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covariate values. In this paper, we consider testing the overall qualitative treatment
effects of patients’ prognostic covariates in a high dimensional setting. We propose
a sample splitting method to construct the test statistic, based on a nonparametric
estimator of the contrast function. When the dimension of covariates is large, we con-
struct the test based on sparse random projections of covariates into a low-dimensional
space. We prove the consistency of our test statistic. In the regular cases, we show
the asymptotic power function of our test statistic is asymptotically the same as the
“oracle” test statistic which is constructed based on the “optimal” projection matrix.
Simulation studies and real data applications validate our theoretical findings.

Keywords: High-dimensional testing; Optimal treatment regime; Precision medicine; Qual-

itative treatment effects; Sparse random projection.

∗Chengchun Shi is graduate student (E-mail: cshi4@ncsu.edu), Wenbin Lu is Professor (E-mail:
lu@stat.ncsu.edu), and Rui Song is Associate Professor (rsong@ncsu.edu), Department of Statistics, North
Carolina State University, Raleigh, NC 27695.

1



1 Introduction

In many medical studies, patients may differ significantly in the way they respond to the

treatment. In contrast to the classical “one size fits all” approach, precision medicine pro-

poses the customization of individualized treatment regimes to account for patients’ het-

erogeneity in response to treatments. Formally speaking, a treatment regime is a function

from patients’ prognostic covariates to available treatment options. The optimal individ-

ualized treatment regime (OITR) is the one that maximizes patients’ expected responses

among all treatment regimes.

There have been increasing interests in estimating the OITR. Some common meth-

ods include Q-learning (Watkins and Dayan, 1992; Chakraborty et al., 2010), A-learning

(Robins et al., 2000; Murphy, 2003) and outcome weighted learning (OWL, Zhao et al.,

2012). Qian and Murphy (2011) considered a two-step procedure to construct the OITR.

Their method first estimates the conditional mean of the response with l1 penalty function

and then derives the OITR from the estimated conditional mean. Zhang et al. (2012)

proposed a robust method for estimating the OITR by maximizing the estimated average

response of patients (i.e, the value function). Zhang et al. (2015) proposed to use decision

lists to construct interpretable and parsimonious treatment regimes. Despite the popularity

of estimating the OITR, there is scarce work in the literature for hypothesis testing regard-

ing OITR. All these estimation methods implicitly assume that patients’ covariates have

qualitative interactions with treatment, which means that there exists a subset of patients

whose “best” treatments assigned according to the OITR are different from others.

We consider testing the existence of OITR due to the following reasons. First, the OITR

may not always exist in practice, see the data from the Nefazodone-CBASP clinical trial

study in Section 5 for an example. In this case, one treatment is better than the other for all

patients and there is no need of estimating the OITR. Second, we note that implementing

the OITR requires future patients’ covariates which can be expensive to collect in some cases

(Baker et al., 2009; Gail, 2009; Huang et al., 2015). In these cases, we recommend to adopt

the “one-size-fits-all” paradigm when the null hypothesis of no OITR is not rejected. Third,

our test is constructed based on estimated value functions’ difference comparing the OITR
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and a fixed regime (i.e. assign all to the best treatment). The test is not significant implies

that the value functions’ difference is not significant. Under such a situation, although

we can still estimate the OITR, the gain of the obtained OITR over the fixed regime in

terms of the improvement of value is not significant. Thus, the obtained OITR under such

a situation may not be of practical interest. Therefore, it is essential to test the overall

qualitative treatment effects of the prognostic covariates to determine whether we need to

implement the OITR for future patients. Gunter et al. (2011) developed an S-score to

quantify the magnitude of the marginal qualitative treatment effects of a single covariate.

However, the S-score doesn’t characterize the overall qualitative treatment effects of all

covariates. Besides, no theoretical guarantees were provided for the S-score.

For binary treatments, testing qualitative treatment effects is equivalent to testing

whether the interaction between treatment and covariates (i.e, the contrast function) is

almost surely positive or negative. To test such hypothesis, Chang et al. (2015) proposed

a test based on a L1-type functional of kernel smoothing estimators of conditional treat-

ment effects. Hsu (2017) proposed a Kolmogorov-Smirnov type test statistic based on

nonparametric estimation of conditional treatment effects with a hypercube kernel. It is

well known that kernel smoothing estimators are undesirable in practice due to the curse

of dimensionality. As a result, these test statistics are not reliable when the dimension of

the covariates is relatively large. However, in modern biomedical applications, it is likely to

obtain a large number of prognostic factors for each individual patient. To the best of our

knowledge, there are lack of methods for testing the overall qualitative treatment effects in

high-dimensional settings.

In this paper, we aim to test the overall qualitative treatment effects in a high dimen-

sional setting. This is a very challenging task due to the curse of dimensionality. To better

illustrate this point, consider a simple situation where patients’ covariates, x, consist of p

independent Rademacher variables. Then, it is equivalent to test whether the contrast as

a function of the covariates is always positive or negative for any x ∈ {−1, 1}p. Therefore,

we need to test 2p moment inequalities even in this very simplified situation. However, for

each x ∈ {−1, 1}p, we have on average N/2P observations with covariates equal to x, where
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N is the total number of observations. When N = O(2p), this seems impossible without

additional assumptions. We show in Lemma 3.1 that covariates have the overall qualita-

tive treatment effects if and only if the value function under the OITR is strictly larger

than those under fixed treatment regimes. This motivates us to construct test statistics

based on the difference between the optimal value function and the value function under

fixed treatment regimes. However, inference for such value difference is extremely difficult

in the nonregular cases, that is, there is a positive probability that the contrast function

is equal to zero. We use a sample-splitting method to construct the test statistic, based

on a nonparametric estimator of the contrast function. As long as the estimated contrast

function satisfies certain convergence rates, we show our test statistic is consistent.

When the dimension of covariates is large, we construct the test based on sparse random

projections of covariates into a low-dimensional space. Random projections have been a

powerful method for dimension reduction in the computer science literature. The key idea

behind is given in the Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984),

which states that a set of high dimensional vectors can be projected into a suitable lower-

dimensional space while approximately preserve their pairwise distances. In the statistics

literature, Lopes et al. (2011) proposed a high-dimensional two-sample test which integrates

a random projection with the Hotelling T 2 statistic. Recently, Cannings and Samworth

(2015) proposed a random projection-based method for the high-dimensional classification.

In this paper, we propose the use of random projections with sparse matrix. In contrast

to the dense sketching matrix used in Lopes et al. (2011) and Cannings and Samworth

(2015), only a small proportion of elements in the sparse sketching matrix are nonzero.

References on sparse random projections include Omidiran and Wainwright (2010); Li

et al. (2006); Nelson and Nguyên (2013). In our simulation studies, we show that our

sparse random projection-based test statistics are more powerful compared to those based

on dense random projection matrix, when the OITR is “sparse”. Besides, we advocate

using data-dependent algorithms to generate sparse sketching matrix, since most random

projections will be weakly correlated with the contrast function. In theory, we prove the

consistency of our sparse random projection-based test. Moreover, in the regular cases, we
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show that the power function of our test statistic is asymptotically the same as the “oracle”

test statistic which is constructed based on the “optimal” projection matrix.

The rest of the paper is organized as follows. In Section 2, we present the definition of

the overall qualitative treatment effects. In Section 3, we introduce our test statistic and

study its asymptotic properties under the null and local alternative. Simulation studies and

real data applications are conducted in Section 4 and Section 5 respectively, to examine

the empirical performance of the proposed testing procedure. Section 6 concludes with a

summary and discussions of possible extensions.

2 Overall qualitative treatment effects

We consider a single stage study with two treatment options. Let Y be a patient’s outcome

of interest and A ∈ {0, 1} be the treatment indicator, with 0 for the standard treatment

and 1 for the new treatment. By convention, a larger value of Y indicates a better clinical

outcome. Denoted by X ∈ Rp the patient’s baseline covariates. We consider a high

dimensional setting where p is allowed to diverge with the sample size N . Let Y ∗(0)

and Y ∗(1) denote the potential outcomes of a patient that would be observed assuming

s/he received treatment 0 and 1, respectively. A treatment regime d : Rp → {0, 1} is a

deterministic function from patient’s covariate space to all possible treatment options. For

any d, we define the expected potential outcome

V (d) = E[d(X)Y ∗(1) + {1− d(X)}Y ∗(0)],

known as the value function associated with d. The optimal treatment regime dopt is defined

as the maximizer of V (d). Let τ(x) be the contrast function, i.e,

τ(x) = E(Y |A = 1, X = x)− E(Y |A = 0, X = x).

Under the following three conditions:

(A1.) Stable Unit Treatment Value Assumption (SUTVA): Y = AY ∗(0) + (1− A)Y ∗(1),
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(A2.) No unmeasured confounders: Y ∗(0), Y ∗(1) ⊥⊥ A | X,

(A3.) Positivity: there exists some constants 0 < c1 < c2 < 1 such that 0 < c1 ≤ c2 < 1

such that c1 ≤ P (A = 1|X = x) ≤ c2 for any x,

we can show that τ(x) = E{Y ∗(1)− Y ∗(0) | X = x}. Since

V (d) = E[d(X){Y ∗(1)− Y ∗(0)}+ Y ∗(0)] = E{τ(X)d(X)}+ E{Y ∗(0)},

it is immediate to see that dopt(x) = I{τ(x) > 0}, where I(·) stands for the indicator

function.

Condition (A2) is satisfied in a randomized study, where the propensity score function

π(x) = Pr(A = 1 | X = x) is usually a known constant by design. We assume π(x) is known

throughout this Section. In Section 3.3, we allow the propensity score to be estimated from

data as in observational studies.

Covariates X are said to have the overall qualitative treatment effects (OQTE) if

Pr{τ(X) > 0} > 0 and Pr{τ(X) < 0} > 0.

In this paper, we consider testing the following hypothesis:

H0 : X dosen’t have OQTE versus H1 : X has OQTE. (1)

Assume (A1)-(A3) hold. Under H0, the optimal treatment regime assigns the same treat-

ment to all patients. Therefore, testing OQTE is equivalent to testing the existence of

OITR.

3 Proposed tests

3.1 A simple value-based test statistic in fixed p case

Assume the observed data are summarized as {Oi = (Xi, Ai, Yi), i = 1, . . . , N}, where Oi’s

are i.i.d. copies of O = (X,A, Y ). The distribution of O is allowed to vary with N . To
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illustrate the idea, we first assume p is small and fixed, and present here a value-based

test statistic for the null hypothesis (1). Later in this section, we will consider the more

challenging high dimensional setting. Let V (0) = E{Y ∗(0)} and V (1) = E{Y ∗(1)}. The

following lemma relates OQTE to the difference between the optimal value function and

the value functions under fixed treatment regimes.

Lemma 3.1. Assume E|τ(X)| < ∞, and conditions (A1)-(A3) hold. Then the followings

are equivalent: (i) X doesn’t have OQTE; (ii) V (dopt) = max{V (0), V (1)}.

By definition, we have V (dopt) ≥ max{V (0), V (1)}. Under H1, Lemma 3.1 implies

V (dopt) > max(V (0), V (1)). Therefore, it suffices to test

H0 : V (dopt) = max{V (0), V (1)} versus H1 : V (dopt) > max{V (0), V (1)}.

For simplicity, we assume V (1) ≥ V (0). This implies that the new treatment is at least

as good as the standard one on average. The hypothesis V (1) ≥ V (0) can be tested using

historical data or data from a pilot study. When V (0) ≥ V (1), the test statistic can be

similarly constructed.

Lemma 3.1 motivates us to consider test statistics based on some estimators for the

value difference VD(dopt) = V (dopt) − V (1). For any treatment regime d, Zhang et al.

(2012) proposed an inverse propensity score weighted estimator (IPSWE) for V (d):

V̂ (d) =
1

N

N∑
i=1

[
Aid(Xi)

πi
Yi +

(1− Ai){1− d(Xi)}
1− πi

Yi

]
, (2)

where πi is a shorthand for π(Xi). Plugging d ≡ 1, we obtain V̂ (1) = N−1
∑

iAiYi/πi.

For any fixed d,
√
NV̂D(d) =

√
N{V̂ (d) − V̂ (1)} corresponds to a sum of i.i.d random

variables. Therefore, its asymptotic variance can be consistently estimated by the sample

variance estimator,

σ̂2(d) =
1

N − 1

N∑
i=1

[(
1− Ai

1− πi
− Ai

πi

)
Yi{1− d(Xi)} − V̂D(d)

]2
. (3)
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Suppose τ̂(·) is an estimate of τ(·). Based on (2) and (3), it is natural to use T̂ =
√
NV̂D(d̂)/σ̂(d̂) as the test statistic, where d̂(x) = I{τ̂(x) > 0}, and reject H0 when

T̂ > zα at a given significance level α, where zα stands for the upper α-th quantile of the

standard normal distribution.

Consistency of such a naive test requires E|d̂(X) − dopt(X)|2 → 0. However, as com-

mented by Luedtke and van der Laan (2016), this assumption is typically violated in the

non-regular cases where Pr{τ(X) = 0} > 0, even when τ̂ is consistent to τ . To solve this

problem, we consider a modified version of T̂ based on sample splitting and cross-validation.

Let I1 and I2 be a random partition of {1, . . . , N} into 2 disjoint subsets of equal sizes

n = N/2. For any I ⊆ {1, . . . , N} and treatment regime d, define

V̂DI(d) =
1

|I|
∑
i∈I

[(
1− Ai

1− πi
− Ai

πi

)
Yi{1− d(Xi)}

]
,

σ̂2
I(d) =

1

|I| − 1

∑
i∈I

[(
1− Ai

1− πi
− Ai

πi

)
Yi{1− d(Xi)} − V̂DI(d)

]2
,

where |I| stands for the number of elements in I. Let τ̂I be the corresponding estimator

of τ based on observations in I and d̂I(x) = I{τ̂I(x) > 0}. We define our test statistic by

T̂CV = max

( √
nV̂DI1(d̂I2)

max{σ̂I1(d̂I2), δn}
,

√
nV̂DI2(d̂I1)

max{σ̂I2(d̂I1), δn}

)
, (4)

for some positive sequence δn → 0, and reject H0 when T̂CV > zα/2. The sequence δn

guarantees that the denominators in T̂CV are strictly greater than 0.

Alternative to the sample splitting method, one can consider a Wald-type test statistic

based on the online one-step estimator proposed by Luedtke and van der Laan (2016).

However, calculating such test statistic is more computationally expensive than ours.

Besides, the asymptotic normality of such test statistic requires the class of functions{
[(1−A)/{1−π(X)}−A/π(X)]Y {1− d(X)} : d

}
to be Glivenko-Cantelli, where d varies

over the range of estimators d̂ (see Section 7.3 in Luedtke and van der Laan, 2016). In

contrast, our testing procedure is valid under H0 for any d̂.
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Theorem 3.1. Assume conditions (A1)-(A3) hold, E|Y |3 = O(1) and δn ≫ n−1/6. Then

under H0, for any 0 < α < 1, we have

lim sup
n

Pr(T̂CV > zα/2) ≤ α.

Moreover, assume that

Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− d̂Ij(X)} | {Oi}i∈Ij

}
= op(δn), (5)

for j = 1, 2, where Var(V1 | V2) denotes the variance of V1 conditional on V2. Then, we

have Pr(T̂CV > zα/2) → 0.

The following theorem states the consistency of our proposed test statistic. It relies on

Conditions (C1) and (C2). We provide these conditions in Section B of the Appendix to

save space.

Theorem 3.2. Assume conditions (A1)-(A3), (C1), (C2) hold, E|Y |3 = O(1) and δn → 0.

Under H1 : V (dopt) = V (1) + hn, if hn ≫ n−1/2, then we have Pr(T̂CV > zα/2) → 1.

Moreover, assume Pr{τ(X) = 0} = 0 and lim infn σ
2
0 > 0 where

σ2
0 = Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− dopt(X)}

}
.

If
√
nhn = O(1), then we have

Pr
(
T̂CV > zα/2

)
= 2Φ̄

(
zα

2
−

√
nhn
σ0

)
− Φ̄2

(
zα

2
−

√
nhn
σ0

)
+ o(1),

where Φ̄(z) = Pr(Z ≥ z) for a standard normal random variable Z.

Theorem 3.1 and 3.2 show the consistency of our testing procedure. Note that Con-

ditions (C1) and (C2) are not required to ensure Theorem 3.1. This suggests the type-I

error is well controlled regardless of any estimating procedure. On the other hand, condi-

tions on δn in Theorem 3.1 are stronger than those in Theorem 3.2. In the regular cases

when Pr{τ(X) = 0} = 0, Theorem 3.2 provides the asymptotic power function of our test.
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Notice that hn is equal to E[−τ(X){τ(X) < 0}] which relies on the dependence structure

of the covariates. As a result, the power of our test depends crucially on the underlying

data-generating process.

In this paper, d̂ is obtained by a plug-in estimator based on some nonparametric

estimation of the contrast function. Alternatively, one can directly estimate dopt using

OWL. Theorem 3.2 holds as long as the estimated decision function d̂ satisfies V (d̂I) =

V (dopt) + op(|I|−1/2).

Since we assume V (1) ≥ V (0), under H0, we have Pr{τ(X) ≥ 0} = 1. In the regular

cases where Pr{τ(X) = 0} = 0, we have Pr{dopt(X) = 1} = 1 and hence

Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− dopt(X)}

}
= 0.

Besides, in the regular cases, dopt can be consistently estimated by d̂Ij (see Equation (S.18)

in the supplementary article). Assume conditions (C1) and (C2) hold with γ ≥ 1. Then

we can show (5) holds. Hence, the type-I error of our test will go to 0.

3.2 A sparse random projection-based test statistic

When p is large, it is far more challenging to estimate the contrast function τ(x) due to the

curse of dimensionality. To handle high-dimensional covariates, we project the covariate

space into a low dimensional vector space to construct our test statistic. Throughout this

paper, we assume the dimension of the projected space, q is fixed. For a given matrix

S ∈ Rq×p and any ω ∈ Rq, define

τS(ω) = E{τ(X)|SX = ω}.

Under (A1)-(A3), the treatment regime doptS (x) = I{τS(Sx) > 0} is optimal in the sense

that it maximizes the value function among the class of treatment regimes based only on

the projected covariates SX.

Since q is small, τS can be consistently estimated. We can construct a value-based

test statistic as discussed in Section 3.1 based on the projected data {OS
i }i∈{1,...,N} where
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OS
i = (SXi, Ai, Yi). The power of such test statistic depends crucially on the sketching

matrix S. To better understand this, consider the following example:

τ(X) =

{(
X(1) +X(2)

√
2

)2

− δ

}(
X(3) +X(4) +X(5) +X(6) +X(7)

√
5

)2

, (6)

for some δ > 0, where X(j) denotes the j-th element of X.

Apparently, we have τ(X) > 0 if |X(1) +X(2)| >
√
2δ and τ(X) < 0 if |X(1) +X(2)| <

√
2δ. Assume X ∼ N(0, Ip). Then X have the OQTE. Let q = 1, the “optimal” sketching

matrix S∗ is equal to

S∗ = c0(1, 1, 0, 0, . . . , 0),

for any c0 ̸= 0. For any S ∈ R1×p such that S∗ST = 0, SX is independent of X(1) +X(2).

Then, we have

τS(ω) = E{τ(X)|SX = ω}

= E

[∣∣∣∣∣
{(

X(1) +X(2)

√
2

)2

− δ

}(
X(3) +X(4) +X(5) +X(6) +X(7)

√
5

)2
∣∣∣∣∣SX = ω

]

= (1− δ)E

{(
X(3) +X(4) +X(5) +X(6) +X(7)

√
5

)2
∣∣∣∣∣SX = ω

}
.

Hence, τS(ω) is always nonnegative or nonpositive as a function of ω. As a result, the test

statistic based on {OS
i }i doesn’t have any power to detect the OQTE. The challenge here

lies in finding a projection matrix S that is highly correlated with S∗.

Below, we propose a data-dependent algorithm to generate S and introduce our test

statistic. Our theory shows that our test statistic works as if the optimal sketching matrix

S∗ were known. Statistical properties of our testing procedure are formally studied in

Section 3.2.2.
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3.2.1 Test statistic

Assume for now, we have an estimator τ̂SI for τS based on any subset of the projected

data {OS
i }i∈I and an algorithm to sample sparse sketching matrices whose distribution

G(S, {Oi}i∈I) is allowed to depend on {Oi}i∈I . We describe the whole testing procedure in

Algorithm 1.

Algorithm 1. Calculate the random projection-based test statistic.

1. Input observations {Oi}i=1,...,N , δn, α and a sampling distribution G.
2. Randomly partition the data into two subsets {Oi}i∈I1 and {Oi}i∈I2 .
3. For j = 1, 2,

(i) Independently sample a sparse sketching matrix SIj ∼ G(S, {Oi}i∈Ij);
(ii) Obtain estimators τ̂

SIj
Ij and d̂

SIj
Ij (x) = I{τ̂

SIj
Ij (SIjx) > 0};

(iii) Calculate T̂ SIj =
√
nV̂DIc

j
(d̂

SIj
Ij )/max{σ̂Ic

j
(d̂

SIj
Ij ), δn}.

4. Reject H0 if T̂SRP = max(T̂ SI1 , T̂ SI2 ) > zα/2.

Now we present our algorithm for generating sparse sketching matrix. We first introduce

some notations. For any matrix Ψ with J rows, let Ψ(i) be the ith row of Ψ. For any vector

ψ ∈ RJ and any set M ⊆ {1, . . . , J}, denote ψM as the subvector of ψ formed by elements

in M. Let Mc be the complement of M. Let ∥ψ∥0 be the number of nonzero elements

in ψ and ∥ψ∥2 be the Euclidean norm of ψ. Let S denote the space of sparse sketching

matrices:

S = {S ∈ Rq×p : ∥S(i)∥0 ≤ s, ∥S(i)∥2 = 1,∀i = 1, . . . , q},

for some fixed integer s that satisfies 2 ≤ s ≤ p. Denoted by N(0, IJ) a J-dimensional

Gaussian random vector with mean zero and identity covariance matrix.

It remains to generate SIj based on the sub-dataset {Oi}i∈Ij . We first sample many

sparse sketching matrices from S. Each row of the sketching matrix is independently and

uniformly distributed on the space {S ∈ Rp : ∥S∥0 = s, ∥S∥2 = 1}. This corresponds to

Step 2 in our proposed algorithm below. Then we output the sparse sketching matrix that

maximizes the estimated value difference function. Specifically, we propose using data-
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splitting strategy for evaluation of the value difference function. That is, for each sketching

matrix, we randomly divide {Oi}i∈Ij into K folds, use any of the K − 1 subsamples to

estimate the OITR based on projected covariates, use the remaining subsamples to evaluate

the corresponding value difference function, and aggregate these value difference functions

over different subsamples. This corresponds to Step 3-5 in our proposed algorithm below.

We summarize our procedure in Algorithm 2.

Algorithm 2. Generate data-dependent sparse random sketching matrix.

1. Input observations {Oi}i∈I , integers B, s, q and K ≥ 2.
2. Generate i.i.d matrices S1, S2, . . . , SB according as S0 whose distribution is

described as follows. For j = 1, . . . , q,
(i) Independently select a simple random sample Mj of size s from {1, . . . , p};
(ii) Independently generate a Gaussian random vector gj ∼ N(0, Is);

(iii) Set S
(j)
0,Mc

j
= 0 and S

(j)
0,Mj

= gj/∥gj∥2.
3. Randomly divide I into K subsets {I(k)}Kk=1 of equal sizes. Let I(k)− = I ∩ (I(k))c.
4. For b = 1, . . . , B,

(i) For k = 1, . . . ,K,
(i.1) Obtain the estimator τ̂Sb

I(k)− and d̂Sb

I(k)−(x) = I{τ̂Sb

I(k)−(Sbx) > 0};
(i.2) Evaluate the value difference V̂DI(k)(d̂Sb

I(k)−).

(ii) Obtain the cross-validated estimator V̂D
Sb

CV =
∑

k V̂DI(k)(d̂Sb

I(k)−)/K.

5. Output Sb̂, where b̂ = argmaxBb=1 V̂D
Sb

CV .

3.2.2 Asymptotic properties under the null and local alternative

We first show the validity of the proposed test, which applies to any estimator τ̂SI . For any

positive sequences {an} and {bn}, we write an ≫ bn if and only if lim supn bn/an = 0.

Theorem 3.3. Assume (A1)-(A3) hold, E|Y |3 = O(1) and δn ≫ n−1/6. Then under H0,

we have

lim sup
n

Pr
(
T̂SRP > zα/2

)
≤ α.
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Moreover, assume that

Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− d̂

SIj
Ij (X)} | {Oi}i∈Ij , SIj , Ij

}
= op(δn),

for j = 1, 2. Then we have Pr(T̂SRP > zα/2) → 0.

Let S∗ = argmaxS∈S V (doptS ) be the optimal sketching matrix. The optimal sketching

matrix S∗ may not be unique. To see this, for any sketching matrix S∗ ∈ S that maximizes

V (doptS ), −S∗ also maximizes V (doptS ) and we have −S∗ ∈ S. Moreover, when q ≥ 2, there

may exist infinitely many maximizers. Denoted by S∗ the set of all maximizers. We assume

for any S∗
1 , S

∗
2 ∈ S∗,

E
[
|doptS∗

1
(X)− doptS∗

2
(X)|I{τS∗

1 (S∗
1X) ̸= 0, τS

∗
2 (S∗

2X) ̸= 0}
]
= 0. (7)

When Pr{τS∗
(S∗X) = 0} = 0 for any S∗ ∈ S∗, this implies the class of treatment regimes

{doptS∗ : S∗ ∈ S∗} will almost surely recommend the same treatment to any given patient.

Our theoretical studies are mostly concerned with the “oracle” test statistic. The oracle

knew the set S∗ ahead of time. In Algorithm 1: Step 3(i), instead of using Algorithm 2

to sample SI1 and SI2 , we use the oracle set SI1 = SI2 = S∗ for an arbitrary S∗ ∈ S∗.

Denoted by T̂oracle the resulting oracle test statistic. Let h∗n = argmaxS∗∈S∗ V (doptS∗ )−V (1).

Similar to Theorem 3.2, under H1, if h
∗
n ≫ n−1/2, then we can show

Pr
(
T̂oracle > zα/2

)
→ 1.

Let

σ2
∗ = Var

{(
A

π(X)
− 1− A

1− π(X)

)
Y {1− doptS∗ (X)}

}
.

When Pr{τS∗
(S∗X) = 0} = 0 for any S∗ ∈ S∗, under Assumption (7), we can show that

σ2
∗ is the same for all S∗ ∈ S∗. Similar to Theorem 3.2, the asymptotic power of T̂oracle can

14



be derived as

Pr
(
T̂oracle > zα/2

)
= 2Φ̄

(
zα

2
−

√
nh∗n
σ∗

)
− Φ̄2

(
zα

2
−

√
nh∗n
σ∗

)
+ o(1). (8)

In the following, we prove the consistency of our proposed testing procedure when using

Algorithm 2 to generate the sparse sketching matrix. Moreover, we show our test statistic

possesses the oracle property when Pr{τS∗
(S∗X) = 0} = 0 for any S∗ ∈ S∗. This means

the power function of T̂SRP is asymptotically the same as the oracle test statistic T̂oracle.

Define the semimetric

dτ (S1, S2) =
√
E|τS1(S1X)− τS2(S2X)|2, ∀S1, S2 ∈ S.

For any ε > 0, we define an ε-neighborhood of S∗ with respect to dτ by

S(ε) = {S ∈ S : ∃S∗ ∈ S∗, dτ (S, S∗) ≤ ε} .

We make the following assumptions.

(A4.) For any sketching matrices S1, S2, . . . , SB ∈ S and any I ⊆ {1, 2, . . . , N} with

|I| ≥ n/2, assume the following event holds with probability tending to 1,

B
max
b=1

EX |τ̂Sj

I (SjX)− τSj(SjX)|2 = O
(
n−r0 log n

)
,

where the expectation EX is taken with respect to X, and the little-o term is uniform in I

and S1, . . . , SB.

(A5.) Assume B ≫ (p
√
n)(s−1)q. In addition, assume there exist some constant C̄ > 0 and

some sketching matrix S∗ ∈ S∗ such that

dτ (S, S∗) ≤ C̄

(
q∑

j=1

∥S(j) − S∗(j)∥22

)1/2

, ∀S ∈ S. (9)

(A6.) Assume there exists some constants γ, ε0, δ0 > 0 such that for any S ∈ S(ε0),

Pr{0 < |τS(SX)| ≤ t} = O(tγ), where the big-O term is uniform in 0 < t < δ0 and S.
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(A7.) For any sufficiently small ε > 0, there exists some constant l0 > 0 such that for any

sketching matrix S satisfying V (doptS ) ≥ V (doptS∗ )− ε, we have S ∈ S(εl0).

Condition (A4) assumes the uniform convergence rate of τ̂Sb
I for b = 1, . . . , B. Since the

uniform convergence rate increases as B increases, Condition (A4) gives the upper bound

for B. On the contrary, Condition (A5) gives the lower bound for B. It requires B to

diverge at a proper rate, to give us a good chance for finding a random projection with a

large value function. More specifically, under (A5), we can show that

Pr
{

B
max
b=1

V (doptSb
) = V (doptS∗ ) + o(n−1/2)

}
→ 1.

In Section C.3 of the Appendix, we provide an example and show Condition (9) in (A5)

holds.

Condition (A6) holds with γ = 1 when τS(SX) has a uniformly bounded density func-

tion near 0 for all S ∈ S(ε0). In Section C.4 of the Appendix, we provide some detailed

examples and show (A6) holds under these scenarios. In addition, assume τ(X) ≥ δ0

almost surely or τ(X) ≤ −δ0 almost surely. Then for any sketching matrix S, we have

τS(SX) ≥ δ0 almost surely or τS(SX) ≤ −δ0. As a result, (A6) automatically holds for

any γ > 0. Condition (A7) implies that any sketching matrix S that nearly maximizes

V (doptS ) lies in a small neighborhood of S∗ with respect to dτ . We provide some examples

and show (A7) holds with l0 = 1/2 in Section C.5 of the Appendix.

Theorem 3.4. Assume Conditions (A1)-(A5) hold, E|Y |3 = O(1), logB = o(n1/3) and

δn → 0. If h∗n ≫ max(
√
logB/

√
n, n−r0/2

√
log n), then we have

Pr
(
T̂SRP > zα/2

)
→ 1.

Moreover, assume (7), (A6), (A7) hold, Pr{τS∗
(S∗X) = 0} = 0 for any S∗ ∈ S∗,

√
nh∗n =

O(1), B = O(nκB) for some κB > 0, r0 >
γ+2
2γ+2

and lim infn σ∗ > 0. Then we have

Pr
(
T̂SRP > zα/2

)
= 2Φ̄

(
zα

2
−

√
nh∗n
σ∗

)
− Φ̄2

(
zα

2
−

√
nh∗n
σ∗

)
+ o(1).
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Assume p = O(n) and we set B = c∗n
{3q(s−1)+ϵ}/2 for any c∗, ϵ > 0. Then the conditions

B ≫ (p
√
n)(s−1)q in (A5) and B = O(nκB) in Theorem 3.4 automatically hold. It is worth

mentioning that if dopt = doptS∗ almost surely for some S∗ ∈ S∗, then we have h∗n = hn and

σ∗ = σ0 where hn and σ0 are defined in Theorem 3.2. When these quantities don’t depend

on p, Theorem 3.4 implies that the asymptotic power of our test is independent of p.

3.3 Some implementation issues

3.3.1 Doubly-robust test statistics

So far we have assumed that the propensity scores are known for all patients. In the

following, we introduce a doubly-robust test statistic to deal with data from an observa-

tional study. We begin by introducing a doubly-robust value difference estimator, which

requires the estimation of the propensity score and the conditional mean functions h0(x) =

E(Y |A = 0, X = x) and h1(x) = E(Y |A = 1, X = x). Denoted by π̂(·), ĥ0(·) and ĥ1(·) the

corresponding estimators. Zhang et al. (2012) proposed a doubly-robust estimator for the

value function under a given treatment regime d,

V̂ dr(d) =
1

N

N∑
i=1

{(
Ai

π̂(Xi)
di +

1− Ai

1− π̂(Xi)
(1− di)

)
Yi

−
(

Ai

π̂(Xi)
di +

1− Ai

1− π̂(Xi)
(1− di)− 1

)
{ĥ0(Xi)(1− di) + ĥ1(Xi)di}

}
,

where di is a shorthand for d(Xi). When either the propensity score or the conditional mean

models are correctly specified, V̂ dr(d) is consistent to V (d) (Zhang et al., 2012). Based on

V̂ dr, for any I ⊂ [1, . . . , N ] and a given treatment regime d, we define our doubly-robust

value difference estimator as

V̂D
dr

I (d) =
1

|I|
∑
i∈I

{(
1− Ai

1− π̂I
i

− Ai

π̂I
i

)
Yi −

(
1− Ai

1− π̂I
i

− 1

)
ĥI0,i +

(
Ai

π̂I
i

− 1

)
ĥI1,i

}
(1− di),

where π̂I
i = π̂I(Xi), ĥ

I
0,i = ĥI0 (Xi), ĥ

I
1,i = ĥI1 (Xi), and π̂I , ĥI0 , ĥ

I
1 are obtained based on

{Oi}I . When p is large, we recommend to estimate π, h0 and h1 via penalized regression.
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The asymptotic variance of
√
|I|V̂D

dr
(d) can be consistently estimated by σ̂dr

I (d) whose

exact form is given in Section A of the Appendix.

We briefly summarize our test procedures. Similar to Algorithm 1, we first randomly

partition the data into two halves {Oi}I1 and {Oi}I2 , and obtain the estimators π̂Ij , ĥ
Ij
0 ,

ĥ
Ij
1 based on {Oi}i∈Ij for j = 1, 2. Then we independently sample the sparse sketching

matrices SI1 and SI2 . The sampling algorithm is similar to Algorithm 2. Specifically,

for j = 1, 2, we randomly divide Ij into {I(k)
j }Kk=1 and independently sample S1, . . . , SB

as Steps 2 and 3 of Algorithm 2. Then we calculate the doubly-robust value difference

estimator,

V̂D
dr,Sb

CV = K−1
∑
k

V̂D
dr

I(k)
j
(d̂Sb

I(k)−
j

), (10)

for each Sb where I(k)−
j = Ij ∩ (I(k)

j )c, and set SIj = Sb̂ where b̂ = argmaxBb=1 V̂D
dr,Sb

CV .

Finally, we define our test statistic by

T̂ dr
SRP = max

 √
nV̂D

dr

I2(d̂
SI1
I1 )

max{σ̂dr
I2(d̂

SI1
I1 ), δn}

,

√
nV̂D

dr

I1(d̂
SI2
I2 )

max{σ̂dr
I1(d̂

SI2
I2 ), δn}

 , (11)

and reject the test if T̂ dr
SRP > zα/2 for a given significance level α > 0. Statistical properties

of T̂ dr
SRP can be similarly established.

3.3.2 Estimation of τS

The projected contrast function τS can be estimated by any machine learning or statistical

nonparametric methods. In our implementation, we estimate τS using cubic B-splines. Let

I be an arbitrary subset of {1, . . . , N}. Based on the dataset {Oi}i∈I , we first estimate

π using the penalized logistic regression, and estimate h0, h1 using the penalized linear

regression, with SCAD penalty functions (Fan and Li, 2001). These penalized regressions

are implemented by the R package ncvreg and the tuning parameters are selected via 10-

folded cross-validation. Let π̂I
i , ĥ

I
0,i and ĥI1,i be the corresponding estimators for π(Xi),

h0(Xi) and h1(Xi), respectively. Recall that S
(j) ∈ R1×p is the jth row of sketching matrix
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S. We define the pseudo outcome

τ̂Ii =

(
Ai

π̂I
i

− 1− Ai

1− π̂I
i

)
Yi −

(
Ai

π̂I
i

− 1

)
ĥI1,i +

(
1− Ai

1− π̂I
i

− 1

)
ĥI0,i, (12)

and minimize

(ξ̂I1 , · · · , ξ̂Iq ) = argmin
ξ1,··· ,ξq∈Rk

1

|I|
∑
i∈I

(
τ̂Ii −

q∑
j=1

K+4∑
k=1

NS(j)

k (S(j)Xi)ξj,k

)2

, (13)

where NS(j)

1 (·), . . . , NS(j)

K+4(·) are cubic B-spline bases of S(j)Xi and K is the number of in-

terior knots. Given K, we place the interior knots at equally-spaced sample quantiles of the

projected covariates {SXi}i∈I . After solving (13), we set τ̂SI (Sx) =
∑q

j=1

∑K+4
k=1 N

S(j)

k (S(j)x)ξ̂Ij,k.

Based on the B-spline methods, we show in Section C.2 of the Appendix (A8) holds

with r0 = 4/5 when q = 1 and B = O(nκB) for any κB > 0. Assume (A7) holds with

γ ≥ 2/3. The condition r0 > (γ + 2)/(2γ + 2) in Theorem 3.4 is thus satisfied. More

generally, we may use series estimator (Belloni et al., 2015) to estimate τS. Then the rate

r0 in (A8) will decrease as the number of projected dimension q increases.

3.3.3 Choice of s

Our testing procedure requires specification of s, which determines the number of nonzero

elements in each row of the sketching matrix. Ideally, one could treat s as a tuning param-

eter and choose s to maximize the estimated value difference defined in (10). However, this

approach would be time-consuming. In our implementation, we set s as a discrete random

variable when sampling S1, . . . , SB. More specifically, for b = 1, . . . , B, we first indepen-

dently sample s according as some random variable s0, and then sample Sb according to

Step 3 of Algorithm 2.

We recommend to set s0 = 2 + Binom(p − 2, p0), where Binom(m, p0) is a binomial

random variable with the total number of trials equal to m and the probability of success

equal to p0. In our simulation study, we set p0 = 2/(p− 2).
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4 Simulations

4.1 Settings

We examine the finite sample performance of the proposed tests via Monte Carlo simula-

tions. Simulated data with sample size N were generated from

Y = 1 + (X(1) −X(2))/2 + Aτ(X) + e,

where X ∼ N(0, Ip), A ∼ Binom(1, 0.5) and e ∼ N(0, 0.52). Here, we set p = 50 or 100.

We consider four scenarios. In the first three scenarios, we set

τ(X) = ϕδ{(X(1) +X(2))/
√
2}(X(3) +X(4) +X(5) +X(6) +X(7))2/5,

for some function ϕδ parameterized by some δ > 0. More specifically, we set ϕδ(x) = x2− δ

in Scenario 1, ϕδ(x) = δ cos(πx) in Scenario 2, and ϕδ(x) = δ
√
2πx in Scenario 3.

In Scenario 4, we set

τ(X) = δ


(

2∑
j=1

X(j)

√
2

)2

−

(
20∑
j=3

X(j)

√
18

)2
 (X(21) +X(22) +X(23) +X(24) +X(25))2/5.

It is immediate to see that the OITR is sparse and is a function of X(1) and X(2) in the first

three scenarios. In Scenario 4, however, a total of 20 variables are involved in the OITR.

In addition, the true OITR is linear in X under Scenario 3, but non-linear under Scenarios

1, 2 and 4. We set N = 500 in Scenarios 1, 2 and 3, and N = 1000 in Scenario 4.

For all scenarios, the parameter δ controls the degree of overall qualitative treatment

effects. Specifically, H0 holds if δ = 0 and H1 holds if δ > 0. For each scenario, we further

consider four cases by setting VD(dopt) = V (dopt)− V (1) = 0, 0.2, 0.35 and 0.5. Note that

in Scenarios 2, 3 and 4, the settings for VD(dopt) = 0 are the same. Hence, in Scenarios 3

and 4, we only report the simulation results for VD(dopt) = 0.2, 0.35 and 0.5.

We set q = 1 and calculate T̂ dr
SRP as described in Section 3.3. The number of interior

knots K in the cubic B-spline bases is specified in the following fashion. When generating
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SI1 or SI2 , we fix K = 3 when estimating τSb for b = 1, . . . , B. After obtaining SI1 and

SI2 , K is tuned with cross-validation when estimating τSI1 and τSI2 . We set B = 105 for

p = 50 and B = 4× 105 for p = 100.

The whole simulation program is implemented in R. Some subroutines, including sam-

pling data-dependent sketching matrices SI1 and SI2 and estimating τSI1 and τSI2 , are

written in C with the GNU Scientific Library (GSL, Galassi et al., 2015).

4.2 Competing methods

Comparison is made among the following five test statistics:

(i) The proposed sparse random projection-based test statistic T̂ dr
SRP .

(ii) The dense random projection-based test statistic, denoted by T̂ dr
RP .

(iii) The cross-validated test statistic with the OITR estimated by the penalized least square

method developed in Shi et al. (2016), denoted by T̂PLS.

(iv) The cross-validated test statistic based on step-wise variable selection, denoted by T̂V S.

(v) The supremum-type test statistic T̂DL based on the desparsified Lasso estimator (??).

T̂ dr
RP is computed in a similar fashion as T̂ dr

SRP . We randomly partition {1, . . . , N} into

I1 ∪ I2 of equal size, generate some data dependent sketching matrices SI1 and SI2 , and

construct the test statistic as in (11). When generating SI1 or SI2 , instead of sampling

B sparse sketching matrices as described in Step 3 of Algorithm 2, we generate B dense

sketching matrices S1, . . . , SB according to Z0/∥Z0∥2, where Z0 ∈ Rp is a Gaussian random

vector with mean zero and identity covariance matrix, and set SI1 or SI2 to be the one

that gives the largest cross-validated value difference as in (10). Similar to T̂ dr
SRP , we set

B = 105 for p = 50 and set B = 4 × 105 for p = 100, and use cubic B-splines to estimate

τS for any sketching matrix S.

To calculate T̂PLS, we first partition the data into two halves {Oi}i∈I1 and {Oi}i∈I2 .

Then for j = 1, 2, we set d̂Ij(x) = I(x̄T β̂Ij > 0) where x̄ = (1, xT )T , β̂Ij is computed by

β̂Ij = argmin
β∈Rp+1

∑
i∈Ij

1

|Ij|

(
Yi − X̄T

i θ̂
Ij − (Ai − π̂

Ij
i )X̄T

i β
)2

+

p+1∑
j=2

pλn,1(|βj|), (14)
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for some penalty functions pλ, where X̄i = (1, XT
i )

T , π̂
Ij
i is the estimated propensity score

for the ith patient based on a penalized logistic regression with SCAD penalty function,

and θ̂Ij is calculated by

θ̂Ij = argmin
θ∈Rp+1

∑
i∈Ij

1

|Ij|
(Yi − X̄T

i θ)
2 +

p+1∑
j=2

pλn,2(|θj|). (15)

We use the SCAD penalty in both (14) and (15). The tuning parameters λn,1 and λn,2 were

selected via 10-folded cross-validation. Finally, define T̂PLS by

T̂PLS = max

 √
nV̂D

dr

I2(d̂I1)

max{σ̂dr
I2(d̂I1), δn}

,

√
nV̂D

dr

I1(d̂I2)

max{σ̂dr
I1(d̂I2), δn}

 . (16)

To compute T̂V S, we similarly split the observations into two sub-datasets {Oi}i∈I1 and

{Oi}i∈I2 . For each sub-dataset, we apply the sequential advantage selection (SAS, Fan

et al., 2016) to select variables with a qualitative interaction with the treatment. SAS

is a greedy stepwise selection procedure and uses a BIC-type criterion to choose the best

candidate subset of variables. Denoted by M̂I1 ,M̂I2 ⊆ {1, . . . , p} the corresponding sets

of selected variables. Then for each j = 1, 2, we calculate the pseudo responses τ̂
Ij
i ,∀i ∈ Ij

(see the definition in (12)) and compute

τ̂Ij = argmin
f∈Hj

1

n

∑
i∈Ij

{τ̂Iji − f(Xi,M̂Ij
)}2 + λj∥f∥2Hj

,

where λj > 0 is a tuning parameter, Hj is the reproducing kernel Hilbert space with the

reproducing kernel Kj(Xi,M̂Ij
, Xk,M̂Ij

) = exp{−
∑

l∈M̂Ij
ηj,l(X

(l)
i −X

(l)
k )2} where X

(l)
i , X

(l)
k

denote the l-th element in Xi, Xk and ηj,l > 0, ∀l ∈ M̂Ij are tuning parameters. The

estimating procedure is implemented by the R package listdtr and the tuning parameters

are selected via leave-one-out cross validation. Then we define d̂Ij(x) = I{τ̂Ij(xM̂Ij
) > 0}
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and set

T̂V S = max

 √
nV̂D

dr

I2(d̂I1)

max{σ̂dr
I2(d̂I1), δn}

,

√
nV̂D

dr

I1(d̂I2)

max{σ̂dr
I1(d̂I2), δn}

 . (17)

We set δn = log(log10(2n))/(2n)
1/6 in (11), (16) and (17), where log10 denotes the logarithm

with base 10.

T̂DL tests the overall treatment effects by fitting the following linear regression model

for the response:

E(Y |A,X) ≈ β0 +XTβx + Aβa + AXTβax.

Based on this model, testing the overall treatment effects is equivalent to test H∗
0 : βax = 0.

Denoted by β = (β0, β
T
x , βa, β

T
ax)

T . To deal with high dimensionality, we estimate β by the

desparsified Lasso estimator β̂DL and test H∗
0 based on the following supremum-type test

statistic, maxj∈Max

√
n|β̂DL

j |, where Max = {p+3, . . . , 2p+2} and β̂DL
j is the j-th element

of β̂DL. The critical value of T̂DL is approximated via bootstrap. Detailed implementation

of the test can be found in Zhang and Cheng (2017).

4.3 Results

We conduct 500 simulations for each setting and report the proportions of rejecting the

null hypothesis (%) in Table 1 and Table 2, with standard errors in parenthesis (%). Under

H0, the type-I errors of our test statistic is well controlled. Specifically, in Scenario 1 when

VD = 0, the rejection probability of T̂ dr
SRP is exactly zero. This is in line with our theory

which suggests that the type-I error of our test statistics will converge to 0 in the regular

cases where Pr{τ(X) = 0} = 0. In Scenario 2 when VD = 0, the rejection probability of

T̂ dr
SRP is close to the nominal level.
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Table 1: Rejection probabilities (%) of the sparse random projection-based test, dense random projection-
based test, penalized least square-based test, step-wise selection-based test and the supremum-type test
based on the desparsified Lasso estimator, with standard errors in parenthesis (%), under Scenarios 1 and
2 where X ∼ N(0, Ip).

Scenario 1 VD = 0 VD = 20% VD = 35% VD = 50%

α level α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 0(0) 0(0) 24(1.9) 39.6(2.2) 71(2.0) 81(1.8) 90.8(1.3) 95.2(1.0)
100 0(0) 0(0) 17.4(1.7) 29.6(2.0) 60.8(2.2) 73.8(2.0) 86.6(1.5) 92.4(1.2)

T̂ dr
RP

50 0(0) 0(0) 0.2(0.2) 0.6(0.4) 0.8(0.4) 3.2(0.8) 7.2(1.2) 18.6(1.7)
100 0(0) 0(0) 0.4(0.3) 0.4(0.3) 0.4(0.3) 4(0.9) 6.8(1.1) 19(1.8)

T̂PLS
50 0(0) 0(0) 0(0) 0(0) 0.4(0.3) 0.8(0.4) 6(1.1) 17.6(1.7)
100 0(0) 0(0) 0(0) 0(0) 0.8(0.4) 2.4(0.7) 8.6(1.3) 19.8(1.8)

T̂V S
50 0(0) 0(0) 1.2(0.5) 3.8(0.9) 16 (1.6) 29.4 (2.0) 36.6(2.2) 50.8(2.2)
100 0(0) 0(0) 0(0) 0.6(0.3) 8.4 (1.2) 17.4 (1.7) 23.8(1.9) 36.4(2.2)

T̂DL
50 10.2(1.4) 22.4(1.9) 11.2(1.4) 22.8(1.9) 10.8 (1.4) 21.8 (1.9) 9.8(1.3) 22.4(1.9)
100 7.6(1.2) 20.0(1.8) 7.8(1.2) 21.4(1.8) 7.6 (1.2) 22.0 (1.9) 6.8(1.1) 21.6(1.8)

Scenario 2 VD = 0 VD = 20% VD = 35% VD = 50%

α level α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 1.2(0.5) 5.4(1) 24(1.9) 35.8(2.1) 76.4(1.9) 84.6(1.6) 90.2(1.3) 94(1.1)
100 0.6(0.3) 5.2(1) 15.2(1.6) 28.2(2) 67(2.1) 78.8(1.8) 84.2(1.6) 90.4(1.3)

T̂ dr
RP

50 1.8(0.6) 4.6(0.9) 2(0.6) 4.8(1) 1.6(0.6) 5.4(1) 1(0.4) 6(1.1)
100 1.2(0.5) 4.2(0.9) 1.2(0.5) 5.4(1) 0.6(0.3) 4.8(1) 0.8(0.4) 4.4(0.9)

T̂PLS
50 1.8(0.6) 6(1.1) 1.2(0.5) 4.4(0.9) 1(0.4) 4.2(0.9) 0.8(0.4) 3.8(0.9)
100 1.2(0.5) 4.2(0.9) 0.8(0.4) 4.6(0.9) 0.6(0.3) 5.6(1) 0.6(0.3) 5(1)

T̂V S
50 1.2(0.5) 6.4(1.1) 0.6(0.3) 4(0.9) 1(0.4) 6.6(1.1) 1(0.4) 5(1)
100 1.4(0.5) 5(1.0) 1.0(0.4) 5(1.0) 1.4(0.5) 6.4(1.1) 0.6(0.3) 4.6(0.9)

T̂DL
50 1.6(0.6) 6.4(1.1) 2.8(0.7) 11.8(1.4) 4.4 (0.9) 15.4 (1.6) 5.4 (1.0) 17(1.7)
100 1.2(0.5) 3.6(0.8) 2.8(0.7) 11.8(1.4) 5.2(1.0) 17.6(1.7) 7.2(1.2) 19.8(1.8)

Table 2: Rejection probabilities (%) of the sparse random projection-based test, dense random projection-
based test, penalized least square-based test, step-wise selection-based test and the supremum-type test
based on the desparsified Lasso estimator, with standard errors in parenthesis (%), under Scenarios 3 and
4 where X ∼ N(0, Ip).
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Scenario 3 VD = 20% VD = 35% VD = 50%

α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 47.2(2.2) 71.8(2) 92.4(1.2) 97.8(0.7) 99(0.4) 100(0)
100 42.4(2.2) 61.2(2.2) 89.8(1.4) 96.2(0.9) 97.2(0.7) 99.4(0.3)

T̂ dr
RP

50 4.4(0.9) 16.2(1.6) 13.4(1.5) 35.8(2.1) 22(1.9) 49.4(2.2)
100 3(0.8) 8.4(1.2) 4(0.9) 14.2(1.6) 5.4(1) 19.6(1.8)

T̂PLS
50 76.4(1.9) 92(1.2) 97.8(0.7) 99.4(0.3) 99.4(0.3) 100(0)
100 64.8(2.1) 87(1.5) 97(0.8) 99.4(0.3) 98.6(0.5) 99.8(0.2)

T̂V S
50 55.6(2.2) 81.8(1.7) 93(1.1) 99(0.4) 97.8(0.7) 100(0)
100 49.8(2.2) 74.2(2.0) 90(1.3) 98.6(0.5) 99(0.4) 100(0)

T̂DL
50 99.8(0.7) 100(0) 100(0) 100(0) 100(0) 100(0)
100 99.2(0.4) 100(0) 100(0) 100(0) 100(0) 100(0)

Scenario 4 VD = 20% VD = 35% VD = 50%

α level α level α level
p 0.01 0.05 0.01 0.05 0.01 0.05

T̂ dr
SRP

50 22.4(1.9) 41.8(2.2) 60.4(2.2) 76.6(1.9) 72.4(2) 87.2(1.5)
100 15.2(1.6) 28(2) 49.6(2.2) 70.2(2) 70(2) 84(1.6)

T̂ dr
RP

50 0.4(0.3) 6.2(1.1) 0.6(0.3) 5.4(1) 0.2(0.2) 5.4(1)
100 1.2(0.5) 6(1.1) 0.8(0.4) 3.8(0.9) 1.2(0.5) 5.2(1)

T̂ dr
PLS

50 1.2(0.5) 5.4(1) 1.2(0.5) 6(1.1) 1.4(0.5) 4.8(1)
100 1.6(0.6) 5.8(1) 1.8(0.6) 6(1.1) 1.4(0.5) 5.2(1)

T̂ dr
V S

50 10.4(1.4) 24.2(1.9) 13.6(1.5) 30.6(2.1) 13.2(1.5) 29.4(2)
100 5(1) 15.6(1.6) 4.6(0.9) 20(1.8) 8.2(1.2) 18.4(1.7)

T̂ dr
DL

50 4.2(0.9) 11.4(1.4) 5.4(1) 14.2(1.6) 6.4(1.1) 15.8(1.6)
100 6.2(1.1) 16(1.6) 6.4(1.1) 18.2(1.7) 6.8(1.1) 19.6(1.8)

Under H1, we can see that our test statistic is much more powerful compared to other

competing test statistics in Scenarios 1, 2 and 4. For example, when VD = 0.35 and

α = 0.05, the rejection probabilities of our test are around 75% in Scenario 1. On the

other hand, T̂ dr
RP , T̂PLS and T̂V S fail in Scenario 2. Specifically, the rejection probabilities

of these three tests are no more than 6% in all settings. The rejection probabilities of T̂DL

are around 10%-20% in Scenario 2 under H1. However, T̂DL doesn’t have valid type-I error

rates under H0. Here, the test statistics T̂PLS and T̂DL fail mainly due to the fact that the

true OITR is not linear, while T̂ dr
RP and T̂V S fail partly because the dense projection and

greedy stepwise variable selection cannot correctly identify the variables with qualitative

interactions.

In Scenario 3, T̂DL and T̂PLS achieve the greatest power in all settings as expected since

the true OITR is linear in this scenario. Notice that X(1), X(2), · · · , X(7) are independent.

Although the contrast function is not linear, the estimated contrast functions via the pe-

nalized least squares (see (14) and (15)) will converge to E{τ(X)|X(1), X(2)}. As a result,

the estimated OITR is consistent. When VD = 0.35 and 0.5, the rejection probabilities of
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T̂ dr
SRP are slightly smaller when compared to T̂PLS, T̂DL and T̂V S, but are much larger than

those of T̂ dr
RP .

In Section E of the supplementary article, we report the rejection probabilities of T̂ dr
SRP ,

T̂ dr
RP , T̂PLS, T̂V S and T̂DL under the scenario where X ∼ N(0, {0.5|i−j|}i,j=1,...,p). Results

are similar to those presented in Table 1 and 2.

5 Real data

We apply our proposed test to the data from the Nefazodone-CBASP clinical trial study

(Keller et al., 2000), which enrolled 681 patients with nonpsychotic chronic major depres-

sive disorder (MDD). Patients were randomized to three treatments, including Nafazodone

(coded as 0), Cognitive Behavioral-Analysis System of Psychotherapy (CBASP, coded as

1), and the combination of Nefazodone and CBASP (2). The outcome of interests were

patients’ scores on the 24-item Hamilton Rating Scale for Depression (HRSD). The max-

imum value of HRSD was 43 and we set Y = 43 − HRSD as our response. Larger value

of Y indicates better clinical outcome. Similarly as in Zhao et al. (2012), we use a subset

of 647 patients that have complete records of 50 baseline covariates for analysis. Among

them, 216 were treated with Nafazodone, 220 with CBASP and 211 with the combination.

Our objective was to test whether the baseline covariates X have overall qualitative

treatment effects. This is equivalent to test H0 : V (dopt) = max{V (0), V (1), V (2)}, where

V (dopt) is the optimal value function, and V (j) denotes the value function under the fixed

treatment regimes by assigning all patients to treatment j, for j = 0, 1, 2. Patients’ average

responses under treatment 0, 1, 2 are 27.14, 27.27 and 32.13, respectively. Besides, pairwise

t tests show that V (2) is significantly larger than V (0) and V (1). Therefore, it suffices to

test H0 : V (dopt) = V (2). This is equivalent to test the intersection of the following two

hypotheses:

H
(j)
0 : V (dopt,(j)) = max

k∈{0,1,2},k ̸=j
V (k),

for j = 0, 1, where dopt,(j) is the optimal treatment regime comparing Treatment 2 with
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Treatment j. For testing H
(j)
0 , we computed the test statistic T̂ dr,j

SRP as described in Section

3.3 and 4.1. We set B = 100000 and δn = log(log10(2n))/(2n)
1/6. For a given 0 < α < 1,

we reject H0 if

max
j=0,1

T̂ dr,j
SRP > zα/4.

By Bonferroni’s inequality, the type-I error is well-controlled.

The two test statistics are equal to −0.67 and 0.31, respectively. We fail to reject H0

at a significance level of 0.1. Therefore, we suspect that the prognostic covariates in this

study might not have qualitative treatment effects. Zhao et al. (2012) performed pairwise

comparisons between the combination treatment and any single treatment, and estimate

the OITR by the outcome weighted learning. Their estimated optimal treatment regime

recommended the combination treatment to all the patients. Our tests formally verify their

findings.

6 Discussion

In this paper, we develop tests for overall qualitative treatment effects. The test statis-

tics are constructed by a sample-splitting method. In the high-dimensional setting, we

use sparse random projections of the covariate space to construct the test statistic and

introduce a data-dependent way to sample sparse projection matrices. In theory, we show

the consistency of the proposed test statistic and prove its “oracle” property in the regular

cases.

6.1 Multi-stage studies

Currently, we only consider a single stage study. For multiple-stage studies, it suffices to

test whether the value function under the optimal dynamic treatment regime is strictly

larger than those under nondynamic treatment regimes. Zhang et al. (2013) proposed

an inverse propensity-score weighted estimator for the value function under an arbitrary

dynamic treatment regime. Denoted by V̂DI(d1, d2) the corresponding estimator for the
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value difference between two dynamic treatment regimes d1 and d2, and d̂I the estimated

optimal dynamic treatment regime, based on the sub-dataset I. Consider the following

test statistic:

T̂CV = max

{
min
d∈Dnd

√
|I2|V̂DI2(d̂I1 , d)

σ̂I2(d̂I1 , d)
, min
d∈Dnd

√
|I1|V̂DI1(d̂I2 , d)

σ̂I1(d̂I2 , d)

}
,

where I1 and I2 stand for a random partition of the dataset, σ̂2
I(d1, d2) some consistent

estimator for the asymptotic variance of
√
|I|V̂DI(d1, d2) and Dnd denotes the set of non-

dynamic treatment regimes.

Note that for j = 1, 2, we have that under the null,

min
d∈Dnd

√
|Ij|V̂DIj(d̂Ic

j
, d)

σ̂Ij(d̂Ic
j
, d)

≤ min
d∈Dnd

√
|Ij|{V̂DIj(d̂Ic

j
, d)− VD(d̂Ic

j
, d)}

σ̂Ij(d̂Ic
j
, d)

L→ min
d∈Dnd

Zd, (18)

where VD(d1, d2) = EV̂DI(d1, d2) and {Zd}d∈Dnd
is a set of mean zero Gaussian random

variables whose covariance matrix can be consistently estimated from data. For a given

significance level α, we reject the null if T̂CV > ĉα/2 where ĉα corresponds to some consistent

estimator for Pr(mind∈Dnd
Zd > zα). It follows from the Bonferroni’s inequality and (18)

that the type-I error of T̂CV is well-controlled. In the high-dimensional setting, we can

calculate T̂CV based on sparse random projections of the covariate space. Details are

omitted for brevity.

6.2 Choice of q

The choice of the projection dimension q involves a trade-off. If q is too large, then the

curse of dimensionality will affect the uniform convergence rates of τ̂
Sj

I in (A8), resulting

in decreased power of the corresponding test. If q is too small, then the OITR is not well

approximated. In Section 4, we set q = 1. In the supplementary article, we examine the

performance of the proposed test with difference choices of q. Results show that the optimal

choice of q depends on the number of covariates involved in the OITR and varies across

different simulation settings. We further propose a method that adaptively determines q.
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Detailed algorithm is given in Section E.2 of the supplementary article. In our simulations,

we find such adaptive method is no worse than any fixed choice of q and has nearly optimal

performance in some cases.

A Variance estimator in Section 3.3.1

Define α̂I to be the penalized logistic regression estimator based on {(Xi, Ai)}i∈I , θ̂0,I
and θ̂1,I to be the penalized linear regression estimators based on {(Xi, Yi)}i∈I,Ai=0 and

{(Xi, Yi)}i∈I,Ai=1 respectively. Denoted by Mα,I the support of α̂I , i.e, Mα,I = {j =

1, . . . , p : α̂I,j ̸= 0}. Similarly define Mθ0,I and Mθ1,I to be the supports of θ̂0,I and θ̂1,I

respectively. Let

π̂i =
exp(XT

i α̂I)

1 + exp(XT
i α̂I)

,

For any treatment regime d, we define

σ̂2
DR,I(d) =

1

|I| − 1

∑
i∈I

κ2i −
1

|I|(|I| − 1)

(∑
i∈I

κi

)2

,

where

κi =

{(
1− Ai

1− π̂i
− Ai

π̂i

)
Yi −

(
1− Ai

1− π̂i
− 1

)
XT

i θ̂0,I +

(
Ai

π̂i
− 1

)
XT

i θ̂1,I

}
{1− d(Xi)}

+ ĪT1

(
1

|I|
∑
i∈I

Xi
T
Mα,I

π̂i(1− π̂i)XiMα,I

)−1

XiMα,I(Ai − π̂i)

− ĪT2

(
1

|I|
∑
i∈I

(1− Ai)Xi
T
Mθ0,I

XiMθ0,I

)−1

XiMθ0,I
(1− Ai)(Yi −XT

i θ̂0)

+ ĪT3

(
1

|I|
∑
i∈I

AiXi
T
Mθ0,I

XiMθ0,I

)−1

XiMθ0,I
Ai(Yi −XT

i θ̂1),
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and Īj =
∑

i∈I Ii,j/n where

Ii,1 =

{
π̂i(1− Ai)

1− π̂i
{Yi −XT

i θ̂0,I}+
Ai(1− π̂i)

π̂i
{Yi − θ̂1,I}

}
XiMα,I{1− d(Xi)},

Ii,2 =

(
1− Ai

1− π̂i
− 1

)
XiMθ0,I

{1− d(Xi)}, Ii,3 =

(
Ai

π̂i
− 1

)
XiMθ1,I

{1− d(Xi)}.

B Technical conditions

(C1.) Assume there exists some positive constants γ and δ0 such that

Pr{0 < |τ(X)| ≤ t} = O(tγ),

where the big-O term is uniform in 0 < t < δ0.

(C2.) Assume τ̂ satisfies

E|τ̂I(X)− τ(X)|2 = o
(
|I|−(2+γ)/(2+2γ)

)
as |I| → ∞,

where the little-o term is uniform in the training samples I.

Condition (C1) is closely related to the margin assumption (Tsybakov, 2004; Audibert

and Tsybakov, 2007) in the classification literature. It is often used to obtain sharp upper

bounds on the difference between the value function under dopt and that under an estimated

OITR (Qian and Murphy, 2011; Luedtke and van der Laan, 2016). The larger the structure

parameter γ in (C1), the sharper the upper bounds. When τ(X) has a bounded density

function near 0, (C1) holds with γ = 1. If there exists some δ0 > 0 such that |τ(X)| ≥ δ0

almost surely, then (C1) holds with γ = +∞.

Condition (C2) depends on the “structural” parameter γ in (C1) and the convergence

rates of the estimated contrast function. The larger the γ, the more likely (C2) holds.

When γ = 1, (C2) requires E|τ̂I(X)− τ(X)|2 = o(|I|−3/4). The rates of convergence of the

estimated contrast function are available for most often used machine learning or statistical

methods, such as spline methods (Zhou et al., 1998), kernel ridge regression (Steinwart and

Christmann, 2008; Zhang et al., 2013) and random forests (Biau, 2012). In Section C.1
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of the Appendix, we show (C2) holds when τ̂ is computed by some of the aforementioned

methods. Combining (C1) together with (C2) gives V (d̂I) = V (dopt) + op(|I|−1/2).
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