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Abstract

Diagnostic classification models are confirmatory in the sense that the rela-

tionship between the latent attributes and responses to items is specified or

parameterized. Such models are readily interpretable with each component

of the model usually having a practical meaning. However, parameterized

diagnostic classification models are sometimes too simple to capture all the

data patterns, resulting in significant model lack of fit. In this paper, we

attempt to obtain a compromise between interpretability and goodness of

fit by regularizing a latent class model. Our approach starts with mini-

mal assumptions on the data structure, followed by suitable regularization

to reduce complexity, so that readily interpretable, yet flexible model is

obtained. An expectation-maximization type algorithm is developed for

efficient computation. It is shown that the proposed approach enjoys good

theoretical properties. Results from simulation studies and a real applica-

tion are presented.

Key words: diagnostic classification models, latent class analysis, regular-

ization, consistency, EM algorithm
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1. Introduction

Diagnostic classification models provide multidimensional classifications of re-

spondents for the purpose of a fine-grained diagnosis. Such models have recently be-

come important in educational assessment, psychiatric evaluation, and many other

disciplines (Rupp and Templin, 2008; Rupp, Templin and Henson, 2010). For in-

stance, diagnostic classification models have been used to identify students’ mastery

of different skills based on their responses to testing items, and to diagnose patients’

presence of mental health disorders based on their responses to diagnostic questions.

Various diagnostic classification models have been developed. A short and incom-

plete list of works includes Junker and Sijtsma (2001); Tatsuoka (2002); de la Torre

and Douglas (2004); DiBello et al. (1995); Templin and Henson (2006); Tatsuoka

(1985, 2009); Leighton et al. (2004); de la Torre (2011); Henson et al. (2009); von

Davier (2005, 2008); von Davier and Yamamoto (2004); Rupp et al. (2010).

A common feature of these models is that the probabilistic distribution of sub-

jects’ responses to items is governed by their latent attribute profiles. Upon observing

the responses, one infers the underlying attribute profiles. The key component in the

model specification is the relationship between the observed item responses and the

latent attribute profiles. This relationship typically involves the Q-matrix, which as-

signs each of the items a subset of attributes and specifies the way attributes interact

with each other (e.g. compensatory or conjunctive), making diagnostic classification

models interpretable and confirmatory.

In many situations, parametric diagnostic classification models (e.g. DINA,

DINO, NIDA, etc.) are oversimplified and not flexible enough to capture all the

important data patterns, resulting in significant lack of fit. In addition, one should

be careful about interpreting these models, due to possible nonidentifiability issues,

as voiced, for example, in von Davier (2014), which shows that the DINA model

that assumes conjunctive relationship among the attributes is mathematically equiv-
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alent to a more general compensatory diagnostic model with a transformed attribute

space and a transformed Q-matrix. The general diagnostic classification models,

such as the log-linear cognitive diagnosis model (LCDM; Henson et al., 2009), the

generalized diagnostic model (von Davier, 2008), and the generalized DINA model

(de la Torre, 2011) assume a more flexible relationship between the attribute profiles

and responses. However, even for these models, the Q-matrix and the number of

attributes associated with the items are specified subjectively and may not be accu-

rate, contributing to the model’s lack of fit. The misspecification of the Q-matrix

may lead to inaccurate inferences on the latent attribute profiles. Liu et al. (2012,

2013), Chen et al. (2015b), and Chen et al. (2015a) address this issue by constructing

the Q-matrix by an objective fashion.

In this paper, we propose a modeling and inference approach that aims to obtain

a model that fits the data well and is also simple enough to interpret. To this end,

we start with an exploratory latent class model as an exploratory tool (Lazarsfeld

et al., 1968; Goodman, 1974a,b), assuming each individual subject belongs to one of

M latent classes. The identifiability of such latent class models has been studied, for

example, in Allman et al. (2009) and Xu (2016). Responses to items are assumed

to be independent of each other given the latent class membership, that is, all the

dependence among item responses is induced by the latent class membership. This

is known as the local independence assumption. This unrestricted latent class model

is saturated in the sense that all multivariate discrete distributions can be expressed

as a mixture of finitely many independent distributions. As such, this exploratory

latent class model is capable of providing a good fit to essentially all data patterns.

However, unrestricted latent class models usually lack interpretability. This is

due to the fact that it often includes too many parameters. As a result, it is difficult

to identify any pattern or to extract any practical interpretation out of the fitted

model. Our approach to this is to reduce the model complexity by regularizing the
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parameter space.

The regularization we propose to use is based on the following observation.

In areas where diagnostic classification models are applied, including educational

assessment and mental health diagnosis, latent classes are usually parameterized by

multiple attributes (interpreted as skills or mental health disorders). Very often,

each item is associated with only a subset of the attributes. Technically speaking,

the item response distribution does not depend on the values of certain attributes.

Under the latent class model, this means the item response distribution is the same

for subjects belonging to several latent classes. This feature is in fact common to

all existing diagnostic classification models. We hope that the estimated latent class

model also possesses such a pattern, the benefit of which will be explored in the

sequel. Therefore, we impose regularization favoring models in which the latent

classes are merged and the merging patterns are item-specific. More specifically, we

impose a high penalty on the item response functions that take too many distinct

values. With this regularization, the fitted model displays a partially merged pattern.

The resulting item response function could be completely identical for a subset of

latent classes, suggesting that this item does not differentiate among this set of

latent classes. The proposed latent class model with the partially merged pattern

generalizes the binary skills model in Haertel (1989), in which each item response

function admits only two values.

The partially merged pattern describes the relationship between the latent

classes and items, that is, groups of latent classes that each item can differentiate.

Thus, the partially merged pattern, if correctly estimated, can greatly facilitate the

interpretation of the latent classes. Based on the partially merged pattern, one could

further establish a partial order relationship among the latent classes and reconstruct

a multi-dimensional attribute parametrization of the latent classes. Additional uses

and interpretations of the partially merged pattern will be discussed in Section 2.4.
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We emphasize that the proposed method is complementary to the confirmatory cog-

nitive diagnostic analysis that typically pre-specifies a Q-matrix and the way the

attributes interact. If the signal is strong enough (for instance, simulated data), we

are able to reconstruct the Q-matrix and the way the attributes interact through the

estimated partially merged pattern.

Consistency results are established under mild regularity conditions; both the

model parameters and the partially merged pattern can be consistently estimated by

the proposed regularized estimator. Moreover, an efficient computational algorithm

is developed. We apply the proposed method to a social anxiety disorder dataset

and illustrate its uses with simulation studies.

We proceed as follows. The proposed regularized latent class analysis is de-

scribed in Section 2 and its theoretical properties discussed in Section 3. Simulation

studies are presented in Sections 4. In Section 5, the model is applied to a data set

on social anxiety disorder. Section 6 contains a summary. An efficient algorithm is

developed and related computational issues are discussed in the appendix.

2. Regularized Latent Class Analysis

First, we provide a brief review of diagnostic classification models and unre-

stricted latent class models. Then we propose a regularized latent class model that

is intermediate between the unrestricted latent class model and parametric diagnos-

tic classification models. The proposed model can be viewed as a generalization of

the binary skills model proposed by Haertel (1989). Finally, as opposed to the unre-

stricted case, the regularized latent class analysis, by learning the partially merged

pattern from data, can be used to aid in the construction of a confirmatory diag-

nostic classification model; for example, the learned partially merged pattern can be

used to reparameterize the latent classes by attribute profiles, decide whether binary

or polytomous attributes should be used, reconstruct the partial order of the latent
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classes, etc.

2.1. Diagnostic Classification Models and Latent Class Models

We consider a test consisting of J items taken by N subjects. Let R =

(R1, ..., RJ) denote the vector of responses to the J items. To simplify discussion,

we assume that the responses are all binary, that is Rj ∈ {0, 1}. Our approach can

be extended to other types of responses.

Diagnostic classification models. Diagnostic classification models assume that a

subject’s responses to items are governed by his/her latent (unobserved) attribute

profile that forms a K-dimensional binary vector, that is, α = (α1, ..., αK) and αk ∈

{0, 1}. In the context of educational testing, αk indicates the mastery/nonmastery

of skill k. Both α and R are subject-specific and we will later use the subscript i to

index subjects, that is, αi and Ri are the latent attribute profile and response vector

for subject i = 1, ..., N .

The dependence of item responses on attributes is typically described by the so-

called Q-matrix. In particular, Q = (qjk)J×K is a J ×K matrix with binary entries.

For each j and k, qjk = 1 means that the response to item j is associated with the

presence of attribute k, qjk = 0 otherwise. The precise relationship (e.g. conjunctive,

compensatory, etc.) depends on the model parametrization. We use θ as a generic

notation for item-specific parameters additional to the Q-matrix. Given a specific

subject’s profile α, the response Rj to item j follows a Bernoulli distribution

P (Rj|Q,α,θ) = (cj,α)R
j

(1− cj,α)1−Rj , (1)

where cj,α, is the item response function, the probability for subjects with attribute

profile α to provide a positive response to item j, i.e.,

cj,α = P (Rj = 1|Q,α,θ).
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Different specifications of parametric forms of cj,α as a function of Q, α, and θ give

rise to different diagnostic classification models, an example of which is the log-linear

cognitive diagnosis model (LCDM)

logit(cj,α)

=βj,0 +
K∑
k=1

βj,kqjkαk +
∑

1≤k1<k2≤K

βj,k1k2qjk1qjk2αk1αk2 + · · ·+ βj,12···K

K∏
k=1

qjkαk.
(2)

The LCDM is a saturated model that includes many diagnostic classification models,

such as the DINA, DINO, and NIDA, as special cases. This model will be revisited in

the sequel. Furthermore, αi’s are independent and identically distributed following

πα , P (αi = α),

where
∑

α∈{0,1}K πα = 1.

Latent class models. Diagnostic classification models belong to the family of

latent class models. In particular, a latent class model assumes that each subject i

belongs to one of M latent classes denoted by mi ∈ {1, 2, ...,M}. The membership

indicators are independent and identically distributed with

πk = P (mi = k) for k = 1, ...,M, (3)

where
∑M

k=1 πk = 1. Let π = (π1, ..., πM). The responses to items are conditionally

independent given the latent class m,

P (Rj = 1|m) = cj,m. (4)

Diagnostic classification models impose constraints or structures on the latent

variable space and on the parametrization of the response function cj,m, through
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which model components become interpretable. For instance, the latent class mem-

bership m is parameterized by a binary vector α, each element of which is interpreted

as the mastery of a skill or the presence of a mental health disorder. In addition,

the item response functions of diagnostic classification models also admit certain

constraints and structures. For example, cj,α is often assumed to be monotone non-

decreasing in α. That is, for attribute profiles α = (α1, ..., αK) and α′ = (α′1, ..., α
′
K),

αk ≥ α′k for all k, implies cj,α ≥ cj,α′ for all j. This means that a student with at-

tribute profile α is more capable than a student with profile α′ and has a higher

probability of solving any problem correctly. Lastly, diagnostic classification models

also admit some particular interaction among attributes (e.g. conjunctive, compen-

satory, etc.).

2.2. Partially Merged Latent Classes

Another distinct feature of diagnostic classification models concerns the

parametrization of the item response function, which is the focus of the present devel-

opment. We elaborate with a toy example based on the LCDM, consisting of three

arithmetic problems and two attributes. It admits the following self-explanatory

Q-matrix.

Q =

subtraction multiplication

7− 2 1 0

5× 2 0 1

(7− 2)× 2 1 1

(5)

The attribute profile α = (α1, α2) contains two elements, i.e. subtraction and mul-

tiplication, that stratify the entire population into four latent classes. For instance,

the item “7− 2” only requires attribute subtraction. Then, according to the LCDM

specification in (2), c1,(0,0) = c1,(0,1) and c1,(1,0) = c1,(1,1). Similarly, item 2 only re-

quires attribute “multiplication”, and thus c2,(0,0) = c1,(1,0) and c1,(0,1) = c1,(1,1). It is
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in fact a common feature among most diagnostic classification models that an item

is not associated with all attributes. We call this the partially merged pattern; for

each item, there are certain subgroups of latent classes for which the item response

function takes identical values.

For unrestricted latent class models, the partially merged pattern does not exist

or is at least not particularly enforced. The response function cj,m is usually different

for all latent classes. From the modeling point of view, the partially merged pattern

is an intermediate step between exploratory models and confirmatory diagnostic

classification models.

2.3. Regularized Latent Class Model with Partially Merged Pattern

We now propose to regularize on a latent class model so that the estimated

model displays the partially merged pattern. We start with the latent class model

(3) and (4). Let Rj
i denote subject i’s response to item j. The likelihood function is

L(c,π) =
N∏
i=1

M∑
m=1

{
πm

J∏
j=1

c
Rji
j,m(1− cj,m)1−Rji

}
, (6)

where c = (cj,m : 1 ≤ j ≤ J, 1 ≤ m ≤ M) is the item response function and

π = (π1, ..., πM) is the latent class distribution. For now, we assume that the number

of latent classes M is known; estimation of M when it is unknown will be considered

subsequently. The maximum likelihood estimator

(ĉ, π̂) = arg max
c,π

L(c,π).

does not give a partially merged pattern and is often unstable particularly when the

sample size is not adequate. In order to obtain the partially merged pattern, we
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impose a regularization to obtain

(ĉλ, π̂λ) = arg max
c,π
{l(c,π)−Nκλ(c)}, (7)

where l(c,π) = logL(c,π) is the log-likelihood and κλ(c) is the regularization on

the item response function.

The regularization term κλ is introduced so that the resulting estimate of the

item response function displays the partially merged pattern. We let κλ be additive

in the items. In particular, let cj = (cj,1, ..., cj,M) be the response function of item j.

The regularization term takes the form

κλ(c) =
J∑
j=1

pλ(cj),

where pλ(cj) is the regularization on the response function for item j. In what

follows, we specify pλ. Let cj,(1) ≤ cj,(2) ≤ ... ≤ cj,(M) be the order statistic of

cj = (cj,1, ..., cj,M). The regularization function pλ is chosen to favor cj with more

identical elements. Equivalently, we consider dm = cj,(m+1) − cj,(m). Each pair of

identical elements in cj corresponds to some dm = 0. Thus, we choose pλ to penalize

nonzero values of dm. We hope that if cj,(m+1) − cj,(m) is very close to zero, then

the penalty function will force it to be strictly zero and thus two latent classes are

merged.

We propose to use the smoothly clipped absolute deviation penalty (SCAD; Fan

and Li, 2001). In particular, we choose

pλ(cj) =
M−1∑
m=1

pSCADλ (cj,(m+1) − cj,(m)), (8)



11

where pSCADλ is defined as

pSCADλ (x) =



λ|x| if |x| ≤ λ;

−
( |x|2 − 2aλ|x|+ λ2

2(a− 1)

)
if λ < |x| < aλ;

(a+ 1)2λ2

2
if |x| > aλ,

(9)

Remark 1. A natural alternative for pλ seems to be the L1 penalty (Tibshirani,

1996)

pλ(cj) = λ|cj,(2) − cj,(1)|+ λ|cj,(3) − cj,(2)|+ ...+ λ|cj,(M) − cj,(M−1)|.

However, this regularization function does not lead to a partially merged pattern.

This is because cj,(m) is ordered in m, leading to the following simplification

pλ(cj) = λ|cj,(M) − cj,(1)|.

Thus, such a regularization function results in either a fully merged pattern (i.e. all

cj,m’s are identical) or a completely non-merged pattern. Figure 1 compares the L1

penalty function pL1
λ (x) = λ|x| and the SCAD penalty function, which behaves the

same as the L1 penalty when x is close to zero (i.e. |x| ≤ λ). If x is far away from

zero (i.e. |x| > aλ), the penalty is constant; between λ and aλ it is continuous. Thus,

SCAD is a local penalty function, leading to the partially merged pattern. Moreover,

SCAD has sound theoretical properties (Fan and Li, 2001).

=========================

Insert Figure 1 about here

=========================
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On the regularization parameters. The penalty function defined by (9) contains

two parameters a and λ, whose values need to be determined. We choose a = 3.7

as recommended by Fan and Li (2001). For λ, we use the generalized information

criterion (GIC, Nishii et al., 1984) to determine its values (see e.g. Wang et al., 2007,

2009; Chen and Chen, 2008; Wang and Zhu, 2011; Fan and Tang, 2013). Specifically,

for a given λ value, we compute the regularized estimator

(ĉλ, π̂λ) = arg max
c,π
{l(c,π)−Nκλ(c)}. (10)

The generalized information criterion corresponding to the regularized estimator

given λ is computed as follows

GIC(λ) = −2 l(ĉλ, π̂λ) + aN(dim(ĉλ) +M − 1) (11)

where aN is a positive number depending on the sample size N , dim(ĉλ) is the

total number of distinct response probabilities in vector ĉλ, and M − 1 counts the

number of parameters in π. Typically, aN represents the level of penalty on model

complexity. We consider two choices of aN , including

1. GIC1: aN = log(N). This choice corresponds to the Bayesian information

criterion.

2. GIC2 : aN = log{log(N)} log(N). This choice of aN has been considered in

Fan and Tang (2013) for high dimensional model selection. It deals with the

case where the dimension of the parameter space d is a polynomial order of

sample size N (i.e. d = N c for some c > 0). For the latent class model, it is

more appropriate to use this choice as the dimension of the parameter space is

d = J ×M +M − 1, which is relatively large compared to the sample size. See

Fan and Tang (2013) for theoretical properties associated with this choice.
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Finally, the regularization parameter is selected to minimize GIC(λ):

λ∗ = arg min
λ

GIC(λ). (12)

The final estimator is given by (ĉλ∗ , π̂λ∗).

Our experience with simulations in Section 4 and real data analysis in Section 5

shows that the GIC as described above work well in practical settings. Moreover,

GIC2 tends to out perform GIC1 in our simulation studies. The choice of λ controls

the trade-off between the bias and variance of the resulting estimator. As will be

shown in Section 3, when λ scales properly with sample size, the regularized estima-

tor has desirable theoretical properties, including the convergence of the parameter

estimate to its true value and the model selection consistency (i.e. recovering the

underlying partially merged pattern).

On the number of latent classes M . The choice of M is a key issue. The general

information criterion in (11) can be viewed as a function of both λ and M , denoted

by GIC(λ,M). The tuning parameters λ and M may then be chosen jointly:

(λ∗,M∗) = arg min
λ,M

GIC(λ,M). (13)

As before, both GIC1 and GIC2 are considered.

Summary of the regularized estimator. We propose to use the regularized esti-

mator

(ĉλ,M , π̂λ,M) = arg max
c,π
{l(c,π)−Nκλ(c)}

where l(c,π) = logL(c,π) is the log-likelihood corresponding to (6) and κλ is the

regularization function based on the SCAD penalty (9). With (λ∗,M∗) chosen as in

(13), the final estimator is given by (ĉλ∗,M∗ , π̂λ∗,M∗). For each (λ,M), the compu-

tation of (ĉλ,M , π̂λ,M) is carried out using an Expectation-Maximization algorithm
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described in the appendix.

2.4. Further Discussion on Partially Merged Pattern

We now discuss modeling questions that can be answered if a partially merged

latent class pattern has been consistently identified based on the data.

Reconstructing the latent class parametrization. We illustrate the reconstruction

of latent class parametrization via a simple yet illustrative example. Suppose that

there are eight latent classes m ∈ {1, 2, ..., 8}. Consider an item that is able to

differentiate among the following subsets of latent classes

{1, 2, 3, 4}, {5, 6, 7, 8}.

Latent classes in curly braces admit the same values of the item response func-

tion. Suppose that the item is testing a single skill and thus latent classes 1, 2,

3, and 4 either all master or do not master the skill. Without loss of generality,

let the response function take a higher value for the subset {1, 2, 3, 4}. Based on

the estimated item response function and monotonicity, we create a dimension in

the attribute profile, with {1, 2, 3, 4} corresponding to one in this dimension and

{5, 6, 7, 8} corresponding to zero. This is the information obtained from one item.

If the partially merged patterns of all items have been obtained, one may retrieve

the entire attribute parametrization of the latent classes and the Q-matrix, which

will be further illustrated in the simulation studies in Section 4. This reconstruction

typically requires empirical knowledge of the items and the potential skills the items

require, as in the social anxiety disorder example in Section 5.

Other structures of latent classes. Diagnostic classification models often assume

the attributes comprising the K-dimensional attribute profile are binary, i.e. there

are 2K latent classes. Very often, not all 2K latent classes exist in the population, for



15

example, when there is a linear hierarchy among attributes, in which the presence

of some attributes requires the presence of others (Leighton and Gierl, 2007). In

this case, identifiability problems arise; for instance, the Q-matrix is usually not

identifiable under such circumstances (Liu et al., 2013). For a discussion on problems

associated with linear hierarchies in diagnostic classification models, see von Davier

and Haberman (2014). On the other hand, the regularized latent class model does

not have this problem, as it has a built-in mechanism to estimate the number of

latent classes, which automatically removes unnecessary latent classes.

Polytomous attributes. Another issue in diagnostic classification models is

whether the attributes should be conceptualized as binary or polytomous (von

Davier, 2005, 2008; Haberman et al., 2008). The binary attribute structure imposes a

clear distinction between the presence and absence of attributes/skills, whereas item

response theory models assume the attributes are continuous; a polytomous attribute

structure would be intermediate between these two. Whether the model should allow

a polytomous attribute profile and how many levels each attribute admits are the key

questions in this discussion. The partially merged latent class pattern systematically

provides a solution to this problem. We first consider the unrestricted latent class

model, under which each latent class admits its unique response distribution. If the

number of classes is sufficiently large, then such models behave, to a degree, like

a continuous latent factor model. As the latent classes gradually merge, the total

number of possible distinct response distributions reduces. In the extreme case that

all the latent classes merge together into a single class for an item, then this item

does not have any differentiating power. The regularized latent class model has a

built-in mechanism to control the merging process of latent classes for each item,

which directly provides a choice of the number of levels for each attribute.

Reconstructing the partial order of latent classes. For most diagnostic classi-

fication models, the latent parameter space admits a partial order (Tatsuoka and
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Ferguson, 2003). The partial order of the latent classes is also closely related to the

concept of ordered latent classes (Croon, 1990, 1991), but is more general than the

latter. More precisely, the partial order structure of the latent classes allows for two

latent classes where members of a first class are better than members of a second

class on a subset of items, while members of the second class are better than members

of the first class on a different subset of items. On the other hand, the ordered latent

classes assume a strict ordering of the latent classes. This structure is important for

model interpretation. The partially merged pattern is necessary for reconstructing

the partial order. Consider the grouping in (14) and suppose that c1,1 = c1,4 and

c2,1 < c2,4. Thus, latent class 4 is more capable than latent class 1. If the item

response function cj,m is estimated without any constraint (e.g. maximum likelihood

estimate of general latent class models), then, due to the asymptotic normality and

unbiasedness of maximum likelihood estimation, the estimated item response func-

tion admits P (ĉ1,1 > ĉ1,4) ≈ 0.5 and the partial order of the latent classes cannot

be consistently estimated. The partially merged pattern, when estimated correctly,

will force ĉ1,1 = ĉ1,4 and thus the order can be estimated correctly. We illustrate the

reconstruction of the partial order of latent classes in Section 4.

Another advantage of the partially merged pattern is to improve the estimation

of the item response function. For example, in the arithmetic problem example in

Section 2.2, when c1,1 and c1,4 are correctly merged, c1,1 and c1,4 are estimated by

the pooled responses of both classes 1 and 4 in the regularized estimator.

3. Theoretical Properties

In this section, we present statistical properties of the regularized estimator

(ĉλ, π̂λ) defined as in (10), assuming the number of latent classes M is known. As will

be shown below, under suitable conditions, the regularized estimator is consistent for

both parameter estimation and model selection (i.e. recovering the partially merged
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pattern). We first introduce the following notation and definition. Since the latent

class distribution satisfies

πM = 1−
M−1∑
m=1

πm,

the log-likelihood function defined as in (7) can be reparameterized by c and π−1 =

(π1, .., πM−1)>. With a slight abuse of the notation, we denote the reparameterized

log-likelihood function as l(c,π−1). We formalize the concept of a partially merged

pattern in the following definition.

Definition 1. Two item response functions c and c̃ have the same partially

merged pattern if for all 1 ≤ j ≤ J and 1 ≤ m1,m2 ≤ M the following statements

hold:

(i) if cj,m1 < cj,m2 , then c̃j,m1 < c̃j,m2 ;

(ii) if cj,m1 = cj,m2 , then c̃j,m1 = c̃j,m2 .

We write c ∼ c̃, when they have the same partially merged pattern.

We then impose the following regularity conditions. Denote by (c0,π0) the true

model parameters.

A1 The analysis is constrained to the following parameter space:

Θ = {(c,π) : δ ≤ cj,m ≤ 1− δ, j = 1, ..., J,m = 1, ...,M,

and δ ≤ π1 < π2 < ... < πM ,
M∑
m=1

πm = 1},

where δ is a positive constant and (c0,π0) ∈ Θ.

A2 (c0,π0) is identifiable over Θ. That is,

E[l(c0,π0)] > E[l(c,π)],
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for all (c,π) ∈ Θ such that (c,π) 6= (c0,π0), where the log-likelihood function

l(c,π) is defined in (7) and the expectation is with respect to the responses

from the true model.

A3 The Fisher information matrix of the reparameterized log-likelihood

I(c0,π0
−1) = E

[ 1

N
∇l(c0,π0

−1)∇l(c0,π0
−1)>

]
is positive definite, where ∇l(c0,π0

−1) is the gradient with respect to (c,π−1)

evaluated at the true parameters and the expectation is with respect to the

responses from the true model.

Remark 2. A1 is assumed for technical convenience and the constant δ can be

sufficiently small (e.g., 10−5). It rules out singular cases where the log-likelihood

function is negative infinity. In addition, it avoids nonidentifiability due to label

switching, by pinning down the order of π1, ..., πM . In practice, to solve the opti-

mization (10) with the constraint π1 < π2 < · · · < πM , we first solve the uncon-

strained one and then switch the labels of the latent classes according to the order

of π̂1, ..., π̂M . Assumption A2 requires the identifiability of the true model. We refer

to Allman et al. (2009) and Xu (2016) for discussions on model identifiability in

general and the identifiability of latent class models in particular. Assumption A3 is

a standard assumption for the maximum likelihood estimator of a general paramet-

ric model to achieve the same convergence rate (e.g. Lehmann and Casella, 2006).

It ensures the regularized estimator to achieve a OP (1/
√
N) convergence rate (see

Theorem 1). Assumptions similar to A1-A3 are made in Fan and Li (2001).

In what follows, the theoretical properties of the regularized estimator are es-

tablished, under a proper scaling of the tuning parameter as the sample size grows.

The tuning parameter is denoted by λN , where the subscript N indicates the scaling.
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The first theorem is on the consistency of parameter estimate.

Theorem 1. Under assumptions A1-A3, choose λN such that λN → 0 as N →

∞. Let (ĉλN , π̂λN ) be the optimizer of (10) restricted to Θ. Then, (ĉλN , π̂λN ) is a

consistent estimator of (c0,π0). Moreover, (ĉλN , π̂λN ) = (c0,π0) + OP (1/
√
N) as

N → ∞. That is, for each positive constant ε > 0, there exists a constant C such

that

lim sup
N→∞

P
(
‖(ĉλN , π̂λN )− (c0,π0)‖ > C√

N

)
≤ ε,

where ‖ · ‖ is the Euclidean norm for vectors.

The proof is given in given in Appendix C. The second theorem shows that the

partially merged pattern can be consistently recovered.

Theorem 2. Under assumptions A1-A3, choose λN such that λN → 0 and

λN
√
N →∞ as N →∞. Then,

lim
N→∞

P
(
ĉλN ∼ c0

)
= 1.

The proof is given in given in Appendix D.

4. Simulation Study

In this section, simulation studies are conducted to evaluate the performance

of the proposed method. We also develop visualization methods displaying the esti-

mates as a function of the tuning parameter, which are informative for selecting a

model and understanding the data structure.

4.1. Simulation Study 1

We illustrate the use of the proposed method using two simulated datasets,

both generated from LCDMs with K = 3 attributes, J = 12 items, and N = 1000
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examinees. The difference between the two datasets is that all eight attribute profiles

exist for Dataset 1, while for Dataset 2, there are only six attribute profiles due to

the presence of a linear hierarchy. We examine the choice of the number of latent

classes, reconstruction of the partially merged pattern, partial order of the latent

classes, the latent class parametrization, and the visualization of the solution paths.

Simulation setting. Both datasets share the same Q-matrix and the true item

response functions (from a LCDM), given in Table 1. There are 9 items that measure

a single attribute and therefore have two item response function levels. In addition,

there are 3 items that measure two attributes and have three item response function

levels. For Dataset 1, all attribute profiles exist and are generated from the uniform

distribution:

pα = 1/8, ∀ α ∈ {0, 1}3.

For Dataset 2, a linear hierarchy is assumed: the second attribute can only be

mastered when the first attribute has been mastered. We assume

p(0,1,0) = 0, p(0,1,1) = 0 and pα = 1/6, ∀ α 6= (0, 1, 0) or (0, 1, 1).

=========================

Insert Table 1 about here

=========================

On the number of latent classes and partially merged pattern. We consider the

possible number of latent classes M = 4, 6, 8, 10, and 12. For each value of M , a

solution path is constructed for λ ∈ [0, 0.1]. For both datasets, both GIC1 and GIC2

correctly select the number of latent classes (M∗ = 8 for Dataset 1 and M∗ = 6 for

Dataset 2) and select the regularization parameters that result in the true partially

merged pattern and partial order of the latent classes. We present the GIC1, GIC2,

and the number of parameters for the selected models and compare it with that of
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the unrestricted latent class models in Table 2. According to Table 2, the selected

model is not only more parsimonious than the unrestricted latent class models, but

also fits the data better in terms of GIC1 and GIC2. In addition, the number of

latent classes is more likely to be recovered when the partially merged pattern is

pursued. In particular, the number of latent classes may be underestimated when

only considering the unrestricted latent class models; for instance, for Dataset 1,

M = 6 is preferred to M = 8 based on GIC2 for unrestricted latent class models,

when the dataset is generated with eight latent classes.

=========================

Insert Table 2 about here

=========================

Reconstructing latent class parametrization and Q-matrix. The partial orders

of the latent classes based on ĉλ∗ are shown in Figure 2. For Dataset 1, under

the monotonicity constraint (i.e. α ≥ α′ implies cj,α ≥ cj,α′ for all j), the most

parsimonious representation is a three-dimensional binary space. In addition, up to

label switching, the reparametrization has to be

C1 = (0,0,0), C2 = (1,0,0), C3 = (0,1,0), C4 = (1,1,0),

C5 = (0,0,1), C6 = (1,0,1), C7 = (0,1,1), C8 = (1,1,1).

This reparametrization recovers the attribute profiles in the true model. With this

reparametrization of the latent classes, the Q-matrix in Table 1 can be perfectly

recovered. For Dataset 2,

C1 = (0,0,0), C2 = (1,0,0), C3 = (1,1,0),

C4 = (0,0,1), C5 = (1,0,1), C6 = (1,1,1)
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provides the most parsimonious reparametrization (up to label switching) when only

binary attributes are considered. Based on this latent class reparametrization, the

latent classes (0, 1, 0) and (0, 1, 1) do not exist, which suggests the presence of a

linear hierarchy of Attributes 1 and 2. In addition, the Q-matrix in Table 1 can still

be recovered, given this latent class reparametrization. If polytomous attributes are

allowed, the latent classes can be alternatively reparameterized by two attributes:

C1 = (0,0), C2 = (1,0), C3 = (2,0), C4 = (0,1), C5 = (0,2), C6 = (2,2),

where the first dimension combines the original attributes 1 and 2 and the second

dimension combines the original attributes 2 and 3.

=========================

Insert Figure 2 about here

=========================

Visualization of the solution paths. In the proposed approach, for each M , a

solution path is created as a function of the tuning parameter λ. The solution paths

provide information on the uncertainty of the model selection. We monitor the

solution paths by plotting the item response functions for each item. We illustrate

the visualization in Figure 3 using items 1, 4, 7, 10, 11, and 12 of Dataset 1, where

each panel represents an item, the x-axis represents the value of λ, and the y-axis

represents the value of the item response function. Each circle represents a particular

value of ĉλj,m and the size of the circle is proportional to π̂λm. The latent classes are

identified by different colors. Based on Figure 3, we observe that for each item, there

are multiple distinct response probabilities when λ is small. Then, as λ increases,

response probabilities that are close tend to merge, resulting in partially merged

patterns.

=========================
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Insert Figure 3 about here

=========================

4.2. Simulation Study 2

In this study, we evaluate the performance of the proposed method using repli-

cated datasets under various simulation settings.

Simulation setting. We generate data from the LCDM with K = 3 and K = 4.

For K = 3, sample sizes N = 500, 1000, 2000, and 4000 are considered and the rest

of the settings are the same as in Dataset 1 in Study 1. For K = 4, 18 items and

sample sizes N = 2000, 4000, and 8000 are considered. Again, attribute profiles are

generated from the uniform distribution

pα = 2−K .

The Q-matrix and item response functions are shown in Table 3, where each of the

first 12 items measures a single attribute and each of the last 6 items measures two

attributes. In addition, items 1-12 have two item response function levels, items

13-15 have three levels, and items 16-18 have four levels.

=========================

Insert Table 3 about here

=========================

Evaluation criteria. For evaluation, we consider the following criteria to account

for the correct selection of the partially merged pattern, the partial order of the latent

classes, and the number of latent classes.

E1: If the number of latent classes M is known, we consider the frequency that

the true partially merged pattern and partial order of the latent classes are

captured by ĉλ for at least one value of λ on the solution path.
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E2: If M is known, we consider the frequency with which the generalized informa-

tion criteria selects λ∗ such that ĉλ∗ corresponds to the true partially merged

pattern and partial order of the latent classes.

E3: If M is unknown, we consider the frequency with which the generalized infor-

mation criteria selects the correct number of latent classes.

E4: If M is unknown, we consider the frequency with which the generalized infor-

mation criteria selects both the correct number of latent classes and tuning

parameter λ∗ such that ĉλ∗ corresponds to the true partially merged pattern

and partial order of the latent classes.

Results. The results are displayed in Table 4. In particular, for the case K = 3

andN = 1000, results similar to those obtained in the analysis of Dataset 1 in Study 1

are often observed under the same simulation setting. In addition, we observe that as

the sample size increases, the proposed approach performs better under all criteria.

According to E1, given that M is known, the true partially merged pattern and

partial order of the latent classes are captured by the solution path with probability

close to 1 when K = 3 and N ≥ 1000 and when K = 4 and N ≥ 4000. According

to E2 to E4, GIC2 performs better than GIC1 in terms of the selection of tuning

parameter and the number of latent classes. In particular, whenever the solution

path captures the true model, GIC2 is able to correctly select the true number of

latent classes and the partially merged pattern with probability close to 1 under

all settings, while GIC1 has some chance to miss the true model. Whenever GIC1

fails, it tends to overfit the models. This suggests that the high dimensional scaling

considered in GIC2 is more appropriate than GIC1 (Bayesian information criterion),

considering the dimension of the parameter space that we choose a model from and

the sample size. Finally, when K = 3, even with a relatively small sample size

N = 500, the proposed method preforms reasonably well. Specifically, given M is
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known, the true partially merged pattern and partial order of the latent classes are

captured by the solution path 80% of the time. Moreover, GIC2 correctly selects the

number of latent classes 96% of the time, and correctly selects both the number of

classes and the partially merged pattern 72% of the time.

=========================

Insert Table 4 about here

=========================

5. An Application to Social Anxiety Disorder Data

The social anxiety disorder dataset is from the National Epidemiological Survey

on Alcohol and Related Conditions (NESARC) (Grant et al., 2003). It contains the

binary responses (Yes/No) to thirteen diagnostic questions on social anxiety disor-

der from 728 white males between 25 and 50 years old. Social anxiety disorder, also

called social phobia, is an anxiety disorder in which a person has an excessive and

unreasonable fear of social situations. It is the most common anxiety disorder and

one of the most common psychiatric disorders, with 12% of American adults having

experienced it (Stein and Stein, 2008; Kessler et al., 2005). These thirteen questions

are designed according to the Diagnostic and Statistical Manual of Mental Disor-

ders, Fourth Edition (American Psychiatric Association, 1994) and are displayed in

Table 6. The regularized latent class analysis may provide a better understanding

of subtypes of the social anxiety disorder, which may help in the prevention and

treatment of this disorder.

We consider M ∈ {4, 5, ..., 15} and λ ∈ [0, 0.1]. As GIC2 tends to outperform

GIC1 according to the simulation study, we present the results based on GIC2. Based

on GIC2, M∗ = 5, λ∗ = 0.093, and the selected model contains 34 parameters (while a

latent class model with five classes has 69 parameters if no partially merged pattern

is enforced). The estimated item response functions and latent class distribution
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under the selected model is presented in Table 5 and the partial order of the latent

classes is shown in Figure 4. In particular, items 3, 4, 6, and 13 have three different

item response function levels and the rest have two levels.

Based on Table 5 and Figure 4, Class 3 is the most healthy group, with the

lowest item response functions to all items among all latent classes. On the other

hand, Class 2 has the highest probabilities of having all symptoms and therefore

suffers most. This class may correspond to the generalized social anxiety disorder

subtype (“fears most social situations”; American Psychiatric Association, 1994).

The other latent classes suffer from some but not all symptoms. For example, Class

1 and 3 share the same item response probabilities, except that Class 1 has higher

probabilities of having symptoms 1 to 4 that are all about “public performance”. It

means that people in Class 1 suffer from the fear of performing/speaking in front of

other people, but do not have the other symptoms. This class may correspond to

the public speaking phobia subtype that is well known in the literature. Individuals

suffering from this subtype have heightened physiological response specific to public

speaking or performance situations but are more similar to healthy controls in other

situations (e.g. Dalrymple and D’Avanzato, 2013). In addition, Class 4 has the

lowest response probabilities on items 9 to 11 that are about “communication with

strangers” and the highest probabilities on the rest of the items. Compared to Class

1, Class 4 has strictly higher probabilities of having symptoms 3-8, 12, and 13.

Furthermore, Class 5 has the highest probabilities on items 9 to 13, all of which are

related to “communication with others”. Compared to Class 3, Class 5 has strictly

higher item response functions on items 6, and 9-13.

=========================

Insert Table 5 about here

=========================

=========================
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Insert Figure 4 about here

=========================

Following the discussion above, we further reconstruct the parametrization of

the latent classes. In particular, the most parsimonious reparametrization by binary

vectors is as follows:

C1 = (1, 0, 0), C2 = (1, 1, 1), C3 = (0, 0, 0), C4 = (1, 1, 0), C5 = (0, 0, 1),

where the first attribute is about “public performance” (measured by items 1-4), the

second attribute is about “public performance” (items 3-4), “being examined” (items

5-8) and “small group communication” (items 12-13), and the third attribute is about

“being watched” (items 6 and 9) and “communication with others” (items 9-13). It

should be noted that some attribute profiles are missing when reparameterizing the

latent classes in this manner. For example, the attribute profile (0, 1, 0) does not

exist, perhaps because patients do not display symptons on “being examined” (items

5-8) and “small group communication” (items 12-13), unless they already display

symptoms on “public performance” (items 1-4). The Q-matrix can be reconstructed

as in Table 6. Moreover, when polytomous attributes are allowed, the five latent

classes can be reparameterized by two attributes:

C1 : (1, 0), C2 = (2, 1), C3 = (0, 0), C4 = (2, 0), C5 = (0, 1).

The first attribute is polytomous and it is about “public performance” (items 1-4),

“being examined” (items 5-8), and “small group communication” (items 12-13). The

second attribute is about “being watched” (items 6 and 9) and “communication with

others” (items 9-13).

=========================
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Insert Table 6 about here

=========================

As demonstrated above, by seeking partially merged patterns of the latent

classes, we find latent class models that not only fit data well, but also readily

interpretable. In particular, the latent classes of social anxiety disorder respondents

are reparameterized by binary/polytomous attributes and the Q-matrix is recon-

structed. In addition, our results indicate that a unidimensional latent trait is not

enough to capture the latent structure of the social anxiety disorder symptoms, as

there exist latent classes that do not follow an order. For example, Class 5 has

higher probabilities of having symptoms related to “communication with others”,

while Class 1 has higher probabilities of having fear of “public performance”. To

confirm findings from this exploratory analysis, subsequent confirmatory studies are

needed, by making use of the diagnostic classification models.

6. Discussions and Summary

In this paper, we propose a latent class model with partially merged pattern

for analyzing item response data. Model selection and parameter estimation are

carried out simultaneously by a regularized estimator whose theoretical properties,

including the model selection and parameter estimation consistencies, are established.

For a given number of latent classes, solution paths of the item response functions

and the distribution of the latent classes as a function of the tuning parameter are

created, providing information on the data structure. In addition, based on the

generalized information criteria, the number of latent classes and partially merged

pattern are selected, which will help to build a confirmatory diagnostic classification

model. In particular, two generalized information criteria are considered. One is

the Bayesian information criterion (GIC1) and the other is a modified Bayesian

information criterion (GIC2) that takes into consideration a high dimensional scaling.
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According to the simulation studies, the latter outperforms the former, indicating

that the high dimensional scaling in the information criterion is more suitable for

this problem.

We evaluate the performance of the proposed approach through simulation stud-

ies and an application to the social anxiety disorder data. Simulation studies show

that the proposed regularized latent class analysis using GIC2 accurately recovers

the partially merged pattern and partial order of the latent classes if the sample

size is adequate. The regularized latent class analysis finds meaningful subgroups of

patients who may correspond to different social anxiety disorder subtypes, providing

guidance toward a subsequent confirmatory analysis. Subtypes of social anxiety dis-

order, once identified, may be useful for helping researchers to suggesting different

pathways to the disorder and in efforts to prevent and treat the disorder.
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Figure 1.
The L1 and SCAD penalty functions, where λ = 1 for both penalty functions and a = 3.7 for the
SCAD penalty function.

Figure 2.
Simulation study 1: the partial order of the latent classes based on regularized latent class analy-
sis. Left: Dataset 1; Right: Dataset 2.
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Item 1

Values of lambda
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Item 4

Values of lambda
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Item 7

Values of lambda
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Item 10

Values of lambda
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Figure 3.
Simulation study 1: the solution paths of the item response functions for items 1, 4, 7, 10, 11,
and 12 of Dataset 1, given M = 8.

Figure 4.
Social anxiety disorder data: the partial order of the latent classes based on regularized latent
class analysis
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Q (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)
1 1 0 0 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
2 1 0 0 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
3 1 0 0 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
4 0 1 0 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
5 0 1 0 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
6 0 1 0 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
7 0 0 1 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
8 0 0 1 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
9 0 0 1 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
10 1 1 0 0.10 0.50 0.50 0.90 0.10 0.50 0.50 0.90
11 1 0 1 0.10 0.50 0.10 0.50 0.50 0.90 0.50 0.90
12 0 1 1 0.10 0.10 0.50 0.50 0.50 0.50 0.90 0.90

Table 1.
Simulation study 1: the Q-matrix and the item response functions from a LCDM.

Dataset 1 GIC1 GIC2 Num-Par
Selected (M∗ = 8) 14194.4 14413.5 34
Unrestricted (M = 4) 15064.8 15393.4 51
Unrestricted (M = 6) 14689.8 15185.9 77
Unrestricted (M = 8) 14595.8 15259.4 103
Unrestricted (M = 10) 14729.1 15560.1 129
Unrestricted (M = 12) 15859.5 14860.9 155

Dataset 2 GIC1 GIC2 Num-Par
Selected (M∗ = 6) 13676.0 13882.1 32
Unrestricted (M = 4) 14179.3 14507.9 51
Unrestricted (M = 6) 13925.8 14421.9 77
Unrestricted (M = 8) 14059.8 14723.3 103
Unrestricted (M = 10) 14198.7 15029.8 129
Unrestricted (M = 12) 14336.3 15334.8 155

Table 2.
Simulation study 1: GIC1, GIC2, and the number of model parameters (Num-Par) for selected
models and the unrestricted latent class models.
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Q C1 C2 C3 C4 C5 C6 C7 C8
1 1 0 0 0 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
2 1 0 0 0 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
3 1 0 0 0 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
4 0 1 0 0 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
5 0 1 0 0 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
6 0 1 0 0 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
7 0 0 1 0 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
8 0 0 1 0 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
9 0 0 1 0 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
10 0 0 0 1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
11 0 0 0 1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
12 0 0 0 1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
13 1 1 0 0 0.10 0.50 0.50 0.90 0.10 0.50 0.50 0.90
14 1 0 1 0 0.10 0.50 0.10 0.50 0.50 0.90 0.50 0.90
15 1 0 0 1 0.10 0.50 0.10 0.50 0.10 0.50 0.10 0.50
16 0 1 1 0 0.10 0.10 0.35 0.35 0.65 0.65 0.90 0.90
17 0 1 0 1 0.10 0.10 0.35 0.35 0.10 0.10 0.35 0.35
18 0 0 1 1 0.10 0.10 0.10 0.10 0.35 0.35 0.35 0.35

C9 C10 C11 C12 C13 C14 C15 C16
1 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
2 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
3 0.15 0.85 0.15 0.85 0.15 0.85 0.15 0.85
4 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
5 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
6 0.15 0.15 0.85 0.85 0.15 0.15 0.85 0.85
7 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
8 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
9 0.15 0.15 0.15 0.15 0.85 0.85 0.85 0.85
10 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
11 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
12 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
13 0.10 0.50 0.50 0.90 0.10 0.50 0.50 0.90
14 0.10 0.50 0.10 0.50 0.50 0.90 0.50 0.90
15 0.50 0.90 0.50 0.90 0.50 0.90 0.50 0.90
16 0.10 0.10 0.35 0.35 0.65 0.65 0.90 0.90
17 0.65 0.65 0.90 0.90 0.65 0.65 0.90 0.90
18 0.65 0.65 0.65 0.65 0.90 0.90 0.90 0.90

Table 3.
Simulation study 2: the Q-matrix and item response functions from a LCDM. The latent classes
are parametrized as follows: C1 =(0,0,0,0), C2 =(1,0,0,0), C3 =(0,1,0,0), C4 =(1,1,0,0), C5
=(0,0,1,0), C6 =(1,0,1,0), C7 =(0,1,1,0), C8 =(1,1,1,0), C9 =(0,0,0,1), C10 =(1,0,0,1), C11
=(0,1,0,1), C12 =(1,1,0,1), C13 =(0,0,1,1), C14 =(1,0,1,1), C15 =(0,1,1,1), C16 =(1,1,1,1).
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K = 3 K = 4
Sample Size 500 1000 2000 4000 2000 4000 8000
E1 80 100 100 100 78 100 100
E2(GIC1) 64 92 96 99 44 96 98
E3(GIC1) 58 64 68 82 63 66 85
E4(GIC1) 39 58 64 81 25 63 83
E2(GIC2) 72 98 99 100 53 97 99
E3(GIC2) 96 100 100 100 99 100 100
E4(GIC2) 72 98 99 100 53 97 99

Table 4.
Simulation study 2: the number of times among 100 replications that the evaluation criteria are
satisfied under different simulation settings

Item C1 C2 C3 C4 C5
1 0.95 0.95 0.34 0.95 0.34
2 0.87 0.87 0.10 0.87 0.10
3 0.66 0.79 0.03 0.79 0.03
4 0.57 0.89 0.20 0.89 0.20
5 0.10 0.63 0.10 0.63 0.10
6 0.07 0.22 0.07 0.22 0.15
7 0.17 0.65 0.17 0.65 0.17
8 0.14 0.64 0.14 0.64 0.14
9 0.00 0.21 0.00 0.00 0.21
10 0.14 0.91 0.14 0.14 0.91
11 0.09 0.83 0.09 0.09 0.83
12 0.05 0.47 0.05 0.47 0.47
13 0.00 0.25 0.00 0.05 0.25

π̂λ∗ 0.32 0.29 0.23 0.09 0.06

Table 5.
Social anxiety disorder data: the estimated item response functions and latent class distribution
of the selected model.
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Item Have you ever had a strong fear or avoidance of A1 A2 A3
1 speaking in front of other people? 1 0 0
2 taking part/ speaking in class? 1 0 0
3 taking part/ speaking at a meeting? 1 1 0
4 performing in front of other people? 1 1 0
5 being interviewed? 0 1 0
6 writing when someone watches? 0 1 1
7 taking an important exam? 0 1 0
8 speaking to an authority figure? 0 1 0
9 eating/drinking in front of other people? 0 0 1
10 having conversations with people you don’t know well? 0 0 1
11 going to parties/social gatherings? 0 0 1
12 dating? 0 1 1
13 being in a small group situation? 0 1 1

Table 6.
Social anxiety disorder data: the item contents and the reconstructed loading structure un-
der the latent class reparametrization C1 = (1, 0, 0), C2 = (1, 1, 1), C3 = (0, 0, 0), C4 =
(1, 1, 0), and C5 = (0, 0, 1).
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Appendix

A. Estimation via the Expectation-Maximization Algorithm

We propose to use the expectation-maximization (EM) algorithm combined with

the coordinate descent algorithm for the computation of the regularized estimator in

(10) for given λ and M . The algorithm guarantees a monotone increasing objective

function. Given initial values c and π, the algorithm iterates between the E-step

and M-step until convergence.

A.1. E-step

In the E-Step, one computes the Q-function,

Q(c∗,π∗|c,π) = Ec,π{logL(c∗,π∗;Ri,mi, i = 1, ..., N) | Ri, i = 1, ..., N}. (14)

The expectation is taken with respect to mi, i = 1, ..., N . The notation Ec,π denotes

the conditional distribution corresponding to parameters c and π. The complete

data log-likelihood function is

logL(c∗,π∗;Ri,mi) =
N∑
i=1

J∑
j=1

Rj
i log c∗j,mi + (1−Rj

i ) log(1− c∗j,mi) +
N∑
i=1

log(π∗mi).

Under the posterior distribution, mi, i = 1, ..., N are independent and the posterior

distribution associated with the parameters c and π is

qim :=Pc,π(mi = m|Rl, l = 1...,M)

=Pc,π(mi = m|Ri)

∝
J∏
j=1

c
Rij
j,m(1− cj,m)1−Rijπm.
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The Q-function takes the following additive form,

Q(c∗,π∗|c,π)

=
J∑
j=1

N∑
i=1

M∑
m=1

qim
[
Rj
i log c∗j,m + (1−Rj

i ) log(1− c∗j,m)
]

+
M∑
m=1

N∑
i=1

qim log π∗m.
(15)

A.2. M-step

The M-step consists of maximizing the regularized Q-function with respect to

(c∗,π∗)

max
c∗,π∗

Q(c∗,π∗ | c,π)−Nκλ(c∗).

Note that in the objective function, the term

M∑
m=1

N∑
n=1

qim log π∗m

consists only of π∗, and for each j the term

N∑
i=1

M∑
m=1

q∗im

(
Rj
i log c∗j,m + (1−Rj

i ) log(1− c∗j,m)
)
−N

M−1∑
m=1

pSCADλ

(
c∗j,(m+1) − c∗j(m)

)
consists only of c∗j . Therefore, we can maximize the Q-function w.r.t. π∗ and each

c∗j independently. In particular,

π† = arg max
π∗

M∑
m=1

N∑
n=1

qim log π∗m

can be computed as follows

π†m =

∑N
i=1 qim∑M

l=1

∑N
i=1 qil

, m = 1, ...,M.
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We maximize

Qj(c
∗
j) =

M∑
m=1

ajm log c∗j,m + bjm log(1− c∗j,m)−N
M−1∑
m=1

pSCADλ

(
c∗j,(m+1) − c∗j(m)

)
, (16)

where ajm =
∑N

i=1 qimR
j
i and bjm =

∑N
i=1 qim(1−Rj

i ). Here, ajm represents the expected

number of respondents who are from latent class m and have responded correctly to

item j, and bjm represents the expected number of respondents who are from latent

class m and have responded incorrectly to item j, given the responses and the current

parameter estimates.

Let

c†j = arg max
cj

Qj(cj). (17)

We first show the result for the order of c†j,m,m = 1, ...,M.

Proposition 1. Let x∗j,m = ajm
ajm+bjm

and c†j,m be defined in (17), j = 1, ..., J , m =

1, ...,M . Then for each j, the order of c†j,1, ..., c
†
j,M is the same as that of x∗j,1, ..., x

∗
j,M .

That is, for l 6= s, 1 ≤ l, s ≤M , if x∗j,l ≥ x∗j,s then c†j,l ≥ c†j,s.

Because of this proposition, the computation in (17) is greatly simplified. That is,

instead of looking for the solution on the whole domain [0, 1]M , we only need to focus

on a much smaller subspace (whose volume is 1/(M !)) that is decided by the order of

x∗j,1, ..., x
∗
j,M . On knowing the order of c†j,1, ..., c

†
j,M , we parameterize the maximization

problem by the order statistics. For instance, if x∗j,1 < ... < x∗j,M , then c†j,(m) = c†j,m.

In this case, we write

Qr
j(c
∗
j,(1), d1, ..., dM−1) =

M∑
m=1

[
ajm log

(
c∗j,(1) +

m−1∑
l=1

dl

)
+ bjm log

(
1− c∗j,(1) −

m−1∑
l=1

dl

)]
−N

M−1∑
m=1

pSCADλ (dm),
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where dl = c∗j,(l+1) − c∗j,(l). Then we apply the coordinate descent algorithm to

the reparametrized function Qr
j(cj,(1), d1, ..., dM−1) subject to the constraint that

cj,(1), d1, ..., dM−1 ≥ 0 and cj,(1) +
∑M−1

m=1 dm ≤ 1. For more details about the co-

ordinate descent algorithm, see Friedman et al. (2010).

B. Proof of Proposition 1

Proof. For simplicity of notation, we assume M = 2 and x∗j,1 ≤ x∗j,2. For M > 2,

the proof is similar. Assume to the contrary that c†j,1 > c†j,2. Then according to (17)

Qj(c
†
j,1, c

†
j,2) ≥ Qj(c

†
j,1, c

†
j,1) and Qj(c

†
j,1, c

†
j,2) ≥ Qj(c

†
j,2, c

†
j,2).

According to (16), this can be simplified to

aj2 log c†j,2 + bj2 log(1− c†j,2)− 2pSCADλ (c†j,1 − c
†
j,2) ≥ aj2 log c†j,1 + bj2 log(1− c†j,1)

(18)

aj1 log c†j,1 + bj1 log(1− c†j,1)− 2pSCADλ (c†j,1 − c
†
j,2) ≥ aj1 log c†j,2 + bj1 log(1− c†j,2)

(19)

Because pSCADλ (c†j,1 − c†j,2) ≥ 0, (18) and (19) are still true by removing the term

−2pSCADλ (c†j,1 − c
†
j,2). According to the definition of x∗j,1 and x∗j,2, we have

x∗j,2 log c†j,2 + (1− x∗j,2) log(1− c†j,2) ≥ x∗j,2 log c†j,1 + (1− x∗j,2) log(1− c†j,1)

x∗j,1 log c†j,1 + (1− x∗j,1) log(1− c†j,1) ≥ x∗j,1 log c†j,2 + (1− x∗j,1) log(1− c†j,2)

Adding these two inequalities up gives

(x∗j,2 − x∗j,1)
(

log c†j,2 − log(1− c†j,2)− log c†j,1 + log(1− c†j,1)
)
> 0.
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Therefore

log c†j,2 − log(1− c†j,2) > log c†j,1 − log(1− c†j,1). (20)

However, the function log x − log(1 − x) is strictly increasing for x ∈ (0, 1), so (20)

is impossible. This finishes the proof.

C. Proof of Theorem 1

Proof. Throughout the proof, we write aN = o(bN) for two sequence of vectors

aN and bN if ‖aN‖/‖bN‖ tend to zero and aN = O(bN) if ‖aN‖/‖bN‖ is bounded

when N varies. Moreover, for two sequences of random vectors aN and bN , we write

aN = OP (bN) if ‖aN‖/‖bN‖ converges to zero in probability and aN = OP (bN) if

‖aN‖/‖bN‖ is tight in probability. To simplify the notation, we denote the true model

parameters as (c,π) and write θ = (c,π−1), θ̂ = (ĉλN , π̂λN
−1 ) and θ′ = (c′,π′−1). Note

that the event ‖θ̂ − θ‖ ≥ C√
N

implies

sup
‖θ′−θ‖≥ C√

N
,θ′∈Θ

{l(θ′)−Nκλ(c′)} ≥ l(θ)−Nκλ(c).

Therefore, it is sufficient to show that for each ε > 0, there exists a sufficiently large

constant C, such that

lim sup
N→∞

P
(

sup
‖θ′−θ‖≥ C√

N
,θ′∈Θ

{l(θ′)−Nκλ(c′)} ≥ l(θ)−Nκλ(c)
)
≤ ε.

We split the probability above into two parts,

P
(

sup
‖θ′−θ‖≥ C√

N
,θ′∈Θ

{l(θ′)−Nκλ(c′)} ≥ l(θ)−Nκλ(c)
)
≤ I1 + I2,

where

I1 = P
(

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)−NκλN (c′)} ≥ l(θ)−NκλN (c)
)
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and

I2 = P
(

sup
C√
N
≤‖θ′−θ‖≤ε1,θ′∈Θ

{l(θ′)−NκλN (c′)} ≥ l(θ)−NκλN (c)
)
.

Here, ε1 is a positive constant independent of N , whose value will be chosen later.

We present upper bounds for I1 and I2 separately. The next lemma, whose proof is

given in Appendix E, provides an upper bound for I1.

Lemma 1. For any fixed ε1 > 0, there exists a positive constant ε2 (depending

on ε1) such that for sufficiently large N , we have I1 ≤ e−ε2N .

We proceed to the I2 term. We first analyze

sup
C√
N
≤‖θ′−θ‖≤ε1,θ′∈Θ

{l(θ′)− l(θ)−NκλN (c′) +NκλN (c)}.

It is straightforward to check that for θ′ ∈ Θ, there exists a sufficiently large positive

constant η, such that

‖∇l(θ′)‖ ≤ ηN, ‖∇2l(θ′)‖ ≤ ηN and ‖∇3l(θ′)‖ ≤ ηN, (21)

where∇2l and∇3l denote vectors consisting of all second and third partial derivatives

of l, respectively. According to (21), we compute the Taylor expansion of l(θ′) around

θ for θ′ ∈ Θ

l(θ′)− l(θ)

=(θ′ − θ)>∇l(θ)− 1

2
N(θ′ − θ)>I(θ)(θ′ − θ)

+OP (‖θ′ − θ‖2
√
N) +O(‖θ′ − θ‖3N).

(22)

In (22), the term OP (‖θ′−θ‖2
√
N) corresponds to the remainder term for the second

derivatives at θ and the term O(‖θ′ − θ‖3N) corresponds to the terms involving
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third derivatives. Note that for ‖θ′ − θ‖ ≤ ε1, there exists a positive constant

C2, independent of ε1, such that O(‖θ′ − θ‖3N) ≤ C2ε1‖θ′ − θ‖2N . Thus, the

O(‖θ′ − θ‖3N) term is dominated by the second term, that is,

−1

2
N(θ′−θ)>I(θ)(θ′−θ) +O(‖θ′−θ‖3N) ≤ −1

2
‖θ′−θ‖2N( inf

‖v‖=1
v>I(θ)v−ε1C2).

(23)

Also note that OP (‖θ′−θ‖2
√
N) = OP (‖θ′−θ‖

√
N), and ∇l(θ) = OP (

√
N). Thus,

(θ′ − θ)>∇l(θ) +OP (‖θ′ − θ‖2
√
N) = OP (‖θ′ − θ‖

√
N). (24)

Combining (22), (23) and (24) gives

sup
C√
N
≤‖θ′−θ‖≤ε1

l(θ′)− l(θ)

≤ sup
C√
N
≤‖θ′−θ‖≤ε1

‖θ′ − θ‖OP (
√
N)− ‖θ

′ − θ‖2N

2
( inf
‖v‖=1

v>I(θ)v − ε1C2),

which is further bounded above by

sup
C√
N
≤‖θ′−θ‖≤ε1

l(θ′)− l(θ) ≤ C√
N
OP (
√
N)− C2

2
( inf
‖v‖=1

v>I(θ)v − ε1C2).

Therefore, by choosing ε1 sufficiently small, we have

sup
C√
N
≤‖θ′−θ‖≤ε1

l(θ′)− l(θ) ≤ −C
2

4
inf
‖v‖=1

v>I(θ)v +OP (1)C. (25)

We proceed to the penalty term. For simplicity of discussion, we only state the proof

for the case where there is no j ∈ {1, ..., J} such that cj,1 = cj,2 = ... = cj,M . That

is, all items have discrimination power. When there are items that have the same

item response function among all the latent classes, the proof is similar, and is thus
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omitted.

Define a function gap(β) = min{|βi − βj| : βi 6= βj, i = 1, ...,M, j = 1, ...,M},

where β = (β1, ..., βM) ∈ RM and there exist i and j such that βi 6= βj. Note

that the difference of order statistics cj,(m+1) − cj,(m) is either zero or greater than

gap(cj)

4
. Recall in the definition (9), pSCADλn

(x) = (a+1)2λ2

2
for all |x| ≥ aλ. Thus, the

penalty term pSCADλN
(cj,(m+1)−cj,(m)) is either 0 (when cj,(m+1)−cj,(m) = 0) or (a+1)2λ2

2

(when cj,(m+1) − cj,(m) > 0) for N sufficiently large such that λN <
min1≤j≤J gap(cj)

4a
.

Therefore,

κλN (c)

=
J∑
j=1

M−1∑
m=1

pλN (cj,(m+1) − cj,(m)) =
(a+ 1)2λ2

2

J∑
j=1

Card({m : cj,(m+1) − cj,(m) > 0}),

(26)

where Card(·) denotes the number of elements in a set. On the other hand, we have

the following lemma on κλN (c′), whose proof is given in Appendix E,.

Lemma 2. If ‖c′−c‖ < 1
4

min1≤j≤J gap(cj) and λN ≤ 1
4a

min1≤j≤J gap(cj), then

κλN (c′) ≥ (a+ 1)2λ2

2

J∑
j=1

Card({m : cj,(m+1) − cj,(m) > 0}).

The above lemma and (26) show that κλN (c′)− κλN (c) ≥ 0 for λN ≤ min1≤j≤J gap(cj)

4a
.

Combine this with (25), we have that for sufficiently large N ,

sup
C√
N
≤‖θ′−θ‖≤ε1

{l(θ′)− l(θ)−N(κλN (c′)− κλN (c))} ≤ −C
2

4
inf
‖v‖=1

v>I(θ)v +OP (1)C.

Note that inf‖v‖=1 v
>I(θ)v is equal to the smallest eigenvalue of I(θ), which is positive



49

by Assumption A3. Therefore, we have

I2 = P
(

sup
C√
N
≤‖θ′−θ‖≤ε1,θ′∈Θ

{l(θ′)−NκλN (c′)} ≥ l(θ)−NκλN (c)
)
≤ ε

2

for C sufficiently large. Combining our results for I1 and I2, we conclude the proof.

D. Proof of Theorem 2

Proof. We first present a useful lemma, whose proof is given in Appendix E.

Lemma 3. There exist constants C and C1 such that

P
(

sup
‖θ′−θ‖≤ C√

N

‖∇l(θ′)‖ ≤ C1

√
N, ‖θ̂ − θ‖ ≤ C√

N

)
> 1− ε

for sufficiently large N .

Let the event Ω1 =
{

sup‖θ′−θ‖≤ C√
N
‖∇l(θ′)‖ ≤ C1

√
N, ‖θ̂−θ‖ ≤ C√

N

}
. It is sufficient

to show that on the event Ω1, ĉλN and c have the same partially merged pattern for

N large enough. We prove this by contradiction. Assume that on the contrary, the

partially merged pattern of ĉλN and c are different, we will construct a θ̃ ∈ Θ such

that

l(θ̃)−NκλN (c̃) > l(θ̂)−NκλN (ĉλN ), (27)

which contradicts the definition of θ̂. Without loss of generality, assume that ĉλN1 and

c1 have different partially merged patterns. That is, there exist m1,m2 ∈ {1, ...,M}

such that c1,m1 ≤ c1,m2 but ĉλN1,m1
> ĉλN1,m2

. There are two cases: (1) c1,m1 < c1,m2

and (2) c1,m1 = c1,m2 . Because on the event Ω1, |ĉλN1,mi
− c1,mi | < C√

N
(i = 1, 2), the

first case is not possible when N is sufficiently large. Thus, we only need to consider

the second case where c1,m1 = c1,m2 and ĉλN1,m1
> ĉλN1,m2

. Define two sets of indices as
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follows.

A = {m2 ∈ {1, ...,M} : ∃m1 ∈ {1, ...,M} such that c1,m1 = c1,m2 and ĉλN1,m1
> ĉλN1,m2

},

and

B = {l ∈ {1, ...,M} : ĉλN1,l = min
m∈A

ĉλN1,m}.

The set B is a subset of A, collecting the indices that ĉλN1,m is minimized. Due to the

assumption above, both A and B are non-empty sets. Now we construct c̃ as follows.

c̃1,m =

ĉλN1,m + ∆ if m ∈ B

ĉλN1,m if m /∈ B
,

where ∆ is a sufficiently small positive number that will be chosen later. For j =

2, ..., J and m = 1, ...,M , we keep c̃j,m = ĉλNj,m. We also set π̃−1 = π̂λN
−1 . That is, θ̃ and

θ̂ are the same except for c̃1,m where m ∈ B. We proceed to compare l(θ̃)−NκλN (c̃)

and l(θ̂) − NκλN (ĉλN ). Because θ̃ and c̃ depend on ∆, we write θ̃(∆) and c̃(∆) to

indicate this dependence.

Lemma 4. On the event Ω1, for N sufficiently large, κλN (c̃(∆)) is differentiable

at 0. Furthermore,
dκλN (c̃(∆))

d∆
= −λN .

The lemma above allows us to take the derivative of q(∆) = l(θ̃(∆))−NκλN (c̃(∆))

with respect to ∆ on the event Ω1,

q̇(0) =
∑
m∈B

∂l(θ̂)

∂c1,m

+NλN .
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Recall that on event Ω1, |
∑

m∈B
∂l(θ̂)
∂c1,m
| ≤ C1

√
NCard(B). This, together with

Lemma 4, gives

q̇(0) ≥
√
N(−C1Card(B) +

√
NλN).

Note that
√
NλN → ∞ as N → ∞. Thus, q̇(0) > 0 for sufficiently large N . This

implies that q(∆) > q(0) = l(θ̂) − NκλN (ĉλN ) for sufficiently small positive ∆. It

further implies that (27) holds for such θ̃(∆), contradicting the definition of θ̂.

E. Proof of supporting Lemmas

Proof of Lemma 1. Note that the event

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)−NκλN (c′)} ≥ l(θ)−NκλN (c)

implies

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)− l(θ)} ≥ N inf
θ′∈Θ
{κλN (c′)− κλN (c)}.

Thus, we have an upper bound for the probability

P
(

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)−NκλN (c′)} ≥ l(θ)−NκλN (c)
)

≤P
(

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)− l(θ)} ≥ N inf
θ′∈Θ
{κλN (c′)− κλN (c)}

)
.

(28)

According to the definition of κλN , we have 0 ≤ κλN (c′) ≤ J(M − 1) × (a+1)2λ2N
2

.

Therefore, (28) is further bounded above by

P
(

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)−NκλN (c′)} ≥ l(θ)−NκλN (c)
)

≤P
(

sup
‖θ′−θ‖≥ε1,θ′∈Θ

{l(θ′)− l(θ)} ≥ C3Nλ
2
N

)
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where C3 = J(M − 1) × (a+1)2

2
is a constant. Note that λN → 0 as N → ∞, so the

right-hand side of the above display is the type I error probability of the generalized

likelihood ratio test with a eo(N) cut-off value for testing

H0 : θ′ = θ against H1 : ‖θ′ − θ‖ ≥ ε1,θ
′ ∈ Θ, (29)

whose exponential decay rate has been established in Lemma 3 in Li et al. (2016), that

there exists a rate ρ > 0 such that P
(

sup‖θ′−θ‖≥ε1,θ′∈Θ{l(θ′) − l(θ)} ≥ C2Nλ
2
N

)
=

e−(ρ+o(1))N . Choosing ε2 to be positive and smaller than ρ, we conclude our proof.

Proof of Lemma 2. Because κλN (c′) =
∑J

j=1 pλN (c′j), it is sufficient to show that

for each j ∈ {1, ..., J}

pλN (c′j) ≥
(a+ 1)2λ2

2
Card({m : cj,(m+1) − cj,(m) > 0}).

Similar to the discussion proceeding (26), we only need to prove that for each j ∈

{1, .., J},

Card({m : c′j,(m+1) − c′j,(m) ≥ aλN}) ≥ Card({m : cj,(m+1) − cj,(m) > 0}). (30)

We first prove that for each m ∈ {1, ...,M − 1}, if cj,(m+1) − cj,(m) > 0, then there

exists m′ ∈ {1, ...,M − 1} such that

|c′j,m′ − cj,(m)| ≤
1

4
gap(cj) and min{c′j,l − c′j,m′ : c′j,l > c′j,m′} ≥ aλN . (31)

To proceed, we define a set D = {l : cj,l = cj,(m)}. We choose m′ ∈ D such that

c′j,m′ = maxk∈D c
′
j,k. Recall that we assume ‖c′ − c‖ ≤ 1

4
min1≤j≤J gap(cj). Thus,

we have |c′j,m′ − cj,(m)| = |c′j,m′ − cj,m′ | ≤ 1
4
gap(cj). Moreover, for each l such that
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c′j,l > c′j,m′ , l /∈ D, due to the choice of m′. We then show

c′j,l > cj,(m) +
1

2
gap(cj)

by contradiction. If c′j,l ≤ cj,(m) + 1
2
gap(cj), then

cj,l < cj,(m) + gap(cj). (32)

Since cj,(m+1) ≥ cj,(m) + gap(cj), combining with (32) implies that

cj,l = cj,(m) or cj,l < cj,(m).

On one hand, cj,l = cj,(m) contradicts l /∈ D. On the other, if cj,l < cj,(m), then

cj,l ≤ cj,(m−1) and

c′j,l ≤ cj,l +
1

4
gap(cj) ≤ cj,(m−1) +

1

4
gap(cj) ≤ c′j,m′ ,

contradicting c′j,l > c′j,m′ . Therefore,

c′j,l > cj,(m) +
1

2
gap(cj) ≥ c′j,m′ +

1

4
gap(cj) ≥ c′j,m′ + aλN ,

when λN ≤ 1
4a

minj∈{1,...,J} gap(cj). Therefore, (31) holds for λN ≤
1
4a

minj∈{1,...,J} gap(cj). Notice that for different m such that cj,(m+1) − cj,(m) > 0,

the corresponding m′ such that (31) holds are distinct. Thus, (30) is proved.

Proof of Lemma 3. According to Theorem 1, for each ε, there exists a constant

C such that for sufficiently large N ,

P (‖θ̂ − θ‖ > C√
N

) <
ε

2
. (33)
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Now, for ‖θ′ − θ‖ ≤ C√
N

, we expand ∇l(θ′) around θ,

‖∇l(θ′)−∇l(θ)‖ ≤ sup
‖θ̃−θ‖≤ C√

N

‖∇2l(θ̃)‖‖θ′ − θ‖.

By (21) the right-hand side of the above display is further bounded above by ηN ×
C√
N

= Cη
√
N . Thus, for ‖θ′ − θ‖ ≤ C√

N
,

‖∇l(θ′)‖ ≤ ‖∇l(θ)‖+ Cη
√
N.

Taking the supremum with respect to θ′ in the above display, we have

sup
‖θ′−θ‖≤ C√

N

‖∇l(θ′)‖ ≤ ‖∇l(θ)‖+ Cη
√
N.

Note that ‖∇l(θ)‖ = OP (
√
N). This and the above display yield

sup
‖θ′−θ‖≤ C√

N

‖∇l(θ′)‖ = OP (
√
N).

Consequently, we can choose C1 sufficiently large such that

P ( sup
‖θ′−θ‖≤ C√

N
,

‖∇l(θ′)‖ > C1

√
N) <

ε

2
.

We combine this with (33), concluding the proof.

Proof of Lemma 4. Let K = Card({ĉλN1,1 , ..., ĉ
λN
1,M}) be the number of distinct

values in ĉλN1 . Define the vector of ordered distinct values in ĉλN1 as γ̂ = (γ̂1, ..., γ̂K)T

such that γ̂1 < γ̂2 < ... < γ̂K and {γ̂1, ..., γ̂K} = {ĉλN1,1 , ..., ĉ
λN
1,M}. We define γ̃ in

the same manner. Let k∗ satisfy γ̂k∗ = minl∈A ĉ
λN
1,l . We choose |∆| < min{γ̂k∗+1 −

γ̂k∗ , γ̂k∗ − γ̂k∗−1}. Then c̃1 and ĉλN1 have the same partially merged pattern and for
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k = 1, ..., K

γ̃k =

γ̂k if k 6= k∗,

γ̂k + ∆ if k = k∗.

(34)

The penalty term for c̃1 is

pλN (c̃1) =
K−1∑
k=1

pSCADλN
(γ̃k+1 − γ̃k).

By (34), the above display becomes

pλN (c̃1) = pSCADλN
(γ̂k∗+1−γ̂k∗−∆)+pSCADλN

(γ̂k∗+∆−γ̂k∗−1)+
∑

k/∈{k∗,k∗−1}

pSCAD(γ̂k+1−γ̂k),

where we set pSCADλN
(γ̂k∗ + ∆ − γ̂k∗−1) to be 0 if k∗ = 1. We compare this with the

penalty term of ĉλN1

pλN (c̃1)− pλN (ĉλN1 ) = q1(∆) + q2(∆), (35)

where we define q1(∆) = pSCADλN
(γ̂k∗+1 − γ̂k∗ −∆)− pSCADλN

(γ̂k∗+1 − γ̂k∗) and q2(∆) =

pSCADλN
(γ̂k∗ + ∆ − γ̂k∗−1) − pSCADλN

(γ̂k∗ − γ̂k∗−1). We will show that q̇1(0) = −λN
and q̇2(0) = 0. To proceed, we first analyze γ̂k∗+1 − γ̂k∗ . Let m∗2 satisfy ĉλN1,m∗2

=

minl∈A ĉ
λN
1,l = γ̂k∗ . According to the definition of the set A, there exists m1 such that

ĉλN1,m1
> ĉλN1,m∗2

and c1,m1 = c1,m∗2
. Note that ĉλN1,m1

≤ c1,m1 + C√
N

and ĉλN1,m∗2
≥ c1,m∗2

− C√
N

on the event Ω1, so ĉλN1,m1
≤ ĉλN1,m∗2

+ 2C√
N

. Recall that γ̂k∗ = minl∈A ĉ
λN
1,l = ĉλN1,m∗2

and

γ̂k∗+1 ≤ ĉλN1,m1
. Thus, γ̂k∗+1 − γ̂k∗ ≤ 2C√

N
. Because λN

√
N → ∞ as N grows large,

2C√
N
< λN

2
for sufficiently large N . Consequently, for |∆| < C√

N
,

|γ̂k∗+1 − γ̂k∗ −∆| < λN . (36)
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According to the definition of pSCADλN
in (9), and (36), we have

q1(∆) = λN |γ̂k∗+1 − γ̂k∗ −∆| for |∆| < C√
N
.

Because γ̂k∗+1 − γ̂k∗ > 0, for |∆| < min{γ̂k∗+1 − γ̂k∗ , C√
N
},

q1(∆) = λN(γ̂k∗+1 − γ̂k∗ −∆).

Therefore,

q̇1(0) = −λN .

Now we proceed to the analysis of q2. If k∗ = 1, then q2(∆) is set to 0, and so is

q̇2(∆). We proceed to the case where k∗ ≥ 2. Choose m∗1 such that ĉλN1,m∗1
= γ̂k∗−1.

As ĉλN1,m∗1
= γ̂k∗−1 < γ̂k∗ = ĉλN1,m∗2

, we know m∗1 /∈ A and c1,m∗1
6= c1,m∗2

because of the

definition of A and B. Furthermore, according to the analysis below (27), it is not

possible to have c1,m∗1
> c1,m∗2

on event Ω1. Thus, we have c1,m∗1
< c1,m∗2

. Now let N

be sufficiently large such that 2C√
N
<

c1,m∗2
−c1,m∗1
2

, then ĉλN1,m∗2
− ĉλN1,m∗1

>
c1,m∗2

−c1,m∗1
2

on

the event Ω1. Thus, for |∆| <
c1,m∗2

−c1,m∗1
4

we have

γ̂k∗ + ∆− γ̂k∗−1 >
c1,m∗2

− c1,m∗1

4
.

By the definition in (9), for N sufficiently large such that aλN <
c1,m∗2

−c1,m∗1
4

,

q2(∆) = pSCADλN
(γ̂k∗ + ∆− γ̂k∗−1) = 0 for |∆| <

c1,m∗2
− c1,m∗1

4
.

Thus, q̇2(0) = 0. Combining this with q̇1(0) = −λN and (35), d
d∆
{pλN (c̃1) −

pλN (ĉλN1 )}|∆=0 = −λN . We conclude the proof by noting that κλN (c̃) =
∑J

j=1 pλN (c̃j)

and that c̃j = ĉλNj for j ∈ {2, ..., J}.


