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Abstract 
We take a fresh look at firms’ innovation-productivity linkages, using novel data capturing new 
aspects of innovative activity. We combine UK administrative microdata, media and website content 
to develop experimental metrics – new product/service launches – for a large panel of SMEs. 
Extensive validation and descriptive exercises show that launches complement patents, trademarks 
and innovation surveys. We also establish connections between launches and previous innovative 
activity. We then link IP, launches and productivity, controlling for media exposure and firm 
heterogeneity. Launch activity is associated with higher SME productivity, especially in the service 
sector. High-quality launches and medium-size firms help drive this result. 
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1. Introduction

This paper takes a fresh look at a long-standing unresolved question: the nature of links between 

firm innovation and productivity. We use novel data that captures new aspects of company-level 

innovative activity. We fit this in a large panel of UK small and medium-size enterprises 

(SMEs). 

The role of innovation in explaining economic performance has been a focus of economic 

research for decades. Endogenous growth theory and related empirics help explain country-level 

innovation-productivity linkages (Lucas, 1988; Romer, 1990). Schumpetarian frameworks 

explain these via entrepreneurial entry and competition (Schumpeter, 1962; Aghion et al., 2009). 

But as Hall (2011) and Mohnen and Hall (2013) point out in recent reviews, an empirical link 

between same-firm innovation and performance is not clearly established.   

The empirical literature linking innovation and productivity in firms dates back to Griliches 

(1979; 1986), whose work links R&D to productivity outcomes. Crepon, Duguit and Mairesse 

(1998) (hence CDM) develop an influential structural model linking innovation decisions, 

innovation outputs and firm productivity. Their analysis on French microdata shows positive 

links between productivity and innovation, measured by either patents or innovation-driven 

sales. A wave of subsequent empirical studies adopts CDM-type models in a range of countries 

and cross-country settings.1 Reviewing this literature, Hall (2011) and Mohnen and Hall (2013) 

note some major limitations. First, most studies rely on small-n cross-sectional data. A few 

recent studies (Howell, 2015; Fernandes and Paunov, 2015; Baumann and Kritikos, 2016; 

Audretsch et al, 2018; Morris, 2018) use panel settings, but this is still rare. Second, studies 

suffer from measurement issues. In practice, most firms do not use formal IP protection, with 

one recent UK study finding that just 1.6% of firms file patents (Hall et al., 2013). Self-reported 

innovation surveys also have drawbacks (Hall and Harhoff, 2012; Mairesse and Mohnen, 2010). 

Growing digitisation makes this problem worse. Third, few studies look at the service sector 

(Audretsch et al, 2018) or at SMEs, despite the fact that SMEs typically comprise the majority of 

firms in an economy.  

1 For example Loof et al (2001), Klomp and Van Leeuwen (2001); Griffith et al (2006), Crespi and Zuniga (2012), 

Hashi and Stojčić (2013) among many others.   
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In theory, the innovation-productivity link is ambiguous for SMEs. It may further vary along 

age, size or sector lines. Entrants may also be more likely to engage in Schumpeterian 

radical/disruptive innovation. But innovation is resource-consuming for smaller, younger 

companies (Acs and Audretsch, 1987), who may also suffer credit constraints in funding R&D 

(Audretsch et al, 2018). Smaller, younger firms may also lack absorptive capacity relative to 

larger incumbents (Cohen and Levinthal, 1990). Regardless of age and size, minimum efficient 

scale for innovation may be lower in services than manufacturing, given lower capital 

requirements (Audretsch et al, 2018). The relative strength of these channels will determine a) 

the level of innovative activities in a given SME and b) the chances of productivity-enhancing 

discovery.  

In a recent meta-analysis, Rosenbusch et al (2011) find generally positive innovation-

productivity links for SMEs. These are stronger for younger firms.  In some studies, innovation 

output seems to decrease with firm size (Hashi and Stojčić, 2013). In others, there is no 

difference between micro manufacturing firms and others (Baumann and Kritikos, 2016). 

Innovation has been found to reduce the risk of market failure of startups, by increasing firm 

profits and productivity (Howell, 2015). But this positive effect is smaller for single-

product/non-exporting innovating firms as they rely on a single revenue source (Fernandes and 

Paunov, 2015). These studies all suffer from one or both of the limitations identified above.  

This paper makes two linked contributions to these debates. First, we use a novel mix of UK 

administrative microdata, media and website content to develop novel measures of firm 

innovation. These complement existing metrics such as patents, trademarks and self-reported 

innovation surveys. Second, we match these data to a large cross-sector panel of UK SMEs, 

allowing us to explore innovation-productivity connections with more richness and robustness 

than previous studies.  

To do this, we exploit a cutting-edge dataset developed by the data science firm Growth 

Intelligence (GI), which uses machine-learning routines on company website and media content 

to model firms’ lifecycle ‘events’ (for example, new product/service launches, mergers and 

acquisitions, new hiring, or joint ventures). We clean and refine these variables, using structural 

topic modelling to better align the reported GI data with underlying real-world activity. We also 

develop measures of launch quality analogous to patent citations.  We then build a short panel 

dataset matching these ‘innovative events’ to UK administrative firm level microdata, patents, 
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trademarks and UK Innovation Survey data. This dataset of 4.9m observations is the first firm-

level resource of its kind that we are aware of.2 

In descriptive exercises we show that launches complement existing metrics such as patents, 

trademarks and surveys, providing high volume (for single-plant SMEs we find 10,349 UK 

launches in 2014/2015, versus 2,908 patent applications and 3,902 trademarks filed) and even 

cross-sector coverage. Using a knowledge production function, we go on to show positive links 

from past IP activity to current launches, with cross-industry variation along expected lines. We 

then test associations between launch activity and firm productivity, controlling for past IP and 

for firm heterogeneity. We pay careful attention to the fact that events exposure is not random, 

and that events are reported, not directly observed. We find that launch activity is associated 

with higher SME productivity, especially in the service sector. A subset of high-quality launches 

helps drive the main result.  

The paper provides a fresh contribution to well-established literatures on innovation in firms – 

where patents and surveys remain the dominant metrics – by developing new ways to view 

firms’ innovative activity based on web scraping and natural language processing.3 This allows 

us broader coverage than the pioneering studies of media coverage and innovation. Katila and 

Ahuja (2002) and Fosfuri et al (2008), for example, are restricted to a few hundred firms in 

single sectors. We also advance on rich data papers such as Hall et al (2013) who combine 

conventional administrative data, patents, trademarks and innovation surveys for 8,600 UK 

firms.  

Our paper further contributes to a growing empirical literature that uses ‘big data’ sources and 

data science techniques.4 Unusually for this field, we combine commercial big data and large, 

high quality administrative data sets. The latter provides a clear sampling frame that helps 

understand implicit sampling issues in the former. This aids inference and interpretation (Einav 

2 Existing datasets of news events such as GDELT and Events Registry are designed for country-level analysis, 

especially politics / current affairs. Proprietary firm-level datasets such as Mattermark (US) and Beauhurst (UK) are 

restricted to small numbers of ‘high-potential’ businesses. Crunchbase is a global wiki-type dataset for the tech 

sector with good US coverage but limited coverage for other countries, as well as significant quality concerns due to 

its self-reported nature (Motoyama and Bell-Masterson, 2014).  
3 See Arora et al (2017), Hall and Harhoff (2012), and Mairesse and Mohnen (2010) for recent reviews of patents 

and surveys in innovation research. Trademarks are increasingly used alongside these metrics; see Block et al 

(2015). Gentzkow et al (2017) review economic applications of natural language processing. 
4 For reviews see Varian (2014) and Einav and Levin (2014). Guzman and Stern (2015) provide an example of 

‘nowcasting’ and ‘placecasting’ entrepreneurship, using cross-validation on a very large sample of US data.  
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and Levin, 2014). The closest comparator is Kelly et al (2018), who use text analysis of 

historical patents data to develop measures of breakthrough innovations, linking these to 

industry and macro growth.  

2. Data

We use modelled company ‘events’ to develop new measures of innovative activity. Each 

‘event’ derives from content taken from 3,740 online news sources (including major sources 

such as Reuters or Yahoo news, as well as industry sources such as IT Briefing and PRWeb). 

Our raw data consists of 318,899 observations covering financial years 2014 and 2015. Figure 1 

provides two examples for product / service launches, the event type we focus on, showing both 

raw inputs and modelled outputs. Specifically, GI match raw text to a UK-wide company 

register, Companies House, using firm names and contextual information. Using both event text 

and information from company websites, they then use supervised learning to classify the 

activity described as one of several event types. Nathan and Rosso (2015) give more detail.5  We 

focus on ‘product/service launch’; other types include ‘alliance/joint venture’, ‘contract 

awarded’, ‘management change’ and ‘merger/acquisition’.  

The intuition behind using ‘events’ is that one can exploit how companies describe themselves 

or their activities – and how these are reported by others – to understand things that companies 

do or that happen to them. Ideally, each event observation represents a distinct thing that 

happened to some firm, or an action that the firm does. In practice, we need to substantially 

clean the data to get closer to this ideal. Cleaning details are provided in Appendix A1 and 

summarised here.  Given that events derive from media reports, we also need to consider 

underlying factors driving media exposure. We return to this issue in subsequent sections.  

5 Text fragment for illustration. GI use the full page of content to assign text to a subject company and to classify 

the activity. Where text describes more than one subject company, as in mergers or joint ventures, GI assign to pair 

or n-groups. GI also filter to remove results from irrelevant domains (for example, mentions of companies in 

celebrity magazines, or results from sites that largely or wholly deal in markets outside the UK). 
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We first remove duplicates and control for ‘farmed’ content.6 We next run a quality check on 

GI’s syntax parsing and matching routines, for a sample of 5,000 ‘hard cases’ where ascription 

errors are most likely to occur. Specifically, we sample observations ascribed to the largest 

ICT/tech companies by revenue (such as Google, Facebook and Microsoft), or to the largest 

media companies by market share (Reuters, PA, PR Newswire). These are cases where company 

names are likely to feature as context as well as subject, so that content might be especially 

error-prone. Analysis using title and text fragment fields suggests around 16% error rates. Our 

focus on single-plant SMEs (see below) removes these hard cases from the data, minimising the 

ascription error rate on the rest of the sample. However, to the extent that mis-ascription ‘gives’ 

events to large tech and media firms that actually belong to SMEs, we have a lower bound on 

the true level of event activity for our firms of interest.   

We further improve the realism of the data using topic modelling. In its raw form, event 

observations may not reflect the importance of the underlying (real world) event. For example, a 

major product launch is likely to be reported hundreds of times; in the raw data each is reported 

as a distinct event. Even if such major events are rare, not controlling for them biases the 

distribution of launches. We use structural topic modelling (STM) to deal with this, clustering 

text fragments that talk about the same topic in different ways, using different text but similar 

content words (Roberts et al., 2016). We cluster raw events with similar content – that are likely 

to refer to the same real-world event – into single reported instances. STM substantially reduces 

the count of event observations, to 202,912.  

We then exploit the number of raw observations per modelled event to make measures of event 

‘significance’ and ‘importance’ analogous to patent citations. Not surprisingly for a panel of 

single plant SMEs, only 2% of launches with more than one underlying mention. For each firm-

year cell we make counts of mentions, a dummy for whether or not a firm has one of the 2% of 

‘important’ launches, and a count of such launches.7  

6 Recent structural changes to the media industry – notably, the rise of online platforms – may be reducing  levels of 

quality and scrutiny, for example through ‘content farming’ and ‘churnalism’ (Viner, 2016; Gentzkow and Shapiro, 

2010;  Davies, 2009). The first leads to duplicate reported events; the second alter the distribution of event activity. 

Both may be particularly prevalent in the ICT sector (Lafrance, 2016). We identify duplicate observations events 

using all available variables except the source and time. Within each group we just keep one event, so that we are 

not selecting events on the basis of the quality of the source. 
7 Future analysis could also exploit datasets like Prodcom, as another way to give a sense of product/service quality.  
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We combine cleaned events data with other sources. Our ‘base layer’ is the Business Structure 

Database (BSD) (Office of National Statistics, 2017). This high quality administrative microdata 

covers 99% of UK enterprises, and gives a clearly-defined sampling frame. Our ‘bridging layer’ 

is the Companies House dataset, an open dataset of UK-registered companies that provides 

unique company identifiers. Finally, we use various matching routines8 to link US, European 

and other patents data (from Orbis, application years 1900-2015), UK trademarks data (from the 

UK Intellectual Property Office, 2012 - 2015) and UK Innovation Survey data (2002-2014). 

Build and variables are described in detail in Appendix A2.  

We restrict the sample to single plant SMEs, allowing us to cleanly ascribe events to single firms 

and locations. We also remove outliers: specifically in each year we remove SME observations 

with an event count higher than 1 standard deviation of the mean event count (this drops 84 

observations). Overall, these steps reduce the number of event observations to 26,622 from the 

original 318,899. Figure 2, below, shows the distribution of all events across all firms in the raw 

data vs. the single plant SMEs in the estimation sample. Overall, our approach is conservative, 

removing much of the firm-level variation in event activity from the events data.  

3. Descriptive analysis

The panel contains 4,878,532 observations for 1.364m single-plant SMEs in the financial years 

2014-2017. For 2014-2015, the years when events are observable, we have 2,643,043 

observations for 1.36m firms.  Firms are mobile across industries (given by 2-digit SIC2003 

codes) and across locations (here, Travel to Work Areas). 7.3% of firms are SIC movers, 5.95% 

of firms are TTWA movers. Table B1 in the Appendix provides summary statistics.9  

8 Bureau Van Dijk identifiers; or firm name and full postcode. An alternative approach would be the automated 

method developed by Autor et al, (forthcoming) which exploits internet search results.   
9 We have relatively few firms with UKIS coverage. We run Hotelling tests to check whether this set of firms is 

systematically different from the rest of the sample. Results, which are all significant at 1%, show that the UKIS 

subsample differs on a large set of observable characteristics (Hotelling's T2 = 24866.03, F(29,2468834) = 

857.440***). In particular, UKIS firms have a substantially higher probability of events exposure (2.91% vs 0.86%) 

and launch activity (1.03% vs 0.31%). Firms with events exposure who are in the UKIS subsample are also 

systematically different from other firms with events exposure (Hotelling's T2 = 487.983, F(21868) = 17.407***). 

We therefore treat the UKIS subsample as different from the rest of the panel.  
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Table 1 gives more detail on events coverage. Around 1% of firms have event coverage (panel 

A), and over a third of these have product / service launches (Panel B). Firms with event 

coverage have around 3.4 events, of which around 1.09 are product/service launches. This 

distribution is broadly stable across the two sample years (Panel C).  

As anticipated, events coverage is not random, with firms selected into events exposure on 

observables. Table 2 shows the mean characteristics of firms with and without reported events, 

and with/without launches, for the short panel 2014-2015. We can see there are large mean 

differences between firms with and without events exposure; rank-sum tests confirm significant 

mean differences on all observables. Specifically, firms with reported events are on average 

older, bigger in terms of employment and revenue, with higher employment, revenue and 

revenue productivity growth, and are more IP-active (with more patents and trademarks filed).  

Firms with events also report more product and process innovation than firms without events. 

However, they are notably less likely to have ‘high-growth’ episodes on OECD definitions of 

revenue/worker, revenue or employment growth.  

By contrast, for firms with events, differences between those with and without launch activity 

are rather smaller.10 Companies with launches are more likely to patent and have trademarks and 

report innovations than those without launches. They have significantly lower productivity, are 

less likely to have high revenue/worker growth episodes, are more likely to be foreign-owned 

and part of a larger business group, and more likely to be a listed company rather than a 

partnership. However, they balance on age, share of start-ups, number of employees, share in an 

urban TTWA, and on employment and revenue in levels, growth and high-growth status.  

Table 3 compares the coverage of patents, trademarks, reported launches and reported 

innovation at aggregated industry level in our data. We use the short panel 2014-2015 in order to 

10 Rank-sum tests are preferred, as we do not know the underlying distribution of events. T-tests give virtually 

identical results and are available on request.  
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compare coverage only in years where we observe events and launches. Panel A shows coverage 

of events, launches, patents, trademarks across SIC1 bins. Columns show shares of firms with at 

least one event, launch, patent, TM, or reported product/process innovation. Panel B repeats the 

analysis for firms with events exposure. The results suggest that launches are a useful 

complement to conventional innovation metrics. Event and launch coverage is more evenly 

distributed across sectors than patenting, TMs and reported innovations. This holds whether or 

not we restrict to firms with events exposure. As expected, patenting is most concentrated in 

manufacturing, but is also present in parts of the services sector, notably business services 

(including software and other ‘knowledge-intensive’ activities (Castellacci, 2008). Given their 

broader functionality, trademarks are more evenly distributed, with most activity in 

manufacturing, wholesale /retail/repair and social/personal services. Launch activity is also 

higher-frequency. For the full sample, we observe 8,275 launches, 1,941 patents and 3,164 

trademarks. When we restrict to firms with launch activity, we see order of magnitude 

differences. We report the same Table in the Appendix (Table B2) with the same information on 

the distribution of events across sectors for matched UKIS companies. Among the UKIS 

matched sample, on average 27% of companies report some innovation, with this share being 

higher for the manufacturing and real estate sector. While in the very small sample of companies 

with events, on average 40% of companies report some innovation.  

Table 4 shows coverage of events, launches, patents, trademarks and reported innovations across 

urban travel to work areas (TTWAs) and London in the short panel. TTWAs approximate spatial 

economies; urban TTWAs are defined as those containing an urban core of 125,000 people or 

more. Over 78% of observations are in an urban TTWA; just under 23% are in London (Panel 

A). For firms with events, urban and London shares are even higher (Panel B). In both samples, 

launches and other innovation metrics for these single-plant SMEs are highly urbanised, in line 

with the wider firm literature (Audretsch and Feldman, 1996). Rank-sum tests suggest these 

differences are significant, except for urban / non-urban patenting; reported innovation samples 

are too small to give significant differences.   

Figures 3 and 4 extend the geographical analysis. Figure 3 is a simple scatterplot of launches, 

patents and trademarks across TTWAs. In raw counts, coverage across spatial economies 

appears even, although launch counts are substantially higher. London is a big outlier in counts, 

even for single plant SMEs. 



10 

To correct for this, Figure 4 plots TTWA counts weighted by the number of firms in each 

TTWA. Very interestingly, we can see that when local economic conditions are taken into 

account, launches have a far more even distribution across space than either patents or 

trademarks.  

4. Framework

Innovation in firms is a multi-stage process. The knowledge production function paradigm 

pioneered by Griliches (1979) links upstream inputs (internal R&D, external knowledge), 

intermediate outputs (inventions) and firm ‘performance’ (productivity, stock market value and 

so on). Performance is partly driven by inventions successfully deployed internally, and/or 

commercialised (innovations). In practice, knowledge may emerge from interactions with 

customers, suppliers and peers (Chesborough, 2003; Von Hippel, 2005) as well as a firm’s asset 

base, and is shaped by firms’ absorptive capacity and evolution paths (Cohen and Levinthal, 

1990; Blundell et al., 1995; Teece et al., 1997).  

Intermediates are product/process innovations protected either formally (via patents, 

trademarking or designs) or informally (via secrecy, confidentiality agreements or lead times) 

(Hall et al., 2014). Surveys suggest that firms typically use a range of IP protection tools, both 

formal and informal, if they do so at all (ibid). In particular, trademarks are an important formal 

complement to patents, both for IP protection (via legal protection for brands and marketing 

assets), but also to aid product differentiation and as a way to signal innovativeness to potential 

investors (Block et al., 2015; Helmers and Rogers, 2010; Fosfuri et al., 2008). Among informal 

tools, lead time seems the most widely used (Hall et al., 2014).  

We argue that product/service launch events – like those in Figure 1 – are a measure of firms’ 

‘downstream’ innovative activity: specifically, they represent inventions that have been 

commercialised into new-to-the-firm products and services. Crucially, while launches do not 

capture innovations protected by secrecy, they can (in theory) pick up any other public 

innovation however protected. This suggests 1) some positive link between prior formal IP 

filings and subsequent launches, and that 2) in turn, differences in firm-level launch activity may 

feed through to subsequent firm-level productivity differences.  
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As discussed in Section 1, these linkages are a priori ambiguous for SMEs and require empirical 

testing. In the spirit of the CDM approach, we proceed in two stages. We first estimate a 

knowledge production function that links launches to past patenting, trademarking and self-

reported product/process innovation. We run our estimations for the full sample, using placebo 

tests to capture the role of underlying events exposure once observables are controlled for. Next, 

we explore the link between launch activity, past IP and firm productivity.    

Given the media-reported nature of launches, identifying the link between launch activity and 

productivity is challenging. In theory we could estimate, for firm i in year t in TTWA a and 

sector s:  

Yitas = F(Lit-n, IPit-n, Xit-n, Tt, Aa, Ss, uitas) (1) 

Where Y is productivity, L is some measure of launch activity, IP is a vector of past patenting 

and trademarking, X is a control vector, and T, A and S are fixed effects. As confirmed in 

Section 3, events exposure varies on observable characteristics. However, events exposure may 

condition both sides of (1). That is, events exposure might be driven by unobservables, and these 

might be time-varying.  More mechanically, launches are only observed conditional on an event 

being observed. (Our short panel also makes it challenging to fit firm fixed effects Ii. Blundell et 

al (1995) propose firm-specific ‘levels effects’ based on historic patenting activity, an approach 

we follow here.)  

We can think of a firm’s selection into events / media exposure as a decision shaped by demand 

side and supply side factors. On the demand side, the strategic value of media exposure will vary 

across firms, given an individual firm’s strategic choices; management capacity (Cohen and 

Levinthal, 1990); resources and other observable characteristics (such as age, size, legal and 

corporate structure) (Teece et al., 1997); position in a value chain (B2B or B2C); industry 

characteristics and trends; and larger forces -such as national / international policy regimes, trade 

frictions and changes in these (Cockburn et al., 2016). On the supply side, the availability of 

coverage for a given new product and service will vary across industry (some sectors are more 

likely to have newsworthy content than others), location (physical proximity to media 

producers), time-varying trends in the media (Davies, 2009; Viner, 2016), as well as the 

individual firm characteristics listed previously.   
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Many of these factors are directly observed in our data or can be handled via fixed effects. If 

selection into events varies only on observables, and controllable wider conditions, then we can 

cleanly identify the link between L and Y in (1). However, if event exposure is also driven by 

time-varying unobservables, then we cannot fully separate out the effect of launch activity from 

underlying events exposure, then in this case our best option is to estimate (1) for all firms and 

for those with events, then compare coefficients of L. Our preferred estimates will be for the 

events subset, where we effectively estimate the role of launches conditional on events exposure. 

5. Launches as an innovation measure

We begin by exploring launches’ place in knowledge production. If launches are in fact 

measures of ‘downstream’ innovative activity, we should expect a positive significant link from 

firms’ past IP activity (reflecting ‘upstream’ patenting, trademarking and before that, R&D) to 

launch activity, but not vice versa. Given their respective functions, we might also expect 

larger/stronger links from patenting than from trademarking. Raw industry-level correlations 

seem to bear this out (Figure 5).  

More formally, we can represent these relationships as a modified knowledge production 

function, in which launch activity L for firm i in year t is a function of past IP in period t-n, firm 

characteristics X, and wider local (a) and sectoral (s) conditions:   

Litas = a + bPATSit-n + cTMit-n + dPAST_Pi + eXit + Tt + Aa + Ss + eitas (2) 

We define L as either a product launch dummy taking the value 0 or 1, or the count of launches 

l, where l = 0, .... l. PATS are patent stocks with a standard 15% depreciation rate (Hall and 
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2009 patenting activity which takes values p = 0, .... p. X includes predictors of firm growth 

suggested by the descriptive analysis, such as lagged log turnover, age, startup dummy, firm size 

group dummies, company legal status and structure dummies, plus an urban TTWA dummy. We 

include TTWA and 2-digit industry fixed effects as well as a time dummy.  Standard errors are 

clustered on two-digit SICs. We estimate (1) for the full sample and for the UKIS subsample, 

where we additionally fit a dummy for lagged reported product/process innovations. We 

estimate in OLS because nonlinear estimates typically converge to OLS results once converted 

to marginal effects  (Angrist and Pischke, 2009); OLS is also more efficient given the very large 

number of fixed effects in our data.  

There are three main caveats to this exploratory exercise. First, the time decay function from IP 

to launches is unclear. Depreciation of patents and TM stocks may matter less for recent IP 

activity. Conversely, if historic IP indicates some generalised absorptive capacity, this link may 

be more important than recent IP. Second, measurement error on both sides of (1) will affect our 

estimates. The majority of UK innovations are not protected with formal IP, even for R&D-

intensive companies (Hall et al., 2013). Many new products / services involve multiple patents 

(e.g. the iPhone reportedly has over 100).13  Reported launches are likely to be a lower bound on 

true levels of launch activity. We also know (from Section 2) that GI’s modelling has ascription 

11 We use filings to these offices as a proxy for invention quality: inventions filed in international domains rather 

than a single country will be ‘worth’ more for applicants (Helmers and Rogers 2010). Alternatives would be triadic 

patent family constructs as an ex-ante measure of quality, or patent citations as an ex-post measure. 
12 KPF approaches normally include R&D, as in the CDM model. Our data makes this challenging. We have 

matched UKIS data to our panel, but the sample is small and highly selected.  Commercial sources such as Orbis 

have limited direct coverage (7,600 ‘industrial companies’ in the UK with R&D expenditure in annual accounts); 

UK SMEs file minimal returns to Companies House, so that standard proxies are hard to reconstruct. For this reason 

we rely on past patenting and trademarks to provide a (lower bound) approximation of underlying R&D.  
13 E.g: https://www.quora.com/How-many-patents-does-the-iPhone-use?, accessed 23 February 2017.  

Harhoff, 2012), which we vary in sensitivity tests. TM stocks are constructed the same way. We 

define 'recent' patenting as occurring in any given five year period, so that n takes the value 0, 1 

... 5 for patents, for EPO/US/PCT filings in any given year back to 2009.11 For trademarks, n 

takes the value 0, 1 or 2 given available data. Given the short panel, firm fixed effects are too 

demanding to run. Instead, following Blundell et al (1995) we use individual firms’ historic 

patent stocks as proxies for firm-level experience, absorptive capacity and other 

unobservables.12 We define 'historic' patenting as taking place pre-2009. Specifically, PAST_P 

includes a dummy taking the value 1 if the firm patents before this date, and an average of pre-
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error that tends to allocate events away from single plant SMEs, the firms in our sample. We are 

testing aggregate links for each firm using many years of patents and TMs, but only two 

financial years' worth of reported launches. While the measurement error in patents and 

trademarks may downward bias the estimates, we can consider the error in the product launch as 

good as random, conditional on the set of variables we have in the regression. Third, at this stage 

we are not explicitly conditioning on events exposure. We fit (1) for the full sample and run 

robustness checks to understand the role of events exposure in driving our results.  

In Table 5 we report results from the regression shown above on the probability to have a 

product launch (Panel A) and the count of product launches (Panel B). In the first column we 

only control for patent activity and trademarks, lagged one period and depreciated at 15%; in 

column two we add controls; column 3 adds historic IP and column 4 year, area and industry 

dummies.14 For the linear probability model (Panel A) we can see that coefficients past IP are 

significant, with one extra patent raising launch probability by 0.5% points the following year; 

for trademarks, the link is slightly larger, at 0.7% points. Historic patenting activity is a 

significant predictor of current launch activity, with coefficients substantially larger than recent 

IP: firms with historic IP are 3.6 percentage points more likely to have a launch in any sample 

year. The number of historic patents is a negative predictor. As above, this suggests historic IP is 

a good proxy for absorptive capacity, with old patents suffering from significant depreciation.  

We see similar patterns for the launch counts model (Panel B): 10 additional patents in a given 

year is linked to just over 0.2 extra launch events the following year, with 10 extra trademarks 

yielding 0.17 extra launches.   

In column 5, we also show results using only the UKIS sample. For the LPM, both patent and 

trademark links disappear, while we find a strong and significant result of lagged reported 

innovation on the probability of launching (1.4% points). As discussed in Section 3, UKIS 

SMEs are observably different from the rest of our sample, including on launch exposure.  Their 

average probability to have a launch is 1.03% (compared to 0.31% in the full sample), so just 

being a UKIS active firm increases the baseline probability of launching by 135% compared to 

non-UKIS firms. While this tells us something about the extensive margin for launches, it does 

14 Sample size changes across results in different columns. In order to make sure the small differences in the results 

were not driven by sample selection, we run the same regressions keeping the sample size constant: results are 

qualitatively the same, with very minor changes to the coefficients. 
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not seem to be informative on the intensive margin, with no significant effect on the count of 

launches.  

These results survive an extensive set of sensitivity checks. In the Appendix, Table B3 varies the 

lags for patents and trademarks, for all firms and the UKIS subsample. In further checks we add 

controls for high-growth firms; add technology field fixed effects; re-specify patents using 

cumulative patent counts; use 40% depreciation rates, following Li and Hall (2016); and break 

out results for manufacturing and services subsamples. Our main results are confirmed for the 

full sample (Tables B4-B5) and the UKIS subsample (Tables B6-B7), with expected difference 

in the importance of patents vs trademarks between manufacturing and services firms.   

In Table B8, we re-estimate (1) on launch mentions, the ‘important launch’ dummy and counts 

of important launches. Table B9 repeats the analysis for the UKIS subsample. We find no 

significant links from IP to launch significance or importance, except for past trademarks in the 

UKIS sample. We speculate that for this set of outcomes, some firm-level unobservables likely 

drive both events exposure and launch activity the results. We address this issue further in the 

next section.   

Finally, we run two falsification tests. To check the direction of the IP-launch relationship, we 

first run a cross-sectional placebo test where we regress current (2015) launches on past (2014) 

patents, then vice versa. If products are the 'downstream' result of 'upstream' inventive activity, 

the coefficient of past patents on present launches will be positive significant, and the coefficient 

of present launches on past IP will be zero, insignificant or both. Table B10 gives the results for 

OLS, and for models with area and industry dummies. The launch-to-patent relationship is close 

to zero, and orders of magnitude smaller than the patent-to-launch relationship.  

Next, we check for the role of underlying events exposure in the launch-IP relationship. Ideally, 

past IP predicts launches better than it predicts other kinds of events, such as mergers or joint 

ventures, where the role of innovative activity is likely to be less relevant. Conversely, events 

exposure may affects both launch activity and IP even after conditioning on observables. Table 

B11 shows the results of a test where we regress events and event counts on past IP, for the set 

of firms without product launches (i.e. we test links from IP to all other event types). The effect 

of patenting on other events and event counts is smaller and weaker than for launches, especially 

for event counts. The effect of past trademarking are the same or larger than in our main results, 
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likely reflecting their multi-purpose role (Block et al 2015). For the UKIS sample, only reported 

innovations robustly predict event activity, although past patenting is marginally significant. 

Overall, these results are reassuring, although we cannot rule out the role of media (events) 

exposure –related unobservables in (2). In the next section we address this identification 

challenge directly.  

6. Linking IP, launches and firm performance

Having established connections between past inventive and IP activity and present launches, we 

now turn to innovation-productivity links. Specifically, we look at how far launch activity 

explains firm productivity on top of patenting, trademarks and self-reported innovation. We 

specify a growth model in which productivity is a function of firms’ recent IP, recent launches, 

controls, and wider time, area and sector conditions:  

Yitas = a + bLit-1 + cPATSit-2 + dTMit-2 + ePAST_Pi + eXit-n + Tt + Aa + Ss + eitas  (3) 

As in existing studies, we specify productivity as revenue per worker (Mohnen and Hall, 2013), 

where Y is either log revenue/worker, % revenue worker growth / year, or a dummy for whether 

a firm has at least one ‘high-growth’ episode. High-growth episodes are specified as per OECD 

definitions. Lagged launches, patents and trademarks are specified as in (2): we lag the latter 

back two periods to allow ‘upstream’ IP to influence ‘downstream’ launches, as established 

previously. X is specified as in (2) except that instead of firm size dummies and lagged turnover, 

we fit five-period lags of revenue and employment to control for firms’ pre-sample 

characteristics. As before, given the short panel we use a historic patenting dummy and mean 

pre-2009 patenting (PAST_P) as a proxy for firm-level heterogeneity. Time, area and SIC2 

sector dummies are fitted as before. Standard errors are clustered at SIC2.  

As discussed in Section 4, selection into events / media exposure is a potentially important 

omitted variable in (3). We go some way towards controlling for the firm-level and wider factors 

that shape media exposure. However, as Section 5 makes clear, unobservable characteristics 

driving events exposure are likely to shape the launch-IP relationship, and these factors plausibly 

influence productivity too. We therefore estimate (3) for the full sample, then for firms with 

events exposure, comparing coefficients of b, our parameter of interest.    



17 

Tables 6 and 7 give results for the full sample, for the launch dummy and launch counts 

respectively. For each outcome we fit the model with launches (columns 1, 3, and 5) and without 

(columns 2, 4 and 6).  

Table 6 shows that product launches have a positive and very significant effect on log revenue 

productivity, at least in levels. With underlying events exposure uncontrolled for, firms with 

product launches have 45% higher productivity than those without, and this is significant at 1% 

(column 1). That is, an increase of 1 standard deviation in the probability to launch (0.055) 

increases productivity by 2.5%.  However, we find no significant links to productivity growth, or 

to high productivity growth activity. Notably, for single plant SMEs, recent past patenting has 

no robust positive link to productivity, although it is marginally significant in predicting high-

growth episodes. In contrast, trademark counts are positively correlated in all three 

specifications. When omitting launches, model fit is slightly lower, while other coefficients stay 

the same. These results suggest that product launches provide additional insight into firms’ 

productivity drivers than using IP measures alone.  

We find similar results for the count of launches, with a positive significant effect on log 

productivity. Specifically, each additional launch raises revenue productivity by 4.7%, albeit 

with underlying media exposure uncontrolled for. While there is no link to productivity growth, 

we find a small (0.1%), marginally significant link to high-growth episodes. Results for patent 

and trademark counts, as well as historic IP, are similar to the dummy model. A simple 

quantification exercise shows us that 1 standard deviation increase in the number of launches in 

this sample (0.34, as reported in Table 1), increases the productivity by 1.6%. 

Tables 8 and 9 repeat the analysis for the sub-sample of firms with events. Here, we interpret 

coefficients of b as expressing the association between launches and productivity conditional on 

media exposure.  
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As expected, selection into the events sample drives much of the large associations found earlier. 

In Table 8, single plant SMEs with events and launch exposure now have 6.4% higher 

productivity than other firms with events (column 1). This lower results also reflects the fact that 

the variable product launch has a higher standard deviation with respect to the sample of all 

firms used in Table 6: having a probability of 1 standard deviation (0.42) higher is associated 

with a 2.7% higher productivity, therefore slightly higher with respect to the gap observed in all 

other firms (Table 6, column 1). While recent patenting has no link to productivity for these 

SMEs, as before, recent trademarking has a positive significant association, with each additional 

trademark associated to 8.1% higher productivity (column 1). Model fit drops slightly once 

launches are removed, suggesting they have some additional explanatory power. As before, we 

find no link between launch activity and productivity growth or high-growth episodes; patent 

and trademark links are also weak or non-significant here (columns 3 and 5).  

Table 9 fits the count of launches. As expected, controlling for underlying media exposure 

substantially reduces the launch-productivity link. Each additional launch is now linked to a 

1.7% increase in productivity (column 1), down from 4.7% for the full sample, but remains 

significant at 1%. Also in this case, the quantification allows us to compare results across 

samples: having a 1 standard deviation more launches (2.3) is linked to a 3.9% higher 

productivity, 2.4 times higher than results shown in Table 7. As in Table 8, we find no link from 

recent patenting, but a clear positive link from recent trademarks which is larger than that of 

launches. Removing launches from the model (column 2) reduces model fit, as before. As in the 

full sample, we find that launch counts do not predict productivity growth or high-growth 

episodes. 

We run a battery of robustness checks on these findings. Tables B12-B14 in the Appendix give 

results for log productivity, productivity growth and high-growth episodes respectively. Each 

table shows coefficients of the launch dummy and launch counts for tests that: include pre-2014 

controls for firms’ high-growth episodes; change the lag of patents and trademarks; depreciate 

patents at 40%, not 15%; drop firms that change industry or move across areas; fit 4-digit 

industry dummies rather than 2-digit; fit industry-year fixed effects; fit IPC1 technology field-

year fixed effects; fit two-way clustered standard errors on industry and area; and include a 
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simple dummy for London location rather than area fixed effects. Results are robust to all of 

these alternative specifications.  

6. Extensions

We briefly show three extensions to these main results. First, we split the events sub-sample to 

look at launch-productivity links in manufacturing and services industries.  Tables B15 and B16 

in the Appendix give results, for the LPM and counts models respectively. For both the LPM 

and the counts model, overall positive launch-productivity links are driven by firms in the 

service sector. Services firms also drive the trademarking result. For manufacturing firms, recent 

patenting is linked to lower productivity growth, but historic patenting correlates to higher 

productivity growth.  Overall, the results are consistent with Audretsch et al (2018) who suggest 

that barriers to (reported) innovation are lower for services firms than manufacturers.   

Second, we look at links from launch quality to productivity. We use the number of media 

reports per event as a proxy for quality, as set out in Section 2. We re-estimate (3) using four 

alternative quality measures: a simple count of the number of reports across launches, per firm 

per year; firm-year counts weighted by the number of launches; a dummy for whether a firm has 

an ‘important’ launch with a high number of mentions; and the count of important launches per 

firm per year.  Table 10 gives results when we look at counts for the main event topic (using 

counts across all topics and counts weighted by topics give identical findings). We find very 

small positive links from report counts to productivity in levels, and very small negative links to 

productivity growth. We find zero links for weighted report counts. We find large, significant 

effects from having an important launch to productivity, and from the count of important 

launches. Specifically, SMEs with at least one important launch have about 17% higher 

productivity than other SMEs with media exposure; each additional important launch adds 

almost 22% to a firm’s revenue / worker. This suggests that our main results, linking launch 

activity to SME productivity, are significantly driven by a small set of high-profile, important 

product and services launches.  
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Finally, we look at interactions between firms’ productivity, age, size, lunch activity. US and 

UK studies suggest that ‘small, young’ firms disproportionately account for employment growth 

(Haltiwanger et al 2013, NESTA 2010). Testing whether innovative small, young firms drive 

productivity is a policy-relevant next step. In the events subsample, we identify ‘young’ firms as 

the most recent quartile. These are firms up to nine years old, close to the group identified by 

Haltiwanger et al (2013). We group firms by size using OECD definitions of micro, small and 

medium businesses.   

Interacting patenting and trademark activity with age and size groups yields non-significant 

results. Tables B17 and B18 re-run (3) for productivity in levels, interacting IP measures with a 

dummy for young firms; Tables B19 and B20 repeat the analysis for size group dummies, with 

medium-size firms the reference category. Table 11 shows this analysis for launch activity. In 

each case, we first fit the re-specification of (3) with age and size dummies (columns 1 and 4), 

then size group interactions (columns 2 and 5), then age interactions (columns 3 and 6). Overall, 

the results are mainly driven by medium-size firms while there is no effect of age. Interestingly, 

there is a negative effect of being a micro firm on the extensive margin (they are less likely to 

launch, column 2), yet on the intensive margin the coefficient of the effect of innovation on 

productivity is not statistically different from that of medium size firms (column 5). If it is a 

small firm launching the product the effect is positive but half of that found for medium firms. 

The result on the counts is similar: positive but smaller.  

In Table B21 we estimate only the interactions of launch activity with all age and all size 

groups, without the underlying main effects. This approach allows us to directly read off 

absolute effects for the interactions of interest. For the LPM we find large productivity effects 

for young micro and young medium firms, but these are only marginally significant. For the 

counts model, we find significant productivity effects for young firms of all sizes, with slightly 

higher coefficients for young small and young micro firms. This suggests that launch-

productivity links on the extensive margin are driven by a very small number of outliers; while 

for young firms with launch exposure, adding a further launch raises productivity similarly 

across size groups. 
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7. Conclusions

This paper introduces a new and experimental measure of firm-level innovation: product/service 

launches modelled from media reports, which we argue complement existing innovation metrics 

and provide a potentially important tool for decision-makers. We provide evidence that past 

patenting, trademarking and self-reported innovation predict launch activity at the firm level, for 

a panel of UK SMEs. We then look at links from launches and IP to SME productivity. Launch 

activity is associated with higher firm productivity, controlling for IP, drivers of underlying 

media exposure and firm heterogeneity. Firms in the service sector and those with high-profile 

launches seem to drive much of this result.  
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Figures and tables. 

Table 1. Event coverage and type, 2014-2015. 

A. All firms Obs Mean Std. Dev. 

Firm has event 2,643,043 0.009 0.092 

Event count 2,643,043 0.030 0.663 

Firm has product launch 2,643,043 0.003 0.056 

Product launch count  2,643,043 0.009 0.347 

B. Firms with events Obs Mean Std. Dev. 

Event count 22,622 3.452 6.293 

Firm has product launch 22,622 0.366 0.482 

Product launch count  22,622 1.093 3.591 

C. Coverage by year Year Events % 

2014 12,018 53.13 

2015 10,604 46.87 

Total 22,622 100 

Source: GI. Panel A shows all firms in the sample. Panel B shows all observations where events 

or launches are observed, as applicable. Panel C gives the breakdown across years.  
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Table 2.  Comparing observable characteristics across samples, 2014-2015. 

Variable Mean for firms with 

No events Events 
Events, no 

launches 

Events and 

launches 

Patent count 0.001 0.042 0.03 0.062 *** 

Weighted patent count  0.001 0.041 0.029 0.062 *** 

EPO/US/PCT patents 0.001 0.023 0.015 0.037 *** 

Weighted EPO/US/PCT patents 0.001 0.023 0.014 0.037 *** 

TM count 0.002 0.015 0.011 0.022 *** 

Firm reports product or process 

innovation 
0.276 0.41 0.354 0.512 ** 

Rev per worker two-year average 146.55 781.3 966.7 461.6 *** 

Annual % rev per worker growth -0.006 0.017 0.019 0.0132 

High rev per worker growth firm 0.129 0.148 0.154 0.14 *** 

Revenue two-year average 811 13752 14032 13264 

Annual % revenue growth 0.011 0.049 0.05 0.048 

High revenue growth firm 0.15 0.215 0.218 0.208 

Employment two-year average 5.1 21.2 21.2 21.3 

Annual % employment growth 0.017 0.032 0.029 0.036 

High jobs growth firm 0.014 0.06 0.06 0 

Age entered BSD / incorporated  12.4 17.9 17.8 17.9 

Year incorporated 2004 1998 1998 1998 

Startup 0.142 0.028 0.028 0.028 

Firm has 1-9 staff 0.892 0.571 0.573 0.568 

Firm has 10-49 staff 0.086 0.284 0.281 0.289 

Firm has 50-249 staff 0.013 0.124 0.123 0.125 

Immediate foreign ownership  0.165 0.328 0.263 0.44 *** 

Firm is in a group of enterprises 0.003 0.055 0.06 0.047 *** 

Number of companies in the group 0.008 0.187 0.226 0.119 *** 

Firm is a company 0.942 0.903 0.887 0.931 *** 

Firm is a sole proprietor  0.021 0.004 0.004 0.003 

Firm is a partnership  0.014 0.004 0.005 0.002 *** 

Firm is a public company  0 0.001 0.001 0.001 

Firm is a non-profit / social enterprise 0.023 0.088 0.103 0.063 *** 

Services sector 0.909 0.883 0.898 0.858 *** 

Urban TTWA  0.788 0.838 0.839 0.836 

Greater London 0.228 0.303 0.31 0.291 *** 

Observations 2,620,421 22,622 14,347 8,275 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Firms with events gives all observations where events are 

observed. Stars give the results of rank-sum tests for events sub-sample. *** 1% significance, ** 5% significance. 

All mean differences between firms with and without events are significant.  
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Table 3. Coverage by SIC1 sectors for product launch, patents and trademarks, 2014-15. 

A.  All firms. % of firms with coverage. 
B. Firms with events exposure. % of 

firms with coverage   

sic03  sic03 section name events launch patent tm N launch patent tm N 

A Agriculture, hunting and forestry 0.29 0.1 . 0.06 40,735 33.33 . . 117 

B Fishing . . . . 2,964 . . . 9 

C Mining and quarrying 6.1 1.27 . . 869 20.75 . . 53 

D Manufacturing 1.25 0.57 0.33 0.25 196,577 45.65 2.93 1.46 2,458 

E Electricity, Gas and Water Supply 1.81 . . . 3,483 . . . 63 

F Construction 0.34 0.08 0.01 0.02 293,384 23.42 . . 1,012 

G Wholesale and retail trade, etc 0.73 0.38 0.06 0.23 405,338 52.71 0.81 0.78 2,956 

H Hotels and restaurants 0.28 0.09 . 0.05 120,108 31.44 . . 334 

I Transport, storage and communications 0.88 0.32 0.03 0.07 94,905 36.56 . . 837 

J Financial intermediation 2.18 0.41 . 0.09 48,217 18.93 . 1.05 1,051 

K Real estate, renting and business activities 0.94 0.33 0.08 0.1 1,152,392 34.67 1.19 0.88 10,812 

L Public administration and defence, etc . . . . 15 . .  . . 

M Education 1.16 0.27 . 0.13 34,850 23.21 . . 405 

N Health and social work 0.73 0.18 0.03 0.07 79,130 25.3 . . 577 

O Other community, social and personal services 1.14 0.41 0.03 0.14 169,995 36.22 . 1.14 1,938 

P Household domestic employment . . . . 47 . . . . 

Q Extra-terrestrial organisations, bodies . . . . 34 . . . . 

Average coverage 0.86 0.31 0.07 0.12 
2,643,043 

36.58 1.09 0.88 
22,622 

Observations (with coverage) 22,622 8,275 1,941 3,164 8,275 246 198 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Cells with under 10 observations suppressed to avoid disclosure. Each entry represents the share of companies with coverage (event, 

launch, patent, tm or ukis). Panel A reports all the companies in the sample (2.6m) and UKIS column entries refer to the sample of UKIS companies matched in the data. 
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Table 4. Area coverage for events, launches, patents, trademarks and UKIS, 2014-15. 

A. All firms (%) Non-urban Urban Not London London 

No events 21.24 78.76 77.2 22.8 

Events 16.19 83.81 69.68 30.32 

No launches 21.22 78.78 77.16 22.84 

Launches 16.41 83.59 70.9 29.1 

No patents 21.2 78.8 77.13 22.87 

Patents 21.48 78.52 84.96 15.04 

No TMs 21.2 78.8 77.14 22.86 

TMs 19.66 80.34 74.37 25.63 

No reported innovation 28.72 71.28 85.61 14.39 

Reported innovation 29.16 70.84 87.21 12.79 

All 21.2 78.8 77.14 22.86 

560,364 2,082,679 2,038,730 604,313 

B. Firms with events (%) Non-urban Urban Not London London 

No launches 16.06 83.94 68.98 31.02 

Launches 16.41 83.59 70.9 29.1 

No patents 16.13 83.87 69.53 30.47 

Patents 21.14 78.86 82.93 17.07 

No TMs 16.18 83.82 69.69 30.31 

TMs 16.67 83.33 68.69 31.31 

No reported innovation 19.44 80.56 77.78 22.22 

Reported innovation . 84 84 . 

All 16.19 83.81 69.68 30.32 

3,662 18,960 15,763 6,859 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Cells with under 10 observations suppressed to avoid disclosure. 
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Table 5. Linking past IP activity to product launches. Stepwise regressions, all firms. 

A. Pr(launch) (1) (2) (3) (4) (5) 

L1.15% depreciated PCT / EPO / 0.009*** 0.007*** 0.006*** 0.005*** -0.003 

US patent count (0.001) (0.001) (0.001) (0.001) (0.002) 

L1.15% depreciated TM count 0.010*** 0.008*** 0.007*** 0.007*** -0.002 

(0.002) (0.002) (0.002) (0.002) (0.003) 

Ave pre-2009 patenting -0.007** -0.007** -0.010* 

(0.003) (0.003) (0.005) 

Firm patents pre-2009 0.041*** 0.036*** 0.076* 

(0.010) (0.009) (0.041) 

L1.firm reports product 0.014** 

or process innovation (0.006) 

Observations 2643043 866076 866076 858096 3347 

R2 0.0016 0.0081 0.0086 0.0148 0.1521 

B. Launch counts (1) (2) (3) (4) (5) 

L1.15% depreciated PCT / EPO 0.037*** 0.027*** 0.027*** 0.026*** -0.000 

/ US patent count (0.003) (0.007) (0.006) (0.007) (0.007) 

L1.15% depreciated TM count 0.028*** 0.019*** 0.019*** 0.017*** 0.072*** 

(0.007) (0.006) (0.006) (0.005) (0.022) 

Ave pre-2009 patenting -0.023*** -0.023*** -0.004 

(0.005) (0.005) (0.018) 

Firm patents pre-2009 0.077*** 0.061** 0.059 

(0.027) (0.028) (0.185) 

L1.firm reports product 0.100 

or process innovation (0.076) 

Observations 2643043 866076 866076 858096 3347 

R2 0.0007 0.0030 0.0031 0.0063 0.1328 

Controls  N Y Y Y Y 

Pre-sample patenting  N N Y Y Y 

Year, area and industry dummies N N N Y Y 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Controls fitted include log mean turnover and employment, startup 

dummy, firm size dummies, company legal status and structure dummies, plus an urban TTWA dummy Controls lagged 

one year except age. Standard errors clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 

10%. Constant not shown. 
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Table 6. Effect of innovation (launch dummy) on firm productivity, all firms. 

Log revenue/worker Rev/worker growth 
High-growth 

episodes 

(1) (2) (3) (4) (5) (6) 

L.new product launch 0.452*** 0.006 0.006 

(0.018) (0.006) (0.004) 

L2.15% depreciated PCT -0.003 0.001 -0.002 -0.002 0.002* 0.002* 

 / EPO / US patent count (0.005) (0.005) (0.002) (0.002) (0.001) (0.001) 

L2.15% depreciated TM 0.181*** 0.184*** 0.011** 0.011** 0.010*** 0.010*** 

count (0.017) (0.017) (0.004) (0.004) (0.004) (0.004) 

Ave pre-2009 patenting 0.053 0.050 0.007 0.007 0.017*** 0.016*** 

(0.036) (0.036) (0.007) (0.007) (0.006) (0.006) 

Firm patents pre-2009 0.084 0.100* -0.003 -0.003 -0.005 -0.005 

(0.060) (0.060) (0.013) (0.013) (0.011) (0.011) 

Observations 1580303 1580303 1596775 1596775 1596775 1596775 

R2 0.0849 0.0842 0.0015 0.0015 0.0097 0.0097 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  All models fit controls, area, year and SIC2 dummies. Controls 

fitted include 5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal 

status and structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors 

clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 
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Table 7. Effect of innovation (launch counts) on firm productivity, all firms. 

Log revenue/worker Rev/worker growth 
High-growth 

episodes 

(1) (2) (3) (4) (5) (6) 

L.new product launch 0.047*** 0.001 0.001* 

count (0.005) (0.001) (0.001) 

L2.15% depreciated PCT -0.001 0.001 -0.002 -0.002 0.002* 0.002* 

 / EPO / US patent count (0.005) (0.005) (0.002) (0.002) (0.001) (0.001) 

L2.15% depreciated TM 0.183*** 0.184*** 0.011** 0.011** 0.010*** 0.010*** 

count (0.017) (0.017) (0.004) (0.004) (0.004) (0.004) 

Ave pre-2009 patenting 0.052 0.050 0.007 0.007 0.017*** 0.016*** 

(0.036) (0.036) (0.007) (0.007) (0.006) (0.006) 

Firm patents pre-2009 0.095 0.100* -0.003 -0.003 -0.005 -0.005 

(0.060) (0.060) (0.013) (0.013) (0.011) (0.011) 

Observations 1580303 1580303 1596775 1596775 1596775 1596775 

R2 0.0845 0.0842 0.0015 0.0015 0.0097 0.0097 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  All models fit controls, area, year and SIC2 dummies. Controls 

fitted include 5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal 

status and structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors 

clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 
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Table 8. Effect of innovation (launch dummy) on firm productivity, firms with events.  

Log revenue/worker Rev/worker growth 
High-growth 

episodes 

(1) (2) (3) (4) (5) (6) 

L.new product launch 0.064*** 0.000 -0.006 

(0.019) (0.007) (0.005) 

L2.15% depreciated PCT 0.004 0.005 -0.006* -0.006* 0.002 0.002 

/ EPO/US patent count (0.007) (0.007) (0.003) (0.003) (0.002) (0.002) 

L2.15% depreciated TM 0.081*** 0.081*** 0.002 0.002 0.003 0.003 

count (0.024) (0.024) (0.005) (0.005) (0.005) (0.005) 

Ave pre-2009 patenting 0.072 0.070 0.009 0.009 0.029* 0.029* 

(0.057) (0.058) (0.022) (0.022) (0.016) (0.016) 

Firm patents pre-2009 -0.223* -0.217* 0.014 0.014 -0.019 -0.020 

(0.116) (0.116) (0.043) (0.043) (0.029) (0.029) 

Observations 27019 27019 27794 27794 27794 27794 

R2 0.1663 0.1659 0.0108 0.0108 0.0232 0.0232 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  All models fit controls, area, year and SIC2 dummies. Controls 

fitted include 5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal 

status and structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors 

clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 
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Table 9. Effect of innovation (launch counts) on firm productivity, firms with events.  

Log revenue/worker Rev/worker growth 
High-growth 

episodes 

(1) (2) (3) (4) (5) (6) 

L.new product launch 0.017*** 0.000 0.001 

count (0.005) (0.001) (0.001) 

L2.15% depreciated PCT 0.004 0.005 -0.006* -0.006* 0.002 0.002 

 / EPO / US patent count (0.007) (0.007) (0.003) (0.003) (0.002) (0.002) 

L2.15% depreciated TM 0.081*** 0.081*** 0.002 0.002 0.003 0.003 

count (0.024) (0.024) (0.005) (0.005) (0.005) (0.005) 

Ave pre-2009 patenting 0.073 0.070 0.009 0.009 0.029* 0.029* 

(0.058) (0.058) (0.022) (0.022) (0.016) (0.016) 

Firm patents pre-2009 -0.220* -0.217* 0.014 0.014 -0.020 -0.020 

(0.116) (0.116) (0.043) (0.043) (0.029) (0.029) 

Observations 27019 27019 27794 27794 27794 27794 

R2 0.1672 0.1659 0.0108 0.0108 0.0232 0.0232 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  All models fit controls, area, year and SIC2 dummies. Controls 

fitted include 5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal 

status and structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors 

clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 
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Table 10. Launch quality, launch importance and firm productivity, events subsample. 

(1) (2) (3) 

Log rev/worker 
Rev/worker 

growth 

High growth 

episodes 

L.total launch reports, main topic 0.000*** -0.000** -0.000 

(0.000) (0.000) (0.000) 

0.1664 0.0109 0.0232 

L.weighted launch reports, main topic 0.000 -0.000 -0.000 

(0.000) (0.000) (0.000) 

0.1659 0.0108 0.0232 

L.firm has important launch, main topic 0.168*** -0.027 -0.007 

(0.052) (0.018) (0.013) 

0.1662 0.0108 0.0232 

L.count of important launches, main topic 0.218*** -0.014 -0.002 

(0.069) (0.016) (0.014) 

0.1665 0.0108 0.0232 

Observations 27019 27794 27794 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Each specification shows coefficient of b in equation (2), standard 

error in parenthesis and R2 in italics. All models fit controls, area, year and SIC2 dummies. Controls fitted include 

5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal status and 

structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors clustered on 

2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%.  
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Table 11. Productivity, launch dummies, age and size. Events subsample. 

Launch Dummy Launch Counts 

(1) (2) (3) (4) (5) (6) 

L.Launch activity 0.063*** 0.290*** 0.291*** 0.017*** 0.038*** 0.038*** 

(0.019) (0.047) (0.048) (0.005) (0.007) (0.007) 

Launch*young -0.021 0.005 

(0.045) (0.012) 

Launch*micro -0.329*** -0.325*** -0.033*** -0.034*** 

(0.055) (0.056) (0.012) (0.013) 

Launch*small -0.151*** -0.149*** -0.016* -0.016* 

(0.055) (0.055) (0.009) (0.009) 

Micro firm -0.084** -0.002 -0.002 -0.079** -0.052 -0.051 

(0.033) (0.036) (0.036) (0.033) (0.034) (0.034) 

Small firm 0.101*** 0.141*** 0.141*** 0.103*** 0.119*** 0.119*** 

(0.031) (0.034) (0.034) (0.031) (0.032) (0.032) 

Young firm -0.123*** -0.123*** -0.119*** -0.121*** -0.122*** -0.124*** 

(0.027) (0.027) (0.029) (0.027) (0.027) (0.027) 

Observations 26442 26442 26442 26442 26442 26442 

R2 0.1664 0.1678 0.1678 0.1673 0.1681 0.1681 

Source: BSD / CH / GI / UKIPO / UKIS. All models fit controls and fixed effects. Age and size variables and 

interactions are lagged one period. Young firms defined as those in the bottom 25% of the age distribution for the 

sample. Micro firms are those with 0-9 staff. Small firms are those with 10-24 staff. Reference categories are older 

and medium-sized firms. Standard errors clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * 

significant at 10%. 
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Figure 1. Example ‘events’, showing raw text and classification. 

Sample 

fragment 

Masterwork goes large with new die cutter. Postpress equipment manufacturer 

Masterwork Graphic Equipment has expanded its range of products with the addition 

of the MK1450ER large-format die cutter with stripping and blanking facilities….  

doc_title Masterwork goes large with new die cutter 

url http://www.XXX/NewsStory.aspx?i=2296 

event_date 2014-03 

source_name xxx 

company_id 13724 

event_type_id product_launch 

Sample 

fragment 

Hammond Electronics has launched a range of designspecific moulded enclosures 

to support the new types of credit card sized, low cost bare board computers, which, 

typically running Linux, provide basic functionality across a wide range of 

applications… 

doc_title Enclosures for credit-card sized computers 

url http://www.XXXX/content/enclosures-credit-card-sized-computers 

source_name xxx 

event_date 2013-12 

company_id 1542955 

event_type_id product_launch 

Source: GI. 

Note: Each example shows the workflow from raw data to modelled variable. GI start with the raw text. 

We show a sample text fragment here with the company subject in bold. Title, URL, date and source 

name provide further info. As agreed with the data provider we cannot report the source name or the full 

text. The company ID field shows the match to Companies House data. Event type ID is the eventual 

classification into an event type: in both cases, these are new product launches.  
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Figure 2. Histogram of events activity, 2014-2015. Raw sample (top), compared with  

estimation sample of single-plant SMEs (bottom).  

A. Raw sample, all firms.  

B. Estimation sample of single-plant SMEs. Disclosive cell counts suppressed. 
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Figure 3. Counts of launches, patents and trademarks across TTWAs, 2014-2015. 
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Figure 4. Weighted counts of launches, patents and trademarks, TTWAs, 2014-2015. 
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Figure 5. Correlation between share of companies patenting/trademarking and launching 

a product. 1-digit industry level.   

Source: GI / CH / Orbis / UKIPO. 

Manufacturing

Mining and quarrying

0
.1

.2
.3

.4

0 .5 1 1.5
probability to launch

Correlation between share of patents and product launches by sector

Wholesale and retail trade

Manufacturing

Mining and quarrying

0

.0
5

.1
.1

5
.2

.2
5

0 .5 1 1.5
probability to launch

Correlation between share of trademarks and product launches by sector



41 

INNOVATIVE EVENTS: ONLINE APPENDIX 
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Appendix A: variables and build 

A1 / Events data  

This paper uses variables that model events in a company’s lifecycle (hence ‘events’), developed 

by the data science firm Growth Intelligence (Gi).  Each ‘event’ is based on content taken from 

company websites or from 3,740 online news sources (including major sources such as Reuters 

or Yahoo news, as well as industry sources such as IT Briefing and PRWeb. Our raw data 

consists of 318,899 observations covering financial years 2014 and 2015 (August 2013 to 

November 2014 inclusive). The fundamental challenge in using the events dataset for inference 

is dealing with its unstructured nature. We develop a number of substantive checks and 

improvements on the raw data. 

GI data quality checks 

We first clean the data to remove all-fields duplicates and the small number of events projected 

for dates in the future. Next, we remove ‘farmed’ content by not allowing identical text 

fragments to appear more than once a day anywhere in the data. Third, we conduct checks for 

the quality of GI’s feature extraction and syntax parsing. Finally, we remodel the raw data for 

greater realism. 

We begin with a simple manual check for ‘negative events’ – that is, reports describing 

something that has not occurred. On a 1% sample of product/service launch events, we find a 

negative event error rate of 0.6% (5/823).  Next, we conduct more systematic checks on a 

sample of ‘hard cases’. We define ‘hard cases’ as observations where there are a priori reasons 

to believe GI’s ascription of news article text to a given company may be incorrect: specifically, 
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because the text includes either a large tech company (e.g. Google, Facebook) or a large press 

agency (e.g. Reuters, Bloomberg). These company names often appear in everyday contexts 

outside activities by that company. For example, ‘Google’ is now commonly used as a noun or 

verb; many company websites and online news articles will include social media-related text 

along the lines of ‘follow us on Facebook’; many news reports about other companies are filed 

by large press agencies. In this way, the set of hard cases provides a natural upper bound on the 

error rate in GI’s analysis. To give a sense of this upper bound, below we set out some analysis 

of the hard cases subset. Note that in our main analysis, we restrict the sample to single plant 

SMEs, removing these hard cases from the data and further guarding against error.   

In the GI data, ascription error could arise from failure to extract text from credible online 

sources (‘content farming error’), or, once text has been extracted, from failures of name entity 

recognition or selection (‘algorithm error’). We define large tech and media companies through 

Wikipedia reports of global market cap or market share. We draw 5,000 event observations 

(news articles) ascribed to one of these companies (hence ‘big digital’, 12.5% of the 40,000 

observations ascribed to such firms). Analysis using title and text fragment fields suggests 

around 16% content farming error in the ‘big digital’ sample, especially what we term 

‘copyright clutter’ (where ascription has been done on article source/copyright text) and what we 

term ‘social media clutter’ (ascription based on ‘follow us on facebook’ type text).  Note that 

GI’s ascription is based on the full text from each event text, not just the fields provided to us, so 

true error rates due to clutter may be lower than this.  

We also conduct further, experimental tests on a sub-sample of the ‘big digital’ companies. We 

use the URL field to re-extract the original text, then to reverse-engineer GI’s feature extraction 

and syntax parsing routines. We are only able to perform this exercise on websites that are a) 

scrapable b) active (return a 200 to standard HTTP requests). This reduces our sample size to 
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1,746.  We then build a web crawler to retrieve the original webpage text, and train a Name 

Entity Recognition (NER) model to identify company names from the re-extracted data. The 

model is built from Stanford NER Conditional Random Field Classifiers, which is the current 

gold standard (with over 80% accuracy) (Jiang et al 2016). We use the CoNLL, MU6, MU7 abd 

ACE 2002 training datasets, which are substantively based on news corpora.  For each 

observation, we proceed as follows. We extract all company names Cner (we already know the GI 

company name Cgi). Let Ccandidates be a subset of Cner occurring in the title / headline of each 

article, and identified as potential subjects in the text. We assume that the correct subject(s) of 

the event described will be a) identified as subject at least once in the text (and probably 

multiple times), and b) be mentioned in the article title. For precision, we therefore drop 413 

cases where no company is mentioned in the article title. 

This leaves us with three scenarios. If GI’s ascription is correct, Cgi is in Ccandidates, and Ccandidates 

= 1. If GI’s ascription is probably correct, Cgi is in Ccandidates, and Ccandidates ≥ 1. If GI’s ascription 

is incorrect, Cgi is not in Ccandidates. For the ‘digital’ sample, we find 95.1% incorrect ascription on 

the 977 remaining observations. Note that this is a lower bound on the true error rate: if we 

assume all ‘probably correct’ cases are incorrect, the error rate rises to 99% of cases.1 Note that 

our focus on single plant SMEs removes hard cases from the data, minimising the ascription 

error rate on the rest of the sample. However, to the extent that mis-ascription ‘gives’ events to 

large tech and media firms which actually belong to SMEs, we have a lower bound on the true 

level of event activity for our firms of interest.  

Event observations vs. real-world events 

1 We check for out-of-sample error rates by running these routines for the full set of 40,000 observations, with very 

similar results.  
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A further substantive issue is that in its raw form, an event observation may not perfectly 

correspond to some underlying (real world) event. For example, a major merger is likely to be 

reported hundreds of times; each of these is currently reported as a distinct event occurrence. We 

use structural topic modelling (STM) to cluster raw events data in a more realistic fashion; we 

then exploit the raw event-level counts to make measures of modelled event ‘quality’ or 

‘importance’ (see below). 

Topic modelling algorithms cluster text fragments that talk about the same topic in different 

ways, using different text but similar content words (Roberts et al., 2016). In STM, each text 

fragment is modelled as a document. A topic is defined as a mixture over words where each 

word is associated to a probability of belonging to a topic. A document is a mixture over topics; 

therefore each document can be associated to multiple topics. For each text fragment we have a 

topical prevalence and a topical content. The prevalence refers to how much a document is 

associated with a topic, and it is computed using the shared words in the document, while the 

content refers to the words used within the topic. We use the topical prevalence to group event 

fragments within the same topic. We use the 90% threshold, so we assume that events belong to 

the same cluster if they share at least 90% of the content.2  

Before modelling the data, we stem the fragments (reducing the words to their roots) and remove 

stopwords (definite and indefinite articles, pronouns, etc.).3 We then group individual event 

observations according to three variables – type of event, company and event date4 – and run the 

model within each group. If an event is reported by several sources in different formats on the 

2 This threshold can be modified. 
3 For more precise information on the model and on the implementation in R see Roberts et al (2016).   
4 We use the day, but future analysis will be extended using a longer time frame (days or weeks) as the same event 

may be reported for more than a day. Variations on this might include allowing a weekly bound. However, a bound 

is hard to identify as we do not know when the actual event took place. Also bounds may differ across event types. 

Is it better to use the first day that event appeared or is it better to use the day with the highest frequency, or is it 

better to use the last day the event is reported as we can be more confident that on that day the event has already 

happened. 
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same day, the STM algorithm identifies the repetitions and keeps one of them. STM processing 

substantially reduces the number of events observations, to 257,056. 

Event importance 

We use the number of raw reports / mentions for each launch as a proxy measure for that 

launch's 'significance' or 'quality'. The intuition is similar to patent citations - as more cites 

indicate a more significant patent, so more mentions suggest a more significant new product or 

service. We make the follow measures for each cleaned launch event:  1) # mentions across all 

topics; # mentions in main topic; 3) # mentions / # topics.  Of these, 2 and 3 are preferred 

measures - the former looks at mentions in the most relevant topic, and latter penalises poorly 

identified real-world events. 

For each firm*year cell, we sum these measures 1) - 3). We also build weighted measures, 

where weights are #launches in a firm/year cell. We can think of this as analogous to weighting 

patent counts by inventors. 98% of launches only have one mention: given that our firms are 

single plant SMEs this is not surprising.  We dub the remaining 2% of launches  'important'  

launches.  This gives us two further measures: a dummy for whether or not a firm has an 

important launch in a given year; and the count of important launches in a given year. 

A2 / Panel build 

To build the panel, we match Companies House companies to enterprises in the Business 

Structure Database (BSD). Growth Intelligence (GI) data is pre-matched to Companies House 

identifiers. We then match in patents, trademarks and UK Innovation Survey (UKIS) data. 
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BSD-Companies House-GI matching  

Company-level data (Companies House and GI) is based on companies active as of August 2012 

(financial year 2013). The UK Data Service team therefore matches companies to enterprises 

using the 2013 BSD cross-section, which comprises 1,818,263 unique entrefs (which denote 

individual enterprises in the BSD). The initial matching rate is 61.1% (1,877,600 / 3,074,845 

observations matched). Note that due to data protection legislation, we are unable to do this 

matching ourselves. 

We then conduct a number of cleaning and matching sub-routines to optimise the match.  

Specifically, we drop all observations with no entref, neither in the 2013 BSD nor in the BSD-

CH match; drop firms who left the BSD before 2012; drop public sector observations except 

public sector corporations (e.g. nationalised banks). At the end of these preliminary cleaning 

steps we have 1,423,558 observations, for 1,416,218 unique enterprises. This is 75.8% of the 

original matched sample. Some of the remaining enterprises are still matched to more than one 

legal entity (specifically, 78,379 observations, 1.6% of entrefs, 5.8% of observations).  These 

firms are older, larger and richer than sample as a whole.5 Because we do not have access to 

identifying information on the BSD side of the data, we are unable to observe the true corporate 

structures that match to each BSD enterprise. We therefore develop heuristics to give us a panel 

with 1:1 enterprise:company matching. The majority of corporate legal structures should reduce 

to this form, especially the single plant SMEs we focus on. We: 

1) Keep companies in an enterprise:company group with non-missing year incorporated.

Duplicates drop to 2.63% of observations from 5.8% of observations. 

5 Specifically, the firms in these 1-to-many matches are older than average (mean incorporation 1990 vs. 2002); 

enter the BSD earlier (1984 vs. 2001); have more plants (94 vs. 6); have higher employment (3096 vs. 187) and 

employees (3095 vs. 187); have higher annual turnover (£1,200,313 vs. £70,983); are more likely to file revenue to 

Companies House; and report higher 2010-2013 revenue to Companies House (average £12.4bn vs £2.53bn). 
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2) Keep companies in an enterprise:company group with non-missing CH revenue

information and this reduces duplicates to 1.59% of observations. We prefer to have 

observations with revenues rather than none. Given the observable characteristics of 

these firms, they are more likely to have revenues to report. 

3) Keep companies in an enterprise:company group with highest-reported CH revenue. This

step reduces duplicates to 0.08% of observations, as these are likely to be reporting the 

revenues of the other companies in the group. 

4) Shuffle the data and drop any remaining duplicates.6

At the end of these further cleaning steps we have 1,364,624 observations, for the same number 

of unique enterprises. This is 72.7% of the original matched sample. 

We then match this cross-section to BSD panel data. We start with a panel of 16,274,552 BSD 

firm*year  observations for the years 1997-2017. Having built various lagged variables, we 

shorten the panel to 2014-2017, since events are only observed in 2014 and 2015. This reduces 

the panel to 5,039,811 observations. In merging, we drop large firms and multi-plant firms, 

which reduces the panel to 5,013,702 and then 4,878,646 observations respectively. Finally, we 

remove outliers: specifically in each year we observations with an event count higher than 1 

standard deviation of the mean event count. This drops 84 observations, giving us a final 

'estimation panel' of 4,878,532 firm*year observations for 1,364,624 single-plant SMEs. 

The raw panel is unbalanced because firms enter the BSD at different times, and because firms 

drop in and out when they no longer fulfil the BSD criteria (their turnover drops below VAT 

6 As a sensitivity check we compare characteristics of the retained observations against the modal values of group of 

linked companies.  We find there's a 0.67*** in incorporation years; a 0.70*** correlation in modal founding years; 

a 0.86*** correlation in modal GI sector ; a 0.86* correlation in group-modal GI products; there's a 0.82*** 

correlation with the retained and group-modal SIC5 codes. Overall, we conclude that these cleaning rules do not 

systematically misrepresent underlying corporate structure.  
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threshold; they have no employees on PAYE or both of these criteria). In some other cases, 

especially in earlier years, they file zero against employment or turnover. We fill in gaps in 

years, while preserving firms' different entry points to the panel. We use a simple interpolation 

rule to fill in time-varying variables for 4.9% of observations. 

Patents and trademarks data 

We use fuzzy matching routines to match patents data and trademarks data to the panel. Raw 

patents data is taken from Orbis, which sources from the world’s major patent offices, and 

covers 169,417 patents filed by 17,131 firms between 1900-2015. Patents are filed to UK, 

European (EPO), US, PCT and other offices. Patents are dated by priority year, that is, the first 

year an application enters any patent office in the world. Using application years places 

patenting activity as close as possible to the underlying invention. 10,360 patents are filed in 

2014-2015 by 2973 firms, of which 6440 go to EPO/PCT/US. Orbis has pre-matched patent 

applicants to UK companies and provides Bureau van Dijk identifiers, which in the majority of 

cases are identical to, or slightly modified versions of, UK Companies House identifiers. In 

other cases we match patents to firms using fuzzy matching on company/applicant names and 

full UK postcodes.7 The overall match rate for patents to BSD/CH/GI data is 80.5% for 2014-

2015 (2683/3332 observations). We match for 82.5% of companies (2452/2973 firms) in 

2014/15. 

Trademarks data covers calendar years 2012-2014, and comprises 8,493 UK trademarks filed by 

5189 firms. 7129 trademarks are filed in 2014-2015 by 4395 firms. We use fuzzy matching 

based on company name and postcode to link trademark applicants and Companies House 

7 We also match a further 2,404 observations using variations on company name. We do not use these as we cannot 

be sure that applicants are based in the UK.  
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companies. The overall match rate is 89.1% for 2014-2015 (3918 / 4395 obs). We match for 

89.1% of firms (3918 / 4395) in 2014/15. 

UK Innovation Survey 

Finally, we match in information on firms’ self-reported innovative activity from the UK 

Innovation Survey (UKIS). Specifically, we use UKIS4-UKIS9, covering the years 2002-2014 

inclusive, where 2014 is the most recent information available.  Since each survey covers three 

years, we ascribe data to the middle year. For example, UKIS9, which covers 2012-2014 

inclusive, is ascribed to panel year 2013. This gives us 85,834 UKIS observations for 56,473 

firms in 2003, 2005, 2007, 2009, 2011 and 2013. 

There are three main constraints in merging this data to our panel. First, we only have data to 

2014. Second, we use single plant SMEs, not all firms. Response bias with innovation surveys 

may mean such smaller firms are under-represented in raw UKIS data. Third, we merge onto 

using Enterprise Group numbers rather than entrefs, as these are the only available IDs provided. 

This allows for an enterprise-level match in many cases, but matches will fail if the group 

consists of more than one enterprise. Given these constraints, we successfully merge UKIS 

information for 43,211 observations, around 50% of the initial UKIS sample, with 26,708 

unique firms. After restricting the panel to single plant SMEs 2014-2017, we have 4,195 UKIS 

observations for the same number of firms. Given the restrictiveness of the match, we run 

Hotelling Tests and other diagnostics, finding that the subset of UKIS firms differs on 

observables from the rest of the data. 

Panel and variables 
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The final panel contains 4,878,532 observations for 1.364m enterprises in the financial years 

2014-2017. For 2014-2015, the years when events are observable, we have 2,643,043 

observations for 1.36m firms.  

Besides events and launch measures, variables are defined as follows. 

 Age – firms enter the BSD when they start paying UK sales tax (levied on companies

with an annual revenue of £75,000 or more), have an employee, or both. Firms enter 

Companies House when they are incorporated – they may be pre-revenue and pre-

employees. We set company age to be incorporation date. Where this is missing we use 

date of BSD entry. 

 Employment and employment growth – following Haltiwanger et al (2013) we use a

two-year moving average of employment to correct to regression to the mean. We then 

define employment growth as the change in Et and Et-1, weighted by the average of Et 

and Et-1. This bounds employment growth to ±200%, removing outliers.   

 Revenue and revenue growth – defined in the same way as employment, above.

 Productivity / revenue per worker  – the BSD does not provide information on

conventional labour productivity or TFP measures, but does allow us to directly observe 

revenue productivity. We define revenue productivity and its growth in the same way as 

revenue and employment. 

 Patents – patents data is coded by application year, that is, the year in which a given

patent submission was first submitted to any office in the world. We distinguish between 

patents filed at major patent offices (USPTO, EPO, PCT framework) and the entire pool 

of patents, which includes the above plus patents filed only with the UK Intellectual 

Property Office and with other single-country offices. We make unweighted counts and 

applicant-weighted counts, where raw patents are divided by the number of applicants.  
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Our preferred measure is major office patent stock with a 15% annual rate depreciation 

(Hall and Harhoff 2012). In robustness checks, variants use a 40% depreciation rate and 

a simple cumulative measure. 

 Trademarks – trademarks data are coded by application year to the UK IPO. We make

simple counts and a TM stock measure specified with a 15% depreciation rate. 

 Reported innovation – for firms in the UKIS sample (4,195 observations) a dummy

taking the value 1 if the company reports a product innovation, a process innovation or 

both in a given wave. 

 High growth firms and gazelles – we follow the OECD definition of high-growth firms

as those with a minimum of ten staff in a given period, where employment or revenue 

grows by at least 20% in the following three years inclusive. Gazelle firms are high-

growth firms less than five years old. We also define high-growth and gazelle firms on 

the basis of revenue productivity. 

 Number of plants – the BSD allows enterprises to exist with zero plants (for example,

when all staff are laid off for a period). For ease of interpretation, we set the minimum 

plant size to be one. 

 Legal status – dummies taking the value 1 if the company is a PLC, sole proprietor or

partnership / other. 

 Enterprise group – a dummy variable taking the value 1 if firms are part of a larger group

of companies. 

 Companies per enterprise group – for firms in enterprise groups, a count of the number

of companies in the group. 

 Industry – we use 2-digit SIC 2003 codes as our basic industry unit (plus 4-digit SICs in

robustness checks). 7.3% of companies in the BSD change SIC in our sample. In some 

cases this is due to change in company activity mix; in other cases ONS reclassifies to 

correct error, so that reported changes are an upper bound on actual changes.  
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 Area – we place enterprises in Travel to Work Areas (TTWAs), which are based on

commuting patterns and are the best available proxy for local economies; there are 243 

of these across the UK. We also use an urban/rural classification of TTWAs taken from 

Gibbons et al (2011), where ‘urban’ TTWAs contain at least one city of at least 125,000 

people. 5.95% of enterprises change TTWA during the panel period.  
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Table B1. Summary statistics for single plant SMEs, 2014-2017. 

VARIABLES N mean sd 

Firm has event 2,643,043 0.00856 0.0921 

Total events 2,643,043 0.0295 0.663 

New product launch 2,643,043 0.00313 0.0559 

Total product launches 2,643,043 0.00935 0.347 

Total launch reports main topic 2,643,043 3.398 211.0 

Mean launch reports / topics 2,643,043 2.776 174.7 

Firm has important launch (main topic) 2,643,043 0.000313 0.0177 

Count of important launches (main topic) 2,643,043 0.000267 0.0170 

Patent count 4878562 0.000860 0.0911 

Weighted patent count 4878562 0.000855 0.0908 

TM count 4878562 0.000924 0.0507 

Firm reports product or process innovation in UKIS 4,195 0.280 0.449 

Rev per worker two-year average 4829893 161.9 6,497 

Annual % rev per worker growth 4878562 0.00501 0.477 

High rev per worker growth firm 4730583 0.133 0.340 

Revenue two-year average 4878562 1,037 74,487 

Annual % revenue growth 4878562 0.0101 0.465 

High revenue growth firm 4730583 0.148 0.355 

Employment two-year average 4878562 5.613 14.49 

Annual % employment growth 4878562 0.00434 0.302 

High jobs growth firm 4730583 0.0135 0.116 

Services sector 4878562 0.907 0.290 

Firm has 1-9 staff 4829893 0.884 0.321 

Firm has 10-49 staff 4829893 0.0929 0.290 

Firm has 50-249 staff 4829893 0.0147 0.121 

Number of companies per entref 4878562 0.0107 0.654 

Enterprise has >1 associated company 4878562 0.00388 0.0622 

Public company 3382694 0.940 0.237 

Non-profit making body 3382694 0.0238 0.153 

Partnership 3382694 0.0142 0.118 

Public corporation 3382694 0.000212 0.0145 

Sole proprietor 3382694 0.0215 0.145 

Age since BSD entry OR incorporation 4878562 13.67 12.25 

Firm is 3 years old or less 4878562 0.0767 0.266 

Urban TTWA 4878562 0.785 0.411 

Greater London 4878562 0.224 0.417 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS. Minima and maxima suppressed by UK Data Service. Patents are 

weighted by number of applicants. High growth firms (jobs / revenue / revenue per worker) are defined using the 

OECD definition of high growth firms.  See Appendix A2 for further variable details. 
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Table B2. Coverage by SIC1 sectors for product launch, patents and trademarks, 2014-15. 

A.  All firms. % 

of firms with 

coverage. 

B. Firms with events 

exposure. % of firms 

with coverage   

sic03 sic03 section name ukis ukis 

A Agriculture, hunting and forestry 27.03 . 

B Fishing  . . 

C Mining and quarrying  . . 

D Manufacturing  38.71 . 

E 
Electricity, Gas and Water Supply 

. . 

F Construction  21.03 . 

G 
Wholesale and retail trade, etc 

23.22 44 

H Hotels and restaurants . . 

I Transport, storage and communications . . 

J Financial intermediation  . . 

K 
Real estate, renting and business activities 

30.65 35.48 

L Public administration and defence, etc . . 

M Education . . 

N Health and social work . . 

O 
Other community, social and personal services 

28.79 . 

P Household domestic employment  . 

Q Extra-terrestrial organisations, bodies  . 

Average coverage 27.96 40.98 

Observations (with coverage) 1,173 50 

Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  In panel A the total number of UKIS matched observations is 

4,195, while in panel B the total number of observations of companies with events matched to the UKIS is 122.  
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Table B3. Linking past IP activity to product launches. Variable lags.  
 

A. Pr(launch) L1 L2 L5 L1 L2 L5 

       
Firm reports product  

   
0.014** 0.014** 0.014** 

or process innovation 
   

(0.006) (0.006) (0.006) 

       
PCT / EPO / US patent count 0.005*** 0.008*** 0.007 -0.003 -0.004 -0.029* 

 
(0.001) (0.001) (0.004) (0.002) (0.003) (0.015) 

       
TM count 0.007*** 0.012** 0.013** -0.002 0.019*** 0.019*** 

 
(0.002) (0.005) (0.005) (0.003) (0.006) (0.006) 

       
Ave pre-2009 patenting -0.007** -0.009*** -0.005*** -0.010* -0.007 0.002 

 
(0.003) (0.002) (0.002) (0.005) (0.007) (0.008) 

       
Firm patents pre-2009 0.036*** 0.037*** 0.039*** 0.076* 0.074* 0.081* 

 
(0.009) (0.009) (0.009) (0.041) (0.041) (0.045) 

Observations 858096 858096 858096 3347 3347 3347 

R2 0.0148 0.0148 0.0142 0.1521 0.1527 0.1547 

B. Launch counts  L1 L2 L5 L1 L2 L5 

       
Firm reports product  

   
0.100 0.106 0.106 

or process innovation 
   

(0.076) (0.081) (0.080) 

       
PCT / EPO / US patent count 0.026*** 0.035*** 0.018 -0.000 -0.003 -0.063 

 
(0.007) (0.013) (0.016) (0.007) (0.009) (0.046) 

       
TM count 0.017*** 0.061 0.063 0.072*** 0.808*** 0.808*** 

 
(0.005) (0.045) (0.044) (0.022) (0.155) (0.154) 

       
Ave pre-2009 patenting -0.023*** -0.033*** -0.007 -0.004 -0.003 0.029* 

 
(0.005) (0.005) (0.005) (0.018) (0.016) (0.017) 

       
Firm patents pre-2009 0.061** 0.065** 0.073** 0.059 0.078 0.096 

 
(0.028) (0.028) (0.031) (0.185) (0.178) (0.198) 

Observations 858096 858096 858096 3347 3347 3347 

R2 0.0063 0.0063 0.0058 0.1328 0.1422 0.1424 

 
Source: BSD / CH /Orbis / IPO / GI / UKIS. All models fit controls, area (TTWA), time (year) and 2-digit SIC 

industry dummies. Patent stocks are lagged back up to 5 periods, TM stocks up to 2 periods. Controls fitted as per 

Table 5 in the text. Standard errors clustered on 2-digit SIC. *** significant at 1%, ** significant at 5%, * 

significant at 10%.    
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Table B4. Sensitivity tests. Launch dummy.  
 

All firms  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

             
L1.15% depreciated PCT /  0.005*** 0.005*** 0.005*** 0.005*** 0.006*** 0.006*** 0.006*** 0.005*** 

  
0.009** 0.005*** 

EPO / US patent count (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
  

(0.003) (0.001) 

             
L1.Cumulative PCT /  

        
0.004*** 

   
EPO / US patent count 

        
(0.001) 

   

             
L1.40% depreciated PCT /  

         
0.007*** 

  
EPO / US patent count 

         
(0.001) 

  

             
L1.15% depreciated TM  0.007*** 0.007*** 0.007*** 0.007*** 0.007*** 0.007*** 0.007*** 0.007*** 0.007*** 0.007*** 0.003 0.008*** 

count (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

             
Ave pre-2009 patenting -0.007** -0.007** -0.007** -0.007** -0.007** -0.007** -0.007** -0.006** -0.007** -0.005* -0.014* -0.007** 

 
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.007) (0.003) 

             
Firm patents pre-2009 0.036*** 0.036*** 0.036*** 0.036*** 0.034*** 0.034*** 0.034*** 0.035*** 0.039*** 0.036*** 0.029* 0.050*** 

 
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.016) (0.013) 

             
Observations 858096 858096 858096 858096 703154 703154 703154 858096 858096 858096 192096 665973 

R2 0.0148 0.0148 0.0149 0.0148 0.0165 0.0165 0.0165 0.0153 0.0148 0.0148 0.0217 0.0139 

 
Source: BSD / CH /Orbis / IPO / GI / UKIS. All models fit controls as per Table 5, main paper, area, year and 2-digit SIC dummies, unless otherwise stated. Standard errors clustered on 

SIC2. Column 1 fits the main specification. Columns 2-4 add 1-period lagged dummies for high-growth status in employment, revenue and revenue / per worker. Columns 5-7 repeat this 

for 5-period (pre-sample) lags. Column 8 fits technology field fixed effects for IPC1 classes. Column 9 fits cumulative patent counts. Column 10 first 40% depreciated patent stocks. 

Columns 11 and 12 break out the sample into manufacturing and service sector firms respectively.  
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Table B5. Sensitivity tests. Launch counts.  
 

All firms  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

             
L1.15% depreciated PCT  0.026*** 0.026*** 0.026*** 0.026*** 0.029*** 0.029*** 0.029*** 0.023*** 

  
0.018*** 0.027*** 

/  EPO / US patent count (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.008) (0.007) 
  

(0.004) (0.008) 

             
L1.Cumulative PCT 

        
0.016*** 

   
/ EPO / US patent count 

        
(0.006) 

   

             
L1.40% depreciated PCT 

         
0.035*** 

  
/ EPO / US patent count 

         
(0.007) 

  

             
L1.15% depreciated TM  0.017*** 0.017*** 0.017*** 0.017*** 0.019*** 0.019*** 0.019*** 0.018*** 0.017*** 0.017*** 0.018 0.016*** 

count (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.015) (0.004) 

             
Ave pre-2009 patenting -0.023*** -0.023*** -0.023*** -0.023*** -0.024*** -0.024*** -0.024*** -0.015** -0.018*** -0.015** -0.020 -0.028*** 

 
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.004) (0.007) (0.015) (0.007) 

             
Firm patents pre-2009 0.061** 0.061** 0.061** 0.061** 0.054* 0.054* 0.054* 0.053* 0.075** 0.059** 0.024 0.117*** 

 
(0.028) (0.028) (0.028) (0.028) (0.028) (0.028) (0.028) (0.027) (0.029) (0.029) (0.035) (0.041) 

             
Observations 858096 858096 858096 858096 703154 703154 703154 858096 858096 858096 192096 665973 

R2 0.0063 0.0063 0.0063 0.0063 0.0072 0.0072 0.0072 0.0068 0.0061 0.0063 0.0112 0.0057 

 
Source: BSD / CH /Orbis / IPO / GI / UKIS.  All models fit controls as per Table 5, main paper, area, year and 2-digit SIC dummies, unless otherwise stated. Standard errors clustered on 

SIC2. Column 1 fits the main specification. Columns 2-4 add 1-period lagged dummies for high-growth status in employment, revenue and revenue / per worker. Columns 5-7 repeat this 

for 5-period (pre-sample) lags. Column 8 fits technology field fixed effects for IPC1 classes. Column 9 fits cumulative patent counts. Column 10 first 40% depreciated patent stocks. 

Columns 11 and 12 break out the sample into manufacturing and service sector firms respectively.  
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Table B6. Sensitivity tests. Launch dummy. UKIS subsample.  
 

UKIS subsample  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

             
L1.firm reports product 0.014** 0.014** 0.015** 0.014** 0.014** 0.014* 0.015* 0.014** 0.014** 0.014** 0.022** 0.014* 

or process innovation (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.010) (0.008) 

             
L1.15% depreciated PCT / -0.003 -0.003 -0.003 -0.003 -0.002 -0.003 -0.003 -0.000 

  
-0.006 -0.003 

EPO / US patent count (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
  

(0.007) (0.003) 

             
L1.Cumulative PCT / 

        
-0.001 

   
EPO / US patent count 

        
(0.002) 

   

             
L1.40% depreciated PCT / 

         
-0.003 

  
EPO / US patent count 

         
(0.003) 

  

             
L1.15% depreciated TM count -0.002 -0.002 -0.002 -0.002 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002 -0.028 -0.001 

 
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.036) (0.002) 

             
Ave pre-2009 patenting -0.010* -0.010* -0.010* -0.010* -0.009* -0.009* -0.009* -0.014** -0.011** -0.012** -0.121 -0.006*** 

 
(0.005) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.005) (0.005) (0.118) (0.002) 

             
Firm patents pre-2009 0.076* 0.076* 0.076* 0.076* 0.090* 0.089* 0.088* 0.081* 0.072* 0.074* 0.260 0.051 

 
(0.041) (0.041) (0.042) (0.042) (0.048) (0.048) (0.048) (0.042) (0.040) (0.041) (0.256) (0.044) 

             
Observations 3347 3347 3347 3347 3044 3044 3044 3347 3347 3347 845 2502 

R2 0.1521 0.1521 0.1529 0.1526 0.1462 0.1440 0.1443 0.1525 0.1517 0.1518 0.3613 0.1547 

 
Notes as in Table B5.  
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Table B7. Sensitivity tests. Launch counts. UKIS subsample.  
 

UKIS subsample  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

             
L1.firm reports product 0.100 0.102 0.102 0.101 0.103 0.106 0.108 0.100 0.101 0.100 0.034* 0.120 

or process innovation (0.076) (0.077) (0.077) (0.076) (0.081) (0.083) (0.085) (0.076) (0.076) (0.076) (0.018) (0.097) 

             
L1.15% depreciated PCT / -0.000 -0.000 -0.000 -0.000 0.003 0.002 0.001 0.006 

  
-0.012 0.002 

EPO / US patent count (0.007) (0.007) (0.007) (0.007) (0.009) (0.008) (0.008) (0.005) 
  

(0.015) (0.012) 

             
L1.Cumulative PCT / 

        
0.004 

   
EPO / US patent count 

        
(0.007) 

   

             
L1.40% depreciated PCT / 

         
0.005 

  
EPO / US patent count 

         
(0.009) 

  

             
L1.15% depreciated TM 0.072*** 0.072*** 0.072*** 0.072*** 0.089*** 0.091*** 0.090*** 0.072*** 0.072*** 0.072*** -0.090 0.075*** 

count (0.022) (0.022) (0.022) (0.022) (0.029) (0.030) (0.030) (0.022) (0.022) (0.022) (0.102) (0.019) 

             
Ave pre-2009 patenting -0.004 -0.005 -0.005 -0.005 -0.006 -0.004 -0.003 -0.013 -0.013 -0.009 -0.237 0.017 

 
(0.018) (0.018) (0.018) (0.018) (0.014) (0.016) (0.017) (0.022) (0.016) (0.020) (0.230) (0.027) 

             
Firm patents pre-2009 0.059 0.064 0.062 0.060 0.087 0.078 0.075 0.069 0.058 0.055 0.523 -0.012 

 
(0.185) (0.183) (0.184) (0.185) (0.205) (0.211) (0.211) (0.193) (0.176) (0.182) (0.506) (0.263) 

             
Observations 3347 3347 3347 3347 3044 3044 3044 3347 3347 3347 845 2502 

R2 0.1328 0.1330 0.1330 0.1328 0.1429 0.1406 0.1411 0.1328 0.1328 0.1328 0.3308 0.1495 

 
 Notes as in Table B5. 
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Table B8.  Linking past IP to launch mentions and importance. All firms. 
 

A. All firms  raw counts  weighted counts 

 
1 2 3 1 2 3 

       
L1.15% depreciated PCT  7.321 3.734 3.605 1.422 0.648 0.559 

/ EPO / US patent count (6.076) (3.182) (3.121) (1.024) (0.490) (0.453) 

       
L1.15% depreciated TM count 12.954 6.220 5.584 5.690 2.595 2.250 

 
(8.517) (4.283) (4.033) (3.580) (1.733) (1.564) 

       
Ave pre-2009 patenting -1.527 1.410 2.767 -1.146 -0.162 0.165 

 
(11.103) (3.885) (3.469) (1.923) (0.686) (0.597) 

       
Firm patents pre-2009 49.648 7.449 -2.859 5.219 0.343 -0.972 

 
(36.452) (10.157) (9.180) (6.383) (2.310) (2.054) 

       
Observations 858096 858096 858096 858096 858096 858096 

R2 0.0012 0.0013 0.0013 0.0005 0.0006 0.0006 

B. All firms  important launch dummy  # important launches 

 
1 2 3 1 2 3 

       
L1.15% depreciated PCT /  0.000 0.000 0.000 0.000 0.000 0.000 

EPO / US patent count (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

       
L1.15% depreciated TM count 0.001 0.001 0.001 0.001 0.001 0.001 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

       
Ave pre-2009 patenting -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

       
Firm patents pre-2009 0.001 0.001 0.001 0.001 0.001 0.001 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

       
Observations 858096 858096 858096 858096 858096 858096 

R2 0.0015 0.0015 0.0015 0.0011 0.0011 0.0011 

 
Source: BSD / CH /Orbis / IPO / GI / UKIS. Panel A gives results for raw mentions and mentions weighted by 

launches. Specifications 1-3 cover mentions by all topics; main topic; and main topic/#topics respectively. Other 

notes as in Table B4.  
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Table B9. Linking past IP to launch quality. UKIS subsample. 

B. UKIS subsample raw counts weighted counts 

1 2 3 1 2 3 

L1.firm reports product or 31.257 15.003 13.030 0.809 0.128 0.055 

process innovation (29.387) (13.695) (11.863) (2.319) (0.830) (0.692) 

L1.15% depreciated PCT -0.549 -0.302 -0.278 -0.026 -0.037 -0.038 

/ EPO / US patent count (1.015) (0.447) (0.391) (0.122) (0.072) (0.069) 

L1.15% depreciated TM -9.211** -2.744 -3.101* -1.051*** -0.532*** -0.510*** 

count (4.440) (1.802) (1.542) (0.371) (0.155) (0.138) 

Ave pre-2009 patenting 5.402 2.875 2.524 0.590 0.408 0.389 

(5.429) (2.829) (2.488) (0.674) (0.495) (0.479) 

Firm patents pre-2009 15.544 2.716 1.890 2.229 -0.187 -0.391 

(19.399) (10.323) (9.184) (3.719) (2.662) (2.579) 

Observations 3347 3347 3347 3347 3347 3347 

R2 0.0579 0.0583 0.0580 0.0581 0.0537 0.0524 

B. UKIS subsample important launch dummy # important launches 

1 2 3 1 2 3 

L1.firm reports product or 0.003 0.003 0.003 0.002 0.002 0.002 

process innovation (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) 

L1.15% depreciated PCT -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

/ EPO / US patent count (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

L1.15% depreciated TM 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 

count (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Ave pre-2009 patenting 0.001 0.001 0.001 0.001 0.001 0.001 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Firm patents pre-2009 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Observations 3347 3347 3347 3347 3347 3347 

R2 0.0620 0.0620 0.0620 0.0592 0.0592 0.0592 

Source: BSD / CH /Orbis / IPO / GI / UKIS. Panel A gives results for raw mentions and mentions weighted by 

launches. Specifications 1-3 cover mentions by all topics; main topic; and main topic/#topics respectively. Other 

notes as in Table B4.  
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Table B10. Linking past IP to launch quality. Placebo test.  

 

  OLS FE OLS FE 

  2015 launch counts 2014 patent stocks 

  
    

2014 patent stocks 0.0204*** 0.0194*** 
  

  (0.003) (0.003) 
  

  
    

2015 product launch counts  
  

0.0009*** 0.0008*** 

  
  

(0.000) (0.000) 

  
    

Constant 0.0120*** 
 

0.0047*** 
 

  (0.002) 
 

(0.001) 
 

  
    

Observations 2370158 2347297 2370158 2347297 

R2 0.0000 0.0006 0.0000 0.0110 

 

Source: BSD / CH /Orbis / IPO / GI / UKIS. OLS models fit bivariate model. FE models add Travel to Work Area 

and industry dummies.  
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Table B11. Linking past IP to launch quality. Falsification test. 
 

 
Events Event counts  

 
(1) (2) (1) (2) 

     
L1.15% depreciated PCT / EPO  0.003** 0.002 0.008*** 0.014* 

/ US patent count (0.001) (0.002) (0.002) (0.008) 

     
L1.15% depreciated TM count 0.009*** 0.008 0.021*** 0.005 

 
(0.002) (0.015) (0.008) (0.013) 

     
Ave pre-2009 patenting 0.010*** -0.018*** 0.028*** -0.042*** 

 
(0.003) (0.004) (0.007) (0.005) 

     
Firm patents pre-2009 0.004 0.031 -0.013 -0.114 

 
(0.006) (0.020) (0.018) (0.121) 

     
L1.firm reports product or  

 
0.012** 

 
0.018** 

process innovation 
 

(0.005) 
 

(0.008) 

     
Observations 854823 3308 854823 3308 

R2 0.0237 0.1302 0.0173 0.0999 

 
Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Controls fitted include log mean turnover and employment, 

startup dummy, firm size dummies, company legal status and structure dummies, plus an urban TTWA dummy 

Controls lagged one year except age. Standard errors clustered on 2-digit SIC. *** significant at 1%, ** significant 

at 5%, * significant at 10%. Constant not shown. 
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Table B12. Robustness checks: log productivity.  
 

Check Launch dummy  Launch counts  N  

    
Main  0.064*** 0.017*** 27019 

 
(0.019) (0.005) 

 

 
0.1663 0.1672 

 

    
Pre-sample high-growth  0.072*** 0.016*** 25313 

episodes (0.020) (0.005) 
 

 
0.1840 0.1848 

 
Patents 1-period lag 0.063*** 0.017*** 27019 

 
(0.019) (0.005) 

 

 
0.1665 0.1674 

 
40% depreciated patents  0.064*** 0.017*** 27019 

 
(0.019) (0.005) 

 

 
0.1663 0.1672 

 
Drop SIC switchers 0.052*** 0.016*** 24712 

 
(0.020) (0.005) 

 

 
0.1754 0.1764 

 
Drop TTWA switchers 0.068*** 0.017*** 24976 

 
(0.020) (0.005) 

 

 
0.1724 0.1733 

 
SIC4 dummies, not SIC2 0.061*** 0.016*** 27019 

 
(0.019) (0.005) 

 

 
0.2136 0.2145 

 
Industry-year fixed effects 0.061*** 0.016*** 27019 

 
(0.019) (0.005) 

 

 
0.2147 0.2155 

 
IPC1-year fixed effects  0.063*** 0.017*** 27019 

 
(0.019) (0.005) 

 

 
0.1664 0.1673 

 
Industry-area clustering  0.061*** 0.016*** 27019 

 
(0.020) (0.005) 

 

 
0.2136 0.2145 

 
London dummy, not area FE  0.064*** 0.017*** 27387 

 
(0.019) (0.005) 

 

 
0.1962 0.1972 

 
 
Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Each specification shows coefficient of b in equation (2), standard 

error in parenthesis and R2 in italics. All models fit controls, area, year and SIC2 dummies. Controls fitted include 

5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal status and 

structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors clustered on 

2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 
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Table B13. Robustness checks: productivity growth.  

 

Check Launch dummy  Launch counts  N  

    
Main  0.000 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0108 0.0108 

 

    
Pre-sample high-growth  -0.002 0.000 26047 

episodes (0.007) (0.001) 
 

 
0.0119 0.0119 

 
Patents 1-period lag 0.000 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0107 0.0107 

 
40% depreciated patents  0.000 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0107 0.0107 

 
Drop SIC switchers -0.002 0.000 25419 

 
(0.007) (0.001) 

 

 
0.0111 0.0111 

 
Drop TTWA switchers 0.001 0.001 25707 

 
(0.007) (0.001) 

 

 
0.0114 0.0115 

 
SIC4 dummies, not SIC2 0.001 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0230 0.0230 

 
Industry-year fixed effects 0.001 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0291 0.0291 

 
IPC1-year fixed effects  0.001 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0112 0.0112 

 
Industry-area clustering  0.001 0.000 27794 

 
(0.007) (0.001) 

 

 
0.0230 0.0230 

 
London dummy, not area FE  0.001 0.000 28173 

 
(0.007) (0.001) 

 

 
0.0164 0.0164 

 
 
Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Each specification shows coefficient of b in equation (2), standard 

error in parenthesis and R2 in italics. All models fit controls, area, year and SIC2 dummies. Controls fitted include 

5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal status and 

structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors clustered on 

2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 

 

 

 

  



 

 69 

Table B14. Robustness checks: high productivity growth episodes.  
 

Check Launch dummy  Launch counts  N  

    
Main  -0.006 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0232 0.0232 

 

    
Pre-sample high-growth  -0.006 0.001 26047 

episodes (0.005) (0.001) 
 

 
0.0240 0.0240 

 
Patents 1-period lag -0.006 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0233 0.0232 

 
40% depreciated patents  -0.006 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0232 0.0232 

 
Drop SIC switchers -0.003 0.001 25419 

 
(0.005) (0.001) 

 

 
0.0264 0.0264 

 
Drop TTWA switchers -0.004 0.001 25707 

 
(0.005) (0.001) 

 

 
0.0255 0.0255 

 
SIC4 dummies, not SIC2 -0.005 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0428 0.0428 

 
Industry-year fixed effects -0.005 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0479 0.0479 

 
IPC1-year fixed effects  -0.006 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0237 0.0237 

 
Industry-area clustering  -0.005 0.001 27794 

 
(0.005) (0.001) 

 

 
0.0428 0.0428 

 
London dummy, not area FE  -0.005 0.001 28173 

 
(0.005) (0.001) 

 

 
0.0341 0.0341 

 
 
Source: BSD / CH / GI / Orbis / UKIPO / UKIS.  Each specification shows coefficient of b in equation (2), standard 

error in parenthesis and R2 in italics. All models fit controls, area, year and SIC2 dummies. Controls fitted include 

5-year lag of log turnover and mean employment, startup dummy, firm size dummies, company legal status and 

structure dummies, plus an urban TTWA dummy. Controls lagged one year except age. Standard errors clustered on 

2-digit SIC. *** significant at 1%, ** significant at 5%, * significant at 10%. Constant not shown. 
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Table B15. Effect of innovation (launch dummy) on firm productivity, firms with events. Manufacturing versus services breakdowns.  

 

 
levels growth hi-growth  

 
main mf services main mf services main mf services 

          
L.new product launch 0.064*** 0.018 0.070*** 0.000 0.013 -0.003 -0.006 -0.001 -0.007 

 
(0.019) (0.037) (0.022) (0.007) (0.018) (0.008) (0.005) (0.012) (0.006) 

          
L2.15% depreciated PCT / EPO / US patent count 0.004 -0.028 0.006 -0.006* -0.030** -0.004 0.002 -0.005 0.003 

 
(0.007) (0.046) (0.006) (0.003) (0.015) (0.003) (0.002) (0.006) (0.002) 

          
L2.15% depreciated TM count 0.081*** 0.032* 0.119*** 0.002 0.003 0.002 0.003 -0.007* 0.011 

 
(0.024) (0.017) (0.026) (0.005) (0.005) (0.008) (0.005) (0.004) (0.010) 

          
Ave pre-2009 patenting 0.072 0.110 0.087 0.009 0.079* 0.008 0.029* 0.047 0.027 

 
(0.057) (0.155) (0.064) (0.022) (0.045) (0.025) (0.016) (0.031) (0.017) 

          
Firm patents pre-2009 -0.223* -0.116 -0.312* 0.014 -0.040 -0.001 -0.019 -0.058 0.007 

 
(0.116) (0.185) (0.161) (0.043) (0.057) (0.057) (0.029) (0.040) (0.038) 

          
Observations 27019 3517 23502 27794 3526 24268 27794 3526 24268 

R2 0.1663 0.2415 0.1741 0.0108 0.0543 0.0106 0.0232 0.1009 0.0224 

 
Source: BSD / CH / GI / UKIPO / UKIS. Notes as in main paper.   
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Table B16. Effect of innovation (launch counts) on firm productivity, firms with events. Manufacturing versus services breakdowns.  
 

 
levels growth hi-growth  

 
main mf services main mf services main mf services 

          
L.total product launches 0.017*** 0.010 0.018*** 0.000 -0.001 0.000 0.001 0.001 0.001 

 
(0.005) (0.007) (0.005) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) 

          
L2.15% depreciated PCT / EPO / US patent count 0.004 -0.028 0.006 -0.006* -0.030** -0.004 0.002 -0.005 0.003 

 
(0.007) (0.046) (0.006) (0.003) (0.015) (0.003) (0.002) (0.006) (0.003) 

          
L2.15% depreciated TM count 0.081*** 0.032* 0.120*** 0.002 0.003 0.002 0.003 -0.007 0.011 

 
(0.024) (0.017) (0.026) (0.005) (0.005) (0.008) (0.005) (0.004) (0.010) 

          
Ave pre-2009 patenting 0.073 0.109 0.089 0.009 0.079* 0.008 0.029* 0.047 0.027 

 
(0.058) (0.155) (0.064) (0.022) (0.045) (0.025) (0.016) (0.031) (0.017) 

          
Firm patents pre-2009 -0.220* -0.110 -0.312* 0.014 -0.040 -0.002 -0.020 -0.057 0.006 

 
(0.116) (0.185) (0.161) (0.043) (0.058) (0.057) (0.029) (0.040) (0.038) 

          
Observations 27019 3517 23502 27794 3526 24268 27794 3526 24268 

R2 0.1672 0.2419 0.1751 0.0108 0.0542 0.0106 0.0232 0.1010 0.0224 

 
Source: BSD / CH / GI / UKIPO / UKIS. Notes as in main paper.  
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Table B17. Young firms, innovative activity and productivity. Launch dummy. Firms with 

events.  

(1) (2) (3) (4) 

L.new product launch 0.064*** 0.063*** 0.064*** 0.064*** 

(0.019) (0.019) (0.019) (0.019) 

L2.15% depreciated PCT / EPO 0.004 0.004 0.009 0.009 

/ US patent count (0.007) (0.008) (0.006) (0.006) 

L2.15% depreciated TM count 0.081*** 0.079*** 0.080*** 0.080*** 

(0.024) (0.021) (0.022) (0.022) 

Patent*young -0.108* 

(0.058) 

TM*young -0.108* 

(0.058) 

Micro firm -0.084** -0.085** -0.085** 

(0.033) (0.033) (0.033) 

Small firm 0.101*** 0.102*** 0.102*** 

(0.031) (0.031) (0.031) 

Young firm -0.123*** -0.115*** -0.115*** 

(0.027) (0.027) (0.027) 

Ave pre-2009 patenting 0.072 0.063 0.053 0.053 

(0.057) (0.058) (0.057) (0.057) 

Firm patents pre-2009 -0.223* -0.196* -0.181 -0.181 

(0.116) (0.118) (0.118) (0.118) 

Observations 27019 26442 26442 26442 

R2 0.1663 0.1664 0.1668 0.1668 

Source: BSD / CH / GI / UKIPO / UKIS. Column 1 fits the main specification. Column 2 refits with age and size 

group dummies. Columns 3 and 4 add interactions. IP interactions are lagged two periods. Young firms defined as 

those in the bottom 25% of the age distribution for the sample. Micro firms are those with 0-9 staff. Small firms are 

those with 10-24 staff. Reference categories are older and medium-sized firms. All models fit controls and fixed 

effects. Other notes as in main paper.  
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Table B18. Young firms, innovative activity and productivity. Launch counts. Firms with 

events.  

 

 
(1) (2) (3) (4) 

     
L.total product launches 0.017*** 0.017*** 0.017*** 0.017*** 

 
(0.005) (0.005) (0.005) (0.005) 

     
L2.15% depreciated PCT / EPO  0.004 0.004 0.008 0.008 

/ US patent count (0.007) (0.008) (0.006) (0.006) 

     
L2.15% depreciated TM count 0.081*** 0.080*** 0.080*** 0.080*** 

 
(0.024) (0.022) (0.022) (0.022) 

     
Patent*young 

  
-0.109* 

 

   
(0.058) 

 

     
TM*young 

   
-0.109* 

    
(0.058) 

     
Micro firm  

 
-0.079** -0.081** -0.081** 

  
(0.033) (0.033) (0.033) 

Small firm  
 

0.103*** 0.104*** 0.104*** 

  
(0.031) (0.031) (0.031) 

Young firm  
 

-0.121*** -0.113*** -0.113*** 

  
(0.027) (0.027) (0.027) 

Ave pre-2009 patenting 0.073 0.065 0.054 0.054 

 
(0.058) (0.058) (0.058) (0.058) 

Firm patents pre-2009 -0.220* -0.193 -0.178 -0.178 

 
(0.116) (0.118) (0.118) (0.118) 

     
Observations 27019 26442 26442 26442 

R2 0.1672 0.1673 0.1678 0.1678 

 
Source: BSD / CH / GI / UKIPO / UKIS. Column 1 fits the main specification. Column 2 refits with age and size 

group dummies. Columns 3 and 4 add interactions. IP interactions are lagged two periods. Young firms defined as 

those in the bottom 25% of the age distribution for the sample. Micro firms are those with 0-9 staff. Small firms are 

those with 10-24 staff. Reference categories are older and medium-sized firms. All models fit controls and fixed 

effects. Other notes as in main paper.  
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Table B19. Micro and small firms, innovative activity and productivity. Launch dummy. 

Firms with events. 
  

 
(1) (2) (3) (4) 

     
L.new product launch 0.064*** 0.063*** 0.063*** 0.063*** 

 
(0.019) (0.019) (0.019) (0.019) 

     
L2.15% depreciated PCT / EPO  0.004 0.004 0.012 0.012 

/ US patent count (0.007) (0.008) (0.008) (0.008) 

     
L2.15% depreciated TM count 0.081*** 0.079*** 0.080*** 0.080*** 

 
(0.024) (0.021) (0.022) (0.022) 

     
Patent*micro 

  
0.002 

 

   
(0.012) 

 
Patent*small 

  
-0.030* 

 

   
(0.017) 

 

     
TM*micro 

   
0.002 

    
(0.012) 

TM*small 
   

-0.030* 

    
(0.017) 

     
Micro firm  

 
-0.084** -0.081** -0.081** 

  
(0.033) (0.033) (0.033) 

Small firm  
 

0.101*** 0.107*** 0.107*** 

  
(0.031) (0.031) (0.031) 

Young firm  
 

-0.123*** -0.123*** -0.123*** 

  
(0.027) (0.027) (0.027) 

Ave pre-2009 patenting 0.072 0.063 0.081 0.081 

 
(0.057) (0.058) (0.060) (0.060) 

Firm patents pre-2009 -0.223* -0.196* -0.207* -0.207* 

 
(0.116) (0.118) (0.118) (0.118) 

     
Observations 27019 26442 26442 26442 

R2 0.1663 0.1664 0.1666 0.1666 

 
Source: BSD / CH / GI / UKIPO / UKIS. Column 1 fits the main specification. Column 2 refits with age and size 

group dummies. Columns 3 and 4 add interactions. IP interactions are lagged two periods. Young firms defined as 

those in the bottom 25% of the age distribution for the sample. Micro firms are those with 0-9 staff. Small firms are 

those with 10-24 staff. Reference categories are older and medium-sized firms. All models fit controls and fixed 

effects. Other notes as in main paper.  
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Table B20. Micro and small firms, innovative activity and productivity. Launch counts. 

Firms with events.  

(1) (2) (3) (4) 

L.total product launches 0.017*** 0.017*** 0.017*** 0.017*** 

(0.005) (0.005) (0.005) (0.005) 

L2.15% depreciated PCT / 0.004 0.004 0.012 0.012 

EPO  / US patent count (0.007) (0.008) (0.008) (0.008) 

L2.15% depreciated TM count 0.081*** 0.080*** 0.081*** 0.081*** 

(0.024) (0.022) (0.022) (0.022) 

Patent*micro 0.001 

(0.013) 

Patent*small -0.030* 

(0.017) 

TM*micro 0.001 

(0.013) 

TM*small -0.030* 

(0.017) 

Micro firm -0.079** -0.077** -0.077** 

(0.033) (0.033) (0.033) 

Small firm 0.103*** 0.109*** 0.109*** 

(0.031) (0.031) (0.031) 

Young firm -0.121*** -0.121*** -0.121*** 

(0.027) (0.027) (0.027) 

Ave pre-2009 patenting 0.073 0.065 0.082 0.082 

(0.058) (0.058) (0.060) (0.060) 

Firm patents pre-2009 -0.220* -0.193 -0.205* -0.205* 

(0.116) (0.118) (0.119) (0.119) 

Observations 27019 26442 26442 26442 

R2 0.1672 0.1673 0.1675 0.1675 

Source: BSD / CH / GI / UKIPO / UKIS. Column 1 fits the main specification. Column 2 refits with age and size 

group dummies. Columns 3 and 4 add interactions. IP interactions are lagged two periods. Young firms defined as 

those in the bottom 25% of the age distribution for the sample. Micro firms are those with 0-9 staff. Small firms are 

those with 10-24 staff. Reference categories are older and medium-sized firms. All models fit controls and fixed 

effects. Other notes as in main paper.  
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Table B21. Three-way interactions, alternative specification. Events subsample.  

 

 Dummy           Counts 

Launch*young -0.920 -0.483*** 

 
(0.846) (0.106) 

Launch*old 0.286 0.157 

 
(0.482) (0.147) 

Launch*micro -0.344 -0.153 

 
(0.483) (0.147) 

Launch*small -0.126 -0.136 

 
(0.483) (0.147) 

Launch*medium -0.007 -0.119 

 
(0.484) (0.147) 

Launch*micro*young 1.280* 0.649*** 

 
(0.677) (0.137) 

Launch*small*young 1.066 0.665*** 

 
(0.680) (0.137) 

Launch*medium*young 1.322* 0.622*** 

 
(0.710) (0.143) 

Young*micro 0.849*** 0.836*** 

 
(0.252) (0.236) 

Young*small 1.004*** 0.972*** 

 
(0.254) (0.238) 

Young*medium 0.696** 0.754*** 

 
(0.270) (0.253) 

Old*micro 0.968*** 0.942*** 

 
(0.251) (0.235) 

Old*small 1.109*** 1.120*** 

 
(0.251) (0.235) 

Old*medium 1.012*** 1.037*** 

 
(0.252) (0.236) 

Observations 26442 26442 

R2 0.1703 0.1706 

 
Source: BSD / CH / GI / UKIPO / UKIS. All models fit lagged IP, levels effects, controls and fixed effects. Young 

firms defined as those in the bottom 25% of the age distribution for the sample. Micro firms are those with 0-9 staff. 

Small firms are those with 10-24 staff. Other notes as in main paper. 
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