± (ν + 	).

In order to avoid mentioning any particular process, it is convenient to state the fol-
lowing lemmas in terms of a finite probability space Ω with a filtration (F0, F1, . . . , Fn). 
We should stress that though in our applications we will always use the same probability 
space, which underlies our packing process, we will consider different filtrations, always 
given by the histories up to increasing times, depending on the random variables we wish 
to sum.
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The following lemma, from [1], is a sequential dependence version of Hoeffding’s in-
equality. Note that the lemma as stated in [1] includes the condition P (E) > 0. However 
if P (E) = 0 the lemma statement is trivially true, so we drop the condition below.

Lemma 4 (Lemma 7, [1]). Let Ω be a finite probability space, and (F0, F1, . . . , Fn) be 
filtration. Suppose that for each 1 ≤ i ≤ n we have a nonnegative real number ai, 
an Fi-measurable random variable Yi satisfying 0 ≤ Yi ≤ ai, nonnegative real num-
bers μ and ν, and an event E. Suppose that almost surely, either E does not occur or ∑n

i=1 E 
(
Yi

∣∣Fi−1
)

= μ ± ν. Then for each 	 > 0 we have

P

(
E and

n∑
i=1

Yi 
= μ± (ν + 	)
)

≤ 2 exp
(
− 2	2∑n

i=1 a
2
i

)
.

Furthermore, if we weaken the assumption, requiring only that either E does not occur 
or 

∑n
i=1 E 

(
Yi

∣∣Fi−1
)
≤ μ + ν, then for each 	 > 0 we have

P

(
E and

n∑
i=1

Yi > μ + ν + 	

)
≤ exp

(
− 2	2∑n

i=1 a
2
i

)
.

We should note that the probability bound in this lemma is what one would obtain 
from standard martingale inequalities for P (

∑n
i=1 Yi 
= μ ± (ν + 	)) if the condition ∑n

i=1 E 
(
Yi

∣∣Fi−1
)

= μ ± ν held almost surely. The rôle of E is that we can allow this 
condition to fail outside of E but still obtain the same concentration within E ; this is 
probabilistically fairly trivial but very useful. The same applies for the next lemma.

Lemma 4 gives close to optimal (up to a constant factor in the exponential) results 
when the random variables Yi are relatively often close to 0 and ai; in other words, when 
a2
i is not much larger than the variance Var(Yi). This will turn out to be the case for 

most of the random sums we need to estimate in this paper. However, when it is not 
the case, at the cost of a second moment calculation the following version of Freedman’s 
inequality [12] gives much stronger bounds, corresponding to a Bernstein inequality for 
independent random variables.

Lemma 5 (Freedman’s inequality on a good event). Let Ω be a finite probability space, and 
(F0, F1, . . . , Fn) be a filtration. Suppose that we have R > 0, and for each 1 ≤ i ≤ n we 
have an Fi-measurable non-negative random variable Yi, nonnegative real numbers μ, ν
and σ, and an event E. Suppose that almost surely, either E does not occur or we have ∑n

i=1 E 
(
Yi

∣∣Fi−1
)

= μ ± ν, and 
∑n

i=1 Var
(
Yi

∣∣Fi−1
)
≤ σ2, and 0 ≤ Yi ≤ R for each 

1 ≤ i ≤ n. Then for each 	 > 0 we have

P

(
E and

n∑
Yi 
= μ± (ν + 	)

)
≤ 2 exp

(
− 	2

2σ2 + 2R	

)
.

i=1
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Furthermore, if we assume only that either E does not occur or we have∑n
i=1 E 

(
Yi

∣∣Fi−1
)
≤ μ + ν, and 

∑n
i=1 Var

(
Yi

∣∣Fi−1
)
≤ σ2, and 0 ≤ Yi ≤ R for each 

1 ≤ i ≤ n, then for each 	 > 0 we have

P

(
E and

n∑
i=1

Yi > μ + ν + 	

)
≤ exp

(
− 	2

2σ2 + 2R	

)
.

As with the Bernstein inequality, this result is essentially optimal when the sum of 
observed variances is much larger than R	. We would like to point out that since E is 
often a combinatorial statement which is not tailored to the specific random variables Yi

we are summing, when we use either lemma to estimate tail probabilities for several sums 
of random variables, we will often use the same event E repeatedly; since it will appear 
only once in union bounds, both lemmas are useful for showing that a.a.s. a collection 
of many (rapidly growing with n) sums are simultaneously close to their expectations, 
even when the probability of E only tends to one quite slowly with n.

We deduce Lemma 5 from Freedman’s martingale inequality, which we now state.

Theorem 6 (Proposition (2.1), [12]). Let Ω be a finite probability space, and
(F0, F1, . . . , Fn) be a filtration. Suppose that for some R > 0, for each 1 ≤ i ≤ n, 
we have an Fi-measurable random variable Yi that takes values in the range −R ≤
Yi ≤ R, and we have E(Yi|Fi−1) = 0 almost surely. Suppose that for some σ we have 
σ2 ≥

∑n
i=1 Var(Yi|Fi−1) almost surely. Then for each 	 > 0, we have

P

(
n∑

i=1
Yi ≥ 	

)
≤ exp

(
− 	2

2σ2 + 2R	

)
.

We now deduce Lemma 5, using a similar approach as was used in [1] to prove 
Lemma 4.

Proof of Lemma 5. We show the required upper bound

P

(
E and

n∑
i=1

Yi > μ + ν + 	

)
≤ exp

(
− 	2

2σ2 + 2R	

)
, (2.3)

and the corresponding lower bound follows by symmetry, replacing each Yi with R− Yi. 
This gives the desired two-sided result by the union bound.

Observe that if P (E) = 0, (2.3) holds trivially. We may thus assume P (E) > 0. 
Now, given Y1, . . . , Yn, we define random variables U1, . . . , Un as follows. We set Ui =
max(Yi, R) if P (E|Fi−1) > 0, and otherwise Ui = 0. Observe that Ui is constant on each 
part of Fi by definition. We claim that for each 1 ≤ t ≤ n we have almost surely

t∑
E(Ui|Fi−1) ≤ μ + ν and

t∑
Var(Ui|Fi−1) ≤ σ2 . (2.4)
i=1 i=1
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Indeed, suppose that t is minimal such that this statement fails, and let F be a set 
in Ft−1 with P (F ) > 0 witnessing its failure. By minimality of t, at least one of 
E(Ut|F ) and Var(Ut|F ) is strictly positive. By definition of Ut we have P (E|F ) > 0. 
But since E(Ui|Fi−1) and Var(Ui|Fi−1) are nonnegative for each i, this shows that with 
probability at least P (F )P (E|F ) > 0, the event E occurs and one of the assumptions ∑n

i=1 E 
(
Yi

∣∣Fi−1
)

= μ ± ν and 
∑n

i=1 Var
(
Yi

∣∣Fi−1
)
≤ σ2 fails. This is a contradiction, so 

we conclude (2.4) holds almost surely for each t. Furthermore, we have 0 ≤ Ui ≤ R for 
each 1 ≤ i ≤ n.

Next, define for each 1 ≤ i ≤ n the random variable Wi = Ui − E(Ui|Fi−1). We have 
−R ≤ Wi ≤ R for each i, by definition Wi is Fi-measurable, and by definition almost 
surely E(Wi|Fi−1) = 0 and Var(Wi|Fi−1) = Var(Ui|Fi−1). Thus by Theorem 6 we have

P

(
n∑

i=1
Wi ≥ 	

)
≤ exp

(
− 	2

2σ2 + 2R	

)
.

Since almost surely we have 
∑t

i=1 E(Ui|Fi−1) ≤ μ + ν, we obtain

P

(
n∑

i=1
Ui ≥ μ + ν + 	

)
≤ exp

(
− 	2

2σ2 + 2R	

)
.

Finally, if E occurs then almost surely Yi = Ui for each 1 ≤ i ≤ n, giving the desired 
upper bound (2.3). �

Finally, let us note that we shall be using many statements of the form

with probability at least p, provided event A we get event B. (2.5)

We emphasize that such statements are not statements about conditional probabilities. 
That is, the meaning of (2.5) is P (A \B) ≤ 1 −p. A prototypical example is with probability 
at least 1 −o(1), if a given randomised algorithm does not fail, then it produces an output 
with certain desired properties.

2.3. Simple properties of degenerate graphs

We need to bound 
∑

x∈V (G) deg(x)2 for degenerate graphs G. In several applications 
of Lemma 4 the numbers ai will be upper bounded by the degrees of vertices in G, where 
G is one of the graphs to be packed, so that 

∑
x∈V (G) deg(x)2 is an upper bound for the 

sum 
∑

i a
2
i appearing in Lemma 4.

Lemma 7. Let G be an n-vertex graph with degeneracy D and maximum degree Δ. Then 
we have ∑

deg(x)2 ≤ 2DnΔ .

x∈V (G)
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Proof. We have∑
x∈V (G)

deg(x)2 ≤
∑

x∈V (G)

deg(x) · Δ = 2e(G) · Δ ≤ 2Dn · Δ . �

We also need to show that degenerate graphs contain large independent sets all of 
whose vertices have the same degree.

Lemma 8. Let G be a D-degenerate n-vertex graph. Then there exists an integer 0 ≤ d ≤
2D and a set I ⊆ V (G) with |I| ≥ (2D + 1)−3n which is independent, and all of whose 
vertices have the same degree d in G.

Proof. We first claim that at least (2D + 1)−1n vertices of G have degree at most 2D. 
Indeed, if this were false then there would be more than 2Dn/(2D+ 1) vertices of G all 
of whose degrees are at least 2D + 1, so that we obtain e(G) > Dn, which contradicts 
the D-degeneracy of G. Let 0 ≤ d ≤ 2D be chosen to maximise the number of vertices 
in G of degree d, and let S be the set of vertices in G with degree d. We thus have 
|S| ≥ (2D + 1)−2n. Now let I be a maximal independent subset of S. Each vertex of I
has at most d ≤ 2D neighbours in S, so that 

∣∣I∪⋃i∈I N(i)
∣∣ ≤ (2D+1)|I|. By maximality 

I ∪
⋃

i∈I N(i) covers S, hence |I| ≥ (2D + 1)−1|S| ≥ (2D + 1)−3n, as desired. �
3. Reducing the main theorem

We deduce Theorem 2 from the following technical result.

Theorem 9. For each γ > 0 and each D ∈ N there exists c > 0 and a number n0 such 
that the following holds for each integer n > n0. Suppose that s∗ ≤ 2n and that for each 
s ∈ [s∗] the graph Gs is a graph on vertex set [n], with maximum degree at most cn

log n , 
such that deg−(x) ≤ D for each x ∈ V (Gs) and such that the last (D + 1)−3n vertices 
of [n] form an independent set in Gs, and all have the same degree ds in Gs. Suppose 
further that the total number of edges of (Gs)s∈[s∗] is at most (1 −3γ)

(
n
2
)
. Then (Gs)s∈[s∗]

packs into Kn.

Actually, we prove Theorem 9 in a slightly more general form using the concept of 
quasirandomness which is crucial for our approach. This concept was introduced by 
several authors independently in the 1980s (of which the paper [7] is the most compre-
hensive) and captures a property that the edges of graph are distributed evenly among 
its vertices. We give a definition tailored for our needs which is somewhat stronger than 
the usual definition of quasirandom graphs.

Definition 10 (quasirandom). Suppose that H is a graph with n vertices and with den-
sity p. We say that such graph H is (α, L)-quasirandom if for every set S ⊆ V (H) of at 
most L vertices we have |NH(S)| = (1 ± α)p|S|n.
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Theorem 11 (Main technical result). For each γ > 0 and each D ∈ N there exist numbers 
n0 ∈ N and c, ξ > 0 such that the following holds for each n > n0. Suppose that Ĥ is an 
(ξ, 2D + 3)-quasirandom graph with n vertices and density p > 0. Suppose that s∗ ≤ 2n
and that for each s ∈ [s∗] the graph Gs is a graph on vertex set [n], with maximum 
degree at most cn

log n , such that deg−(x) ≤ D for each x ∈ V (Gs) and such that the last 
(D+1)−3n vertices of [n] form an independent set in Gs, and all have the same degree ds
in Gs. Suppose further that the total number of edges of (Gs)s∈[s∗] is at most (p −3γ)

(
n
2
)
. 

Then (Gs)s∈[s∗] packs into Ĥ.

Theorem 11 indeed generalises Theorem 9 because it can be easily checked that for 
any fixed D ∈ N and α > 0, the graph Kn is (α, 2D + 3)-quasirandom for n sufficiently 
large. The reason why we give the proof in this greater generality is that it is clear that 
the only feature of Kn we actually use is its quasirandomness. We show that Theorem 9
implies Theorem 2. Note that starting with Theorem 11 the same deduction would 
yield a version of Theorem 2 for quasirandom host graphs. We state such a version 
for dense Erdős–Rényi random graphs G(n, p), an n-vertex graph, where each pair of 
vertices forms an edge independently with probability p. Those graphs are well-known to 
have asymptotically almost surely error in quasirandomness (even in our Definition 10) 
tending to zero.

Theorem 12. For each p, γ > 0 and each D ∈ N there exists c > 0 such that the following 
holds asymptotically almost surely, as n → ∞. Suppose that (Gt)t∈[t∗] is a family of 
D-degenerate graphs, each of which has at most n vertices and maximum degree at most 
cn

log n . Suppose further that the total number of edges of (Gt)t∈[t∗] is at most (p − γ)
(
n
2
)
. 

Then (Gt)t∈[t∗] packs into G(n, p).

Proof of Theorem 2. To deduce Theorem 2 from Theorem 9, observe that given an inte-
ger D and graphs G = (Gt)t∈[t∗] to pack, we may assume without loss of generality that 
none of the graphs in G has isolated vertices, since such vertices can be erased and then 
easily packed in the last step.

We now successively modify the family G as follows. If there are two graphs G, G′ ∈ G
with v(G), v(G′) ≤ n/2, we replace G and G′ with the disjoint union G ∪G′. We repeat 
this until no further such pairs exist, giving G′.

Observe that the maximum degree and the degeneracy of the graphs in G is the 
same as in G′. Furthermore a packing of G′ is also a packing of G. Finally, there is 
at most one graph in G′ with less than n/2 vertices. Hence all but at most one graph 
has at least n/4 edges. We conclude that the total number s∗ of graphs in G′ satisfies 
(s∗ − 1)n/4 ≤ (1 − γ)

(
n
2
)
, and hence s∗ ≤ 2n. Finally, we let the graphs (G′

s)s
∗

s=1 be 
obtained from the graphs G′ by adding if necessary isolated vertices to each in order to 
obtain n-vertex graphs.

Now, for each G′
s we choose an order on V (G′

s) as follows. First, we pick an order wit-
nessing D-degeneracy of G′

s. Next, we pick an integer 0 ≤ ds ≤ 2D and an independent 
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Is set of (2D + 1)−3n vertices each of which has degree ds in G′
s and change the order 

by moving these vertices to the end. Such an integer ds and independent set exist by 
Lemma 8. The result is an ordering of V (G′

s) with degeneracy at most 2D, as required 
for Theorem 9 with input 2D and γ/3. Then Theorem 9 returns the desired packing. �
4. Proof of Theorem 11

For the proof of Theorem 11, we need some algorithms and definitions. We give these 
now along with a sketch of the proof.

We prove Theorem 11 by analysing a randomised algorithm, which we call Packing-
Process, that packs the guest graphs Gs into Ĥ. We prove that this algorithm succeeds 
with high probability. In this algorithm we assume that the last δn vertices of each 
graph Gs form an independent set, where δ < (D + 1)−3 is to be chosen later.

PackingProcess begins by splitting the edges of the input graph Ĥ into a bulk H0 and 
a reservoir H∗

0 by independently selecting edges into the latter with probability chosen 
such that e(H∗

0 ) ≈ γ
(
n
2
)
. As a result, the graphs H0 and H∗

0 are with high probability 
quasirandom.

Now PackingProcess proceeds in s∗ stages. In each stage s, it runs a randomised 
embedding algorithm, called RandomEmbedding and explained below, to embed the first 
n − δn vertices of Gs into the bulk Hs−1. Then in the completion phase the last δn
vertices of Gs are embedded into the reservoir H∗

s−1. Since there are exactly δn vertices 
of Gs left to embed and exactly δn vertices of V (Ĥ) unused so far in this stage, we 
want to find a bijection between these. Since all neighbours of each yet unembedded 
vertex are already embedded, this completion amounts to choosing a system of distinct 
representatives. The completion phase does not use randomness: the system of disjoint 
representatives is obtained using Hall’s theorem. Now Hs and H∗

s are defined simply by 
removing the edges used in this embedding.

Both RandomEmbedding and the completion phase may fail at any stage s; this means 
that it is not possible to embed a certain part of Gs. In that case PackingProcess fails, 
too. If PackingProcess does not fail then it always produces a valid packing of (Gs) into 
H. So, we need to show that PackingProcess (see Algorithm 1) succeeds with positive 
probability.

For describing our randomised embedding algorithm RandomEmbedding we need the 
following definitions. We shall use the symbol ↪→ to denote embeddings produced by 
RandomEmbedding. We write G ↪→ H to indicate that the graph G is to be embedded 
into H. Also, if t ∈ V (G), v ∈ V (H) and A ⊆ V (H) then t ↪→ v means that t is embedded 
on v, and t ↪→ A means that t is embedded on a vertex of A.

Definition 13 (partial embedding, candidate set). Let G be a graph with vertex set [v(G)], 
and H be a graph with v(H) ≥ v(G). Further, assume ψj : [j] → V (H) is a partial 
embedding of G into H for j ∈ [v(G)], that is, ψj is a graph embedding of G

[
[j]

]
into H. 
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Algorithm 1: PackingProcess.
Input: graphs G1, . . . , Gs∗ , with Gs on vertex set [n] such that the last δn vertices of Gs form an 

independent set; a graph Ĥ on n vertices
choose H∗

0 by picking edges of Ĥ independently with probability γ
(n
2
)
/e(Ĥ) ;

let H0 = Ĥ − H∗
0 ;

for s = 1 to s∗ do
run RandomEmbedding (Gs,Hs−1) to get an embedding φs of Gs[[n−δn]] into Hs−1;
let Hs be the graph obtained from Hs−1 by removing the edges of φs

(
Gs[[n−δn]]

)
;

choose an extension φ∗
s of φs embedding all of Gs and embedding the edges of Gs − Gs[[n−δn]]

into H∗
s−1 ;

let H∗
s be the graph obtained from H∗

s−1 by removing the edges of φ∗
s

(
Gs − Gs[[n−δn]]

)
;

end

Finally, let t ∈ [v(G)] be such that N−
G(t) ⊆ [j]. Then the candidate set of t (with respect 

to ψj) is

Cj
G↪→H(t) = NH

(
ψj

(
N−

G(t)
))

.

When j = t − 1, we call Cj
G↪→H(t) the final candidate set of t.

RandomEmbedding (see Algorithm 2) randomly embeds a guest graph G into a host 
graph H. The algorithm is simple: we iteratively embed the first (1 − δ)n vertices of G
randomly to one of the vertices of their candidate set which was not used for embedding 
another vertex already.

Algorithm 2: RandomEmbedding.
Input: graphs G and H, with V (G) = [v(G)] and v(H) = n
ψ0 := ∅;
t∗ := (1 − δ)n;
for t = 1 to t∗ do

if Ct−1
G↪→H(t) \ im(ψt−1) = ∅ then halt with failure;

choose v ∈ Ct−1
G↪→H(t) \ im(ψt−1) uniformly at random;

ψt := ψt−1 ∪ {t ↪→ v};
end
return ψt∗

To show that PackingProcess does not fail at any stage, we shall show that the host 
graph Hs constructed in PackingProcess in embedding stage s is quasirandom in the sense 
of Definition 10. In fact, in order to analyse the completion phase of PackingProcess we 
need quasirandomness of the pair (Hs, H∗

0 ), where H∗
0 is the initial reservoir. We now 

define this coquasirandomness of a pair of graphs. Recall that quasirandomness of one 
graph means that common neighbourhoods are always about the size one would expect 
in a random graph of a similar density. Coquasirandomness of two graphs means that 
the intersection of a common neighbourhood in the first graph and another in the second 
graph has about the size one would expect in two independent random graphs of the 
respective densities.
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Definition 14 (coquasirandom). For α > 0 and L ∈ N, we say that a pair of graphs 
(F, F ∗), both on the same vertex set V of order n and with densities p and p∗, respectively, 
is (α, L)-coquasirandom if for every set S ⊆ V of at most L vertices and every subset 
R ⊆ S we have

|NF (R) ∩ NF∗(S \R)| = (1 ± α)p|R|(p∗)|S\R|n .

With this we can state the setting of our main lemmas and fix various constants which 
we will use in the remainder of the paper.

Setting 15. Let D, n ∈ N and γ > 0 be given. We define

η = γD

200D , δ = γ10Dη

106D4 , C = 40D exp
(
1000Dδ−2γ−2D−10) ,

αx = δ

108CD
exp

(108CD3δ−1(x− 2n)
n

)
for each x ∈ R,

ε = α0δ
2γ10D/1000CD , c = D−4ε4/100 and ξ = α0/100 .

(4.1)

Let G1, G2, . . . , Gs∗ (for some s∗ ≤ 2n) be graphs on [n], such that for each s and 
x ∈ V (Gs) we have deg−Gs

(x) ≤ D, such that Δ(Gs) ≤ cn/ logn, and such that the final 
δn vertices of Gs all have degree ds and form an independent set.

Let H0 and H∗
0 be two edge-disjoint graphs on the same vertex set of order n such 

that (H0, H∗
0 ) is (1

4α0, 2D + 3)-coquasirandom, and 
∑

s∈[s∗] e(Gs) ≤ e(H0) − γn2.

Note that in (4.1) we give numbers αx which we call ‘constant’ even though n appears 
in their definition. Observe that αx is strictly increasing in x. We will be interested only 
in values 0 ≤ x ≤ 2n (though it is technically convenient to have the definition for all 
x ∈ R), and it is easy to check that neither α0 nor α2n depends on n.

The main lemmas for the analysis of PackingProcess are now the following. Lemma 16
states that (H0, H∗

0 ) is coquasirandom with high probability. Lemma 17 states that with 
high probability (Hs, H∗

0 ) continues to be coquasirandom for each stage s. To prove this 
lemma will be the main work of this paper. Lemma 18 states that, provided that Hs has 
the quasirandomness provided by Lemma 17, the RandomEmbedding of Gs+1 into Hs is 
very likely to succeed. Lemma 19 states that with high probability very few edges of H∗

0
are removed at each vertex to form H∗

s . This then implies that (Hs, H∗
s ) is also likely to 

be coquasirandom (though with a much worse error parameter). Finally, in Lemma 20, 
using the coquasirandomness of (Hs, H∗

s ), we argue that at each stage it is very likely 
that the completion phase is possible.

We start with the lemma concerning the coquasirandomness of the initial bulk and 
reservoir.

Lemma 16. For each D ∈ N and each γ > 0, and for each n sufficiently large, let us 
suppose that the constants α0 and ξ are as in Setting 15.
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Suppose that Ĥ is a (ξ, 2D+3)-quasirandom graph of order n and density p ≥ 3γ. Let 
H∗

0 be a random subgraph of Ĥ in which each edge of Ĥ is kept with probability q = γ/p. 
Let H0 be the complement of H∗

0 in Ĥ. Then with probability at least 1 − n−6, we have 
that e(H∗

0 ) = (1 ± α0)γ
(
n
2
)

and the pair (H0, H∗
0 ) is 

( 1
4α0, 2D + 3

)
-coquasirandom.

The next lemma states that coquasirandomness of (Hs, H∗
0 ) is preserved.

Lemma 17. For each D ∈ N and each γ > 0, and for each n sufficiently large, the follow-
ing holds with probability at least 1 −n−5. Suppose that the constants and G1, G2, . . . , Gs∗

and the graph H0 ∪H∗
0 = H are as in Setting 15. When PackingProcess is run, for each 

s ∈ [s∗] either PackingProcess fails before completing stage s, or the pair (Hs, H∗
0 ) is 

(αs, 2D + 3)-coquasirandom.

The next lemma estimates the probability that a single execution of RandomEmbed-
ding succeeds.

Lemma 18. For each D, each γ > 0, and any sufficiently large n, let δ, η, α0, α2n, ε and 
c be as in Setting 15. Given any α0 ≤ α ≤ α2n, let G be a graph on vertex set [n]
with maximum degree at most cn/ logn such that deg−(x) ≤ D for each x ∈ V (G), and 
let H be any (α, 2D + 3)-quasirandom n-vertex graph with at least γ

(
n
2
)

edges. When
RandomEmbedding is run then it fails with probability at most 2n−9.

Our final two main lemmas concern the completion phase of PackingProcess. The first 
states that the completion phase is likely to delete very few edges at any vertex of H∗

0 .

Lemma 19. Given D ∈ N and γ > 0, let n be sufficiently large. Suppose that the constants 
and G1, G2, . . . , Gs∗ and H are as in Setting 15. When PackingProcess is run, with 
probability at least 1 −n−50 one of the following three events occurs. First, PackingProcess 
fails. Second, there is some s ∈ [s∗] such that (Hs, H∗

0 ) is not (αs, 2D+3)-coquasirandom. 
Third, for each s ∈ [s∗] and v ∈ V (H∗

s ) we have degH∗
0
(v) − degH∗

s
(v) ≤ 50γ−DDδn, 

and (Hs, H∗
s ) is (η, 2D + 3)-coquasirandom.

We will show in the proof of Theorem 11 that the first two events are unlikely, so that 
the likely event is the last.

Our last lemma states that with high probability, at any stage s, provided 
(Hs−1, H∗

s−1) is sufficiently coquasirandom, running RandomEmbedding to partially em-
bed Gs into Hs−1 is likely to give a partial embedding which can be completed to an 
embedding of Gs using H∗

s .

Lemma 20. For each D ∈ N and each γ > 0, and for each n sufficiently large, let 
the constants be as in Setting 15. Suppose that G is a graph on [n], such that we have 
deg−(x) ≤ D for each x ∈ V (G), we have Δ(G) ≤ cn/ log n, and such that the final δn
vertices of G form an independent set, and all have degree d. Suppose (H, H∗) are a pair 
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of (η, 2D+3)-coquasirandom graphs on n vertices, and H is (αs∗ , 2D+3)-quasirandom, 
with e(H) = p

(
n
2
)

and e(H∗) = (1 ± η)γ
(
n
2
)
, where p ≥ γ. When RandomEmbedding 

is run to embed G[[n−δn]] into H, with probability at least 1 − 5n−9 it returns a partial 
embedding φ which can be extended to an embedding φ∗ of G into H ∪H∗, with all the 
edges using a vertex in {n − δn + 1, . . . , n} mapped to H∗.

Let us briefly explain why we cannot simply perform the whole embedding in the 
quasirandom Ĥ, but have to split it into a bulk and a reservoir. In order to analyse Ran-
domEmbedding, we require that the bulk is very quasirandom, but RandomEmbedding is 
very well-behaved and preserves this good quasirandomness. In contrast, we are not able 
to show that the completion stage, where we choose a system of distinct representatives 
for the remaining vertices, is so well-behaved. If we used the bulk for this embedding the 
errors would rapidly become unacceptably large. However, to show that choosing such 
a system of distinct representatives is possible, we do not need much quasirandomness. 
Thus the reservoir H∗

s does rapidly lose its quasirandomness (compared to Hs), but it is 
sufficient for the completion.

We now argue that our main lemmas imply Theorem 11.

Proof of Theorem 11. We can assume that p > 3γ as the statement is vacuous otherwise.
Suppose that we run PackingProcess on the input graphs G1, . . . , Gs∗ . For the course 

of the analysis of this run, we shall first ignore possible failures during the completion 
phase. That is, if any failure during the completion phase occurs, we ignore it and 
continue embedding using RandomEmbedding into the bulk. Clearly, this does not change 
behaviour of future rounds of RandomEmbedding or the evolution of the bulk.

As we said earlier, we need to argue that with positive probability PackingProcess
does not fail. Rather than proving this directly, we introduce additional quasirandomness 
conditions, and prove that with positive probability, all these conditions are satisfied up 
to any given stage, and that if we have the said quasirandomness conditions up to that 
stage, then RandomEmbedding will proceed successfully through the next stage. (Of 
course, it could happen that PackingProcess succeeds in the overall embedding even 
though some of our quasirandomness conditions failed during the course of the packing; 
we shall pessimistically view such an execution of PackingProcess as unsuccessful.) More 
precisely, it is clear that PackingProcess does not fail (in the RandomEmbedding stage) 
unless at least one of the following exceptional events occurs:

(i) (H0, H∗
0 ) is not (1

4α0, 2D + 3)-coquasirandom.
(ii) RandomEmbedding proceeded through stages s = 1, . . . , r (for some r ∈ [s∗ − 1]) 

without failure, the pairs (Hs, H∗
0 ) are (αs, 2D + 3)-coquasirandom for s < r, and 

(Hr, H∗
0 ) is not an (αr, 2D + 3)-coquasirandom pair.

(iii) RandomEmbedding proceeded through stages s = 1, . . . , r (for some r ∈ {0, . . . , s∗−
1}) without failure, the graphs Hs are (αs, 2D + 3)-quasirandom for s ≤ r. Then, 
in stage r + 1, RandomEmbedding fails.
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Lemma 16 gives an upper bound on the probability of the event in (i). Lemma 17
gives an upper bound on the probability of all the events in (ii). For each fixed r ∈
{0, . . . , s∗− 1}, the event in (iii) can be bounded using Lemma 18. Thus, the probability 
that PackingProcess fails in the RandomEmbedding part is at most n−6 +n−5 +s∗ ·2n−9.

Let us now analyse the completion phases of PackingProcess. If PackingProcess fails 
in one of the completion phases then one of the following events occurs:

(iv) One of the events described under (i)-(iii).
(v) None of (i)-(iii) occurs. RandomEmbedding and the completion phase proceed suc-

cessfully through the first r stages (for some r ∈ {1, . . . , s∗ − 1}. For s ∈ [r] all the 
pairs (Hs, H∗

0 ) are (αs, 2D + 3)-coquasirandom. However, there is a stage s ∈ [r]
where (Hs, H∗

s ) is not (η, 2D + 3)-coquasirandom.
(vi) None of (i)-(iii) occurs. RandomEmbedding and the completion phase proceeds 

successfully through the first r stages (for some r ∈ {0, . . . , s∗ − 1}, and through-
out all the pairs (Hs, H∗

0 ) and (Hs, H∗
s ) are (αs, 2D + 3)-coquasirandom and 

(η, 2D + 3)-coquasirandom, respectively. In stage r + 1, RandomEmbedding suc-
cessfully embeds but the completion phase fails.

Lemma 19 bounds the probability of the event in (v) by n−50. Finally, Lemma 20 bounds 
the probability of events in (vi) for each given r by 5n−9. Thus, the total probability of 
failure due to (v) or (vi) is at most n−50 + s∗ · 5n−9.

We conclude that PackingProcess packs the graphs G1, . . . , Gs∗ into Ĥ with positive 
probability. �
4.1. The probability space for RandomEmbedding

Algorithm 2 gives a sound definition of a randomised algorithm which either provides 
an embedding of G[n−δn] into H or fails, and the probability of any output can be in 
principle computed. To handle the analysis of RandomEmbedding, which is the most 
demanding part of this paper, it is useful to properly set up a probability space as 
indicated at the beginning of Section 2.2.2. Given G and H as in Algorithm 2 (recall that 
V (G) = [n]), let ΩG↪→H := (V (H) ∪ {�})n−δn. We now need to define the probability 
measure on ΩG↪→H . Let ω = (ω1, . . . , ωn−δn) ∈ ΩG↪→H be given. Suppose first that 
ω consists only of vertices of V (H). Then we define PG↪→H(ω) as the probability that 
RandomEmbedding succeeds embedding G[n−δn] into H, and maps each vertex t ∈ [n −δn]
of G on vertex ωt. Suppose next that ω contains some �’s, and that these form a terminal 
segment of ω, say starting from position t0. Then we define PG↪→H(ω) as the probability 
that RandomEmbedding succeeds in the first t0−1 steps, and for each t ∈ [t0−1] it maps 
vertex t on ωt, and then in step t it halts with failure. Last, suppose that ω contains some 
�’s but these do not form a terminal segment of ω. We then define PG↪→H(ω) := 0. It is 
clear that PG↪→H(ω) is a probability measure on ΩG↪→H which corresponds to possible 
runs of RandomEmbedding.
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We shall use the concept of histories and history ensembles, as introduced in Sec-
tion 2.2.2, in connection with ΩG↪→H .

4.2. Organisation of the technical part of the paper

It thus remains to prove all the main lemmas from this section. Lemmas 16 and 17
are proven in Section 6. Lemma 18 is stated here in a simplified form. In actuality, we 
prove a stronger statement (of which Lemma 18 is a straightforward consequence) in 
Lemma 24. This stronger form is also needed for proving Lemma 17, and its proof spans 
the entire Section 5. Lemmas 19 and 20 are proven in Section 7.

5. Staying on a diet

In this section we consider the running of RandomEmbedding to embed one degenerate 
graph G into a quasirandom graph H. The results of this section will always be used 
to analyse one stage s, when we take G = Gs and H = Hs−1. We also analyse how 
RandomEmbedding behaves with respect to the graph H∗ = H∗

s−1. We analyse carefully 
how fast common neighbourhoods of vertices in H are eaten up by RandomEmbedding, 
and how often individual vertices of H appear in candidate sets. To make this precise, 
we introduce the following two definitions.

The diet condition states that during the running of RandomEmbedding, for each t ∈
[n −δn], the fraction of each set NH(S) which is covered by im(ψt) is roughly as expected, 
that is, roughly proportional to | im(ψt)|/n. As with (co)quasirandomness, we also require 
a codiet condition, considering the intersection of some vertex neighbourhoods in H
and H∗.

Definition 21 (diet condition, codiet condition). Let H be a graph with n vertices and 
p
(
n
2
)

edges, and let X ⊆ V (H) be any vertex set. We say that the pair (H, X) satisfies 
the (β, L)-diet condition if for every set S ⊆ V (H) of at most L vertices we have |NH(S) \
X| = (1 ± β)p|S|(n − |X|).

Let H, H∗ be two graphs with vertex set V of order n and p
(
n
2
)

and p∗
(
n
2
)

edges, 
respectively, and let X ⊆ V be any vertex set. We say that the triple (H, H∗, X) satisfies 
the (β, L)-codiet condition if for every set S ⊆ V of at most L vertices and for every 
subset R ⊆ S we have∣∣∣(NH(R) ∩ NH∗(S \R)

)
\X

∣∣∣ = (1 ± β)p|R|(p∗)|S\R|(n− |X|) .

Observe that the (β, L)-diet condition holding for (H, ∅) is simply the statement 
that H is (β, L)-quasirandom, and similarly for the codiet condition.

The cover condition, defined below, roughly states that for each v in the host graph H

during the embedding of G into H by RandomEmbedding, the right fraction of vertices x
of G have v in their final candidate set. For making precise what we mean by ‘the right 
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fraction’ some care is needed. Firstly, how likely it is that v is in the final candidate set 
of x depends on the number neighbours of x preceding x. Therefore we will partition 
V (G) according to this number of previous neighbours. For technical reasons we actually 
further want to control this fraction in intervals of V (G) of length εn, where n is the 
order of H. Hence we define for a given ε > 0 the set

Xi,d := {x ∈ V (G) : i ≤ x < i + εn, |N−(x)| = d} .

When G is given with a D-degenerate ordering it is enough to consider d ∈ {0, 1, . . . , D}. 
So if H is quasirandom and has p

(
n
2
)

edges, then for an arbitrary v ∈ V (H), we would 
expect that about a pd-fraction of vertices x in each Xi,d have v in their final candi-
date sets (let us remind that the candidate set may include also vertices used by the 
embedding).

Definition 22 (cover condition). Suppose that G and H are two graphs such that H has 
order n, the vertex set of G is [n], and H has density p. Suppose that numbers β, ε > 0
and i ∈ [n −εn] are given. We say that a partial embedding ψ of G into H, which embeds 
N−(x) for each i ≤ x < i + εn, satisfies the (ε, β, i)-cover condition if for each v ∈ V (H), 
and for each d ∈ N, if we have∣∣{x ∈ Xi,d : v ∈ NH

(
ψ(N−(x))

)}∣∣ = (1 ± β)pd|Xi,d| ± ε2n .

Note that a corresponding condition for d = 0 is trivial, even with zero error parameters.

We use Definitions 14, 21 and 22, to define key events DietE(·; ·), CoverE(·; ·), 
CoDietE(·) on ΩG↪→H .

Definition 23. Suppose that D, δ and ε are as in Setting 15. Suppose that λ > 0. Suppose 
that we have graphs G and H as in Algorithm 2. Suppose that we run RandomEmbedding
to partially embed G into H. Let (ψi)i∈[t∗] be the partial embeddings of G

[
[i]
]

into H, 
where t∗ = n − δn if RandomEmbedding succeeded, and otherwise t∗ + 1 is the step in 
which RandomEmbedding halted with failure.

• For each t ∈ [n − δn], let DietE(λ; t) ⊆ ΩG↪→H correspond to executions of Ran-
domEmbedding for which t∗ ≥ t and the pair (H, imψt) satisfies the (λ, 2D+ 3)-diet 
condition.

• For each t ∈ [n − δn], let CoverE(λ; t) ⊆ ΩG↪→H correspond to executions of Ran-
domEmbedding for which t∗ ≥ t + εn and the embedding ψt∗ of G into H satisfies 
the (ε, λ, t)-cover condition.

• Suppose further that we have a graph H∗ with V (H) = V (H∗). For each t ∈ [n −δn], 
let CoDietE(t) ⊆ ΩG↪→H correspond to executions of RandomEmbedding for which 
t∗ ≥ t and the triple (H, H∗, imψt) satisfies the (2η, 2D + 3)-codiet condition.
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Note that the events DietE(·; t) and CoDietE(t) are determined by histories (as defined 
in Sections 2.2.2 and 4.1) up to time t. That is, for any λ > 0 and any history Ht, we 
have that DietE(λ; t) either contains Ht or is disjoint from Ht. We have similar the same 
property for CoDietE(t). The event CoverE(·; t) is somewhat different since its definition 
involves the set Xt,d which looks εn − 1 many steps forward in time. So, for any history 
Ht+εn−1, we have that CoverE(λ; t) either contains Ht+εn−1 or is disjoint from Ht+εn−1.

The following lemma is the crucial accurate analysis of RandomEmbedding which we 
need in order to show that RandomEmbedding is likely to succeed and in order to derive 
further properties of the final embedding.

Lemma 24 (Diet-and-cover lemma). For each D ∈ N, each γ > 0, and any sufficiently 
large n, let δ, η, α0, α2n, ε and c, C be as in Setting 15. Let α ∈ [α0, α2n] be arbitrary. 
Let G be a graph on vertex set [n] with maximum degree at most cn/ log n such that 
deg−(x) ≤ D for each x ∈ V (G), and let H be any (α, 2D + 3)-quasirandom n-vertex 
graph with at least γ

(
n
2
)

edges. Suppose in addition that H∗ is a graph on V (H) such 
that (H, H∗) is (η, 2D + 3)-coquasirandom. Then we have

PG↪→H

⎛⎝ ⋂
t∈[n−δn]

DietE(Cα; t) ∩
⋂

t∈[n+1−εn]

CoverE(Cα; t) ∩
⋂

t∈[n−δn]

CoDietE(t)

⎞⎠
≥ 1 − 2n−9 . (5.1)

This lemma immediately implies Lemma 18.

Proof of Lemma 18. Recall that RandomEmbedding fails if and only if Ct−1
G↪→H(t) \

im(ψt−1) = ∅ for some t, and DietE(Cα; t −1) in particular gives a formula lower bound-
ing the size of Ct−1

G↪→H(t) \ im(ψt−1) which is greater than 0. Since the likely event of 
Lemma 24 is contained in DietE(Cα; t − 1) for each t ≥ 2, and the same lower bound is 
trivially implied by (α, 2D + 3)-quasirandomness of H for t = 1 (since imψ0 = ∅), we 
conclude that within the likely event of Lemma 24, RandomEmbedding does not fail. �

The main difficulty is to establish that the cover and diet conditions hold. We will 
see that the codiet condition is an easy byproduct. The reason for the difficulty is that 
the error terms in the cover and diet conditions for small times t feed back into the 
calculations which will establish the cover and diet conditions for larger times t, and we 
have to ensure that this feedback loop does not allow the errors to spiral out of control. 
To that end, we define a new sequence of error terms, which we need only in the proof 
of Lemma 24. The following constants {βt : t ∈ R} are a carefully chosen increasing 
sequence (depending on α) such that β0 = α and such that βn/β0 is bounded by a 
constant which does not depend on α (though it does depend on D, γ and δ). Given D

and α, δ, γ > 0, we define

βt := 2α exp
( 1000Dδ−2γ−2D−10t

)
. (5.2)
n
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We will mainly take t integer in the range [0, n], but it is convenient to allow t to be any 
real number. In particular, for each t ≥ 0, we have

1
n

t∫
i=0

1000Dδ−2γ−2D−10βi di

≤ 2α
t∫

i=−∞

1000Dδ−2γ−2D−10

n
exp

(1000Dδ−2γ−2D−10i
n

)
di = βt .

(5.3)

Suppose that we have Setting 15, and suppose that α ≥ α0 is given. Then for each t ≥ 0
we have

βtγ
2D+3δ ≥ β0γ

2D+3 > ε . (5.4)

We split the proof of Lemma 24 into two parts. The cover lemma (Lemma 25) states 
that if the (βt, 2D + 3)-diet condition holds for (H, imψi) for each i ∈ [t − 1], then it is 
very unlikely that the (ε, 20Dβt, t)-cover condition fails for ψt+εn−2. Note that the time 
t + εn − 2 is the first time at which the (ε, 20Dβt, t)-cover condition is guaranteed to be 
determined, since at this time all left-neighbours of all vertices t, t + 1, . . . , t + εn − 1
have certainly been embedded.

Lemma 25 (Cover lemma). For each D, each γ > 0 and sufficiently large n, let 
α0, α2n, ε, δ and c be as in Setting 15. Suppose that α0 ≤ α ≤ α2n and G is a graph on 
vertex set [n], with deg−(x) ≤ D for each x ∈ [n], with maximum degree at most cn/ log n, 
and suppose that H is an n-vertex graph of density at least γ. Let βt for 0 ≤ t ≤ n be 
defined as in (5.2) and assume that βn ≤ 1

10 . Let t with 1 ≤ t ≤ n − δn − εn + 1 be fixed.
Then we have

PG↪→H

(
t−1⋂
i=1

DietE(βt; i) \ CoverE(20Dβt; t)
)

≤ n−10 .

Let us consider Setting 15. Suppose that for some 0 ≤ t ≤ n − δn − εn, RandomEm-
bedding runs up to time t and the (βt, 2D + 3)-diet condition holds for (H, imψt). Let 
p := e(H)/

(
n
2
)

and suppose that p ≥ γ. Then for each t + 1 ≤ j ≤ t + εn, and each set 
S ⊆ V (H) of at most 2D + 3 vertices, we have

|NH(S) \ imψj | ≥ |NH(S) \ imψt| − εn

(diet for (H, imψt)) ≥ (1 − βt)p|S|(n− | imψt|) − εn

(ε < βtγ
2D+3

δ by (5.4)) ≥ (1 − 2βt)p|S|(n− | imψt|) .

Hence, the (2βt, 2D + 3)-diet condition holds deterministically for (H, imψj). In partic-
ular RandomEmbedding cannot fail before time t + εn.
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The diet lemma (Lemma 26) states that when the (βi, 2D + 3)-diet condition holds 
for (H, imψi) for each i ∈ [t − 1], and the (ε, 20Dβi, i)-cover condition holds for ψi+εn−2
for each i ∈ [t + 1 − εn], then it is unlikely that the (βt, 2D + 3)-diet condition fails for 
(H, imψt). We also obtain the desired codiet condition.

Lemma 26 (Diet lemma). For each D, each γ > 0, and any sufficiently large n, let 
α0, α2n, ε, δ and η be as in Setting 15. For any t ≤ (1 − δ)n, and α0 ≤ α ≤ α2n the 
following holds. Suppose that G is a graph on [n] such that deg−(x) ≤ D for each x ∈ [n], 
and H is an (α, 2D+ 3)-quasirandom graph with n vertices with p

(
n
2
)

edges, with p ≥ γ. 
Suppose furthermore that H∗ is a graph on V (H) and p̂

(
n
2
)

edges with p̂ ≥ (1 −η)γ, such 
that (H, H∗) satisfies the (η, 2D + 3)-coquasirandomness condition. Let {βτ : τ ∈ [0, n]}
be defined as in (5.2) and assume that βn ≤ 1

10 . Let t with 1 ≤ t ≤ n − δn be fixed.
Then we have

PG↪→H

⎛⎝t−1⋂
j=1

DietE(βj ; j) ∩
t+1−εn⋂

j=1
CoverE(20Dβj ; j) \ (DietE(βt; t) ∩ CoDietE(t))

⎞⎠
≤ n−10 .

Since the graphs G and H are fixed in Lemmas 24, 25, and 26, in this section we drop 
the subscript in the notation Cj

G↪→H(x) and write simply Cj(x). Likewise, we write P
instead of PG↪→H . Last, we write (ψi)i∈t∗ for partial embeddings of G into H; here t∗
is the time at which RandomEmbedding halts. Of course, t∗ and (ψi)i∈t∗ depend on a 
particular realization ω ∈ ΩG↪→H of the run of RandomEmbedding.

We now show that Lemmas 25 and 26, whose proofs are deferred to later in this 
section, imply Lemma 24.

Proof of Lemma 24. Suppose that we are given D and γ. Now, given α > 0, we define 
βt for each 0 ≤ t ≤ n as in (5.2). For t = 0, . . . , n − δn, define

At :=
t⋂

j=1
DietE(βj ; j) ∩

t⋂
j=εn

CoverE(20Dβt−εn+1; j − εn + 1) ∩
t⋂

j=1
CoDietE(j) . (5.5)

Our strategy is first to show that P (At−1 \ At) is tiny for each t. Since P (A0) = 1, this 
will imply that P (An−δn) is very close to 1. Last, we shall show that An−δn is a subset 
of the event in (5.1).

Indeed, suppose that the event At−1 holds. This in particular means that the (βj , 2D+
3)-diet condition holds for (H, imψj) for each 1 ≤ j < t, and the (ε, 20Dβj−εn+1, j −
εn + 1)-cover condition holds for ψj for each εn − 1 ≤ j < t.

Because the (βt−1, 2D + 3)-diet condition holds for (H, ψt−1), picking S =
ψt−1(N−(t)), we have 

∣∣Ct−1(t) \ imψt−1
∣∣ =

∣∣NH(S) \ imψt−1
∣∣ > 0. It follows that 

RandomEmbedding cannot fail at time t.
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Firstly, let us focus on the term CoverE(20Dβt−εn+1; t − εn + 1) in (5.5). This term 
does not exist when t < εn, so let us assume the contrary. Lemma 25 then tells us that

P

(
t−εn⋂
i=1

DietE(βt−εn+1; i) \ CoverE(20Dβt−εn+1; t− εn + 1)
)

≤ n−10 .

In particular,

P (At−1 \ CoverE(20Dβt−εn+1; t− εn + 1)) ≤ n−10 . (5.6)

Secondly, we use Lemma 26 to show that with high probability neither the diet con-
dition nor the codiet condition fails at time t. Indeed, Lemma 26 tells us that

P

⎛⎝t−1⋂
j=1

DietE(βj ; j)∩
t−1⋂
j=εn

CoverE(20Dβj+1−εn; j + 1 − εn) \ (DietE(βt; t) ∩ CoDietE(t))

⎞⎠
≤ n−10

In particular,

P (At−1 \ (DietE(βt; t) ∩ CoDietE(t))) ≤ n−10 . (5.7)

Summing up (5.6) and (5.7), we conclude that P (At−1 \At) ≤ 2n−10. Taking a union 
bound over the at most n choices of t, we see that with probability at least 1 − 2n−9

the good event from the statement of Lemma 24 holds, i.e., that RandomEmbedding
does not fail, and by the choice of C and by (5.2), for each 1 ≤ t ≤ (1 − δ)n the pair 
(H, imψt) satisfies the (Cα, 2D+3)-diet condition and the triple (H, H∗, imψt) satisfies 
the (2η, 2D+3)-codiet condition, and for each 1 ≤ t ≤ n +1 −εn the embedding ψ(1−δ)n
satisfies the (ε, Cα, t)-cover condition, as desired. �

We now prove the cover lemma.

Proof of Lemma 25. Let e(G) = p
(
n
2
)
≥ γ

(
n
2
)
. Let D be the event that the (βt, 2D +

3)-diet condition holds for each (H, imψi) with 1 ≤ i ≤ t −1, D :=
⋂t−1

i=1 DietE(βt; i). We 
fix a vertex v ∈ V (H). We also fix 1 ≤ d ≤ D. Define Bv,d as the event that D holds, and 
that v and d witness the failure of the (ε, 20Dβt, t)-cover condition for ψt+εn−2. More 
formally,

Bv,d := D ∩
{
ω ∈ ΩG↪→H :∣∣{x ∈ Xt,d : v ∈ NH

(
ψt+εn−2(N−(x))

)}∣∣ 
= (1 ± 20Dβt)pd|Xt,d| ± ε2n
}
.

Our aim is to show that

P (Bv,d) ≤ n−12/D . (5.8)
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A union bound over the choices of v and d then gives the lemma.
Our strategy for proving (5.8) is as follows. Ideally, we would like to assert that for 

each x ∈ Xt,d the probability of v ∈ Cx−1(x) is roughly pd and apply Lemma 4 to bound 
the probability of the bad event Bv,d. To this end, we consider a dynamical version of 
candidate sets, where we track changes in the set potentially suitable to accommodate x
as we gradually embed more and more left-neighbours of x. More precisely, for each i ≤
x −1, let Ci,dyn(x) := NH

(
ψx−1

(
[i] ∩ N−

G(x)
))

. At time i = 0, we have v ∈ Ci,dyn(x), and 
as i increases, the set Ci,dyn(x) shrinks exactly at times y ∈ N−(x) when left-neighbours
of x are embedded.

Unfortunately we are not able to carry out this ideal strategy, because when we 
apply Lemma 4 what we need to calculate is not the probability of v ∈ Cx−1(x), but 
this probability in the conditioned space given by the history up to some earlier time. 
Because the sets N−(x) interleave each other, this conditional probability will generally 
not be close to pd and we were not able to find a good way to estimate it. Hence we 
refine this strategy by rewriting the event {v ∈ Cx−1(x)} as

d⋂
k=1

{y1, y2, . . . , yk ↪→ NH(v)} , (5.9)

where y1, . . . , yd are the neighbours of x, ordered from left to right. The event 
{y1, y2, . . . , yd ↪→ NH(v)}, of course, equals the entire intersection (5.9). However, this 
more complicated way of expressing (5.9) suggests to introduce, for each k, a sequence 
of random variables that count the events of the form {y1, y2, . . . , yk ↪→ NH(v)}, ordered 
by yk. Intuitively, conditioning on {y1, y2, . . . , yk ↪→ NH(v)} holding (which is deter-
mined by the history up to the time at which we embed yk) we should expect that the 
probability that {y1, y2, . . . , yk+1 ↪→ NH(v)} holds is about p. We will be able to demon-
strate this is true, even if we condition on a typical history up to the time immediately 
before embedding yk+1, and this allows us to use Lemma 4.

More formally, given 1 ≤ k ≤ d and y ∈ V (G), we define random variables 
Yk,1, . . . , Yk,t+εn−2 as follows. Let Yk,y be the number of vertices x ∈ Xt,d such 
that y is the k-th leftmost vertex of N−(x) and the first k vertices of N−(x) are 
all embedded to NH(v). Further, for each 0 ≤ k ≤ d, we let Yk be the event that 
(1 ± 10βt)kpk|Xt,d| ± kε2n/d vertices x ∈ Xt,d have all of the first k vertices of N−(x)
embedded to NH(v). Observe that the event Yk is precisely the statement that

t+εn−2∑
y=1

Yk,y = (1 ± 10βt)kpk|Xt,d| ± kε2n/d . (5.10)

Our bad event then satisfies

Bv,d ⊆ D \ Yd ,
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because (1 ±10βt)d = 1 ±20Dβt. In order to bound the probability of Bv,d we cover Bv,d

with d events, each of whose probabilities we can bound with Lemma 4. For this purpose 
we define the event

Ek = Yk−1 ∩ D

for each 1 ≤ k ≤ d. Note that E1 = D since Y0 holds trivially with probability one. We 
thus have

Bv,d ⊆ D \ Yd ⊆
⋃

1≤k≤d

(
Ek \ Yk

)
.

Our aim then is to show that for each 1 ≤ k ≤ d we have

P (Ek \ Yk) ≤ n−12/(d ·D) . (5.11)

Note that this and a union bound over the d choices of k gives (5.8).
To establish (5.11) we would like to apply Lemma 4. Hence we need to argue that 

either Ek fails, or we can estimate 
∑t+εn−2

y=1 E (Yk,y|Hy−1), where Hy−1 is the history of 
embedding decisions taken in RandomEmbedding up to and including the embedding of 
vertex y− 1. To this end, for y ∈ [t + εn − 2] let Zk,y be the number of vertices x ∈ Xt,d

such that y is the k-th leftmost vertex of N−(x) and the first k− 1 vertices of N−(x) are 
embedded to NH(v). Then the quantity Zk,y is determined by Hy−1 and

E (Yk,y|Hy−1) = Zk,y · P
(
y ↪→ NH(v)|Hy−1

)
. (5.12)

Observe further that

t+εn−2∑
y=1

Zk,y =
t+εn−2∑
y=1

Yk−1,y , (5.13)

because both sums count the number of vertices x ∈ Xt,d such that the first k−1 vertices 
of N−(x) are embedded to NH(v), in the first sum grouped by their k-th left neighbour, 
and in the second sum by their (k − 1)-st left neighbour.

Assume now that y ∈ V (G) is fixed and that Hy−1 is such that Hy−1 ∩ Ek 
= ∅, and 
let us bound P

(
y ↪→ NH(v)|Hy−1

)
. Since Hy−1 ∩Ek 
= ∅ and D ⊇ Ek, by definition of D

the (βt, 2D + 3)-diet condition holds for (H, imψy−εn), where we have to subtract εn in 
the index of ψy−εn because y could be as large as t + εn − 2 (and we only know that the 
diet condition holds up to time t − 1). This implies that for each set S of vertices in H

with |S| ≤ 2D + 3 we have∣∣NH(S) \ imψy−1
∣∣ = (1 ± βt)p|S|(n− y + εn) ± εn

|S| |S|
= (1 ± βt)p (n− y + 1) ± 2εn = (1 ± 2βt)p (n− y + 1) ,
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where the last inequality follows from γ ≤ p and ε ≤ αγ2D+3 ≤ 1
2βtγ

2D+3. We conclude 
that the (2βt, 2D+3)-diet condition holds for (H, imψy−1). Since deg−(y) ≤ D it follows 
that ∣∣Cy−1(y) \ imψy−1

∣∣ = (1 ± 2βt)pdeg−(y)(n− y + 1) and∣∣NH(v) ∩ Cy−1(y) \ imψy−1
∣∣ = (1 ± 2βt)p1+deg−(y)(n− y + 1) .

Therefore we have

P
(
y ↪→ NH(v)|Hy−1

)
=

∣∣NH(v) ∩ Cy−1(y) \ imψy−1
∣∣∣∣Cy−1(y) \ imψy−1

∣∣ = (1 ± 10βt)p .

We conclude from (5.12) that

t+εn−2∑
y=1

E(Yk,y|Hy−1) = (1 ± 10βt)p
t+εn−2∑
y=1

Zk,y , (5.14)

unless Ek fails. Further, unless Ek fails, we have

t+εn−2∑
y=1

Zk,y
(5.13)=

t+εn−2∑
y=1

Yk−1,y
(5.10)= (1 ± 10βt)k−1pk−1|Xt,d| ± (k − 1)ε2n/d .

Plugging this in (5.14), we get that Ek fails or we have

t+εn−2∑
y=1

E (Yk,y|Hy−1) = (1 ± 10βt)kpk|Xt,d| ± (k − 1)ε2n/d .

Since 0 ≤ Yk,y ≤ deg(y) for each y, we can thus apply Lemma 4 with the event E = Ek, 
with μ ± ν = (1 ± 10βt)kpk|Xt,d| ± (k − 1)ε2n/d, and with 	 = ε2n/d to conclude that

P (Ek and not Yk) = P

(
Ek and

t+εn−2∑
y=1

Yk,y 
= μ± (ν + 	)
)

≤ 2 exp
(
− 2	2∑t+εn−2

y=1 deg(y)2

)
.

By Lemma 7 applied to G, and because Δ(G) ≤ cn/ log n, we have

2	2∑t+εn−2
y=1 deg(y)2

= 2ε4n2

d2 ∑t+εn−2
y=1 deg(y)2

≥ ε4 log n
d2Dc

,

and hence, because c ≤ D−4ε4/100 and d ≤ D, we obtain (5.11) as desired. �
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Finally, we prove the diet lemma.

Proof of Lemma 26. First observe that if ψt−1 satisfies the (βt−1, 2D+3)-diet condition, 
RandomEmbedding cannot fail at time t, so ψt exists. We first state a claim that if the 
diet condition holds up to time t − εn, then for any given large set T ⊆ V (H), with high 
probability either the cover condition fails at some time before t − εn, or ψt−1 embeds 
about the expected fraction of each interval of εn vertices to T .

Claim 26.1. For every 1 ≤ j ≤ t − εn + 1, and for every T ⊆ V (H) \ imψj with |T | ≥
1
2γ

2D+3δn, if the (βj , 2D + 3)-diet condition holds for (H, imψj), then with probability 
at least 1 − n−2D−19, one of the following occurs.

(a) ψt does not have the (ε, 20Dβj, j)-cover condition, or
(b)

∣∣{x : j ≤ x < j + εn, ψt−1(x) ∈ T}
∣∣ = (1 ± 40Dβj) |T |εn

n−j .

We defer the proof of this claim until later, and move on to state a second claim, which 
we will deduce from Claim 26.1. Let � = � t

εn�. We claim that either we witness a failure 
of the diet or cover conditions before time t, or the set NH(R) ∩ NH∗(S \ R) \ imψ
εn

has about the expected size for each R ⊆ S ⊆ V (H) with |S| ≤ 2D + 3.

Claim 26.2. With probability at least 1 − n−10, one of the following holds.

(a) The (βj , 2D + 3)-diet condition fails for (H, imψj) for some 1 ≤ j ≤ t − 1, or
(b) the (ε, 20Dβj , j)-cover condition fails for ψt−1 for some 1 ≤ j ≤ t + 1 − εn, or
(c) for every R ⊆ S ⊆ V (H) with |S| ≤ 2D + 3, we have

∣∣NH(R) ∩ NH∗(S \R) \ imψ
εn

∣∣ =

∣∣NH(R) ∩ NH∗(S \R)
∣∣ 
−1∏
k=0

(
1 −

(
1 ± 40Dβkεn

)
εn

n−kεn

)
.

(5.15)

Before proving these claims, we show that Claim 26.2 implies the lemma. We want to 
show that (5.15) holding implies that we do not have witnesses for a failure of the diet 
condition nor the codiet condition at time t. Indeed, taking logs, we have

log
∣∣NH(R) ∩ NH∗(S \R) \ imψ
εn

∣∣
= log

∣∣NH(R) ∩ NH∗(S \R)
∣∣ +


−1∑
k=0

log
(
1 − (1 ± 40Dβkεn) εn

n−kεn

)

= log
∣∣NH(R) ∩ NH∗(S \R)

∣∣ +

−1∑(

log n−(k+1)εn
n−kεn + log

(
1 ± 40Dβkεnεn

n−(k+1)εn
))
k=0
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= log
∣∣NH(R) ∩ NH∗(S \R)

∣∣ + log
(
1 − �ε

)
± 2


−1∑
k=0

40Dβkεnε
1−(k+1)ε ,

where the final equality holds since 1 −(k+1)ε ≥ δ, and hence by choice of ε the quantity 
40Dβkεnε
1−(k+1)ε is close to 0. Since at most εn vertices are removed from NH(R) ∩NH∗(S \R) \
imψ
εn to obtain NH(R) ∩ NH∗(S \R) \ imψt, we conclude∣∣NH(R) ∩ NH∗(S \R) \ imψt

∣∣
= |NH(R) ∩ NH∗(S \R)| · n− t± εn

n
· exp

(
± 80Dδ−1ε


−1∑
k=0

βkεn

)
± εn .

(5.16)

We first consider the case R = S, when NH(R) ∩ NH∗(S \ R) = NH(S), and deduce 
that S does not witness a failure of the (βt, 2D+3)-diet condition for (H, imψt). Indeed, 
from (5.16) we have

∣∣NH(S) \ imψt

∣∣ = |NH(S)| · n− t± εn

n
· exp

(
± 80Dδ−1ε


−1∑
k=0

βkεn

)
± εn

= (1 ± α)p|S|(n− t± εn)
(
1 ± 200Dδ−1ε


−1∑
k=0

βkεn

)(
1 ± 2εn

p|S|(n− t)

)
where the second equality uses the fact that H is (α, 2D+3)-quasirandom. We thus have

∣∣NH(S) \ imψt

∣∣ = (1 ± α)p|S|(n− t)
(
1 ± 200Dδ−1ε


−1∑
k=0

βkεn

)
(1 ± 4εδ−1γ−|S|)

(5.3)= (1 ± α)p|S|(n− t)(1 ± βt/4)(1 ± 4εδ−1γ−|S|)

= (1 ± βt)p|S|(n− t) .

Now, we let R be any subset of S and aim to establish the codiet condition. Again 
from (5.16), we have

∣∣NH(R)∩NH∗(S \R) \ imψt

∣∣
= |NH(R) ∩ NH∗(S \R)| · n− t± εn

n
· exp

(
± 80Dδ−1ε


−1∑
k=0

βkεn

)
± εn

= (1 ± η)p|R|p̂|S\R|(n− t± εn)
(
1 ± 200Dδ−1ε


−1∑
k=0

βkεn

)(
1 ± 2εn

p|S|(n− t)

)
since (H, H∗) is (η, 2D + 3)-coquasirandom. Therefore
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∣∣NH(R)∩NH∗(S \R) \ imψt

∣∣
= (1 ± η)p|R|p̂|S\R|(n− t)

(
1 ± 200Dδ−1ε


−1∑
k=0

βkεn

)
(1 ± 4εδ−1γ−|S|)

(5.3)= (1 ± η)(1 ± βk)(1 ± 4εδ−1γ−|S|)p|R|p̂|S\R|(n− t)

= (1 ± 2η)p|R|p̂|S\R|(n− t) .

This concludes the proof of the lemma, modulo the proofs of Claim 26.1 and 
Claim 26.2, which we now provide.

Proof of Claim 26.1. Let j and T be as in the statement. Fix 0 ≤ d ≤ D. We want to 
show how to make use of the (ε, 20Dβj , j)-cover condition for ψj (which we have when 
Part (a) fails) to deduce that the assertion of Part (b) holds with high probability. That 
is, we consider the number of vertices in Xj,d embedded to T . In order to apply Lemma 4, 
we want to estimate the sum over x ∈ Xj,d of the probability that x is embedded to T , 
conditioning on ψx−1, that is, we need to estimate the number∣∣T ∩ Cx−1(x) \ imψx−1

∣∣∣∣Cx−1(x) \ imψx−1
∣∣ . (5.17)

By the diet condition, we have 
∣∣Cx−1(x) \imψj

∣∣ = (1 ±βj)pd(n −j). Since j < t ≤ (1 −δ)n, 
since x ≤ j + εn, since p ≥ γ, and by choice of ε, we have

∣∣Cx−1(x) \ imψx−1
∣∣ = (1 ± 2βj)pd(n− j) , (5.18)

thus providing a bound on the denumerator in (5.17). (Note that this bound on the 
denumerator does not depend on the choice of x ∈ Xj,d.) Now x is embedded uniformly 
at random into Cx−1(x) \ imψx−1, so it remains to determine the sum of the numerators 
in (5.17),∑

x∈Xj,d

∣∣T ∩ Cx−1(x) \ imψx−1
∣∣ =

∑
x∈Xj,d

∣∣T ∩ Cx−1(x) \ imψj

∣∣± ε|Xj,d|n

=
∑

x∈Xj,d

∣∣T ∩ Cx−1(x)
∣∣± ε2n2 , (5.19)

where the first equality uses j ≤ x < j+εn, and the second the fact that T ⊆ V (H) \imψj

and that |Xj,d| ≤ εn. But now if the (ε, 20Dβj , j)-cover condition holds for ψj, then 
summing over v ∈ T we obtain∑ ∣∣T ∩ Cx−1(x)

∣∣ = |T |(1 ± 20Dβj)pd|Xj,d| ± ε2|T |n ,

x∈Xj,d
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which, combined with (5.19), gives∑
x∈Xj,d

∣∣T ∩ Cx−1(x) \ imψx−1
∣∣ = (1 ± 20Dβj)pd|T ||Xj,d| ± 2ε2n2 . (5.20)

We can thus apply Lemma 4, setting E to be the event that the (ε, 20Dβj , j)-cover 
condition holds for ψj . The random variables whose sum we are estimating are the 
Bernoulli random variables indicating whether each x ∈ Xj,d is embedded to T , so the 
sum of squares of their ranges is at most εn. Combining (5.18) and (5.20), the expected 
number of vertices of Xj,d embedded to T is

(1 ± 20Dβj)pd|T ||Xj,d| ± 2ε2n2

(1 ± 2βj)pd(n− j) = (1 ± 30Dβj)
|T ||Xj,d|
n− j

± 4ε2γ−dδ−1n ,

where we use n − j ≥ δn and p ≥ γ. The probability that the (ε, 20Dβj, j)-cover con-
dition holds for ψj and the outcome differs from this by more than ε2n is at most 
2 exp(−2ε3n) ≤ n−2D−20, so taking the union bound over the D + 1 choices of d and 
summing, we conclude that with probability at most n−2D−19 the (ε, 20Dβj , j)-cover 
condition holds for ψj and the number of vertices x with j ≤ x < j + εn embedded to T

is not equal to

(1 ± 30Dβj)
|T |εn
n− j

± 4(D + 1)ε2γ−Dδ−1n± (D + 1)ε2n = (1 ± 40Dβj)
|T |εn
n− j

,

where the final equality uses our lower bound on |T | and the choice of ε. This is what 
we wanted to show. �
Proof of Claim 26.2. Given a set S ⊆ V (H) with |S| ≤ 2D + 3 and a subset R ⊆ S, for 
each integer 0 ≤ k < �, we set Tk = NH(R) ∩ NH∗(S \ R) \ imψkεn. Observe that as 
(H, H∗) is (η, 2D + 3)-coquasirandom, we have

|T0| ≥ (1 − η)p|R|p̂|S\R|n ≥ (1 − η)2D+4γ2D+3n .

For each 0 ≤ k < �, suppose that

|Tk| ≥ (1 − η)2D+4(1 − 80Dβnδ
−1ε)kγ2D+3(n− kεn)

≥ 9
10 (1 − 80Dβnδ

−1ε)1/εγ2D+3δn ≥ 9
10 exp

(
− 200Dβnδ

−1)γ2D+3δn

>
1
2γ

2D+3δn ,

where the final line follows since 200Dβnδ
−1 ≤ 400CDαδ−1 < 1/100 by choice of α. 

We can thus apply Claim 26.1 with T = Tk and obtain that with probability at least 
1 −n−2D−19 either we have a failure of the diet or the cover condition is witnessed before 
time k, or we have
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|Tk+1| = |Tk|
(
1 −

(
1 ± 40Dβkεn

) εn

n− kεn

)
.

Observe that then

|Tk+1| ≥ |Tk|
(

1 − εn

n− kεn
− 40Dβnδ

−1ε

)
> (1 − η)2D+4(1 − 80Dβnδ

−1ε)k+1γ2D+3(n− (k + 1)εn
)
,

providing the assumption for using of Claim 26.1 in step k + 1.
Repeating this process for each 0 ≤ k ≤ � − 1 we get that with probability at least 

1 − ε−1n−2D−19 either a failure of the diet or cover condition is witnessed before time 
�εn, or we have

∣∣T


∣∣ =
∣∣∣NH(R) ∩ NH∗(S \R)

∣∣∣ 
−1∏
k=0

(
1 − (1 ± 40Dβkεn) εn

n−kεn

)
.

Taking a union bound over the at most (2D + 3)n2D+3 choices of S and the at 
most 22D+3 choices of R ⊆ S, we see that with probability at least 1 − n−10 either a 
failure of the diet or cover condition is witnessed before time t, or the above equation 
holds for all |S| ≤ 2D + 3 and R ⊆ S. �
6. Maintaining quasirandomness

In this section we provide the proofs of Lemma 16 and Lemma 17.

6.1. Initial coquasirandomness

We begin with the easy proof of Lemma 16, which states that splitting the edges of a 
quasirandom graph randomly gives a coquasirandom pair with high probability.

Proof of Lemma 16. Using (2.1) we see that the densities p0 and p∗0 of H0 and H∗
0 satisfy

p0 = (1 ± α0
1000D )(p− γ) and p∗0 = (1 ± α0

1000D )γ (6.1)

with probability at least 1 − n−10, giving the first part of Lemma 16.
Now, let R ⊆ S ⊆ V (Ĥ) be two sets of size at most 2D + 3. By quasirandomness 

of Ĥ we have |N
Ĥ

(S)| = (1 ± ξ)p|S|n. Observe that each vertex of N
Ĥ

(S) appears with 
probability q|R|(1 − q)|S\R| in NH∗

0 (R) ∩ NH0(S \R). Hence,

E
(∣∣NH∗

0 (R) ∩ NH0(S \R)
∣∣) = q|R|(1 − q)|S\R|(1 ± ξ)p|S|n .

Observe also that for distinct vertices in N
Ĥ

(S) the events whether these appear in 
NH∗

0 (R) ∩ NH0(S \ R) are independent. Using again (2.1), with probability at least 1 −
n−2D−10 we have that
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∣∣NH∗
0 (R) ∩ NH0(S \R)

∣∣ = q|R|(1 − q)|S\R|(1 ± 2ξ)p|S|n . (6.2)

Taking the union bound we conclude that (6.2) holds for all S ⊆ V (Ĥ) with |S| ≤
2D + 3 and R ⊆ S with probability at least 1 − n−6.

Now, assume that (6.1) holds. Then the right-hand side of (6.2) can be rewritten as

(1 ± 2ξ)γ|R|(p− γ)|S\R|n = (1 ± 2ξ)
(

p∗
0

1± ξ0
1000D

)|R| (
p0

1± α0
1000D

)|S\R|
n

= (1 ± 2ξ)(1 ± α0
100 )(p∗0)|R|p

|S\R|
0 =

(
1 ± 1

10α0
)
(p∗0)|R|p

|S\R|
0 .

We conclude that (H∗
0 , H0) is 

( 1
10α0, 2D + 3)-coquasirandom with probability at least 

1 − n−5. �
6.2. Maintaining coquasirandomness

In this subsection we prove Lemma 17. We need to show that, provided coquasiran-
domness is maintained up to stage s − 1 and RandomEmbedding does not fail, it is likely 
that coquasirandomness holds after stage s, when Gs is embedded into Hs−1 and we 
obtain Hs. Let us briefly sketch the idea (for convenience focusing only on quasirandom-
ness of Hs). We fix a set R ⊆ V (Ĥ) with |R| ≤ 2D + 3, and consider the running of 
PackingProcess up to stage s. We want to show that it is very unlikely that R witnesses 
the failure of Hs to be quasirandom, since then the union bound over choices of R tells us 
that it is likely that Hs is quasirandom. In other words, we want to know that 

∣∣NHs
(R)

∣∣
is very likely close to the expected size. We write∣∣NHs

(R)
∣∣ =

∣∣NH0(R)
∣∣− Y1 − · · · − Ys ,

where Yi =
∣∣NHi−1(R)

∣∣ − ∣∣NHi
(R)

∣∣ is the change at step i, and apply Lemma 5 to 
show that the sum Y1 + · · · + Ys is very likely to be close to its expectation. So proving 
Lemma 17 boils down to estimating accurately E(Yi|Hi−1) and finding a reasonable 
upper bound for E(Y 2

i |Hi−1). The latter turns out to be relatively straightforward and 
is done in Lemma 31. We now outline the route to the former estimation.

Observe that Yi is equal to the number of stars in Hi−1 whose leaves are the vertices 
in R and at least one of whose edges is used in embedding Gi to Hi−1. By linearity 
of expectation, E(Yi|Hi−1) is equal to the sum, over stars in Hi−1 whose leaves are R, 
of the probability that at least one edge in the star is used in embedding Gi. We will 
see that this probability is about the same for any given star S, and the problem is to 
calculate it. To do this we need to consider the running of RandomEmbedding.

We begin in Lemma 27 by estimating the chance that a given vertex, or one of a 
given pair of vertices, is used in a short time interval in RandomEmbedding. From this 
we deduce in Lemma 28 the probability that a given vertex, or one of a pair, is used in 
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any given time interval. This helps us to establish, in Lemma 29, that any given edge of 
Hi−1 is about equally likely to be used in the embedding of Gi. Finally, in Lemma 30
we show that the chance of two or more edges in S being used in the embedding of 
Gi is tiny, from which it follows that the chance of one or more is about |R| times the 
probability of any given edge being used.

All of these estimations depend upon Hi−1 being sufficiently quasirandom, and the 
errors depend upon the quasirandomness αi−1. Because the errors add up over time, it 
is important that the αs increase quite fast with s. Here it is very important that the 
dependence of the error term in Lemma 24 is linear in the input α and not much worse: 
otherwise it would not be possible to choose any sequence αs such that the error remains 
bounded by αs at each stage s.

As the main work is to estimate the probability that, for a given Hs−1 and Gs, and 
R and v, RandomEmbedding uses an edge of the star with centre v and leaves R when 
embedding Gs into Hs−1, for most of this section we will consider fixed graphs G and H. 
We now embark upon this probability estimation.

First, for given u, v ∈ V (H), we estimate the probability that RandomEmbedding
embeds a vertex to {u, v} in the short interval of time [t, t + εn), conditioning on not 
having done so before time t, and the probability that RandomEmbedding embeds a 
vertex to v in the interval of time [t, t + εn), conditioning on not having done so before 
time t. In both cases, we need to assume that the history Ht−1 of embedding up to time 
t − 1 is typical (in a sense which we now make precise).

Lemma 27. Given D ∈ N and γ > 0, let δ, α0, α2n, C, ε be as in Setting 15. The following 
holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Suppose that G is a graph on 
[n] such that deg−(x) ≤ D for each x ∈ V (G), and H is an (α, 2D + 3)-quasirandom 
graph with n vertices and p

(
n
2
)

edges, with p ≥ γ. Suppose that u and v are two distinct 
vertices of H. When RandomEmbedding is run to embed G[[n−δn]] into H, for any 
1 ≤ t ≤ n + 1 − (δ + ε)n we have the following two statements.

(a) Suppose the history Ht−1 up to and including embedding t − 1 is such that v /∈
imψt−1, the (Cα, 2D + 3)-diet condition holds for (H, imψt−1), and

PG↪→H (CoverE(Cα; t)|Ht−1) ≤ n−3 .

Then we have

PG↪→H
(
v ∈ imψt+εn−1

∣∣Ht−1
)

= (1 ± 10Cα) εn
n−t .

(b) Suppose the history Ht−1 up to and including embedding t − 1 is such that u, v /∈
imψt−1, the (Cα, 2D + 3)-diet condition holds for (H, imψt−1), and

PG↪→H (CoverE(Cα; t)|Ht−1) ≤ n−3 .
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Then we have

PG↪→H
(∣∣{u, v} ∩ imψt+εn−1

∣∣ ≥ 1
∣∣∣Ht−1

)
= (1 ± 10Cα) 2εn

n−t .

Before proving Lemma 27, we first sketch its proof. For Lemma 27(a), the idea is 
that either the cover condition fails, or v is in candidate sets of roughly pd|Xt,d| vertices 
x of Xt,d (for each d). Because the diet condition holds at time t − 1, each of these 
vertices x is embedded uniformly at random to a set of roughly pd(n − t) vertices. 
One would like to say that it follows that the probability that x is embedded to v is 
thus about 1/(pd(n − t)) and the desired result follows by summing these probabilities. 
Unfortunately this is not true: the probability that x is embedded to v also depends 
on the probability that no previous vertex was embedded to v. In order to get around 
this, we define the following ModifiedRandomEmbedding, which generates a sequence of 
embeddings with an identical distribution to RandomEmbedding, but which in addition 
generates a sequence of reported vertices. The modification we make is simple: at each 
time 1 ≤ t′ ≤ n − δn, RandomEmbedding chooses a vertex of Ct′−1

G↪→H(t′) \ imψt′−1. In 
ModifiedRandomEmbedding, we instead choose a vertex w of Ct′−1

G↪→H(t′) \(imψt′−1 \{v}), 
and report this vertex. If the reported vertex w is not in imψt′−1, we set ψt′ = ψt′−1 ∪
{t′ ↪→ w}, as in RandomEmbedding. If the reported vertex is in imψt′−1 (which happens 
only if w = v) we choose w′ uniformly at random in Ct′−1

G↪→H(t′) \ imψt′−1, and set 
ψt′ = ψt′−1 ∪ {t′ ↪→ w′}. We will see that it is easy to calculate the expected number of 
times v is reported, and also easy to show that the contribution due to v being reported 
multiple times is tiny. The point is that the probability of RandomEmbedding using v
is the same as the probability that ModifiedRandomEmbedding reports v at least once, 
which we can thus calculate.

Lemma 27(b) is established similarly, using a slightly different version of ModifiedRan-
domEmbedding.

Proof of Lemma 27(a). Instead of RandomEmbedding, we consider ModifiedRandomEm-
bedding as defined above, which creates the same embedding distribution. For each i, let 
r(i) be the vertex reported by ModifiedRandomEmbedding at time i. We shall use the 
following two auxiliary claims.

Define E as the random variable counting the times when v is reported by Modi-
fiedRandomEmbedding in the interval t ≤ x < t + εn,

E =
∣∣ {x ∈ [t, t + εn) : r(x− 1) = v

} ∣∣ .

The probability that RandomEmbedding uses v in the interval t ≤ x < t +εn, conditioning 
on Ht−1, is equal to the probability that ModifiedRandomEmbedding reports v at least 
once in that interval, which probability is by definition at least

E (E | Ht−1) −
εn∑

P
(
v is reported at least k times in the interval [t, t + εn)

∣∣Ht−1
)
.

k=2
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Our first claim estimates E (E | Ht−1).

Claim 27.1. We have that

E (E | Ht−1) = (1 ± 4Cα) εn

n− t
± 4(D + 1)ε2γ−Dδ−1 .

Our second claim is that the sum in the expression above is small.

Claim 27.2. We have that
εn∑
k=2

P
(∣∣{x ∈ [t, t + εn) : r(x− 1) = v

}∣∣ ≥ k
)
≤ 8ε2γ−2Dδ−2 .

By choice of ε, we have 16(D + 1)ε2γ−2Dδ−2 < Cαε. Thus the two claims give 
Lemma 27(a). We now prove the auxiliary Claims 27.1 and 27.2.

Proof of Claim 27.1. Note that since the (Cα, 2D + 3)-diet condition holds for
(H, imψt−1), for each t ≤ x < t + εn, setting S = ψx−1(N−(x)), we have9

∣∣Cx−1(x) \ imψx−1
∣∣± 2 =

∣∣NH(S) \ imψt−1
∣∣± εn± 2

= (1 ± Cα)p|N
−(x)|(n− t) ± εn± 2

= (1 ± 2Cα)p|N
−(x)|(n− t) .

(6.3)

By linearity of expectation, we have

E
[
E | Ht−1

]
=

t+εn−1∑
x=t

P
(
v is reported at time x

∣∣Ht−1
)

=
t+εn−1∑

x=t

E

(
1{v ∈ Cx−1(x)}

|Cx−1(x) \ (imψx−1 \ {v})|

∣∣∣Ht−1

)

=
t+εn−1∑

x=t

E

(
1{v ∈ Cx−1(x)}

|Cx−1(x) \ imψx−1| ± 1

∣∣∣Ht−1

)
.

(6.4)

Using (6.3), we get

E (E | Ht−1) =
t+εn−1∑

x=t

P
(
v ∈ Cx−1(x)

∣∣Ht−1
)

(1 ± 2Cα)p|N−(x)|(n− t)
.

Splitting this sum up according to |N−(x)|, and again using linearity of expectation, we 
have

9 We remark that in (6.3), the calculations are included with an error “±2” and for this proof “±1” would 
have sufficed. We reuse (6.3) in the proof of Lemma 27(b) where the bigger error is needed.
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E (E | Ht−1) =
D∑

d=0

E
(
|{x ∈ Xt,d : v ∈ Cx−1(x)}|

∣∣Ht−1
)

(1 ± 2Cα)pd(n− t) .

Now for each 0 ≤ d ≤ D, since the (ε, Cα, t)-cover condition holds with probability at 
least 1 − n−3 conditioning on Ht−1, we have

E
(
|{x ∈ Xt,d : v ∈ Cx−1(x)}|

∣∣Ht−1
)

= (1 − n−3)
(
(1 ± Cα)pd|Xt,d| ± ε2n

)
± n−3 · εn

= (1 ± Cα)pd|Xt,d| ± 2ε2n .

Substituting this in, we have

E (E | Ht−1) =
D∑

d=0

(1 ± Cα)pd|Xt,d| ± 2ε2n

(1 ± 2Cα)pd(n− t) = (1 ± 4Cα) εn
n−t ± 4(D + 1)ε2γ−Dδ−1 ,

where the last equality uses p ≥ γ and n − t ≥ δn. �
Proof of Claim 27.2. Since the (Cα, 2D + 3)-diet condition holds for (H, imψt−1), since 
p ≥ γ, and since n −t ≥ δn, for each x ∈ [t, t +εn), when we embed x we report a uniform 
random vertex from a set of size at least 1

2γ
Dδn. The probability of reporting v when we 

embed x is thus at most 2γ−Dδ−1n−1, conditioning on Ht−1 and any embedding of the 
vertices [t, x). Since the conditional probabilities multiply, the probability that at each 
of a given k-set of vertices in [t, t + εn) we report v is at most 2kγ−kDδ−kn−k. Taking 
the union bound over choices of k-sets, we have

εn∑
k=2

P
(
v is reported at least k times in the interval [t, t + εn)

∣∣Ht−1
)

≤
εn∑
k=2

(
εn

k

)
2kγ−kDδ−kn−k ≤

εn∑
k=2

(
2εγ−Dδ−1)k ≤ 4ε2γ−2Dδ−2

1−2εγ−Dδ−1 ≤ 8ε2γ−2Dδ−2 ,

where we use the bound 
(
εn
k

)
≤ (εn)k and sum the resulting geometric series. �

The proof of Lemma 27(b) is similar, and we only focus on the differences.

Proof of Lemma 27(b). We define MoreModifiedRandomEmbedding this time reporting 
a uniform random vertex of Ct−1

G↪→H(t) \ (imψt−1 \ {u, v}) at each time step t, and ei-
ther embedding t to it (if it is not in imψt−1) or otherwise picking as before a uniform 
random vertex of Ct−1

G↪→H(t) \ imψt−1 to embed t to. As before, the embedding distri-
bution generated by this procedure is the same as for RandomEmbedding. We let E′ be 
the number of times u or v are reported in the interval t ≤ x < t + εn. Again, the 
probability that RandomEmbedding uses either u or v is equal to the probability that 
MoreModifiedRandomEmbedding reports u or v at least once, which by definition is
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E (E′ |Ht−1)−
εn∑
k=2

P
(
u or v is reported at least k times in the interval [t, t + εn)

∣∣Ht−1
)
.

By linearity of expectation, E (E′|Ht−1) is equal to the expected number of times u
is reported plus the expected number of times v is reported. We now argue that these 
latter quantities are (1 ±4Cα) εn

n−t ±4(D+1)ε2γ−Dδ−1. This follows from calculations in 
Claim 27.1, with a small change which we now describe. Note that Claim 27.1 deals with 
ModifiedRandomEmbedding, where reported vertices are taken from Cx−1(x) \(imψx−1 \
{v}) and not from Cx−1(x) \ (imψx−1 \ {u, v}). This is corrected if we rewrite (6.4) as

E (E′ | Ht−1) =
t+εn−1∑

x=t

E

(
1{u ∈ Cx−1(x)} + 1{v ∈ Cx−1(x)}

|Cx−1(x) \ imψx−1| ± 2

∣∣∣Ht−1

)
.

Then the rest of the calculations in Claim 27.1 applies (see Footnote 9) We thus have

E (E′ | Ht−1) = (1 ± 4Cα) 2εn
n−t ± 8(D + 1)ε2γ−Dδ−1 .

Again, it remains to show that the effect of reporting u or v multiple times is small. 
This time the probability at any step x that one of u and v is reported, conditioning 
on the history up to time x − 1, is at most 4γ−2Dδ−2n−1, and by the same calculation 
as above we conclude that the summation is bounded above by 16ε2γ−2Dδ−2, which as 
before gives Lemma 27(b). �

We now use Lemma 27 to estimate the probability of embedding a vertex to v, or to 
{u, v}, in the interval (t0, t1] (which may be of any length). This time, we do not condition 
on one typical embedding history up to time t0, but rather on a history ensemble up 
to time t0 which is not very unlikely. This allows us to drop the typicality restriction, 
simply because only very few histories can be atypical.

Lemma 28. Given D ∈ N and γ > 0, let δ, α0, α2n, C, ε be as in Setting 15. Then the 
following holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Suppose that G is 
a graph on [n] such that deg−(x) ≤ D for each x ∈ V (G), and H is an (α, 2D +
3)-quasirandom graph with n vertices and p

(
n
2
)

edges, with p ≥ γ. Let 0 ≤ t0 < t1 ≤
n − δn. Let L be a history ensemble of RandomEmbedding up to time t0, and suppose 
that P (L ) ≥ n−4. Then the following hold for any distinct vertices u, v ∈ V (H).

(a) If v /∈ imψt0 then we have

PG↪→H(v /∈ imψt1 |L ) = (1 ± 100Cαδ−1)n−1−t1
n−t0

.

(b) If u, v /∈ imψt0 then we have

PG↪→H(u, v /∈ imψt1 |L ) = (1 ± 100Cαδ−1)
(
n−1−t1
n−t0

)2
.
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Proof. We write P for PG↪→H . We shall first address part (a). We divide the interval 
(t0, t1] into k := �(t1 − t0)/εn� intervals, all but the last of length εn. Let L0 := L . 
Let, for each 1 ≤ i < k, the set Li be the embedding histories up to time t0 + iεn of 
RandomEmbedding which extend histories in Li−1 and are such that v /∈ ψt0+iεn. Let 
Lk be the embedding histories up to time t1 extending those in Lk−1 such that v /∈ ψt1 . 
Thus we have

P (v /∈ imψt1 |L ) = P (Lk)/P (L0) .

Finally, for each 1 ≤ i ≤ k, let the set L ′
i−1 consist of all histories in Li−1 such that the 

(Cα, 2D + 3)-diet condition holds for (H, imψt0+(i−1)εn) and the probability that the 
(ε, Cα, t0 + 1 + (i − 1)εn)-cover condition fails, conditioned on ψt0+(i−1)εn, is at most 
n−3. In other words, L ′

i is the subset of Li consisting of typical histories, satisfying the 
conditions of Lemma 27.

We now determine P (Lk) in terms of P (L0), and in particular we show inductively 
that P (Li) > n−5 for each i. Observe that for any time t, the probability (not conditioned 
on any embedding) that either the (Cα, 2D+3)-diet condition fails for (H, imψi) for some 
i ≤ t or that the (ε, Cα, t +1)-cover condition has probability greater than n−3 of failing, 
is at most 2n−6 by Lemma 24. In other words, for each i we have P (Li \ L ′

i ) ≤ 2n−6. 
Thus by Lemma 27(a) we have

P (Li) =
(
1 − (1 ± 10Cα) εn

n−t0−(i−1)εn
)
P (L ′

i−1) ± 2n−6

=
(
1 − (1 ± 10Cα) εn

n−t0−(i−1)εn
)(
P (Li−1) ± 2n−6)± 2n−6

=
(
1 − (1 ± 20Cα) εn

n−t0−(i−1)εn
)
P (Li−1) ,

where the final equality uses the lower bound P (Li−1) ≥ n−5. Similarly, we have 
P (Lk) =

(
1 ± (1 + 20Cα) εn

n−t1

)
P (Lk−1).

Putting these observations together, we can compute P (Lk):

P (Lk) =
(
1 ± (1 + 20Cα) εn

n−t1

)
P (L0)

k−1∏
i=1

(
1 − (1 ± 20Cα) εn

n−t0−(i−1)εn

)
.

Observe that the approximation log(1 + x) = x ± x2 is valid for all sufficiently small x. 
In particular, since n − t0 − (i − 1)εn ≥ n − t1 ≥ δn and by choice of ε, for each i we 
have

log
(
1 − (1 ± 20Cα) εn

n−t0−(i−1)εn

)
= −(1 ± 30Cα) εn

n−t0−(i−1)εn .

Thus we obtain

logP (Lk) = logP (L0) ± (1 + 30Cα) εn
n−t1

−
k−1∑

(1 ± 30Cα) εn
n−t0−(i−1)εn
i=1
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= logP (L0) ± 2δ−1ε− (1 ± 40Cα)
(k−1)εn∫
x=0

1
n−t0−x dx

= logP (L0) ± 2δ−1ε− (1 ± 50Cα)
(
log(n− t0) − log(n− 1 − t1)

)
= logP (L0) + log n−1−t1

n−t0
± 2δ−1ε± 50Cα log δ−1 , (6.5)

where we use t1 ≤ n −δn, and we justify that the integral and sum are close by observing 
that for each i in the summation, if (i − 1)εn ≤ x ≤ iεn then we have

1
n−t0−iεn ≤ 1

n−t0−x ≤ 1
n−t0−(i−1)εn ≤ (1 + α) 1

n−t0−iεn ,

where the final inequality uses n − t0 − iεn ≤ n − t1 ≤ δn and the choice of ε. By 
choice of ε, this gives part (a). Furthermore, (6.5), and the fact t1 ≤ n − δn, imply that 
P (Lk) ≥ n−5. Since the Li form a decreasing sequence of events the same bound holds 
for each Li.

For part (b), we use the identical approach, replacing Lemma 27(a) with Lemma 27(b). 
Since the difference between these equations is a factor of 2, we obtain twice all the terms 
other than the term logP (L0) in the above equation, and hence the second statement 
of the claim. �

Next, we estimate the probability that the edge uv ∈ E(H) is used by RandomEm-
bedding when embedding G to H. The idea is the following. In order for uv to be used, 
there must be some xy ∈ G such that x is embedded to u and y to v, or vice versa. These 
events are disjoint, and so it suffices to estimate the probability of each separately and 
sum them. Without loss of generality, we can assume x is embedded before y. We need 
to calculate the probability that x is embedded to u and y to v. In other words, we need 
that all left-neighbours of x are embedded to neighbours of u, all left-neighbours of y
are embedded to vertices of v, other vertices are not embedded to {u, v}, and when we 
come to embed x and y we actually do embed them to u and v. The point of phrasing 
it like this is that, provided the diet condition holds, we can estimate accurately all the 
(conditional) probabilities of embedding individual vertices in N(x) ∪ N(y) ∪ {x, y} to 
neighbourhoods or to u or v, while Lemma 28 gives accurate estimates for the probability 
of any other vertex being embedded to u or v. Putting this together yields the desired 
accurate estimate for the probability that we have x ↪→ u and y ↪→ v.

Lemma 29. Given D ∈ N, and γ > 0, let constants δ, ε, C, α0, α2n be as in Setting 15. 
Then the following holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Suppose 
that G is a graph on [n] such that deg−(x) ≤ D for each x ∈ V (G), and H is an 
(α, 2D + 3)-quasirandom graph with n vertices and p

(
n
2
)

edges, with p ≥ γ. Let uv be an 
edge of H. When RandomEmbedding is run to embed G[[n−δn]] into H, the probability 
that an edge of G is embedded to uv is(

1 ± 500Cαδ−1)4D+2
p−1n−2 · 2e(G) .
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Proof. We first calculate the probability that a given pair (x, y), such that xy is an 
edge of G, is embedded to (u, v), in that order. Without loss of generality, suppose 
that x < y. Let z1, . . . , zk be the vertices N−(x) ∪N−(y) \ {x, y} in increasing order. Let 
j ∈ {0, . . . , k} be such that zj < x < zj+1 (where the case j = 0 and j = k corresponds to 
the situations when all zi’s are to the right or to the left of x, respectively; in these cases 
some notation below has to be modified in a straightforward way). Define time intervals 
using z1, . . . , zj , x, zj+1, . . . , zk, y as separators: I0 = [1, z1 − 1], I1 = [z1 + 1, z2 − 1], . . . , 
Ij = [zj + 1, x − 1], Ij+1 = [x + 1, zj+1 − 1], . . . , Ik+1 = [zk + 1, y − 1].

We now define a nested collection of events, the first being the trivial (always satisfied) 
event and the last being the event {x ↪→ u, y ↪→ v}, whose probability we wish to 
estimate. These events are simply that we have not yet (by given increasing times in 
RandomEmbedding) made it impossible to have {x ↪→ u, y ↪→ v}. We will see that 
we can estimate accurately the probability of each successive event, conditioned on its 
predecessor.

Let L ′
−1 be the trivial (always satisfied) event. If L ′

i−1 is defined, we let Li be the 
event that L ′

i−1 holds intersected with the event that

(A1) (if i ≤ j:) no vertex of G in the interval Ii is mapped to u or v, or
(A2) (if i > j:) no vertex of G in the interval Ii is mapped to v.

In other words, Li is the event that we have not covered u or v in the interval Ii. It turns 
out that we do not need to know anything else about the embeddings in the interval Ii.

If Li is defined, we let L ′
i be that event that Li holds and that

(B1) (if i < j:)
(i) (subcase zi+1 ∈ N−(x) \ N−(y):) we have the event zi+1 ↪→ NH(u) \ {v},
(ii) (subcase zi+1 ∈ N−(y) \ N−(x):) we have the event zi+1 ↪→ NH(v) \ {u},
(iii) (subcase zi+1 ∈ N−(x) ∩ N−(y):) we have the event zi+1 ↪→ NH(u) ∩ NH(v),

(B2) (if i = j:) we have the event x ↪→ u,
(B3) (if j < i ≤ k:) we have the event zi ↪→ NH(v) \ {u} (unlike the range i < j, there 

are no subcases here, as necessarily zi ∈ N−(y) \ N−(x)),
(B4) (if i = k + 1:) we have the event y ↪→ v.

Again, in order for {x ↪→ u, y ↪→ v} to occur we obviously need that a neighbour of x is 
embedded to a neighbour of u and so on, hence the above conditions.

By definition, we have L ′
k+1 = {x ↪→ u, y ↪→ v}. Since we have L ′

i ⊆ Li ⊆ L ′
i−1 for 

each i and L ′
−1 is the sure event, we see

P (x ↪→ u, y ↪→ v) =
k+1∏
i=0

P (Li)
P (L ′

i−1)
· P (L ′

i )
P (Li)

=
k+1∏
i=0

P
(
Li | L ′

i−1
)
P (L ′

i | Li) . (6.6)



P. Allen et al. / Advances in Mathematics 354 (2019) 106739 43
Thus, we need to estimate the factors in (6.6). This is done in the two claims below. 
In each claim we assume P (L ′

i ), P (Li) > n−4. This assumption is justified, using an 
implicit induction, since the smallest of all the events we consider is L ′

k+1, whose prob-
ability according to the following (6.10) is bigger than n−4.

Claim 29.1. We have

k+1∏
i=0

P
(
Li | L ′

i−1
)

= (1 ± 200Cαδ−1)2k+2 · (n− x)(n− y)
n2 .

Proof. By definition of (A1), for each i = 0, . . . , j, we have

P
(
Li | L ′

i−1
)

= (1 ± 200Cαδ−1) · (n− 1 − max(Ii))2

(n− min(Ii) + 1)2 (6.7)

by Lemma 28(b), with L = L ′
i−1. Note that looking at two consecutive indices i and 

i + 1 in (6.7) we have cancellation of the former nominator and the latter denominator, 
n − 1 − max(Ii) = n − min(Ii+1) + 1. Thus,

j∏
i=0

P
(
Li | L ′

i−1
)

= (1 ± 200Cαδ−1)2j+2 · (n− x)2

n2 . (6.8)

To express 
∏k+1

i=j+1 P
(
Li | L ′

i−1
)
, by definition of (A2) we have to repeat the above 

replacing Lemma 28(b) by Lemma 28(a). We get that

k+1∏
i=j+1

P
(
Li | L ′

i−1
)

= (1 ± 200Cαδ−1)2(k−j)+2 · n− y

n− x
. (6.9)

Putting (6.8) and (6.9) together, we get the statement of the claim. �
Claim 29.2. We have

k+1∏
i=0

P (L ′
i | Li) = (1 ± 100Cα)2D · 1

p(n + 1 − x)(n + 1 − y) .

Proof. Suppose that we have embedded up to vertex max(Ii), and that Li holds. The 
probability of the event L ′

i depends on which of the cases in (B1)-(B3) applies. When L ′
i

is defined using (B1)(i) then the probability P (L ′
i |Li) is equal to P ({zi+1 ↪→ NH(u) \

{v}}|Li). Let X := NH

(
ψ(N−

G(zi+1))
)
\ imψzi+1−1 be the set of vertices in H to which 

we could embed zi+1, given the embedding of all vertices before zi+1. Suppose that the 
(Cα, 2D + 3)-diet condition holds for (H, imψzi+1−1). Then we have
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P (zi+1 ↪→ NH(u) \ {v}|Li) = |(NH(u) \ {v}) ∩X|
|X| = |NH(u) ∩X| ± 1

|X|

= (1 ± Cα)p1+deg−(zi+1)(n− (zi+1 − 1)) ± 1
(1 ± Cα)pdeg−(zi+1)(n− (zi+1 − 1))

= (1 ± 4Cα)p ,

where the last line uses the (Cα, 2D + 3)-diet condition for (H, imψzi+1−1) twice, in 
the denominator with the set ψ(N−(zi+1)) and in the numerator with the set {u} ∪
ψ(N−(zi+1)). Recall that we assume the event Li, and so we have u /∈ imψzi+1−1. 
Therefore, the set {u} ∪ ψ(N−

G(zi+1)) has indeed size 1 + deg−(zi+1).
Likewise, when L ′

i is defined using (B1)(ii), using (B1)(iii), or using (B3) then 
P (L ′

i |Li) is the probability of {zi+1 ↪→ NH(v) \ {u}}, of {zi+1 ↪→ NH(u, v)}, or 
of {zi ↪→ NH(v) \ {u}, respectively. If the (Cα, 2D + 3)-diet condition holds for 
(H, imψzi+1−1), this probability is equal to (1 ± 4Cα)p, (1 ± 4Cα)p2, or (1 ± 4Cα)p, 
respectively.

Let us now deal with the terms P
(
L ′

j | Lj

)
and P

(
L ′

k+1 | Lk+1
)

which correspond 
to (B2) and (B4), respectively. Suppose first that Lj holds. In particular, N−(x) is embed-
ded to NH(u). Suppose first that the (Cα, 2D+3)-diet condition for (H, imψx−1) holds. 
With this, conditioning on the embedding up to time x − 1, the probability of embed-
ding x to u is (1 ±2Cα)p− deg−(x) 1

n+1−x . Similarly, if the (Cα, 2D+3)-diet condition for 
(H, imψy−1) holds, the probability of embedding y to v, provided N−(y) is embedded to 
NH(v), and conditioning on the embedding up to time y−1, is (1 ±2Cα)p− deg−(y) 1

n+1−y .
Thus, letting F be the event that the (Cα, 2D + 3)-diet condition fails at least once 

for (H, imψt), where t runs between 1 and y, we have

k+1∏
i=0

P (L ′
i | Li) =

((
(1 ± 4Cα)p

)
1 · ((1 ± 4Cα)p2)
2
· (1 ± 2Cα)p− deg−(x) 1

n+1−x · (1 ± 2Cα)p− deg−(y) 1
n+1−y

)
± P (F) ,

where we write �1 for the number of times (B1)(i), (B1)(ii), or (B3) applies, and �2 for 
the number of times (B1)(iii) applies. We have �1 +2�2 = deg−(x) +deg−(y) −1. Indeed, 
�1 and �2 count the left neighbours of x and y, but x, which is a left neighbour of y, is 
omitted. Finally, P (F) ≤ 2n−9 by Lemma 24. Thus we obtain

k+1∏
i=0

P (L ′
i | Li) = (1 ± 4Cα)
1+
2+2p−1 · 1

n+1−x · 1
n+1−y ± 2n−9 ,

which gives the claim since �1 + �2 + 2 ≤ 2D + 1. �
Plugging Claims 29.1 and 29.2 into (6.6), we get

P (x ↪→ u, y ↪→ v) = (1 ± 500Cαδ−1)4D+2 · p−1n−2 . (6.10)
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We now sum over the choices of (x, y) such that xy ∈ E(G). There are 2e(G) such 
choices, so we conclude that the probability that some edge of G is embedded by Ran-
domEmbedding to uv is (

1 ± 500Cαδ−1)4D+2
p−1n−2 · 2e(G)

as desired. �
We can now estimate the probability that, again for fixed G and H, at least one edge 

in a given star in H is used by RandomEmbedding.

Lemma 30. Given D ∈ N and γ > 0, let the constants δ, ε, α0, α2n, C be as in Setting 15. 
Then the following holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Suppose 
that G is a graph on [n] such that deg−(x) ≤ D for each x ∈ V (G), with at least n/4
edges and maximum degree Δ(G) ≤ n/ logn, and H is an (α, 2D+3)-quasirandom graph 
with n vertices and p

(
n
2
)

edges, where p ≥ γ. Let u1, . . . , uk, v be vertices of H for some 
k ≤ 2D + 3, and suppose uiv is an edge of H for each i. When RandomEmbedding 
is run to embed G[[n−δn]] into H, the probability that there is at least one uiv to which 
some edge of G is embedded is(

1 ± 1000Cαδ−1)4D+2
p−1n−2 · 2ke(G) .

Proof. Given u1, . . . , uk, v and G and H, let S be the event that there is at least one uiv

to which some edge of G is embedded.
The expected number of edges uiv embedded to by RandomEmbedding is, by 

Lemma 29 and linearity of expectation,

E :=
(
1 ± 500Cαδ−1)4D+2

p−1n−2 · 2kE(G) ,

and by inclusion-exclusion, we have

E −
∑

1≤i<i′≤k

P
(
uiv and ui′v are embedded to by RandomEmbedding

)
≤ P (S) ≤ E .

We thus simply have to show that the above sum, which has 
(
k
2
)
≤

(2D+3
2

)
terms, is small. 

We will show that the probability of RandomEmbedding embedding to any two fixed 
edges uv, u′v is small. This probability is equal to the sum over triples x, x′, y ∈ V (G)
such that xy, x′y ∈ E(G) of the probability that x ↪→ u, x′ ↪→ u′ and y ↪→ v. For any 
given y ∈ V (G) there are at most degG(y)2 choices of (x, x′), so by Lemma 7, there 
are at most 2DnΔ(G) such triples. It is now enough to make the estimate for one such 
triple. Assuming the (Cα, 2D + 3)-diet condition holds throughout RandomEmbedding, 
we embed each of x, x′ and y uniformly at random into a set of size at least 1

2p
Dδn ≥

1γDδn, so the probability of the event x ↪→ u, x′ ↪→ u′, y ↪→ v is at most 8γ−3Dδ−3n−3. 
2
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Finally, the probability of the (Cα, 2D + 3)-diet condition failing for some (H, imψi) is 
by Lemma 26 at most 2n−9. Putting this together, we have

P (S) =
(
1±500Cαδ−1)4D+2

p−1n−2 ·2ke(G)±
(2D+3

2
)
·2DnΔ(G) ·8γ−3Dδ−3n−3±2n−9 .

Because e(G) ≥ n/4 the first term in the above is Θ(n−1), while since Δ(G) ≤ n/ log n
the other two terms are of asymptotically smaller order. Since n is sufficiently large, this 
gives the desired result. �

In Lemma 30 we estimated the probability of using an edge in a star with a given 
centre and a given set R of ends. In particular, looking at all stars in H whose ends 
are R, we get an estimate of the expected number of them from which an edge is used in 
the embedding. In the following lemma we prove an upper bound on the second moment 
of this random variable.

Lemma 31. Let D ∈ N and let γ > 0. Let δ, ε, c, C, α0, α2n be as in Setting 15. Then 
the following holds for any α0 ≤ α ≤ α2n and all sufficiently large n. Suppose that G is 
a graph on [n] such that deg−(x) ≤ D for each x ∈ V (G), with at least n/4 edges and 
maximum degree Δ(G) ≤ cn/ log n, and H is an (α, 2D + 3)-quasirandom graph with 
n vertices and p

(
n
2
)

edges, where p ≥ γ. Given R ⊆ V (H) with |R| ≤ 2D + 3 and any 
subset T of NH(R), let X count the number of vertices v ∈ T such that an edge from v
to R is used by RandomEmbedding when embedding G to H. Then we have

E(X2) ≤ 230D4Δ(G)γ−4Dδ−4 .

Proof. We can write X =
∑

v∈T Wv, where Wv is the indicator random variable of the 
event that some edge from R to v is used in embedding G. We have

E(X2) =
∑

(v,v′)∈T 2

E(WvWv′) = E(X) + 2
∑

{v,v′}⊆T

E(WvWv′) .

Since e(G) ≤ Dn, by Lemma 30, applied with {u1, . . . , uk} = R and for each v ∈ T , we 
have

E(X) ≤
(
1 + 1000Cαδ−1)4D+2

p−1n−2 · 2|R| ·Dn · |T | ≤ 4γ−1D(2D + 3) ,

where we use |R| ≤ 2D+3 and |T | ≤ n. Thus the main task is thus to estimate E(WvWv′)
for v 
= v′. Now WvWv′ is equal to 1 if and only if there is an edge of G embedded to 
some edge between R and v, and another to an edge between R and v′. So, in order to 
refine our strategy, for v ∈ T and u ∈ R, let Yv,u be the indicator random variable of the 
event that the edge uv is used in embedding G. For each {v, v′} ⊆ T we have

E(WvWv′) =
∑

′ ′

E(Yv,uYv′,u′) +
∑

E(Yv,uYv′,u) . (6.11)

u,u ∈R,u �=u u∈R
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First, we focus on the first term of the right-hand side of (6.11). That is, we need to 
find an upper bound for the probability that two given disjoint edges xy and x′y′ of G
are embedded to respectively uv and u′v′ for some fixed u, u′ ∈ R and fixed v, v′. As 
RandomEmbedding runs, either for some t we observe that the (Cα, 2D+3)-diet condition 
fails for (H, imψt), or it is successful and at each time t, the vertex t is embedded 
uniformly at random into a set of size at least 1

2γ
Dδn. The probability of the former 

occurring is at most 2n−9 by Lemma 24, while in the latter case the probability of 
embedding x, y, x′, y′ to u, v, u′, v′ in that order is at most 16γ−4Dδ−4n−4. Putting these 
together the probability of xy, x′y′ being embedded to uv, u′v′ in that order is at most 
32γ−4Dδ−4n−4. Summing over the at most 8

(
e(G)

2
)
≤ 8

(
Dn
2
)

choices of edges xy, x′y′ and 
their orderings, we get

E(Yv,uYv′,u′) ≤ 8
(
Dn

2

)
· 32γ−4Dδ−4n−4 .

There are exactly |R|2 − |R| ≤ (2D + 3)2 choices of distinct vertices u, u′ ∈ R. Hence

∑
u,u′∈R,u �=u′

E(Yv,uYv′,u′) ≤ (2D + 3)2 · 8
(
Dn

2

)
· 32γ−4Dδ−4n−4 ≤ 215D4γ−4Dδ−4n−2 .

(6.12)

Next, we focus on the second term of the right-hand side of (6.11). That is, we now 
find an upper bound for the probability that RandomEmbedding uses both uv and uv′

for some u ∈ R. The only way this can happen is that for some x, y, y′ ∈ V (G) with 
xy, xy′ ∈ E(G), the vertex x is embedded to u and y, y′ to v, v′. Again, by Lemma 24, 
the probability that a fixed such triple x, y, y′ are embedded to u, v, v′ is at most 2n−9 +
8γ−3Dδ−3n−3. By Lemma 7 there are at most 2DnΔ(G) such triples. Hence, we get

E(Yv,uYv′,u) ≤ 2DnΔ(G) · (2n−9 + 8γ−3Dδ−3n−3) ≤ 2DnΔ(G) · 16γ−3Dδ−3n−3 .

There are exactly |R| ≤ 2D + 3 choices of u, so the probability that RandomEmbedding
uses both uv and uv′ for some u ∈ R is at most∑
u∈R

E(Yv,uYv′,u) ≤ (2D + 3) · 2DnΔ(G) · 16γ−3Dδ−3n−3 ≤ 210D2Δ(G)γ−3Dδ−3n−2 .

(6.13)

We can now plug in (6.12) and (6.13) into (6.11),

E(WvWv′) ≤ 220D4Δ(G)γ−4Dδ−4n−2 .

Summing over the at most n2 choices of v, v′ ∈ T , we obtain the desired bound. �
We are now in a position to prove Lemma 17.
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Proof of Lemma 17. We define p̂ by e(H∗
0 ) = p̂

(
n
2
)
. By assumption we have p̂ = (1 ±η)γ.

Our aim is to show that with high probability, for any given s, either PackingProcess
fails before completing stage s or the pair (Hs, H∗

0 ) is (αs, 2D + 3)-coquasirandom. Let 
S be a set of at most 2D + 3 vertices in V (H∗

0 ), and let R ⊆ S. Recall that for (Hs, H∗
0 )

to be (αs, 2D + 3)-coquasirandom means that NHs
(R) ∩ NH∗

0 (S \R) has about the size 
one would expect if both graphs were random. For each 1 ≤ i ≤ s, let

Yi =
∣∣NHi−1(R) ∩ NH∗

0 (S \R) \ NHi
(R)

∣∣ .
In other words, Yi is the number of vertices which are removed to form NHi

(R) ∩NH∗
0 (S \

R) when we embed Gi[[n−δn]] to Hi−1. To prove coquasirandomness of (Hs, H∗
0 ), what 

we want is for 
∑s

i=1 Yi to be sufficiently concentrated to take a union bound over choices 
of R and S. For this purpose we aim to apply Lemma 5 with E being the event that 
after each stage i = 0, . . . , s − 1 the pair (Hi, H∗

0 ) is (αi, 2D + 3)-coquasirandom. The 
probability space in which we work is the set of all possible histories of RandomEmbed-
ding, and the sequence of partitions required by Lemma 5 is given by the histories up to 
increasing times 1 ≤ i ≤ s of RandomEmbedding. We thus have to estimate E(Ys|Hs−1)
and Var(Ys|Hs−1) only in the case (Hs−1, H∗

0 ) is (αs−1, 2D + 3)-coquasirandom.
So suppose that (Hs−1, H∗

0 ) is (αs−1, 2D + 3)-coquasirandom. Let ps be such that 
ps
(
n
2
)

= e(Hs) = e(H0) −
∑s

i=1 e(Gi[[n−δn]]). Then by Lemma 30 and linearity of expec-
tation, we have

E(Ys|Hs−1)

= (1 ± αs−1)p|R|
s−1p̂

|S\R|n ·
(
1 ± 1000Cαs−1δ

−1)4D+2
p−1
s−1n

−2 · 2|R|e(Gs[[n−δn]])

=
(
2|R| ± 106CD2δ−1αs−1

)
p
|R|−1
s−1 p̂|S\R|e(Gs[[n−δn]])/n . (6.14)

We now need to estimate the sum 
∑s

i=1 E(Yi|Hi−1), on the assumption that each 
(Hi−1, H∗

0 ) is (αi−1, 2D + 3)-coquasirandom. We first estimate the sum of the main 
terms of (6.14). Using the facts that, and that pi−1 − pi ≤ 4D/n:

s∑
i=1

2|R|p|R|−1
i−1 p̂|S\R|e(Gi[[n−δn]])/n

(we have e(Gi[[n−δn]]) = (pi−1 − pi)
(
n

2

)
) =

s∑
i=1

|R|p|R|−1
i−1 (pi−1 − pi)p̂|S\R|(n− 1) . (6.15)

Note that for every x, h ∈ [0, 1] and a ∈ N, we have (x +h)a−xa = ah(x +h)a−1±2ah2. 
We use this with x := pi, h := pi−1 − pi, and a := |R|, and continue (6.15) as follows:

s∑
i=1

2|R|p|R|−1
i−1 p̂|S\R|e(Gi[[n−δn]])/n = (n− 1)p̂|S\R|

s∑
i=1

((
p
|R|
i−1 − p

|R|
i

)
± 16D22|R|/n2

)
= (n− 1)p̂|S\R|(p|R|

0 − p|R|
s

)
± 64D22|R|
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=
(
p
|R|
0 − p|R|

s

)
p̂|S\R|n± 100D222D+3 . (6.16)

Next, we bound the sum of the error terms of (6.14):

s∑
i=1

106CD2δ−1αi−1p
|R|−1
s−1 p̂|S\R|e(Gi[[n−δn]])/n

(we have e(Gs) ≤ Dn) ≤
s∫

−∞

107CD3δ−1αx dx

(by (4.1)) ≤ αsn/4 . (6.17)

Plugging (6.16) and (6.17) into (6.14), we get

s∑
i=1

E(Yi|Hi−1) =
(
p
|R|
0 − p|R|

s

)
p̂|S\R|n± αsn/2 ,

provided that Hi−1 is (αi−1, 2D + 3)-quasirandom for each 1 ≤ i ≤ s.
Let us write Δ := cn/ log n.
We wish to estimate Var(Yi|Hi−1). Trivially, we have Var(Ys|Hs−1) ≤ E(Y 2

i |Hi−1). 
By Lemma 31,

E(Y 2
s |Hs−1) ≤ 230D4Δ(Gs)γ−4Dδ−4 ≤ 230D4Δγ−4Dδ−4 .

Summing this up, we obtain

s∑
i=1

E(Y 2
s |Hs−1) ≤ 231D4Δγ−4Dδ−4n =: σ2 .

Furthermore, the range of each Yi is at most |S|Δ(Gi) ≤ |S|Δ. We apply Lemma 5
with σ2 as above, 	 = εn and E the event that the pair (Hi, H∗

0 ) is (αi, 2D +
3)-coquasirandom for each 0 ≤ i ≤ s − 1. We obtain that the probability that

s∑
i=1

Yi 
=
(
p
|R|
0 − p|R|

s

)
p̂|S\R|n± (αsn/2 + εn) =

(
p
|R|
0 − p|R|

s

)
p̂|S\R|n± 3

4αsn

is at most

2 exp
( −ε2n2

231D4Δγ−4Dδ−4n + 2(2D + 3)Δεn

)
< n−2D−30 ,

where the last inequality is by choice of c.
Taking the union bound over all choices of R ⊆ S and S of size at most 2D + 3, 

and applying Lemma 26, we see that the following event has probability at most 3n−9. 
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The pair (Hi, H∗
0 ) is (αi, 2D + 3)-coquasirandom for each 0 ≤ i ≤ s − 1, but either 

RandomEmbedding fails to embed Gs or (Hs, H∗
0 ) is not (αs, 2D + 3)-coquasirandom. 

Taking now the union bound over all choices of 1 ≤ s ≤ s∗, and recalling that (H0, H∗
0 )

is by assumption 
(1

4α0, 2D + 3
)
-coquasirandom, we conclude that the probability that 

for any 1 ≤ s ≤ s∗, RandomEmbedding fails to embed Gs or the pair (Hs, H∗
0 ) fails to 

be (αs, 2D + 3)-coquasirandom is at most 1.5n−8. This completes the proof. �
7. Completing the embedding

Recall that we complete the embedding of each graph Gs by embedding the final δn
vertices using only edges of H∗

s−1. From Setting 15, these unembedded of Gs vertices 
form an independent set and each of them has degree ds. Lemma 19 states that it is very 
likely, provided PackingProcess does not fail and provided (Hs, H∗

0 ) is coquasirandom 
for each s, that only a few edges of H∗

0 are used at any given vertex to form H∗
s , and 

hence (Hs, H∗
s ) is also coquasirandom. Complementing this, Lemma 20 states that this 

coquasirandomness guarantees that completing the embedding is possible. We prove 
these two lemmas in this section.

To prove Lemma 19, we give an upper bound for the expected number of edges used 
at v in each stage, and apply Lemma 5 to show that the actual outcome is with high 
probability not much larger than this upper bound. For each x ∈ V (Gs), we define 
the completion degree of x, written deg∗(x), to be the degree of x in the bipartite graph 
Gs

[
[n −δn], [n] \ [n −δn]

]
. Then the number of edges of H∗

0 at v used in stage s is deg∗(x)
where x is the vertex of Gs embedded to v. Note that since 

∑n
x=n−δn+1 deg∗(x) = δnds, 

the hand-shaking lemma tells us that

n−δn∑
x=1

deg∗(x) = δnds . (7.1)

We note that the number of edges of H∗
s−1 used in stage s at any given vertex v does not 

depend upon how the embedding of Gs is completed, but only on how RandomEmbedding
embeds the first n − δn vertices, so the proof of Lemma 19 will only need to analyse 
RandomEmbedding. Indeed, if some vertex x ∈ V (Gs), x ≤ n − δn is mapped onto v, 
then this number is deg∗(x). If on the other hand, v is not in the image of Gs

[
[n − δn]

]
then v will be used is the completion phase. In this case, the number of edges used at v
will be ds irrespective of which particular vertex v will host.

Proof of Lemma 19. Fix v ∈ V (H∗
0 ). For each s ∈ [s∗], let Ys be the number of edges of 

H∗
0 at v used in stage s. We have

Ys =
∑

deg∗(x)1x↪→v =
n−δn∑

deg∗(x)1x↪→v +
n∑

deg∗(x)1x↪→v . (7.2)

x∈V (Gs) x=1 x=n−δn+1
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We define E to be the event that PackingProcess succeeds and (Hs−1, H∗
0 ) is 

(αs−1, 2D + 3)-coquasirandom for each 1 ≤ s ≤ s∗. In other words, E is the comple-
ment of the first two events in the statement of Lemma 19, so to prove Lemma 19 we 
want to show that the probability of E occurring and the third event not occurring is 
very small.

Suppose that Hs−1 is an arbitrary history of PackingProcess up to and including stage 
s − 1 for which (Hs−1, H∗

0 ) is (αs−1, 2D + 3)-coquasirandom. We begin by estimating 
E(Ys|Hs−1).

To estimate the desired expectation, we first aim to show

P (x ↪→ v|Hs−1) ≤ 5γ−Dn−1 if 1 ≤ x ≤ n− δn, and (7.3)

P (�x ∈ [1, n− δn] : x ↪→ v|Hs−1) ≤ 2δ. (7.4)

In order to establish (7.3) and (7.4), we need the following consequence of Lemma 28. 
Conditioning on Hs−1, for each 1 ≤ t ≤ n − δn, the probability that RandomEmbedding
does not embed any of the first t vertices of Gs to v is at most 2n−1−t

n < 2n−t
n . This 

readily establishes (7.4).
Furthermore, under the same conditioning, by Lemma 24, for each 1 ≤ t ≤ n − δn, 

with probability at least 1 − 2n−9, we have 
∣∣Ct−1

Gs↪→Hs−1
(t)

∣∣ ≥ 1
2γ

D(n + 1 − t). Now, for 
each 1 ≤ t ≤ n − δn, the probability that RandomEmbedding, conditioning on Hs−1, 
embeds t to v is the probability that no vertex is embedded to v at time t − 1 times the 
probability of picking v when choosing uniformly from the candidate set of t. This is at 
most

2n−9 + 2n + 1 − t

n
· 1∣∣Ct−1

Gs↪→Hs−1
(t)

∣∣ ≤ 2n−9 + 2
1
2γ

Dn
.

This establishes (7.3).
Now, we are going to substitute (7.3) and (7.4) into (7.2). To this end, recall that for 

each x ∈ [n − δn + 1, n] we have deg∗(x) = ds. It follows that

E(Ys|Hs−1) ≤ 5γ−Dn−1
∑

1≤x≤n−δn

deg∗(x) + ds

n∑
x=n−δn+1

P (x ↪→ v|Hs−1)

(by (7.1), (7.4)) ≤ 5γ−Dn−1 · δnds + ds · 2δ ≤ 7γ−DDδ . (7.5)

Next, we obtain a similar upper bound for the second moment. Since only one vertex 
gets embedded to v, we have

E(Y 2
s |Hs−1) =

∑
x∈V (Gs)

deg∗(x)2P (x ↪→ v|Hs−1)

≤ Δ(Gs) ·
∑

deg∗(x)P (x ↪→ v|Hs−1) = Δ(Gs) · E(Ys|Hs−1)

x∈V (Gs)
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(7.5)
≤ 7γ−DDδ · Δ(Gs) .

Since 0 ≤ Ys ≤ Δ(Gs) ≤ Δ holds for each s, and since s∗ ≤ 2n, we can apply Lemma 5, 
with 	 = δn and with E as defined above, to give

P

(
E and

s∗∑
i=1

Ys > 50γ−DDδn

)
≤ exp

(
− δ2n2

28γ−DDδ·Δn+2Δδn

)
< n−100 ,

where the final inequality is since Δ = cn/ log n and by choice of c. Taking the union 
bound over all choices of v, we see that the probability that E occurs and yet more than 
50γ−DDδn edges of H∗

0 are deleted at any vertex in the running of PackingProcess is 
at most n−99. Because the degree of each vertex in H∗

s is monotone decreasing as s
increases, in particular this implies that the probability that there exists 1 ≤ s ≤ s∗ such 
that PackingProcess completes stage s, and (Hi, H∗

0 ) is (αi, 2D + 3)-coquasirandom for 
each i < s, yet more than 50γ−DDδn edges of H∗

0 are deleted at any vertex of H∗
s , is at 

most n−99.
It remains to argue that since few edges are deleted at each vertex of H∗

0 to form H∗
s , 

the pair (Hs, H∗
s ) is coquasirandom. Suppose now that Δ

(
H∗

0 −H∗
s

)
≤ 50γ−DDδn for 

some s, and that (Hs, H∗
0 ) is (αs, 2D+3)-coquasirandom. Then for any R ⊆ S ⊆ V (Hs)

with |S| ≤ 2D + 3, we have∣∣NHs
(R) ∩ NH∗

0 (S \R)
∣∣ = (1 ± αs)p|R|γ|S\R|n

and hence∣∣NHs
(R) ∩ NH∗

s
(S \R)

∣∣ = (1 ± αs)p|R|γ|S\R|n± (2D + 3) · 50γ−DDδn

=
(
1 ± η

)
p|R|γ|S\R|n

where the final line is by choice of δ in (4.1) and since p ≥ γ, so that (Hs, H∗
s ) is 

(η, 2D + 3)-coquasirandom, as desired. �
Recall that Lemma 20 states that it is likely that the partial embedding φs of each 

Gs provided by RandomEmbedding can be extended to an embedding φ∗
s of Gs, with the 

completion edges used for the extension lying in H∗. Since the neighbours of each of the 
last δn vertices of Gs are embedded by φs, the set of candidate vertices

C∗
s (x) :=

{
v ∈ V (H∗

s−1) \ imφs : φs(y) ∈ NH∗
s−1

(v) for each y ∈ NGs
(x)

}
for each x of these last δn vertices in V (H∗

s−1) \ imφs are already fixed, and the desired 
φ∗
s exists if and only if there is a system of distinct representatives for the C∗

s (x) as x
ranges over the last δn vertices of Gs. Recall that Lemma 24 states in particular that 
(H∗, imφs) is likely to satisfy the (2η, 2D + 3)-diet condition, which implies both that 
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C∗
s (x) is of size roughly pdsδn for each of these last x, and also that the collection of sets 

is well-distributed (in a sense we will make precise later). We will see that this is almost 
enough to verify Hall’s condition for the existence of a system of distinct representatives, 
but we need in addition to know that every vertex of H∗

s−1− imφs is in sufficiently many 
of these candidate sets. The following lemma states that this typically is the case.

Lemma 32. Let D ∈ N and let γ > 0. Let η, δ, ε, c and αx be as in Setting 15. Suppose 
that G is a graph on vertex set [n], with deg−(x) ≤ D for each x ∈ V (G), with maximum 
degree at most cn/ logn and whose last δn vertices all have degree d, where 0 ≤ d ≤ D, 
and form an independent set. Suppose that H is an (αs∗ , 2D + 3)-quasirandom n-vertex 
graph and that H∗ is a graph on V (H) with (1 ± η)γ

(
n
2
)

edges such that (H, H∗) forms 
an (η, 2D+ 3)-coquasirandom pair. When RandomEmbedding is run to embed G[[n−δn]]
into H, with probability at least 1 − 3n−9 we have that for all v ∈ V (H∗)

∣∣∣{x ∈ V (G) : n− δn < x ≤ n, ψn−δn(N−(x)) ⊆ NH∗(v)
}∣∣∣ = (1 ± 10Dη)γdδn .

The proof of this lemma is similar to the proof of Lemma 25.

Proof. Fix v ∈ V (H∗) and let I be the last δn vertices of G, which by assumption form 
an independent set. Denote by N−

k (x) the first k neighbours of N−(x). Let Yk be the 
event that the vertices N−

k (x) are all embedded to NH∗(v) for about as many x ∈ I as 
one would expect, more formally that∣∣∣{x ∈ I : ψn−δn(N−

k (x)) ⊆ NH∗(v)
}∣∣∣ = (1 ± 10kη)γkδn . (7.6)

Let B be the event that the (2η, 2D + 3)-codiet condition fails at some time t ≤ n − δn. 
Let

Zk,t :=
∣∣∣{x ∈ I : ψn−δn(N−

k−1(x)) ⊆ NH∗(v) and t is the kth vertex of N−(x)
}∣∣∣ .

In other words, when we embed the vertex t, if it is embedded to NH∗(v) it will add Zk,t

more vertices to the set in (7.6). Let Yk,t := Zk,t · 1ψn−δn(t)∈NH∗ (v).
We want to show that if Yk−1 occurs, then Yk is very likely to occur. We will then 

show this implies the lemma. Observe that Yk is the event that 
∑n−δn

t=1 Yk,t = (1 ±
10kη)γkδn. Furthermore, Yk−1 implies that 

∑n−δn
t=1 Zk,t = (1 ± 10(k − 1)η)γk−1δn. We 

would like to calculate 
∑n−δn

t=1 E(Yk,t

∣∣Ht−1), where Ht−1 denotes the embedding history 
of RandomEmbedding up to and including embedding t − 1. Given a time t, if t is the 
kth vertex of N−(x), then at time t − 1 the first k − 1 vertices of N−(x) have already 
been embedded, so Zk,t is determined. Thus we have

E(Yk,t

∣∣Ht−1) = P
(
ψt(t) ∈ NH∗(v)

∣∣Ht−1

)
· Zk,t .



54 P. Allen et al. / Advances in Mathematics 354 (2019) 106739
Suppose that at time t − 1 we have not seen a witness that B fails. Then, using the 
(2η, 2D + 3)-codiet condition once with S = N−(t) ∪ {v} and R = N−(t) ⊆ S and once 
with S = R = N−(t), we obtain

P
(
ψt(t) ∈ NH∗(v)

∣∣Ht−1

)
= (1 ± 2η)(1 ± η)γp|N−(t)|(n− t + 1)

(1 ± 2η)p|N−(t)|(n− t + 1)
= (1 ± 6η)γ .

Therefore, if B and Yk−1 hold, we have

n−δn∑
t=1

E(Yk,t

∣∣Ht−1) = (1 ± 10(k − 1)η)(1 ± 6η)γkδn .

Applying Lemma 4 with 	 = ηγkδn, we deduce that the probability that Yk fails is 
very small. Indeed, the probability that B holds but 

∑n−δn
t=1 Yk,t 
= (1 ± 10kη)γkδn is at 

most 2 exp
(
− η2γ2kδ2n2 log n

2Dcn2

)
≤ n−20, where we use that Yk,t ≤ deg(t) and observe that 

Lemma 7 gives 
∑n−δn

t=1 deg(t)2 ≤ 2DΔ(G)n ≤ 2Dcn2/ logn.
As Y0 holds trivially with probability one, by a union bound over the choices of k and 

v we obtain that the probability that B holds but there is some 1 ≤ k ≤ d for which Yk

fails is at most 2dn−19. Finally, Lemma 24 states that B holds with probability at most 
2n−9, giving the lemma statement by the union bound. �

We are now in a position to prove the completion lemma, Lemma 20.

Proof of Lemma 20. Suppose H is an n-vertex (αs∗ , 2D + 3)-quasirandom graph, and 
(H, H∗) is (η, 2D + 3)-coquasirandom, with e(H) = p

(
n
2
)

and e(H∗) = (1 ± η)γ
(
n
2
)
. 

Let G be a graph on [n] with deg−(x) ≤ D for each x ∈ [n] and such that the last 
δn vertices of G form an independent set all of whose vertices have degree d. When 
RandomEmbedding is run to produce a partial embedding φ of G into H, by Lemma 24
with probability at least 1 − 2n−9 the algorithm succeeds and the triple (H, H∗, imφ)
satisfies the (2η, 2D+3)-diet condition. By Lemma 32, with probability at least 1 −3n−9

in addition we have, for every vertex v of V (H∗) \ imφ,∣∣∣{x ∈ V (G) : n− δn < x ≤ n, φ(N−(x)) ⊆ NH∗(v)
}∣∣∣ = (1 ± 10Dη)γdδn . (7.7)

Suppose that both good events occur, which happens with probability at least 1 −5n−9. 
We will now show that (deterministically) this implies the existence of a system of distinct 
representatives for the candidate sets 

{
C∗(x) : n −δn +1 ≤ x ≤ n

}
, which trivially gives 

an embedding φ∗ of G into H ∪H∗ such that all edges in [n − δn] are embedded to H
and the rest to H∗, as desired.

We prove the existence of a system of distinct representatives by verifying Hall’s 
condition. To that end, let X be a subset of {n − δn + 1, . . . , n}. We need to show
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∣∣∣∣∣ ⋃
x∈X

C∗(x)

∣∣∣∣∣ ≥ |X| . (7.8)

We separate three cases. The two easy cases are |X| ≤ 1
2γ

Dδn and |X| ≥ δn − 1
2γ

Dδn. 
For the former, if X = ∅ the statement is trivial. If not, pick any x ∈ X. We have∣∣C∗(x)

∣∣ ≥ (1 − 2η)(1 − η)dγdδn ≥ 1
2γ

Dδn (7.9)

since NG(x) is a set of d ≤ D vertices and (H∗, imφ) satisfies the (η, 2D + 3)-diet 
condition, which in particular verifies (7.8). For the latter, by (7.7) and choice of η, every 
vertex of V (H∗) \imφ is in more than 34γ

dδn of the sets C∗(x) for x ∈ {n −δn +1, . . . , n}. 
In particular, every vertex v ∈ V (H∗) \ imφ is in C∗(x) for some x ∈ X, giving (7.8).

The final, harder, case is 1
2γ

Dδn < |X| < δn − 1
2γ

Dδn. Given X in this size range, let 
X ′ be a maximal subset of X with the property NG(x) ∩NG(x′) = ∅ for each x, x′ ∈ X ′. 
Since each vertex of X ′ has d ≤ D neighbours, the set Y =

⋃
x∈X′ NG(x) has size at 

most D|X ′|. By maximality of X ′, every vertex in X is adjacent to some vertex of Y . 
Since no vertex of Y has degree more than Δ(G) ≤ cn/ log n, we conclude

1
2γ

Dδn < |X| ≤ Δ(G)|Y | ≤ Δ(G)D|X ′| ≤ cnD|X ′|/ log n ,

and hence |X ′| ≥ logn by choice of c in (4.1). We will now argue that Z :=
⋃

x∈X′ C∗(x)
satisfies |Z| ≥

(
1 − 1

2γ
D
)
δn, which implies (7.8).

Suppose for a contradiction that |Z| <
(
1 − 1

2γ
D
)
δn. By definition, we have C∗(x) ⊆ Z

for each x ∈ X ′. We now aim to estimate the number N of triples (x, x′, z) with x, x′ ∈ X

distinct and z ∈ Z satisfying z ∈ C∗(x) ∩ C∗(x′). For each z, let dz =
∣∣{x ∈ X ′ : z ∈

C∗(x)}
∣∣. Using Jensen’s inequality (since 

( ·
2
)

is convex), we have

N =
∑
z∈Z

(
dz
2

)
≥ |Z| ·

(
|Z|−1 ∑

z∈Z dz
2

)

(by (7.9)) ≥ |Z| ·
(
|Z|−1|X ′|(1 − 2η)(1 − η)dγdδn

2

)
= 1

2 |X
′|(1 − 2Dη)γdδn

(
|Z|−1|X ′|(1 − 2Dη)γdδn− 1

)
≥ 1

2 (1 − 2Dη)3|X ′|2|Z|−1γ2dδn

≥ 1
2 (1 − 2Dη)3|X ′|2

(
1 − 1

2γ
D
)−1

γ2dn ,

where the penultimate inequality holds since |Z| < δn and |X ′| ≥ log n is sufficiently 
large, and the final inequality uses our assumed upper bound on |Z|. On the other hand, 
since NG(x) and NG(x′) are disjoint, we have

N =
∑
′ ′

∣∣C∗(x) ∩ C∗(x′)
∣∣ ≤ (|X′|

2
)
(1 + 2η)(1 + η)2dγ2dδn ≤ 1

2 |X
′|2(1 + 4Dη)γ2dδn
x,x ∈X
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using the (2η, 2D + 3)-diet condition which (H∗, imφ) satisfies. We conclude

1
2 (1 − 2Dη)3|X ′|2

(
1 − 1

2γ
D
)−1

γ2dn ≤ 1
2 |X

′|2(1 + 4Dη)γ2dδn

which is false since by choice of η in (4.1) we have (1 − 2Dη)3(1 + 4Dη)−1 > 1 − 1
2γ

D. 
Thus (7.8) holds for all X, so the desired φ∗ exists. �
8. Concluding remarks

8.1. Constants in Theorem 2

Given γ and D in Theorem 2, the constant c is set in Setting 15. All the depen-
dencies in (4.1) are polynomial, except for the exponentials used to define C and αx. 
As a result, c depends roughly doubly-exponentially on D and γ, more precisely 
c ≈ exp(− exp(D5+o(1) · γ−24D−10+o(1))) (where o(1) → 0 as D, 1/γ → ∞). This of 
course puts an implicit requirement on n0, as instances of the result for which the max-
imum degree bound cn

log n are less than 1 are vacuous.
By way of brief comparison with other recent packing results, we believe most of the 

results we cited earlier obtain broadly similar or better constant dependencies to our 
results (though these bounds are generally not given explicitly and we did not check 
carefully), unless the Regularity Lemma is used.

8.2. Limits of the method

As Ferber and Samotij [11] point out, a randomised strategy such as the one we use 
here will not succeed in packing graphs with many vertices of degree ω

(
n

log n

)
, because it 

is likely to put these vertices unevenly into the host graph and after packing only half the 
guest graphs one vertex will probably have degree substantially less than the average. 
If the remaining graphs are for example Hamilton cycles, this vertex will become a 
bottleneck which causes the strategy to fail. One might try to pick vertices non-uniformly 
in order to correct such imbalances as they form, but analysing such a strategy would 
be challenging and it is not clear that it would work: common neighbourhoods of several 
vertices will also occasionally be far from the expected size.

Although it might well be that we can obtain near-perfect packings of graphs with 
degeneracy much bigger than logn into Kn, any strategy like the one we use here will 
certainly not succeed in doing so. The reason is simply that strategies like ours work 
by maintaining quasirandomness, and hence work equally well starting with a dense 
random graph rather than the complete graph. Take H to be a clique of order 3 log2 n. 
Then a well-known calculation shows that G

(
n, 12

)
typically does not even contain one 

copy of H.
We have not tried to analyse our approach more carefully in order to work with 

sparse random or quasirandom graphs. We are confident that (with substantially more 
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work, and using ideas from [2]) one could prove a near-perfect packing result for typical 
G
(
n, p

)
, where p > n−ε for some ε > 0 depending on the degeneracy bound D. But 

we suspect that our approach would not then allow for maximum degrees of the guest 
graphs as large as Ω(pn/ logn), even if we asked only to pack almost-spanning graphs, 
and certainly we cannot take ε as big as 1

2D+3 , since at this point G(n, p) itself is 
typically not (1

2 , 2D+ 3)-quasirandom. In particular, our approach cannot challenge the 
tree packing results of [11] in sparse random graphs.

8.3. Perfect packings

It is easy to check that the graph of uncovered edges in the packing of Theorem 11
is (2η, 2D + 3)-quasirandom, and η can be chosen arbitrarily small by increasing D if 
necessary. In particular, this means that the result of Joos, Kim, Kühn and Osthus [18]
applies to this leftover. Thus we can extend the result of [18] on the Tree Packing 
Conjecture to allow many trees where the maximum degree is bounded only by cn

log n , 
provided that it is bounded by D in the remainder. This is however a rather peculiar 
condition.
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