
Chain-Constrained Spanning Trees∗

Neil Olver†and Rico Zenklusen‡

January 30, 2020

Abstract

We consider the problem of finding a spanning tree satisfying a family of additional
constraints. Several settings have been considered previously, the most famous being the
problem of finding a spanning tree with degree constraints. Since the problem is hard, the
goal is typically to find a spanning tree that violates the constraints as little as possible.

Iterative rounding has become the tool of choice for constrained spanning tree problems.
However, iterative rounding approaches are very hard to adapt to settings where an edge can
be part of more than a constant number of constraints. We consider a natural constrained
spanning tree problem of this type, namely where upper bounds are imposed on a family
of cuts forming a chain. Our approach reduces the problem to a family of independent
matroid intersection problems, leading to a spanning tree that violates each constraint by
a factor of at most 9.

We also present strong hardness results: among other implications, these are the first to
show, in the setting of a basic constrained spanning tree problem, a qualitative difference
between what can be achieved when allowing multiplicative as opposed to additive constraint
violations. Keywords: network design spanning trees approximation algorithms

1 Introduction

Spanning tree problems with additional {0, 1}-packing constraints have spawned considerable
interest recently. This development was motivated by a variety of applications, including VLSI
design, vehicle routing, and applications in communication networks [?, ?, ?]. Since even finding
a feasible solution of a constrained spanning tree problem is typically NP-hard, the focus is
on efficient procedures that either certify that the problem has no feasible solution, or find a
spanning tree that violates the additional constraints by as little as possible. Often, an objective
function to be minimized is also provided; here, however, we focus just on minimizing the
constraint violations.

A wide variety of constrained spanning tree problems have been studied. Unfortunately, for
most settings, little is known about what violation of the constraints must be accepted in order
that a solution can be efficiently obtained. An exception is the most classical problem in this
context, the degree-bounded spanning tree problem. Here the goal is to find a spanning tree
T ⊆ E in a graph G = (V,E) such that T satisfies a degree bound for each vertex v ∈ V , i.e.,
|δ(v) ∩ T | ≤ bv. For this problem, Fürer and Raghavachari [?] presented an essentially best
possible algorithm that either shows that no spanning tree satisfying the degree constraints

∗This project was supported by NSF grant CCF-1115849, an NWO Veni grant, and Swiss National Science
Foundation Grant 200021 165866.
†Vrije Universiteit Amsterdam, The Netherlands n.olver@vu.nl and CWI, The Netherlands olver@cwi.nl.
‡ETH Zurich, Switzerland ricoz@math.ethz.ch.

1

exists, or returns a spanning tree violating each degree constraint by at most 1. We call this
an additive 1-approximation, in contrast to an α-approximation, where each constraint can be
violated by a factor α > 1.

Recently, iterative rounding/relaxation algorithms became the tool of choice for dealing with
constrained spanning tree problems. A cornerstone for this development was the work of Singh
and Lau [?], which extended the iterative rounding framework of Jain [?] with a relaxation step.
They obtained an additive 1-approximation even for the minimum degree-bounded spanning
tree problem, i.e., the cost of the tree they return is upper bounded by the cost of an optimal
solution not violating any constraints. This result was the culmination of a long sequence of
papers presenting methods with various trade-offs between constraint violation and cost (see
[?, ?, ?, ?, ?] and references therein).

Singh and Lau’s iterative relaxation technique was later generalized by Bansal, Khandekar
and Nagarajan [?], to show that even when upper bounds are given on an arbitrary family of
edge sets E1, . . . , Ek, one can still find a (minimum cost) spanning tree violating each constraint
by not more than maxe∈E |{i ∈ [k] | e ∈ Ei}| − 1. If each edge is only in a constant number of
constraints, this leads to an additive O(1)-approximation. But extending the iterative rounding
technique beyond such settings seems to typically be very difficult. Some progress was achieved
by Bansal, Khandekar, Könemann, Nagarajan and Peis [?], who used an iterative approach that
iteratively replaces constraints by weaker ones, leading to an additive O(log n)-approximation
if the constraints are upper bounds on a laminar family of cuts. They left open whether an
additive or multiplicative O(1)-approximation is possible in this setting, even when the cuts
form a chain. Recently, Zenklusen [?] presented an additive O(1)-approximation for generalized
degree bounds, where for each vertex an arbitrary matroid constraint on its adjacent edges
has to be satisfied. This algorithms differs from previous iterative rounding approaches in
that it successively simplifies the problem to reach a matroid intersection problem, rather than
attempting to eliminate constraints until only spanning tree constraints remain.

To the best of our knowledge, with the exception of the setting of Zenklusen [?], no O(1)-
approximations are known for constrained spanning tree problems where an edge can lie in
a super-constant number of (linear) constraints. This seems to be an important difficulty
that current techniques have trouble overcoming. Furthermore, in many settings, it is not
well understood if finding an additive approximation is any harder than a multiplicative one.
In particular, no constrained spanning tree problem was previously known where an O(1)-
approximation is possible, but an additive O(1)-approximation is not. The goal of this paper is
to address these points by studying chain-constrained spanning trees—a natural constrained
spanning tree problem that evades current techniques.

1.1 Our results

The chain-constrained spanning tree problem is the following. We are given an undirected
graph G = (V,E) together with a family of cuts ∅ (S1 (S2, . . . ,(S` (V forming a chain,
and bounds b1, . . . , b` ∈ Z>0. The goal is to find a spanning tree T that satisfies all of the
constraints, i.e.,

|T ∩ δ(Si)| ≤ bi ∀i ∈ [`], (1)

if such a spanning tree exists. Here, δ(Si) denotes the set of edges with precisely one endpoint
in Si.

Notice that chain constraints allow edges to be in a super-constant number of constraints. It
is also a natural candidate problem that captures many of the difficulties faced when trying to
construct O(1)-approximations for the laminar case.

Our main algorithmic result is the following.

2

Theorem 1.1. There is an efficient 9-approximation for the chain-constrained spanning tree
problem.

Like most work in the area, we exploit the natural LP relaxation of the problem. This
relaxation asks for a point x in the spanning tree polytope PST which satisfies the constraints.
But our method is not based on iterative rounding, which has become the standard tool. Instead,
we reduce the problem to a family of independent matroid intersection problems. In order
to do this, we decompose the problem into a number of independent subproblems, based on
the laminar decomposition induced by a maximal family of independent tight spanning tree
constraints of the solution to the LP relaxation. By a judicious choice of objective function, we
are able to ensure that each of the resulting subproblems has a convenient structural property,
namely, they have no rainbows in their support. A rainbow is a pair of edges e, f such that e is
in a proper superset of the chain constraints in which f is contained. Within a subproblem,
the lack of rainbows yields a natural “left-to-right” ordering of the edges in its support. This
ordering is crucially exploited in order to define a partition matroid with the property that
any independent set of this matroid does not contribute much more to any constraint then the
fractional solution for the subproblem.

Even though the high-level approach is quite clean, there are several difficulties we have to
address. In particular, it turns out to be impossible to obtain a multiplicative guarantee within
each subproblem separately. Instead we must use a more relaxed target for each subproblem
that nevertheless yields a constant multiplicative guarantee overall.

It is interesting to compare our approach to the one taken by Goemans [?] in work giving an
additive 2-approximation to the minimum degree-bounded spanning tree problem with no loss
in cost. Like our result, this result is not based on iterative rounding. Instead, local sparsity
of an extreme point solution is exploited to argue that the edges of G can be oriented so that
each node has indegree at most 2. The degree bound at a vertex v is then relaxed to involve
only the edges which are oriented away from v, so that each edge occurs in only one constraint;
the degree bounds are thus replaced by a single partition matroid. The result then follows by
applying matroid intersection.

Our approach can be seen in a somewhat similar light. Using the rainbow-free structure
in the subproblems, we eventually end up with a partition matroid in each subproblem. One
can of course combine these resulting partition matroids over all the subproblems, to obtain a
single global partition matroid. So at a high level, both algorithms proceed by relaxing (or in
our case, replacing) the given constraints by a matroid constraint, and then applying matroid
intersection.

We complement ourO(1)-approximation result by showing that an additiveO(1)-approximation
is impossible (assuming P 6= NP). As mentioned, this is the first result showing such a separation
between what can be achieved additively and multiplicatively for a constrained spanning tree
problem. Let n denote the number of vertices of G.

Theorem 1.2. For the chain-constrained spanning tree problem it is NP-hard to distinguish
between the cases where a spanning tree satisfying the chain constraints exists, and the case that
every spanning tree violates some degree bound by Ω(log n/ log log n) units.

This result is given in Section 3. Previously, the only hardness result of a similar nature
was presented by Bansal et al. [?] for a very general constrained spanning tree problem, where
constraints |T ∩ Ei| ≤ bi ∀i ∈ [k] are given for an arbitrary family of edge sets E1, . . . , Ek ⊆ E.
They showed that unless NP has quasi-polynomial time algorithms, there is no additive (logc n)-
approximation for this case, for some small constant c ∈ (0, 1). Notice that our hardness
result is stronger in terms of the approximation ratio, the underlying constrained spanning tree

3

model, and the complexity assumption. Furthermore, Theorem 1.2 shows that the additive
O(log n)-approximation of Bansal et al. [?] for the laminar-constrained spanning tree problem is
close to optimal.

1.2 Thin trees

Given a graph G and a point x in the spanning tree polytope of G, a spanning tree T is called
α-thin with respect to x if

|T ∩ δ(S)| ≤ α · x(δ(S)) ∀S ⊆ V.

The problem of finding an α-thin tree can be interpreted as a constrained spanning tree problem,
where an upper bound bS := x(δ(S)) is imposed on every cut δ(S) of the graph. By construction,
this exponentially sized LP has a feasible solution, and an α-approximate solution is exactly an
α-thin spanning tree.

The concept of thin spanning trees gained considerably in relevance when Asadpour, Goemans,
Madry, Oveis Gharan and Saberi [?] showed that an efficient algorithm for finding an α-thin
spanning tree leads to an O(α)-approximation for the Asymmetric Traveling Salesman Problem
(ATSP)1. In a very recent tour de force, Anari and Oveis Gharan [?] gave a nonconstructive proof
of the existence of polyloglog n-thin trees, which implies the same bound on the integrality gap of
ATSP. The best constructive result for thin spanning trees (and ATSP) yield O(log n/ log log n)-
thin spanning trees [?, ?]. It is open whether O(1)-thin spanning trees exist, which (if shown
constructively) would immediately imply an O(1)-factor approximation for ATSP. The chain-
constrained spanning tree problem (as well as other variants where constraints are placed on
only some cuts) can be seen as an easier variant of the thin tree problem. Our work can be seen
as a small step towards an attack on the thin tree conjecture using combinatorial methods.

2 The algorithm

To simplify the exposition, we assume that we are dealing with a maximal chain of constraints
imposed on the spanning tree. So we may label the vertices V = {v1, . . . , vn} of G such that
Si = {v1, · · · , vi} ∀ i ∈ [n− 1], the constraints being |T ∩ δ(Si)| ≤ bi for all i ∈ [n− 1]. This is
clearly not restrictive since by choosing a large right-hand side, any constraint can be made
redundant.

Recall that the natural LP for the problem asks for a point x in the spanning tree polytope
PST of G satisfying x(δ(Si)) ≤ bi for all i ∈ [n − 1]. Our algorithm starts with a fractional
solution of this relaxation (if the relaxation is infeasible, this provides a certificate that the
given instance has no solution). But we do not begin with an arbitrary feasible solution; we
require an optimal solution with respect to a carefully chosen objective. More precisely, we take
a solution that minimizes the total length of the edges, where the length of an edge {vi, vj} ∈ E
is |i− j|. Equivalently, the length of an edge is the number of chain constraints to which the
edge contributes. This leads to the LP (2) shown below. Let x∗ be an optimal solution to (2),
which can be computed by standard techniques (see [?]). Notice that the objective function

of (2) is the same as the total load on all cuts:
∑n−1
i=1 x(δ(Si)).

1Strictly speaking, Asadpour et al.’s approach required the spanning tree not only to be thin, but also to be
of low cost. However this second requirement is not necessary for the mentioned statement to be true (see [?]).

4

min
∑

{vi,vj}∈E

|i− j| · x({vi, vj})

x ∈ PST

x(δ(Si)) ≤ bi ∀ i ∈ [n− 1]

(2)

The above objective function is motivated by a subprocedure we use to find a spanning tree
in an instance that does not contain what we call a rainbow. A rainbow consists of two
edges {vi, vj}, {vp, vq} with i ≤ p < q ≤ j and either i < p or q < j, i.e., the first edge is
in a proper superset of the chain constraints in which the second edge is in. Even though
the above objective function does not necessarily lead to an LP solution x∗ whose support
supp(x∗) = {e ∈ E | x∗(e) > 0} does not contain rainbows—a feasible rainbow-free solution may
not even exist—it eliminates rainbows in subproblems we are interested in, as we will see later.
Clearly, if LP (2) is not feasible, we know that the reference problem has no feasible solution.

In all what follows, we only work on edges in supp(x∗). Therefore, to simplify the exposition,
we assume from now on that E = supp(x∗). This can easily be achieved by deleting all edges
e ∈ E with x∗(e) = 0 from G.

Our algorithm decomposes the problem of finding an O(1)-approximate spanning tree T ⊆ E
into an independent family of a special type of spanning tree problem on rainbow-free graphs.
To decompose the problem, we consider tight spanning tree constraints. More precisely, let
L ⊆ 2V be any maximal laminar family of vertex-sets corresponding to spanning tree constraints
that are tight with respect to x∗. In other words, L is maximal laminar family chosen from the
sets L ⊆ V satisfying x∗(E[L]) = |L| − 1, where, E[L] ⊆ E denotes the set of edges with both
endpoints in L. In particular, L contains all singletons. We say that L2 ∈ L is a child of L1 ∈ L
if L2 (L1 and there is no set L3 ∈ L with L2 (L3 (L1. For L ∈ L, we denote by C(L) ⊂ L
the set of all children of L. Notice that C(L) forms a partition of L.

To construct a spanning tree T in G we will determine for each L ∈ L a set of edges TL in

EL := E[L] \ (∪C∈C(L)E[C]),

that form a spanning tree in the graph GL obtained from the graph (L,EL) by contracting all
children of L. Hence, the vertex set of GL is C(L), and an original edge {u, v} ∈ EL is simply
interpreted as an edge between the two children Cu, Cv ∈ C(L) that contain u and v, respectively.
For singletons L ∈ L, we set TL = ∅. One can easily observe that a family {TL}L∈L of spanning
trees in {GL}L∈L leads to a spanning tree T = ∪L∈LTL in G. Constructing “good” spanning
trees TL in GL, for each L ∈ L, will be our independent subproblems. As we will argue more
formally later, the main benefit of this division is that the edge set EL used in the subproblem
to find TL does not contain any rainbows. Our goal is to define constraints that the spanning
trees TL have to satisfy, that allow us to conclude that the resulting spanning tree T = ∪L∈LTL
does not violate the chain constraints by more than a constant factor.

One of the arguably most natural constraint families to impose would be to require that
the contribution of TL to any cut Si is within a constant factor of the contribution of x∗ on Si
when only considering edges in EL, i.e.,

|TL ∩ δ(Si)| ≤ O(x∗(δ(Si) ∩ EL)). (3)

If the above inequality holds for each L ∈ L and i ∈ [n− 1], then the final spanning tree T will
indeed not violate any chain constraint by more than a constant factor: it suffices to sum up the
inequalities for a fixed i over all sets L and observe that {TL}L∈L partitions T , and {EL}L∈L is

5

ε

ε

ε

ε

L1 L2

Figure 1: The situation that makes (3) unattainable in general. Shown is a subproblem L with
two children L1 and L2; for the chain constraints shown as dashed boxes, x∗(δ(Si) ∩ EL) = ε.
This can occur even though there must be at least one unit of weight connecting L1 and L2.

a partition of EL:

|T ∩ δ(Si)| =
∑
L∈L
|TL ∩ δ(Si)| ≤ O

(∑
L∈L

x∗(δ(Si) ∩ EL)

)
= O(x∗(δ(Si))) = O(1)bi.

(4)

Unfortunately, it turns out that it is in general impossible to find spanning trees TL that
satisfy (3). This is because there can be many constraints Si for which x∗(δ(Si ∩EL)) = o(1), in
a setting where one has to include at least one edge in TL that crosses one of these constraints;
see Fig. 1.

We therefore introduce a weaker condition on TL. For L ∈ L and i ∈ [n−1], let Ci(L) ⊆ C(L)
be the family of all children C ∈ C(L) of L that cross the cut Si, i.e., Si ∩ L 6= ∅ and L \ Si 6= ∅.
We want the sets TL to satisfy the following:

|TL ∩ δ(Si)| ≤ 7 · x∗(δ(Si) ∩ EL) + 2 · 1{|Ci(L)|≥2} ∀i ∈ [n− 1]. (5)

Here, 1{|Ci(L)|≥2} is the indicator that is equal to 1 if |Ci(L)| ≥ 2 and 0 otherwise.
We first show in Section 2.1 that satisfying the above condition indeed leads to a good

spanning tree T .

Theorem 2.1. For L ∈ L, let TL be a spanning tree in GL that satisfies (5). Then T = ∪L∈LTL
is a spanning tree in G satisfying

|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi i ∈ [n− 1].

We then show in Section 2.2 that such spanning trees can indeed be found efficiently.

Theorem 2.2. For each L ∈ L, we can efficiently find a spanning tree TL in GL satisfying (5).

Combining the above two theorems immediately leads to an efficient algorithm to find a
spanning tree in G that violates each chain constraint by at most a factor of 9 whenever LP (2)
is feasible, and thus proves Theorem 1.1. For convenience, a summary of our algorithm is
provided below.

6

Algorithm to find spanning tree T that violates chain constraints by a
factor of at most 9.

1. Compute an optimal solution x∗ to the linear program (2).

2. Independently for each L ∈ L, invoke Theorem 2.2 to obtain a spanning tree
TL in GL satisfying (5).

3. Return T = ∪L∈LTL.

2.1 Analysis of algorithm (proof of Theorem 2.1)

For each L ∈ L, let TL be a spanning tree in GL that satisfies (5), let T = ∪L∈LTL, and let
i ∈ [n− 1]. Using the same reasoning as in (4) we can bound the load on chain constraint i as
follows:

|T ∩ δ(Si)| =
∑
L∈L
|TL ∩ δ(Si)|

(5)

≤ 7
∑
L∈L

x∗(δ(Si) ∩ EL) + 2
∑
L∈L

1{|Ci(L)|≥2}

= 7x∗(δ(Si)) + 2
∑
L∈L

1{|Ci(L)|≥2},

using the fact that {EL}L∈L partitions E. To prove Theorem 2.1, it thus suffices to show∑
L∈L

1{|Ci(L)|≥2} ≤ x
∗(δ(Si)), (6)

which then implies
|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi,

where the last inequality follows from x∗ being feasible for (2). We complete the analysis by
showing the following result, which is a stronger version of (6).

Lemma 2.3. ∑
L∈L

(|Ci(L)| − 1)+ ≤ x∗(δ(Si)),

where (·)+ = max(0, ·).

Proof. Let Li ⊆ L be the family of all sets in L that cross Si, and let Lmin
i ⊆ Li be all minimal

sets of Li. We will show that ∑
L∈L

(|Ci(L)| − 1)+ = |Lmin
i | − 1. (7)

Let us first see that this is a strengthening of the lemma. Since all sets W ∈ Li correspond to
tight spanning tree constraints with respect to x∗, we have that the restriction x∗|E[W] of x∗ to
the edges in the graph G[W] is a point in the spanning tree polytope of G[W]. In particular,
at least one unit of x∗|E[W] crosses any cut in G[W]. Since W ∈ Li, the set Si induces a cut
(Si ∩W,W \ Si) in G[W]. Hence

x∗(δ(Si) ∩ E[W]) ≥ 1 ∀W ∈ Li.

Now observe that due to minimality of the sets in Lmin
i , all sets in Lmin

i are disjoint. Thus

x∗(δ(Si)) ≥
∑

W∈Lmin
i

x∗(δ(Si) ∩ E[W]) ≥ |Lmin
i |,

7

which, together with (7), implies Lemma 2.3. Hence, it remains to show (7).
Let Lnm

i = Li \ Lmin
i be all sets in Li that are not minimal. Notice that only sets L ∈ Lnm

can have a strictly positive contribution to the left-hand side of (7) since these are precisely the
sets L ∈ L with |Ci(L)| ≥ 1: for any other set L ∈ L, either (i) L 6∈ Li, in which case none of its
children can cross Si since not even L crosses Si, or (ii) L ∈ Lmin

i , in which case we again get
|Ci(L)| = 0 since L has no children in Li due to minimality. We thus obtain∑

L∈L
(|Ci(L)| − 1)+ =

∑
L∈Lnm

i

(|Ci(L)| − 1). (8)

Observe that
∑
L∈Lnm

i
|Ci(L)| counts each set in Li precisely once, except for the set V ∈ Li

which is the only set in Li that is not a child of some other set in Li. Hence∑
L∈Lnm

i

|Ci(L)| = |Li| − 1. (9)

Finally, combining (8) with (9) we obtain∑
L∈L

(|Ci(L)| − 1)+ =
∑

L∈Lnm
i

(|Ci(L)| − 1) = |Li| − 1− |Lnm
i | = |Lmin

i | − 1,

thus proving (7).

2.2 Main step of algorithm (proof of Theorem 2.2)

Let L ∈ L. We now consider the problem of finding a spanning tree TL in GL that satisfies (5).
Recall that GL is obtained from the graph (L,EL) by contracting all children of L. For simplicity,
we again interpret an edge {vi, vj} ∈ EL as an edge in GL between the two vertices corresponding
to the sets Ci, Cj ∈ L that contain vi and vj , respectively.

We start by showing that there are no rainbows in EL, which is a crucial assumption in the
algorithm to be presented in the following.

Lemma 2.4. For L ∈ L, EL does not contain any rainbows.

Proof. Since L is a maximal laminar family of tight spanning tree constraints in G with respect
to x∗, the spanning tree constraints imposed by the sets in L define the minimal face of
PST on which x∗ lies (this is a well-known result that can be proven through combinatorial
uncrossing, see e.g. [?]). From this we can conclude that any other tight spanning tree constraint
x∗(E[W]) = |W | − 1, for some set W ⊆ V,W 6∈ L, is implied by the spanning tree constraints
given by L.

Now assume by the sake of contradiction that there are two edges e1, e2 ∈ EL that form a
rainbow, and let e1 be the edge contained in strictly more chain constraints than e2. We will
argue that one could slightly increase the fractional value x∗(e2) by some small value δ > 0
and decrease x∗(e1) by δ to get a new feasible solution yδ = x∗ + δ · χ(e2) − δ · χ(e1) to (2)
with strictly smaller objective value than x∗, thus violating that x∗ is an optimal solution
of (2). Clearly, since x∗ does not violate any chain constraint, also y does not violate any chain
constraint. Furthermore yδ, for any δ > 0, has indeed a lower objective value than x∗. The
only point that remains to show is that there is a small δ > 0 such that yδ ∈ PST . Since all
tight spanning tree constraints are implied by the constraints that correspond to sets in L, it
suffices to check that yδ does not violate any of the spanning tree constraints induced by L.
This indeed holds since any set W ∈ L either satisfies e1, e2 ∈ E[W]—this happens if W is a set

8

containing L—or e1, e2 6∈ E[W],which happens for any other set W ∈ L. Hence, for any W ∈ L
and δ > 0, we have

yδ(E[W]) = x∗(E[W]) = |W | − 1.

Thus, none of the spanning tree constraints that are tight with respect to x∗ will by violated by
yδ for any δ > 0. Hence, by choosing a sufficiently small δ > 0 that makes sure that yδ ≥ 0, and
that no other (non-tight) spanning tree constraints are violated, we obtain yδ ∈ PST .

We classify chain constraints Si into two types, depending on the right-hand side of (5). Call
a cut Si bad if one can include at most one edge that crosses Si in TL without violating (5), i.e.,

7x∗(δ(Si) ∩ EL) + 2 · 1{|Ci(L)|≥2} < 2.

Otherwise, call the cut Si good. Notice that for a cut Si to be bad, we need to have |Ci(L)| = 1
because of the following. Clearly, if |Ci(L)| ≥ 2, then Si cannot be bad due to the term
2 · 1{|Ci(L)|≥2}. If |Ci(L)| = 0, then we use the fact that all edges in E[L] that cross Si are part
of EL, hence

x∗(δ(Si) ∩ EL) = x∗(δ(Si) ∩ E[L]) ≥ 1,

where the last inequality follows from the fact that x∗|E[L] is in the spanning tree polytope
of the graph (L,E[L]). Hence a cut Si is bad if and only if the following two conditions hold
simultaneously:

1. |Ci(L)| = 1,
2. x∗(δ(Si) ∩ EL) < 2

7 .

An edge e ∈ EL is called bad if e crosses at least one bad cut Si, otherwise it is called good. We
denote by AL ⊆ EL the sets of all good edges.

The procedure we use to find a tree TL satisfying (5) constructs a tree TL that consists of
only good edges, i.e., TL ⊆ AL. We determine TL using a matroid intersection problem that
asks to find a spanning tree in GL satisfying an additional partition matroid constraint.

To define the partition matroid we first number the edges AL = {e1, . . . , ek} as follows.
For e ∈ AL, let α(e) < β(e) be the lower and higher index of the two endpoints of e, hence,
e = {vα(e), vβ(e)}. (Notice that α(e) = β(e) is not possible since x∗(e) > 0 ∀e ∈ E and x∗ ∈ PST .)
The edges e ∈ AL are numbered lexicographically, first by increasing value of α(e) and then by
increasing value of β(e), i.e., for any p ∈ [k − 1] either α(ep) < α(ep+1), or α(ep) = α(ep+1) and
β(ep) ≤ β(ep+1). Note that since AL has no rainbows, the set of edges in AL crossing a given
Si are labeled consecutively. Ideally, we would like to group the edges in AL into consecutive
blocks {ep, ep+1, . . . , eq} each having a total weight of exactly x∗({ep, . . . , eq}) = 3/7. Since
this is in general not possible, we will split some of the edges by creating two parallel copies.
More precisely, to define the first set P1 of our partition, let p ∈ [k] the lagest index for which
x∗({e1, . . . , ep}) ≤ 3/7. If x∗({e1, . . . , ep}) = 3/7 then P1 = {e1, . . . , ep}. Otherwise, we replace
the edge ep+1 by two parallel copies e′p+1, e

′′
p+1 of ep+1, and we distribute the weight of x∗(ep+1)

on e′p+1, e
′′
p+1 as follows:

x∗(e′p+1) =
3

7
− x∗({e1, . . . , ep}),

x∗(e′′p+1) = x∗(ep+1)− x∗(e′p+1).

This splitting operation does not violate any previous assumptions: the weight x∗ on the new
edge set {e1, . . . , ep, e′p+1, e

′′
p+1, ep+2, . . . , ek} is still a point in the spanning tree polytope of the

graph over the vertices C(L) with the new edge set. By applying this splitting operation whenever
necessary, we can assume that AL = {e1, . . . , ek} can be partitioned into sets P1 = {e1, . . . , ep1},
P2 = {ep1+1, . . . , ep2}, . . . , Ps = {eps−1+1, . . . , ek} satisfying:

9

(i) x∗(Ph) = 3/7 ∀h ∈ [s− 1],
(ii) x∗(Ps) ≤ 3/7.

Using this partition we define a unitary partition matroid M = (AL, I) on the good edges AL,
with independent sets

I = {U ⊆ AL | |U ∩ Ph| ≤ 1 ∀h ∈ [s]}.
The tree spanning TL in GL that our algorithm selects is any spanning tree TL ⊆ AL in GL

that is independent in the partition matroid M . Notice that if there exists a spanning tree in
GL that is independent in M , then such a spanning tree can be found in polynomial time by
standard matroid intersection techniques (see [?, Volume B] for more details about matroids in
general and techniques to find common independent sets in the intersection of two matroids).
Hence to complete the description and analysis of our algorithm, all that remains is to show the
existence of a spanning tree in GL that is independent in M , and that such a spanning tree
satisfies (5). We address these two statements in the following.

The theorem below shows the feasibility of the matroid intersection problem.

Theorem 2.5. There exists a spanning tree TL ⊆ AL in GL that is independent in M , i.e.,
TL ∈ I.

Proof. Let y ∈ [0, 1]AL be defined by y(e) = 7
3x
∗(e) for e ∈ AL. To prove the theorem, we show

that y is simultaneously in the matroid polytope of M and in the dominant2 of the spanning
tree polytope of GAL , where GAL is the graph obtained from GL by deleting all bad edges. This
implies that the intersection of PST (GAL) and the matroid polytope PM of M is nonempty. Since
PST (GAL) ∩ PM is a face of the matroid intersection polytope corresponding to intersecting the
matroid M with the graphic matroid on GAL , it is therefore integral [?]. Hence, if PST (GAL)∩PM
is nonempty, it contains an integral point, and this corresponds to a spanning tree that is
independent in M .

The vector y is clearly in the matroid polytope of the partition matroid M , since for any
partition Ph with h ∈ [s] we have y(Ph) = 7

3x
∗(Ph) ≤ 1.

To show that y is in the dominant of the spanning tree polytope of GAL , we first discuss some
structural properties of GAL that allow us to decompose the problem. Let Si1 , Si2 , . . . , Sip be all
bad cuts, where 1 ≤ i1 < · · · < ip ≤ n− 1. For j ∈ [p], let Cj ∈ C(L) be the child that crosses
Sij . Notice that since Sij is bad, there is indeed precisely one child of L that crosses Sij , and
furthermore, there are no good edges crossing Sij . Hence, every Cj for j ∈ [p] is a cut vertex
in GAL , whose removal splits GAL into a part where all vertices are contained in Sij and a part
where all vertices are outside of Sij .

We define the following vertex sets of GAL , which correspond to the vertex sets between those
cut vertices, including the cut vertices themselves:

B1 = {C ∈ C(L) | C ∩ Si1 6= ∅},
Bj = {C ∈ C(L) | C ∩ (Sij \ Sij−1

) 6= ∅} ∀j ∈ {2, . . . , p},
Bp+1 = {C ∈ C(L) | C ∩ (V \ Sip) 6= ∅}.

Hence, the above sets contain all vertices of GAL precisely once except for the cut vertices, which
appear in at least two sets.

For j ∈ [p+ 1], let GjL = GAL [Bj], i.e., GjL is the induced subgraph of GAL over the vertices

Bj ; also let AjL denote the edge set of GjL (see Fig. 2). To show that y is in the dominant of
the spanning tree polytope of GAL , we show that the restriction of y to the edges of any of the

graphs GjL for j ∈ [p+ 1] is in the dominant of the spanning tree polytope of GjL.

2Recall that the dominant of a polyhedron P is the set of vectors x such that x ≥ y for some y ∈ P .

10

C1 C3

C2

C5 C6

C4

C7 C9
C8

C1 C3

C2

C2

C5 C6

C4

C8

C7 C9
C8

Si1

Si2

G1
L

G2
L

G3
L

Figure 2: An example showing GL on the left (with the edges of GAL in bold), and the resulting

GjL = (Bj , AjL) for j ∈ {1, 2, 3}.

Fix j ∈ [p+ 1]. Let yj = y|Aj
L

be the restriction of y to the edges in GjL. To show that yj is

in the dominant of the spanning tree polytope of GjL, we use the following well-known partition-
based description of the dominant of the spanning tree polytope (see [?]). LetW = {W1, . . . ,Wq}
be a partition of the sets in Bj , i.e., the vertices of GjL, and we denote by AjL(W) all edges of

AjL with endpoints in two different sets of the partition W . To show that yj is in the dominant

of the spanning tree polytope of GjL, we have to show that the following inequality holds for
any partition W = {W1, . . . ,Wq} of Bj :

y(AjL(W)) ≥ q − 1. (10)

Given a partition W = {W1, . . . ,Wq} of Bj with q ≥ 2, we define a partition Z = {Z1, . . . , Zq}
of the set C(L) as follows. We start by setting Zr = Wr for r ∈ [q]. If j ∈ {2, . . . , p + 1}, we
add ∪j−1s=1Bs to the set Z ∈ Z that contains Cj−1. Additionally, if j ∈ [p], we add ∪p+1

s=j+1Bs to
the set Z ∈ Z that contains Cj . Hence, Z is identical to W with the possible exception of up
to two sets. Let EL(Z) be the set of all edges in EL that cross the partition Z. Notice that
EL(Z) consists of all edges in AjL(W) together with all bad edges that cross either of the bad
cuts Sij−1

or Sij . Since the x∗-weight of the set of all edges crossing any bad cut is bounded by
2
7 we obtain

x∗(EL(Z)) ≤ x∗(AjL(W)) + 2 · 2

7
. (11)

Furthermore, since x∗ is in the spanning tree polytope of GL, it fulfills the partition-constraints
that define the dominant of the spanning tree polytope of GL. For the partition Z this leads to

x∗(EL(Z)) ≥ q − 1. (12)

Using the definition of y and combining (11) and (12) we obtain

y(AjL(W)) =
7

3
x∗(AjL(W))

(11)

≥ 7

3
x∗(EL(Z))− 4

3

(12)

≥ 7

3
(q − 1)− 4

3
≥ q − 1,

11

since q ≥ 2. This shows (10) and therefore completes the proof.

The following theorem finishes the analysis of our algorithm.

Theorem 2.6. Let TL ⊆ AL be a spanning tree in GL that is independent in M . Then TL
satisfies (5).

Proof. Consider a cut Si for some fixed i ∈ [n − 1]. We consider the partition P1, . . . , Ps of
AL used to define the partition matroid M . We are interested in all sets in this partition that
contain edges crossing Si. Recall that the edges crossing Si are consecutively labelled. Thus the
sets of the partition containing edges crossing Si are also consecutively numbered, so let these
be Pa, Pa+1, . . . , Pb, where 1 ≤ a ≤ b ≤ s. Since TL contains at most one edge in each partition,
we have

|TL ∩ δ(Si)| ≤ b− a+ 1. (13)

We first consider the case b− a ≥ 2. Notice that all edges in any set Ph for a < h < b cross
Si. Hence,

x∗(δ(Si) ∩ EL) ≥
b−1∑

h=a+1

x∗(Ph) = (b− a− 1) · 3

7
,

where we used x∗(Ph) = 3
7 for 1 ≤ h ≤ s− 1. Combining the above inequality with (13), and

using that b− a ≥ 2 in the second inequality, we obtain that

|TL ∩ δ(Si)| ≤ b− a+ 1 ≤ 3(b− a− 1) ≤ 7x∗(δ(Si) ∩ EL).

Thus TL satisfies (5).
Assume now b − a ≤ 1. If Si is bad, then |TL ∩ δ(Si)| = 0 since TL only contains good

edges and no good edge crosses any bad cut. Hence, TL trivially satisfies (5). So assume that
Si is good, i.e., either |Ci(L)| ≥ 2 or x∗(δ(Si) ∩ EL) ≥ 2

7 . If |Ci(L)| ≥ 2, then beginning again
from (13) we have

|TL ∩ δ(Si)| ≤ b− a+ 1 ≤ 2 = 2 · 1|Ci(L)|≥2.

Otherwise, if x∗(δ(Si) ∩ EL) ≥ 2
7 , then

|TL ∩ δ(Si)| ≤ 2 ≤ 7x∗(δ(Si) ∩ EL).

Either way, TL satisfies (5).

3 Hardness and integrality gaps

In this section, we provide the proof of Theorem 1.2.

3.1 The chain-constrained partition problem

We will begin by considering a different problem, where we replace the spanning tree constraint
by a unitary partition matroid. We will show integrality gaps and hardness for this problem
first, and then show how this can be leveraged to the spanning tree setting via a gadget.

So consider the following problem, that we call the chain-constrained partition problem.
We are given a graph G = (V,E) and a chain S1 (S2 (· · · (S` of cuts, with associated
upper bounds bi for i ∈ [`]. We are also given a partition {B1, B2, . . . , Bq} of E. The goal is
to pick precisely one edge from each part, while satisfying the chain constraints. Without loss

12

Figure 3: First step of the reduction to the chain-constrained partition problem. Edges E′ are
shown as wavy; the dashed sets are the chain constraints.

of generality, we can take E to be a matching (by splitting vertices as needed); we will always
assume this in what follows.

The problem has a completely equivalent formulation as follows. We are given a ` × m
consecutive-ones matrix A (i.e., entries of A are 0-1, and in any column of A, the 1’s are all
consecutive) and an integral right-hand side vector b of length `. We are also given a partition
B = {B1, . . . , Bq} of [m]. The goal is to pick one column from each part so that the sum of the
chosen columns does not exceed b, if such a choice exists; or in other words, to find a vector
x ∈ {0, 1}m such that Ax ≤ b and for i ∈ [q] there is precisely one index j ∈ Bi with xj = 1.
The correspondence to the other formulation is that each row corresponds to a chain constraint,
and each column of 1’s to an edge.

Relation to the chain-constrained spanning tree problem. Here we will show that
additive integrality gaps and hardness results for the chain-constrained partition problem
transfer to the chain-constrained spanning tree problem. Note that only additive results will
transfer; our gadgets will require increasing the right hand side, and constant-factor multiplicative
hardness (which is an easy consequence for the partition version) will not carry over.

So let an instance of the chain-constrained partition problem be given, with G = (V,E)
being the graph. For each edge e, let α(e) be the innermost endpoint of edge e (with respect to
the chain) and β(e) the outermost endpoint. Now construct the set of edges E′ as the union of
an arbitrary spanning tree on {α(e) | e ∈ E}, and for each i ∈ [q], an arbitrary spanning tree
on {β(e) | e ∈ Bi} (see Fig. 3). Keep the same set of chain constraints, but modify the upper
bounds by setting b′i = bi + |δ(Si) ∩ E′|.

Now consider the chain-constrained spanning tree problem on G′ = (V,E ∪ E′), but subject
to the extra restriction that every edge in E′ must be picked. This is clearly precisely the same
problem as the original chain-constrained partition problem: R ⊆ E satisfies the partition
constraints if and only if R ∪ E′ is a spanning tree of G′, and the definition of b′i absorbs the
change in the number of edges across the cut δ(Si). In order to eliminate this extra restriction,
we need one further trick.

Let s = |E′|+ 1. For each edge e = {va, vb} ∈ E′, with a < b, we split e into a path of length

s`. Let v
(r)
e denote the vertices of this path in order, with v

(0)
e = va and v

(s`)
e = vb. Call the

resulting graph G′′, and let E′′ be the set of edges which replaced E′. Note that

13

Figure 4: Edge splitting ensures that there is no advantage to not taking all edges in E′′.

(1) for each edge in E′, all but at most one of the edges in the corresponding path must be
chosen in any spanning tree of G′′.

We now define, for i ∈ [`] and j ∈ [s],

S
(j)
i = Si ∪

{
v(k)e : e ∈ E′[Si], k ∈ [s`]

}
∪
{
v(k)e : e ∈ δG′(Si), k < is+ j

}
.

(See Fig. 4.) This family of sets clearly does form a chain. We may thus define an instance
of the chain-constrained spanning tree problem on the graph G′′, and with the contraints

|T ∩ δ(S(j)
i)| ≤ b′i for all i ∈ [`], j ∈ [s]. Call this problem the derived problem.

Lemma 3.1. If the original chain-constrained partition problem has a feasible solution, then
so does the derived chain-constrained spanning tree problem. Furthermore if T is an additive
k-approximate solution to the derived problem, then T ∩E is an additive k-approximate solution
to the original problem.

Proof. First, recall that if R is a feasible solution to the original problem in G, then R ∪E′ is a
spanning tree in G′; hence T ′′ := R ∪ E′′ is a spanning tree in G′′. Moreover

|T ′′ ∩ δG′′(S(j)
i)| = |R ∩ δG(Si)|+ |δG(Si)| ≤ b′i, for each i ∈ [`], j ∈ [s].

So T ′′ is a feasible solution to the derived problem.
Now consider an arbitrary spanning tree T in G′′. Focus on some particular i ∈ [`]. We

claim that
|T ∩ E ∩ δG(Si)|+ |δG(Si) ∩ E′| = max

j∈[s]
|T ∩ δG′′(S(j)

i)|.

This is a consequence of point (1) above; there are at most |E′| < s edges of e′ crossing δ(Si),

and so there must be some choice of j ∈ [s] for which T ⊇ E′′ ∩ δG′′(S(j)
i). It follows by the

definition of b′i that if T is an additive k-approximation to the derived problem, then T ∩ E is
an additive k-approximation to the original problem.

Note that if the original instance has n vertices, then the derived instance will have O(ns) =
O(n2) vertices. So to prove Theorem 1.2 it suffices to show an Ω(log n/ log log n) additive
inapproximability result for the chain-constrained partition problem.

14

2 3

1

4

1 0 1 0 1 0 1 0

1 1

1 1

1 1

1 1



C = b =

2

1

1

1

1




Figure 5: Reduction from independent set to a column selection problem; here k = 2.

3.2 NP-hardness

We will now consider only the chain-constrained partition problem from this point, and we will
use the equivalent consecutive-ones formulation discussed in Section 3.1. Our first modest goal
will be to show that it is NP-complete to decide whether there is a solution that does not violate
any constraints at all.

We first note that the same problem, but without the requirement that the ones in any
column of A must be consecutive, is clearly hard, even if all parts of the partition have size 2.
We reduce from the independent set problem (see Fig. 5). Let H = (W,E) be a given graph,
and k a given integer, and consider the questiof whether H has an independent set of size k. Let
t = |W |, and w1, . . . , wt a labelling of W . Define the partition {{2j − 1, 2j} | j ∈ [t]} of W ; if
column 2j is picked, this will represent that vertex j is chosen in the independent set. We define
C and b as follows. The first row of C contains a 1 in all columns of odd index, and b1 = t− k;
this ensures that at least k vertices are chosen. Each edge {wi, wj} ∈ E has one corresponding
row in C, consisting of a 1 in columns 2i and 2j, with all other entries 0; the corresponding
entry in b is also 1. This represents the constraint that at most one of wi and wj can be picked.
It is clear that a feasible solution x exists if and only if an independent set of size k exists.

So our goal will be to simulate this pairwise column-selection problem without the consecutive-
ones restriction, via an instance where the consecutive-ones property holds. So let C be an
arbitrary `×m 0-1 matrix (we may assume each column contains at least one nonzero entry),
and b the vector of upper bounds. Assume that the columns are ordered so that column 1 is
paired with column 2, column 3 is paired with column 4, and so on. Let ri be the number of
ones in column i ∈ [m], and let r′ =

∑m
j=1 rj . First expand out the matrix C horizontally, by

replacing column j by rj columns, moving the i’th 1 in the column to the i’th replacement

column (in the same row). Call the resulting matrix C̃; so each column of C̃ has a single 1, and
the first r1 columns of C̃ correspond to the first column of C, the following r2 columns to the
second column of C, etc. Let Λn denote the n × 1 matrix consisting of all ones, and In the

15

n× n identity matrix. Let Q be the r′ × ` matrix

Q =

Λr1

Λr2

. . .

Λrk





.

Then define the final matrix (which has the consecutive-ones property) by

A =
C̃

Ir′ Q


,

as well as the partition{
{a, r′ + a} | a ∈ [r′]

}
∪
{
{2r′ + 2j − 1, 2r′ + 2j} : j ∈ [m/2]

}
.

The packing constraint for the first ` rows remains unchanged, i.e., is given by b. The packing
constraint for all other rows is chosen to be 1.

Now suppose a feasible solution picks column 2r′ + 1. Then by the definition of A, and our
choice of packing constraints, none of the columns r′ + 1, r′ + 2, . . . , r′ + r1 are chosen. Hence
all of the columns 1, 2, . . . , r1 are chosen. This exactly corresponds to picking column 1 of C. If
we do not pick column 2r′ + 1 on the other hand, there is no good reason to choose any of these
columns. The same argument shows that if column 2r′ + j is picked for some j ∈ [m], then all
columns corresponding to column j of C are picked. Since we must pick one of the columns
2r′ + 2j − 1 and 2r′ + 2j, this precisely mimics the requirement that we pick one out of columns
2j − 1 and 2j of C.

Once again, the blowup is only polynomial; if C is `×m, then A will be O(m`)×O(m`).
This completes the proof that the chain-constrained partition problem is NP-complete.

3.3 Boosting to an additive Ω(log n/ log log n) hardness

First, consider the following simple integrality gap construction, which will motivate the hardness
construction. Fix an integer k. We will construct a sequence of matrices A1, A2, . . ., with Ai

having ki rows and Θ(ki) columns, as well as a partition Bi of the columns of Ai, as follows.
Let A1 be a k × k identity matrix, and B1 be the trivial partition with only one part. We
construct Ai+1 inductively from Ai as demonstrated by the block matrix diagram of Fig. 6; the
left k columns consist of a vertically stretched k× k identity matrix (i.e., the Kronecker product
A1 ⊗ Λk, where recall Λk is a column vector of k ones), and the remaining columns consist of

16

1

...

1

1

...

1

1

...

1





Ai

Ai

Ai

Figure 6: Construction of the matrix Ai+1 (here, k = 3).

the Kronecker product Ik ⊗Ai. The partition Bi+1 contains one part consisting of the first k
columns, and then a copy of Bi for each set of columns corresponding to a copy of Ai.

Consider now the instance defined by Ak and Bk with a right hand side consisting of all
ones. Observe that the obvious uniform fractional solution, where we pick xi = 1/k for each i,
is feasible, since there are precisely k 1’s in each row. However, for any 0-1 solution x satisfying
the partition constraints, ‖Akx‖∞ ≥ k. Indeed, it is easy to see inductively that ‖Aix‖∞ ≥ i
for any 0-1 vector x satisfying the partition constraints Bi.

It is easily checked that k = Θ(logm/ log logm), where m is the number of columns of Ak.

In order to obtain a hardness result, we will now embed the hardness construction from
the previous section as a gadget within this integrality gap construction. So let an arbitrary
chain-constrained partition problem be given; A1x ≤ b1, with partition B1. Let m be the
number of columns of A1, and k the number of rows. We may assume that k ≤ 2m, since
otherwise, due to the consecutive-ones structure, some constraints will necessarily be redundant.
We will construct a larger instance such that finding an integral solution with additive violation
o(logm/ log logm) would provide an exact solution to the starting problem.

The approach is essentially the same as for the integrality gap construction. We inductively
define Ai+1 (with ki+1 rows) from Ai (with ki rows) by

Ai+1 =
(
A1 ⊗ Λki Ik ⊗Ai

)
. (14)

The vector bi+1 (of length ki+1) is obtained by taking k copies of bi (which has length ki), added
to a stretched version of b1:

bi+1 = b1 ⊗ Λki + Λk ⊗ bi. (15)

Finally, define xi+1 so that the first m components of xi+1 is a copy of x1, and the remaining
components yield the vector Λk ⊗ xi (i.e., just xi repeated k times). This ensures that if
Aixi ≤ bi and A1x1 ≤ b1, then Ai+1xi+1 ≤ bi+1. The partition Bi+1 is defined in the obvious
way: the first m columns are partitioned using B1, the remaining columns are partitioned using
k consecutive partitions of type Bi.

Lemma 3.2. If we have a 0-1 solution zi satisfying Bi and the relaxed constraints

Aizi ≤ bi + (i− 1) · Λki , (16)

then we can efficiently construct a 0-1 solution z satisfying B1 and where A1z ≤ b1.

17

Proof. We proceed by induction. The claim clearly holds for i = 1.
So assume the claim holds for i− 1. Let z̃ be the vector consisting of the first m components

of zi. By the definition of Bi, z̃ satisfies B1. If A1z̃ ≤ b1, we already have the required solution,
so suppose not.

Choose t so that β := (A1z̃)t ≥ b1t + 1. Let mi denote the number of columns of Ai. Now let
zi−1 be the vector of length ki−1 consisting of the components of zi from index m+(t−1) ·mi−1
through m+ t ·mi−1 − 1. Fix any j ∈ [ki−1], and consider row j′ := j + (t− 1) · ki−1 of (16).
From (14) we have (Aizi)j′ = β + (Ai−1zi−1)j , and so

(Ai−1zi−1)j ≤ bij′ − β + (i− 1)
(15)
= bi−1j + b1t − β + (i− 1) ≤ bi−1j + (i− 2).

So zi−1 satisfies the conditions of the lemma for i− 1, and so by induction the required z can
be found efficiently.

Notice that Ai has ki ≤ (2m)i = O(m)i rows. Furthermore, the number of columns mi of
Ai is equal to m+ k ·mi−1. Since m1 = m, we obtain

mi = m

i−1∑
j=0

kj = m
ki − 1

k − 1
= O(m)i.

Choosing i = m, we obtain a matrix Am with O(m)m columns and O(m)m rows. This we can
reduce to a chain-constrained spanning tree problem on mO(m) nodes; writing m in terms of the
number of nodes n, we find that m = Θ(log n/ log log n), and we obtain the required additive
hardness of Theorem 1.2.

4 Conclusions

We would like to close with several interesting directions for future research. One very natural
question is whether there is an O(1)-approximation for laminar cut constraints; we believe
this to be true. Although it seems non-trivial to directly generalize our procedure for the
chain-constrained case to the laminar case, we hope that they can be useful in combination with
insights from O(1)-approximations for the degree-bounded case.

Another natural extension would be to a cost version of the problem, where edges are weighted
and the goal is to return a spanning tree of minimum cost satisfying the chain constraints. The
main reason our approach does not generalize easily to this setting is that we use a particular
objective function to eliminate rainbows in the subproblems. Recently, Linhares and Swamy [?]
have shown how to produce a spanning tree that violates all chain constraints by a constant
multiplicative factor, and in addition has cost within a constant factor of the optimum (the
optimum being the cost of a cheapest spanning tree that does not violate any of the constraints
at all). Their algorithm relies explicitly on the results of this paper, in particular Theorem 2.1
and Theorem 2.2. It remains an open question to efficiently find a spanning tree that violates the
chain constraints by a constant multiplicative factor and has cost no larger than the optimum.

Acknowledgements. We are grateful to the anonymous referee for an extremely careful
reading and many constructive comments.

18

	Introduction
	Our results
	Thin trees

	The algorithm
	Analysis of algorithm (proof of Theorem 2.1)
	Main step of algorithm (proof of Theorem 2.2)

	Hardness and integrality gaps
	The chain-constrained partition problem
	NP-hardness
	Boosting to an additive (logn / loglogn) hardness

	Conclusions

