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Abstract. Let R = (rij) ∈ SO(3,R). We give several different proofs of the fact

that the vector

V :=
( 1

r23 + r32
,

1

r13 + r31
,

1

r12 + r21

)t

if it exists, is an eigenvector of R corresponding to the eigenvalue one.
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1. Introduction

Let R be a 3 × 3 real matrix and suppose that we want to find an eigenvector V

for R. Every student learns an algorithm for this, but is it possible to skip the toil,

and write down V explicitly in terms of rij? For example, we can easily do this

for a matrix of rank 1. If X is a nonzero column, then we can simply take V = X.

Indeed, we know that R = XY t for some vector Y and

RX = XY tX = X〈Y,X〉 = 〈Y,X〉X

where we have used that the 1 × 1 matrix Y tX can be identified with the inner

product 〈Y,X〉. Another interesting example is when we consider skew-symmetric

matrices:

Theorem 1 For any 3× 3 skew-symmetrical matrix

Q =





0 −r q

r 0 −p

−q p 0





the vector

V =





p

q

r





belongs to its kernel, thus QV = 0.

This can be checked directly, but in fact we can generalise this to any matrix of

rank 2.

Theorem 2 Let Rij = (−1)i+jDij where Dij is a minor obtained by deleting

the row i and column j from the matrix R. If R has rank 2, then all three vectors

Vj = (Rj1, Rj2, Rj3)
t belong to its kernel and at least one of them is non-zero

eigenvector.

Proof: It is well-known that (see for example [6, Theorem 3.15, p.69])

3∑

k=1

rikRjk = δijdetR

where δij is 1 if i = j and 0 otherwise. In the case of rank 2, we get that det R = 0
implies RVj = 0, and at least one of the vectors Vj is non-zero. �



Eigenvectors of the SO(3,R) matrices 3

What can be said about non-singular matrices? If we know an eigenvalue λ we can

simply apply the same arguments to the matrix R− λI to find the eigenvector (the

case R = λI will be special, but here we can take any non-zero vector). We always

know an eigenvalue ±1 for an orthogonal matrices. For example it is well-known

that R ∈SO(3,R) describes a rotation in R
3 about some axis described by a vector

V (see e.g. [1, Thm. 5.5, p.124]), and this V is an eigenvector of A corresponding

to the eigenvalue 1. So we want to express axis of rotation in terms of the matrix

entries of R. But unexpectedly, we can get the vector V quite easily.

Theorem 3 Let R=(rij) ∈ SO(3,R). Let

V =

(
1

r23 + r32
,

1

r13 + r31
,

1

r12 + r21

)t

U =
(
r23 − r32, r31 − r13, r12 − r21

)t

W1 =
(
1 + r11 − r22 − r33, r12 + r21, r13 + r31

)t

W2 =
(
r12 + r21, 1 + r22 − r11 − r33, r23 + r32

)t

W3 =
(
r13 + r31, r23 + r32, 1 + r33 − r11 − r22

)t
.

Then RV = V,RU = U,RWi = Wi, so any of these vectors (if it exists and is

non-zero), is an eigenvector with eigenvalue one. If R 6= I then at least one of

them exists and is non-zero.

The most unexpected one is the vector V so we concentrate on it.

Theorem 4 Let R = (rij) ∈ SO(3,R). If the vector

V =
( 1

r23 + r32
,

1

r13 + r31
,

1

r12 + r21

)t

exists (that is, the denominators are non-zeros), then RV = V.

In fact, this result appears as an exercise in M. Artin’s classic textbook Algebra [1,

Ex.14, §5, Chap.4, p.149]. Our plan is to give several different proofs of Theorem

4 obtaining simultaneously the proof of Theorem 3.

2. Two Algebraic Proofs

We start from some useful statements.
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Theorem 5 For arbitrary n and any R = (rij) ∈ SO
(
n,R), one has Rij = rij ,

where Rij = (−1)i+jDij and Dij is a minor obtained by deleting the row i and

column j from the matrix R.

Proof: It is well-known that for any invertible matrix, R−1 = 1
detR(Rij)

t. In our

case detR = 1 and R−1 = Rt, which proves the claim. �

Lemma 6 Let R = (rij) ∈ SO
(
n,R). Let i, j, k be three different indices between

1 and 3. Then

(1 + rii)(rjk + rkj) = rijrki + rjirik

(rjj + rkk)(rjk + rkj) = −(rijrik + rjirki)

(r2ij + r2ik)(rijrik + rjirki) = (rijrki + rjirik)(rijrji + rikrki).

Proof: By symmetry, it is sufficient to consider the case i = 1, j = 2, k = 3 only.

Using the previous theorem we have

r23 + r32 = R23 +R32 = −(r11r32 − r12r31)− (r11r23 − r21r13)

= −r11(r23 + r32) + r12r31 + r21r13.

Consequently, (1 + r11)(r23 + r32) = r12r31 + r21r13.

The second equality follows from the orthogonality

(r22+ r33)(r23+ r32)=(r22r23+ r33r33)+(r22r32+ r23r33) = −r21r31− r12r13

and we are done.

For the last equality we write

(r212 + r213)(r13r12 + r31r21)

= (r12r31 + r21r13)(r12r21 + r13r31)

⇔ r312r13 + r212r31r21 + r313r12 + r213r31r21

= r212r31r21 + r221r12r13 + r231r13r12 + r213r31r21

⇔ r312r13 + r313r12 = r221r12r13 + r231r13r12

⇔ r12r13(r
2
12 + r213) = r12r13(r

2
21 + r231)

⇔ r12r13(1− r211) = r12r13(1− r211)

where we used the orthogonality conditions. �

Now we are ready for the first proof of Theorem 4.
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Proof: We have

RV =










r11

r23 + r32
+

r12

r13 + r31
+

r13

r12 + r21
r21

r23 + r32
+

r22

r13 + r31
+

r23

r12 + r21
r31

r23 + r32
+

r32

r13 + r31
+

r33

r12 + r21










.

We want to prove that

r11

r23 + r32
+

r12

r13 + r31
+

r13

r12 + r21
=

1

r23 + r32

(the proofs for other coordinates are similar). Suppose first that r11 + 1 6= 0. Then

this is equivalent to

(1− r11)(1 + r11)

(1 + r11)(r23 + r32)
=

r12

r13 + r31
+

r13

r12 + r21
·

By Lemma 6 this transforms to

1−r2
11

r12r31+r21r13
=

r2
12
+r2

13
+r12r21+r13r31

(r13+r31)(r12+r21)

⇔ (r212 + r213)
(

1
r12r31+r21r13

− 1
(r13+r31)(r12+r21)

)

= r12r21+r13r31
(r13+r31)(r12+r21)

⇔
(r2

12
+r2

13
)(r13r12+r31r21)

(r12r31+r21r13)(r13+r31)(r12+r21)
= r12r21+r13r31

(r13+r31)(r12+r21)
·

This is equivalent to

(r212 + r213)(r13r12 + r31r21) = (r12r31 + r21r13)(r12r21 + r13r31)

and we can apply Lemma 6 again.

It remains to consider the case r11 = −1. But then

r212 + r213 = 1− r211 = 0 ⇒ r12 = r13 = 0.

Similarly we get r21 = r31 = 0. But this contradicts r12 + r21 6= 0. �

So straightforward calculations was not so obvious as expected. We can slightly

improve them in our second proof.

Proof: If we apply Theorem 2 to the matrix R − I which has rank 2 we get the

eigenvector directly. Suppose that this is for example

V1 =

(∣
∣
∣
∣

r22 − 1 r23
r32 r33 − 1

∣
∣
∣
∣
, −

∣
∣
∣
∣

r21 r23
r31 r33 − 1

∣
∣
∣
∣
,

∣
∣
∣
∣

r21 r22 − 1
r31 r32

∣
∣
∣
∣

)t

= (R11 + 1− r22 − r33, R12 + r21, R13 + r31)
t

= (1 + r11 − r22 − r33, r12 + r21, r13 + r31)
t
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obtaining the vector W1 from Theorem 3, so we get part of this theorem as well.

Vectors V2, V3 lead us naturally to W2,W3. To finish the proof of Theorem 4, we

divide the obtained vector by (r12 + r21)(r13 + r31) (which is non-zero), and it

remains to show that

1 + r11 − r22 − r33

(r12 + r21)(r13 + r31)
=

1

r23 + r32
·

By Lemma 6 we have

(1 + r11 − r22 − r33)(r23 + r32)

= (1 + r11)(r23 + r32)− (r22 + r33)(r23 + r32)

= r12r31 + r21r13 + r21r31 + r12r13

= (r12 + r21)(r13 + r31)

which finishes the proof. �

3. Origin of the Non-trivial Eigenvector

Now we want to understand the origin of this non-trivial eigenvector. We find one

possible source in skew-symmetric matrices.

Theorem 7 Let R be an orthogonal matrix (of any arbitrary size). If the vector

U ∈ ker(R−Rt), then R2U = U. Moreover, if R has only one real eigenvalue λ,

then RU = λU .

Proof: We have

(R−Rt)U = 0 ⇔ RU = RtU ⇔ R2U = U

which proves the first statement.

Let {ei} be a (complex) basis of eigenvectors (which exists because R is a normal

matrix). If U =
∑

xiei, then

R2U − U =
∑

xi(λ
2
i − 1)ei = 0

which means that all xi corresponding to complex eigenvalues λi should be equal

to zero and U is proportional to the only eigenvector with real eigenvalue. �

Now we are ready for the third proof of Theorem 4.
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Proof: Suppose first that R 6= Rt, that is, R2 6= I. Then R has some complex

eigenvalue λ. It follows that λ is another eigenvalue, and the third one is 1 (because

|λ| = 1 and detR = 1). Since

U =





r23 − r32
r31 − r13
r12 − r21



 ∈ ker(R−Rt)

by Theorem 1, and is a non-zero vector, we can apply Theorem 7 to get RU = U .

We need only to show that cV = U for some non-zero c. We put c = r223 − r232,

and note that c = r231 − r213, c = r212 − r221 as well, for example

r223 − r232 = r231 − r213 ⇔ r213 + r223 = r231 + r232 ⇔ 1− r233 = 1− r233.

Then

cV =
( c

r23 + r32
,

c

r13 + r31
,

c

r12 + r21

)t

=

(
r223 − r232
r23 + r32

,
r231 − r213
r13 + r31

,
r212 − r221
r12 + r21

)t

= U.

It remains to consider the case R = Rt, that is, rij = rji, and we need to prove

that for

V ′ =

(
1

r23
,

1

r13
,

1

r12

)t

we have RV ′ = V ′. This can be done explicitly, for example for the first coordinate

we have

r11

r23
+

r12

r13
+

r13

r12
=

1

r23
⇔

r212 + r213
r12r13

=
1− r11

r23
⇔

1− r211
r12r13

=
1− r11

r23

So we need only to prove

(1 + r11)r23 = r12r13 ⇔ r23 = r12r31 − r11r32 ⇔ r23 = R23

which follows from Theorem 5. Note also that we have completed also the proof

of Theorem 3 regarding the vector U. �

4. A Geometric Interpretation of the Eigenvector

Now we want to find some geometrical interpretation of our eigenvector and con-

sider fourth proof of Theorem 4.
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Proof: The starting point is that any matrix R ∈ SO(3,R) can be written as a

product of two reflections. (This is easy to see in the plane, and as every rotation

in R
3 has an axis of rotation, the result for rotations in R

3 follows from the planar

case.) So let X,Y be two unit vectors such that R = (I − 2XXt)(I − 2Y Y t).
The case when X and Y are proportional is not interesting for us (in this case

R = I). So we suppose that they are linear independent and let Z = X × Y

be their (nonzero) vector product. First we note that Z is the eigenvector we are

looking for. Indeed, XtZ = 〈X,Z〉 = 0 and similarly Y tZ = 0, giving, for some

B,C , that

RZ = (I +BXt + CY t)Z = IZ = Z.

As we know that Z =
(
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

)t
we need only

to prove that our vector v is proportional to this one, that is,

det

(
vi zi
vj zj

)

= 0.

By symmetry, it is sufficient to consider the case i = 1, j = 2 only. We have

det







1

r23 + r32
x2y3 − x3y2

1

r13 + r31
x3y1 − x1y3







= 0

⇔ (x3y1 − x1y3)(r13 + r31) = (x2y3 − x3y2)(r23 + r32).

Let c = 〈X,Y 〉. Then R = I − 2XXt − 2Y Y t + 4cXY t and for i 6= j

rij + rji = −4xixj − 4yiyj + 4c(xiyj + xjyi).

Our aim is

(x3y1 − x1y3)(−x1x3 − y1y3) + c(x3y1 + x1y3)

= (x2y3 − x3y2)(−x2x3 − y2y3) + c(x2y3 + x3y2)

⇔ x1y1(−x23 + y23) + x3y3(−y21 + x21) + c((x3y1)
2 − (x1y3)

2)

= x3y3(−x22 + y22) + x2y2(−y23 + x23) + c((x2y3)
2 − (x3y2)

2)

⇔ (x1y1 + x2y2)(−x23 + y23) + x3y3(−y21 + x21 + x22 − y22)

= c(y23(x
2
1 + x22))− x23(y

2
1 + y22)).

Now we use the fact that we have unit vectors. We have

(x1y1 + x2y2)(−x23 + y23) + x3y3(1 + y23 − 1− x23)

= c(y23(1− x23))− x23(1− y23))

⇔ (x1y1 + x2y2 + x3y3)(−x23 + y23) = c(y23 − x23)

and we are done because c = x1y1 + x2y2 + x3y3. �
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5. A Proof Using the Lie Algebra of the Rotation Group

Define the Lie algebra

so(3,R) := {Q ∈ R
3×3 ; Q+Qt = 0}

of the Lie group SO(3,R). We recall the following well-known result (see for

example [8, Lemma 1B,p.31]).

Proposition 8 Let R = (rij) ∈ SO(3,R). Then there exists a t ∈ [0, 2π) and there

exists a Q ∈ so(3,R) such that R = etQ. Moreover, if Q has the form

Q =





0 −r q

r 0 −p

−q p 0





then taking the vector U as U := (p q r)t ∈ R
3, we have that R is a rotation

about U through the angle t using the right-hand rule.

We will also need the fact that for t ≥ 0

etQ = L−1((sI −Q)−1)(t)

where L−1 denotes the (entrywise) inverse one-sided Laplace transform. The fol-

lowing fact is well-known (see for example, [2, §27,p.218]).

Proposition 9 For large enough s,

∫
∞

0
e−stetQdt = (sI −Q)−1.

In the above, the integral of a matrix whose elements are functions of t is defined

entrywise. If s is not an eigenvalue of Q, then sI−Q is invertible, and by Cramer’s

rule

(sI −Q)−1 =
1

det(sI −Q)
adj(sI −Q).

So we see that each entry of adj(sI − Q) is a polynomial in s whose degree is

at most n − 1, where n denotes the size of Q, that is, Q is an n × n matrix.

Consequently, each entry mij of (sI − Q)−1 is a rational function in s, whose

inverse Laplace transform gives the matrix exponential etQ. We now give the fifth

proof of Theorem 4.
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Proof: Let Q,U be as in Proposition 8. By Cramer’s rule

(sI −Q)−1 =





s r −q

−r s p

q −p s





−1

=
1

det(sI −Q)





s2 + p2 rs+ pq −qs+ rp

−rs+ pq s2 + q2 ps+ qr

qs+ rp −ps+ qr s2 + r2



 .

Hence

R = etQ = L−1




1

det(sI −Q)





s2 + p2 rs+ pq −qs+ rp

−rs+ pq s2 + q2 ps+ qr

qs+ rp −ps+ qr s2 + r2







 (t).

This yields

V =











1

r23 + r32
1

r31 + r13
1

r12 + r21











=

(

L−1

(
1

det(sI −Q)

)

(t)

)
−1

︸ ︷︷ ︸

=:c











1

2qr
1

2rp
1

2pq











=
c

2pqr





p

q

r





which is a multiple of U . �

6. A Quaternionic Proof

Let D := {q = a+ bi+ cj+dk; a, b, c, d ∈ R} be the ring of all quaternions, with

i2 = j2 = k2 = −1 and i · j = −j · i = k, j · k = −k · j = i, k · i = −i · k = j.

We define the norm of q = a+ bi+ cj+ dk by

|q| =
√

a2 + b2 + c2 + d2

and the conjugate q of q by

q = a− bi− cj− dk.

It can be checked that for q1,q2 ∈ D, |q1q2| = |q1||q2| and |q|2 = qq. We

identify R
3 as a subset of D via

R
3 = {bi+ cj+ dk ∈ D; b, c, d ∈ R}.
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If |q| = 1 then for any w ∈ R
3, qwq−1 ∈ R

3, for example

qiq−1 = qiq = (a+ bi+ cj+ dk)i(a− bi− cj− dk)

= (ai− b− ck+ dj)(a− bi− cj− dk)

= a2i+ ab− ack+ adj− ba+ b2i+ bcj+ bdk

−cak+ cbj− c2i− cd+ daj+ dbk+ dc− d2i

= (a2 + b2 − c2 − d2)i+ 2(ad + bc)j+ 2(bd− ac) ∈ R
3.

So the map Tq : w 7→ qwq−1 maps vectors in R
3 to vectors in R

3 and clearly is

linear. In fact, this collection of maps Tq, |q| = 1, is precisely the set SO(3,R) of

rotations in R
3!

To see this note first that if w ∈ R
3, then its Euclidean norm ‖w‖2 coincides with

its quaternionic norm. Therefore Tq is also a rigid motion, since

‖Tqw‖2 = |Tqw| = |qwq−1| = |q||w||q−1| = |w| = ‖w‖2

so our map corresponds to an orthogonal matrix. But because

Tq(q− a) = q(q− a)q−1 = q2q−1 − aqq1 = q− a

we have an invariant vector as well (when q = a we can take any vector), so our

matrix belongs to SO(3,R) and is a rotation. We can describe it explicitly.

Since |a| ≤ 1, we can find a unique t ∈ [0, 2π) such that cos
t

2
= a to get

q =

(

cos
t

2

)

+ v.

We leave to the reader to prove that the angle of rotation around v is exactly t. It

is clear that every rotation then arises in this manner.

Now we are ready to give the sixth proof of Theorem 4.

Proof: We need to consider the case v 6= 0 only. By feeding in i, j,k into Tq, we

can now compute the matrix R of Tq in terms of the entries of
(
b, c, d

)t
, where

v = bi+ cj+ dk. We already know the first column and the rest we get by cyclic

symmetry, and so

R =





a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)
2(bc+ ad) a2 + c2 − b2 − d2 2(cd − ab)
2(bd− ac) 2(ab+ cd) a2 + d2 − b2 − c2



 .
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Now it is easy to check that

V =











1

r23 + r32
1

r31 + r13
1

r12 + r21











=











1

4cd
1

4bd
1

4bc











=
1

4bcd





b

c

d





which is a multiple of v. �

7. A Proof Using the Cayley Transform

We only consider the case when −1 is not eigenvalue of R, since the case when

−1 is an eigenvalue of R (implying that R2 = I) has been covered before in our

third proof.

Theorem 10 If R = (rij) ∈ SO(3,R) such that −1 is not an eigenvalue of R, then

there exists a skew-symmetric Q such that R = (I +Q)(I −Q)−1.

Proof: As −1 is not an eigenvalue of R, R+ I is invertible. Define

Q = (R− I)(R + I)−1.

Then

Q+Qt = (R − I)(R+ I)−1 + (Rt + I)−1(Rt − I)

= (R − I)(R+ I)−1 + (R−1 + I)−1(R−1 − I)

= (R − I)(R+ I)−1 + (I +R)−1RR−1(I −R)

= (R − I)(R+ I)−1 + (I +R)−1(I −R) = 0

where we use the commutativity to get the last equality. So Q is skew-symmetric.

But then I − Q is invertible. From the definition of Q, Q(R + I) = R − I , and

solving for R, we obtain R = (I +Q)(I −Q)−1. �

Now we are ready to give the seventh proof of Theorem 4.

Proof: Given R, we can write A as R = (I + Q)(I − Q)−1 for some skew-

symmetric Q

Q =





0 −r q

r 0 −p

−q p 0



 .
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Then

R=(I +Q)(I −Q)−1

=
1

1+p2+q2+r2





1+p2−q2−r2 2pq − 2r 2rp+ 2q
2pq + 2r 1−p2+q2−r2 2qr − 2p
2rp− 2q 2qr + 2p 1−p2−q2+r2





and











1

r23 + r32
1

r31 + r13
1

r12 + r21











= (1+p2+q2+r2)











1

4qr
1

4rp
1

4pq











=
1+p2+q2+r2

4pqr





p

q

r





which is an eigenvector of R corresponding to eigenvalue one, by Theorem 1. �

8. A Proof Using Contour Integral of the Resolvent

We recall the following; see for example [5, §8.2, p.127].

Proposition 11 For an isolated eigenvalue of a square matrix R, enclosed inside

a simple closed curve γ running in the anti-clockwise direction, the projection P

onto the eigenspace ker(λI −R) is given by

P =
1

2πi

∮

γ

(zI −R)−1dz.

We are now ready to give the eighth proof of Theorem 4.

Proof: Let R = (rij) ∈ SO(3,R). Again we restrict ourselves to the case that

R 6= I . Then we have that one is an isolated simple eigenvalue. Let the other two

eigenvalues be denoted by λ, λ, and let pij(z) be the minor obtained by deleting

the row i and column j from the matrix zI − R. If γ encloses 1, but not the other

two eigenvalues λ, λ, then we have

P =
1

2πi

∮

γ

(zI −R)−1dz =
1

2πi

∮

γ

1

det(zI −R)
(pij(z))dz

=
1

2πi

∮

γ

1

(z − 1)(z − λ)(z − λ)
(pij(z))dz =

1

(1− λ)(1− λ)
(pij(1))
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where we have used the Cauchy Integral Formula [7, Corollary 3.5, page 94] to

obtain the last equality. In particular

P





1
0
0



 =
1

|1− λ|2





(1− r22)(1− r33)− r23r32
r12(1− r33) + r13r32
r12r23 + r13(1− r22)





=
1

|1− λ|2





1− r22 − r33 +R11

r12 +R21

r13 +R31





=
1

|1− λ|2





1− r22 − r33 + r11
r12 + r21
r13 + r31





=
1

|1− λ|2







(r12 + r21)(r13 + r31)

r23 + r32
r12 + r21
r13 + r31







= c










1

r23 + r32
1

r13 + r31
1

r12 + r21










for some constant c. �

Note that we recover the vector W1 from Theorem 3. W2,W3 can be found simi-

larly.

9. What About Zeros?

Now it is time to think about the conditions rij + rji 6= 0. What if some of them

failed e.g. r12 + r21 = 0? The eigenvector still exists, but how does it look now?

Note first that

r213 = 1− r211 − r212 = 1− r211 − r221 = r231 ⇒ r13 = ±r31.

Similarly r23 = ±r32. So our matrix looks now as





a r q

−r b p

εq ζp c





where ε2 = ζ2 = 1. Suppose first that pqr 6= 0. The orthogonality conditions for

the first two rows gives

−ar + br + pq = 0 ⇔ pq = r(a− b).



Eigenvectors of the SO(3,R) matrices 15

For the first two columns we get instead

ar − br + εζpq = 0 ⇔ εζpq = r(b− a)

thus εζ = −1 ⇔ ζ = −ε.

Now for ε = −1 we simply put V = (0 q − r)t. We have

RV =





a r q

−r b p

−q p c









0
q

−r



 =





0
bq − rp

pq − cr



 =





0
q

−r





where the last equality follows from Theorem 5.

If ε = 1 we take instead V = (p 0 r)t with similar argument

RV =





a r q

−r b p

q −p c









p

0
r



 =





ap+ qr

0
pq + cr



 =





p

0
r





where again the last equality follows from Theorem 5.

Thus the rule is easy: for exactly one pair of indices i, j we have rij = rji. If k is

the remaining index put vk = 0, vi = rkj , vj = −rki.

In fact we can describe matrices above almost explicitly. To make calculations

more homogeneous we put c = εd as well. Consider the remaining orthogonal

conditions for different rows

εaq − εpr + εdq = 0 ⇔ pr = q(a+ d)
−εpq − εbr + εdr = 0 ⇔ pq = r(−b+ d).

Pairwise multiplications of the obtained equations and cancelling gives

r2 = (a− b)(a+ d), q2 = (a− b)(−b+ d), p2 = (a+ d)(−b+ d).

Now the last orthogonality condition is

1 = a2 + p2 + q2 = a2 + (−b+ d)(2a − b+ d)

= a2 + 2a(−b+ d) + (−b+ d)2 = (a− b+ d)2

or a− b+ d = ±1 (other rows and columns gives the same). Now we can choose

a, b as parameters (with natural restrictions, e.g. |a| < 1) and reconstruct the rest

choosing signs. As example we get

R =
1

3





1 2 2
−2 −1 2
−2 2 −1



 .

It remains to consider the case pqr = 0. If for example p = 0 then by the orthogo-

nality of two first rows qr = 0 as well and similarly for other cases we get that at

least two of p, q, r are zero. Then the corresponding column containing them is an

eigenvector directly.
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10. Possible Generalisations

So far we concentrated on 3× 3 real matrices, especially on the case R∈ SO(3,R).

But we now ask: what can be generalised? Theorem 4 is obviously valid for any

orthogonal matrix (that is why we have R∈ O(3,R) in the abstract), and moreover,

it is valid for any matrix R = cR′ with R′∈ SO(3,R) Theorem 3 is valid as well if

we replace the constant 1 in the vectors Wi by c 6= 0.

For larger sizes, we still have the analogues of Theorem 2 and Theorem 5 and can

imitate the second proof to obtain the analogues of the vectors Wi. But already

for the size 5 (where the vector V with RV = V exists), the expressions involve

determinants of size 3, and its is hardly attractive to write them here. The vector

U obtained in the third proof is also in principle available, but we have no easy

analogue of Theorem 1, while an analogue of Theorem 2 produces the determinants

of high order. And the idea to generalise Theorem 4 to higher dimensions looks

hopeless.

What if we change the field? Because the conditions R−1 = Rt and detR = 1
are purely algebraic, all purely algebraic proofs survive, and we have the same

Theorem 3 but we need some modifications.

First of all, we should understand why 1 is still an eigenvalue. This is easy. If

α, β, γ are our eigenvalues, then
1

α
,
1

β
,
1

γ
is the same set of numbers, but they may

be in a different order. If for example,
1

α
= β then αβ = 1 and the condition

det R = 1 gives γ = 1. The only remaining case is
1

α
= α, and then α = ±1,

and similarly for β and γ, but because their product is one, at least one of them is

equal to one as well. So the second proof survives completely, and the third need

only an adjustment in the place where we used Theorem 7.

The first proof has another weak point: for arbitrary field x2 + y2 = 0 does not

imply x = y = 0 which we have used in the special case R11 = −1. The case

when r12 6= 0 can really happen. Here is a a nice example in Z5

R =





−1 −1 −2
−2 −1 −1
−1 −2 −1



 .

But R still has a correct eigenvector. The proof therefore should be modified (e.g.

consider i in our field such that i2 = −1, write r13 = ir12 and r31 = ±ir21 and

continue in the same style as we have done in the previous section to describe all

possible exceptional matrices), but we prefer to skip this and restrict ourselves by

only one algebraic proof.
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So the conditions R−1 = Rt and detR = 1 are sufficient to our main theorems.

The interesting question is therefore: what is the class of the matrices that satisfy

those conditions? It is obviously a group. We study matrices of size 2 first.

R =

(
a b

c d

)

⇒

(
d −b

−c a

)

= R−1 = Rt =

(
a c

b d

)

therefore a = d, c = −b, and a2 + b2 = 1. For the complex numbers, we put

a = cos z, b = sin z for some complex number z and get all the solutions. So

matrices such as





1 0 0
0 cos z sin z
0 − sin z cos z



 ,





cos z 0 sin z
0 1 0

− sin z 0 cos z





and their products belongs to our group, so it is large enough. For finite fields we

can have difficulties to find “cosines” (for example, in Z5, we have a2 + b2 = 1 ⇒
a = 0, b = 1 or a = 1, b = 0), but already in Z7 we have 22 + 22 = 1 which

produces some matrices. But we prefer to skip this intriguing topic for now.

Any time one gets a result about the orthogonal matrices, it is natural to wonder

about their complex relatives - unitary matrices. What can be said about them?

Most parts of the proofs fail, which is not surprising, because now Rij = rij , and

skew-Hermitian matrix can be invertible, and can have non-zero elements on the

main diagonal. So we have no direct analogue of Theorem 4. We can get some

results if we know the eigenvalue, but is nothing else than the direct application of

Theorem 2 (as in the second proof).

Theorem 12 Let R ∈ SU(3) be an unitary matrix with (simple) eigenvalue equal

to λ. Then for all the vectors

W1 =
(
r11 + λ2 − λ(r22 + r33), r12 + r21, r13 + r31

)t

W2 =
(
r12 + r21, r22 + λ2 − λ(r11 − r33), r23 + r32

)t

W3 =
(
r13 + r31, r23 + r32, r33 + λ2 − λ(r11 − r22)

)t

we have RWi = λWi, and at least one of them is non-zero, and therefore is the

eigenvector.

Another possibility for generalisation suggested by the referee is to consider higher

dimensional representations of the group SO(3,R) along the lines of investigations

done in the articles [3] and [4]. We leave this interesting approach for future study.
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11. Conclusions

In this article, we gave eight different elementary proofs for the existence of an

eigenvector of a rotation matrix written explicitly in terms of the the entries of

the matrix. Moreover, we also studied separately the pathological case when the

eigenvector formula breaks down, and discussed various possible generalisations.
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