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Abstract

Diagnostic classification models have recently gained prominence in educa-

tional assessment, psychiatric evaluation, and many other disciplines. Central

to the model specification is the so-called Q-matrix that provides a qualitative

specification of the item-attribute relationship. In this paper, we develop the-

ories on the identifiability for the Q-matrix under the DINA and the DINO

models. We further propose an estimation procedure for the Q-matrix through

the regularized maximum likelihood. The applicability of this procedure is not

limited to the DINA or the DINO model and it can be applied to essentially all

Q-matrix based diagnostic classification models. Simulation studies show that

the proposed method admits high probability recovering the true Q-matrix.

Furthermore, two case studies are presented. The first case is a data set on

fraction subtraction (educational application) and the second case is a subsam-

ple of the National Epidemiological Survey on Alcohol and Related Conditions

concerning the social anxiety disorder (psychiatric application).
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1 Introduction

Cognitive diagnosis has recently gained prominence in educational assessment, psy-

chiatric evaluation, and many other disciplines (Rupp and Templin, 2008b; Rupp

et al., 2010). A cognitive diagnostic test, consisting of a set of items, provides each

subject with a profile detailing the concepts and skills (often called “attributes”) that

he/she masters. For instance, teachers identify students’ mastery of different skills

(attributes) based on their solutions (responses) to exam questions (items); psychi-

atrists/psychologists learn patients’ presence/absence of disorders (attributes) based

on their responses to diagnostic questions (items). Various diagnostic classification

models (DCM) have been developed in the literature. A short list includes the con-

junctive DINA and NIDA models (Junker and Sijtsma, 2001; Tatsuoka, 2002; de la

Torre and Douglas, 2004; de la Torre, 2011), the reparameterized unified/fusion model

(RUM) (DiBello et al., 1995), the compensatory DINO and NIDO models (Templin

and Henson, 2006), the rule space method (Tatsuoka, 1985, 2009), the attribute hi-

erarchy method (Leighton et al., 2004), and Generalized DINA models (de la Torre,

2011); see also Henson et al. (2009); Rupp et al. (2010) for more developments and

approaches to cognitive diagnosis. The general diagnostic model (von Davier, 2005,

2008; von Davier and Yamamoto, 2004) provides a framework for the development of

diagnostic models.

A common feature of these models is that the probabilistic distribution of subjects’

responses to items is governed by their latent attribute profiles. Upon observing the

responses, one can make inferences on the latent attribute profiles. The key compo-

nent in the model specification is the relationship between the observed item responses

and the latent attribute profiles. A central quantity in this specification is the so-

called Q-matrix. Suppose that there are J items measuring K attributes. Then, the

Q-matrix is a J by K matrix with zero-one entries each of which indicates whether

an item is associated to an attribute. In the statistical analysis of diagnostic classifi-
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cation models, it is customary to work with a prespecified Q-matrix; for instance, an

exam maker specifies the set of skills tested by each exam problem (Tatsuoka, 1990).

However, such a specification is usually subjective and may not be accurate. The

misspeficiation of the Q-matrix could possibly lead to serious lack of fit and further

inaccurate inferences on the latent attribute profiles.

In this paper, we consider an objective construction of the Q-matrix, that is, es-

timating it based on the data. This estimation problem becomes easy or even trivial

if the item responses and the attribute profiles are both observed. However, sub-

jects’ attribute profiles are not directly observed and their information can only be

extracted from item responses. The estimation of the Q-matrix should be solely based

on the dependence structure among item responses. Due to the latent nature of the

attribute profiles, when and whether the Q-matrix and other models parameters can

be estimated consistently by the observed data under various models specifications

is a challenging problem. Furthermore, theoretical results on the identifiability usu-

ally do not imply practically feasible estimation procedures. The construction of an

implementable estimation procedure is the second objective of this paper.

Following the above discussion, the main contribution of this paper is two-fold.

First, we provide identifiability results for the Q-matrix. As we will specify in the sub-

sequent sections, the Q-matrix estimation is equivalent to a latent variable selection

problem. Nontrivial conditions are necessary to guarantee the consistent identifica-

tion of Q-matrix. We present the results for both the DINA and the DINO models

that are two important diagnostic classification models. The theoretical results pro-

vide the possibility of estimating the Q-matrix, in particular, the consistency of the

maximum likelihood estimator (MLE). However, due to the discrete nature of the

Q-matrix, MLE requires a substantial computational overhead and it is practically

infeasible. The second contribution of this paper is the proposal of a computation-

ally affordable estimator. Formulating Q-matrix estimation into a latent variable
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selection problem, we propose an estimation procedure via the regularized maximum

likelihood. This regularized estimator can be computed by means of a combination of

the expectation-maximization algorithm and the coordinate descent algorithm. We

emphasize that the applicability of this estimator is not limited to the DINA or the

DINO model for which the theoretical results are developed. It can be applied to a

large class of diagnostic classification models.

Statistical inference of Q-matrix has been largely an unexplored area in the cogni-

tive assessment literature. Nevertheless, there are a few works related to the current

one. Identifiability of the Q-matrix for the DINA model under a specific situation is

discussed by Liu et al. (2013). The results require a complete knowledge of the guess-

ing parameter. The theoretical results in the current paper are a natural extension

of Liu et al. (2013) to generally all DINA models and further to the DINO model.

Furthermore, various diagnosis tools and testing procedures have been developed in

the literature (de la Torre and Douglas, 2004; Liu et al., 2007; Rupp and Templin,

2008a; de la Torre, 2008), none of which, however, addresses the estimation problem.

In addition to the estimation of the Q-matrix, we discuss the estimation of other

model parameters. Although there have been results on estimation (Junker, 1999;

Rupp and Templin, 2008b; de la Torre, 2009; Rupp et al., 2010), formal statistical

analysis, including rigorous results on identifiability and asymptotic properties, has

not been developed.

The rest of the paper is organized as follows. We present the theoretical results for

the Q-matrix and other model parameters under DINA and DINO models in Section

2. Section 3 presents a computationally affordable estimation procedure based on

regularized maximum likelihood. Simulation studies and real data illustrations are

presented in Sections 4 and 5. Detailed proofs are provided in the supplemental

material.
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2 The identifiability results

2.1 Diagnostic classification models

We consider that there are N subjects, each of whom responds to J items. To

simplify the discussion, we assume that the responses are all binary. The analysis

of other types of responses can be easily adapted. Diagnostic classification models

assume that subject’s responses to items are governed by his/her latent (unobserved)

attribute profile that is a K-dimensional vector, each entry of which takes values

in {0, 1}, that is, α = (α1, ..., αK) and αk ∈ {0, 1}. In the context of educational

testing, αk indicates the mastery of skill k. Let R = (R1, ..., RJ) denote the vector

of responses to the J items. Both α and R are subject-specific and we will later use

subscript to indicate different subjects, that is, αi and Ri are the latent attribute

profile and response vector of subject i for i = 1, ..., N .

The Q-matrix provides a link between the responses to items and the attributes.

In particular, Q = (qjk)J×K is a J × K matrix with binary entries. For each j

and k, qjk = 1 means that the response to item j is associated to the presence of

attribute k and qjk = 0 otherwise. The precise relationship depends on the model

parameterization.

We use θ as a generic notation for the unknown item parameters additional to

the Q-matrix. Given a specific subject’s profile α, the response Rj to item j follows

a Bernoulli distribution

P (Rj|Q,α,θ) = (cj,α)R
j

(1− cj,α)1−Rj

, (1)

where cj,α is the probability for subjects with attribute profile α to provide a positive

response to item j, i.e.,

cj,α = P (Rj = 1|Q,α,θ).
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The specific form of cj,α additionally depends on the Q-matrix, the item parame-

ter vector θ, and the model parameterization. Conditional on α, (R1, ..., RJ) are

jointly independent. We further assume that the attribute profiles are i.i.d. following

distribution

pα = P (αi = α).

Let p = (pα : α ∈ {0, 1}K). In what follows, we present a few examples.

Example 1 (DINA model, Junker and Sijtsma (2001)) For each item j and

attribute vector α, we define the ideal response

ξjDINA(α, Q) =
K∏
k=1

(αk)
qjk = I(αk ≥ qjk for all k) (2)

that is, whether α has all the attributes required by item j. For each item, there

are two additional parameters sj and gj that are known as the slipping and guessing

parameters. The response probability cj,α takes the form

cj,α = (1− sj)ξ
j
DINA(α,Q)g

1−ξjDINA(α,Q)
j . (3)

If ξjDINA(α, Q) = 1 (the subject is capable of solving a problem), then the positive

response probability is 1 − sj; otherwise, the probability is gj. The item parameter

vector is θ = {sj, gj : j = 1, · · · , J}.

The DINA model assumes a conjunctive (non-compensatory) relationship among

attributes. It is necessary to possess all the attributes indicated by the Q-matrix to be

capable of providing a positive response. In addition, having additional unnecessary

attributes does not compensate for the lack of necessary attributes. The DINA model

is popular in the educational testing applications and is often employed for modeling

exam problem solving processes.
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Example 2 (NIDA model) The NIDA model admits the following form

cj,α =
K∏
k=1

[(1− sk)αkg1−αk
k ]qjk .

The problem solving involves multiple skills indicated by the Q-matrix. For each skill,

the student has a certain probability of implementing it: 1 − sj for mastery and gj

for non-mastery. The problem is solved correctly if all required skills have been imple-

mented correctly by the student, which leads to the above positive response probability.

The following reduced RUM model is also a conjunctive model, and it generalizes

the DINA and the NIDA models by allowing the item parameters to vary among

attributes.

Example 3 (Reduced NC-RUM model) Under the reduced noncompensatory repa-

rameterized unified model (NC-RUM), we have

cj,α = πj

K∏
k=1

(rjk)
qjk(1−αk), (4)

where πj is the correct response probability for subjects who possess all required at-

tributes and rj,k, 0 < rj,k < 1, is the penalty parameter for not possessing the kth

attribute. The corresponding item parameters are θ = {πj, rj,k : j = 1, · · · , J, k =

1, · · · , K}.

In contrast to the DINA, NIDA, and Reduced NC-RUM models, the follow-

ing DINO and C-RUM models assume compensatory (non-conjunctive) relationship

among attributes, that is, one only needs to possess one of the required attributes to

be capable of providing a positive response.

Example 4 (DINO model) The ideal response of the DINO model is given by

ξjDINO(α, Q) = 1−
K∏
k=1

(1− αk)qjk = I(αk ≥ qjk for at least one k). (5)

7



Similar to the DINA model, the positive response probability is

cj,α = (1− sj)ξ
j
DINO(α,Q)g

1−ξjDINO(α,Q)
j .

The DINO model is the dual model of the DINA model. The DINO model is often

employed in the application of psychiatric assessment, for which the positive response

to a diagnostic question (item) could be due to the presence of one disorder (attributes)

among several.

Example 5 (C-RUM model) The GLM-type parametrization with a logistic link

function is used for the compensatory reparameterized unified model (C-RUM), that

is

cj,α =
exp(βj0 +

∑K
k=1 β

j
kqjkαk)

1 + exp(βj0 +
∑K

k=1 β
j
kqjkαk)

. (6)

The corresponding item parameter vector is θ = {βjk : j = 1, · · · , J, k = 0, · · · , K}.

The C-RUM model is a compensatory model and one can recognize (6) as a structure

in multidimensional item response theory model or in factor analysis.

2.2 Some concepts of identifiability

We consider two matrices Q and Q′ that are identical if we appropriately rearrange

the orders of their columns. Each column in the Q-matrix corresponds to an at-

tribute. Reordering the columns corresponds to relabeling the attributes and it does

not change the model. Upon estimating the Q-matrix, the data does not contain

information about the specific meaning of each attribute. Therefore, one cannot

differentiate Q and Q′ solely based on data if there are identical up to a column

permutation. For this sake, we present the following equivalent relation.

Definition 1 We write Q ∼ Q′ if and only if Q and Q′ have identical column vectors

that could be arranged in different orders; otherwise, we write Q � Q′.
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Definition 2 We say that Q is identifiable if there exits an estimator Q̂ such that

lim
N→∞

P (Q̂ ∼ Q) = 1.

Given a response vector R = (R1, · · · , Rj)>, the likelihood function of a diagnostic

classification model can be written as

L(θ,p, Q) =
∑

α∈{0,1}K
pα

J∏
j=1

P (Rj = 1|θ,α, Q)R
j

(1− P (Rj = 1|θ,α, Q))1−Rj

.

Definition 3 (Definition 11.2.2 in Casella and Berger (2001)) For a given Q,

we say that the model parameters θ and p are identifiable if distinct values of (θ,p)

yield different distributions of R, i.e., there is no (θ̃, p̃) 6= (θ,p) such that L(θ,p, Q) ≡

L(θ̃, p̃, Q) for all R ∈ {0, 1}J .

Let Q̂ be a consistent estimator. Notice that the Q-matrix is a discrete parameter.

The uncertainty of Q̂ in estimating Q is not captured by its standard deviation or

confidence interval type of statistics. It is more natural to consider the probability

P (Q̂ � Q) that is usually very difficult to compute. Nonetheless, it is believed that

P (Q̂ � Q) decays exponentially fast as the sample size (total number of subjects)

approaches infinity. We do not pursue along this direction in this paper. The param-

eters θ and p are both continuous parameters. As long as they are identifiable, the

analysis falls into routine inference framework. That is, the maximum likelihood is

asymptotically normal centered around the true value and its covariance matrix is the

inverse of the Fisher information matrix. In what follows, we present some technical

conditions that will be referred to in the subsequent sections.

A1 α1,...,αN are independently and identically distributed random vectors follow-

ing distribution P (αi = α) = pα. The population is fully diversified meaning

that pα > 0 for all α.
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A2 All items have discriminating power meaning that 1− sj > gj for all j.

A3 The true matrix Q0 is complete meaning that {ei : i = 1, ..., k} ⊂ RQ, where RQ

is the set of row vectors of Q and ei is a row vector such that the i-th element

is one and the rest are zero.

A4 Each attribute is required by at least two items, that is,
∑J

j=1 qjk ≥ 2 for all k.

The completeness of the Q-matrix requires that for each attribute there exists at

least one item requiring only that attribute. If Q is complete, then we can rearrange

row and column orders (corresponding to reordering the items and attributes) such

that it takes the following form

Q =

 IK
· · ·

 , (7)

where matrix IK is the K×K identity matrix. Completeness is an important assump-

tion throughout the subsequent discussion. Without loss of generality, we assume that

the rows and columns of the Q-matrix have been rearranged such that it takes the

above form.

Remark 1 One of the main objectives of cognitive diagnosis is to identify subjects’

attribute profiles. It has been established that completeness is a sufficient and neces-

sary condition for a set of items to consistently identify all types of attribute profiles

for the DINA model when the slipping and the guessing parameters are both zero. It

is usually recommended to use a complete Q-matrix. More discussions regarding this

issue can be found in Chiu et al. (2009) and Liu et al. (2013).
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2.3 Identifiability of Q-matrix for the DINA and the DINO

model

We consider the models in Examples 1 and 4 and start the discussion by citing the

main result of Liu et al. (2013).

Theorem 1 (Theorem 4.2, Liu et al. (2013)) For the DINA model, if the guess-

ing parameters gj’s are known, under Conditions A1, A2, and A3, the Q-matrix is

identifiable.

The first result in this paper generalizes Theorem 1 to the DINO model with a

known slipping parameter. In addition, we provide sufficient and necessary conditions

for the identifiability of the slipping and guessing parameters.

Theorem 2 For the DINO model with known slipping parameters, under Conditions

A1, A2, and A3, the Q-matrix is identifiable; the guessing parameters gj and the

attribute population p are identifiable if and only if Condition A4 holds.

Furthermore, under the setting of Theorem 1, the slipping parameters sj and the

attribute population parameter p are identifiable if and only if Condition A4 holds.

Theorems 1 and 2 require the knowledge of the guessing parameter (the DINA

model) or the slipping parameter (the DINO model). They are applicable under

certain situations. In the educational testing context, some testing problems are

difficult to guess, for instance, the guessing probability of “879× 234 =?” is basically

zero; for multiple choice problems, if all the choices look “equally correct,” then the

guessing probability may be set to one over the number of choices.

We further extend the results to the situation when neither the slipping nor the

guessing parameters is known, for which additional conditions are required.

A5 Each attribute of the Q-matrix is associated to at least three items, that is,∑J
j=1 qjk ≥ 3 for all k.
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A6 Q has two complete submatrices, that is, for each attribute, there exists at least

two items requiring only that attribute. If so, we can appropriately arrange the

columns and rows such that

Q =


IK

IK

Q1

 . (8)

Theorem 3 Under the DINA and DINO models with (s,g,p) unknown, if Condi-

tions A1, 2, 5, and 6 hold, then Q is identifiable, i.e., one can construct an estimator

Q̂ such that for all (s,g,p)

lim
N→∞

P (Q̂ ∼ Q) = 1.

Theorem 4 Suppose that Conditions A1, 2, 5, and 6 hold. Then s, g, and p are all

identifiable.

Theorems 3 and 4 state the identifiability results of Q and other model parameters.

They are nontrivial generalizations of Theorems 1 and 2. As we mentioned in the

previous section, given that s, g, and p are identifiable, their estimation falls into

routine analysis. The asymptotic distribution of the maximum likelihood estimator

and generalized estimating equation estimators are all asymptotically multivariate

normal centered around the true values and their variances can be estimated either

by the Fisher information inverse or by the sandwich variance estimators.

The identifiability results for Q only state the existence of a consistent estimator.

We present the following corollary that the maximum likelihood estimator is consis-

tent under the conditions required by the above theorems. The maximum likelihood

estimator (MLE) takes the following form

Q̂MLE = arg sup
Q

sup
s,g,p

LN(s,g,p, Q), (9)
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where

LN(s,g,p, Q) =
N∏
i=1

∑
α∈{0,1}K

pα

J∏
j=1

(cj,α)R
j
i (1− cj,α)1−Rj

i .

Corollary 1 Under the conditions of Theorem 3, Q̂MLE is consistent. Moreover, the

maximum likelihood estimator of s,g,p

(ŝ, ĝ, p̂) = arg sup
s,g,p

LN(s,g,p, Q̂MLE) (10)

are asymptotically normal with mean centered at the true parameters and variance

being the inverse Fisher information matrix.

Proof of Corollary 1. Based on the results and proofs of Theorems 3 and 4, this

corollary is straightforward to develop by means of Taylor expansion of the likelihood.

We therefore omit the details.

To compute the maximum likelihood estimator Q̂MLE, one needs to evaluate the

profile likelihood, sups,g,p LN(s,g,p, Q), for all possible J by K matrices with binary

entries. The computation of Q̂MLE induces a substantial overhead and is practically

impossible to carry out. In the following section, we present a computationally feasible

estimator via the regularized maximum likelihood estimator.

Remark 2 The identifiability results are developed under the situation when there is

no information about Q at all. In practice, partial information about the Q-matrix is

usually available. For instance, a submatrix for some items (rows) is known and the

rest needs to be estimated. This happens when new items are to be calibrated based on

existing ones. Sometimes, a submatrix is known for some attributes (columns) and

that corresponding to other attributes needs to be learned. This happens when some

attributes are concrete and easily recognizable in a given item and the others are subtle

and not obvious. Under such circumstances, the Q-matrix is easier to estimate and

the identifiability conditions are weaker than those in Theorem 3. We do not pursue

the partial information situation in this paper.
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Remark 3 The equivalent relation “∼” defines the finest equivalent classes, up to

which Q can be estimated based on the data without assist of prior knowledge. In

this sense, Theorem 4 provides the strongest type of identifiability and in turn it also

requires some restrictive conditions. For instance, Condition A6 sometimes is difficult

to satisfy in practice and it usually leads to some over simplified items especially when

the number of attributes K is large. In that case, the Q-matrix can only be identified

up to some weaker equivalence classes. We leave this investigation for future study.

3 Q-matrix estimation via a regularized likelihood

3.1 Alternative representation of diagnostic classification mod-

els via generalized linear models

We first formulate the Q-matrix estimation as a latent variable selection problem and

then construct a computationally feasible estimator via the regularized maximum

likelihood, for which there is a large body of literature (Tibshirani, 1996, 1997; Fan

and Li, 2001). The applicability of this estimator is not limited to the DINA or

the DINO models and it can be applied to basically all Q-matrix based diagnostic

classification models in use. A short list of such models includes DINA-type models

(such as the DINA and HO-DINA models), RUM-type models (like the NC-RUM,

reduced NC-RUM, and C-RUM), and the saturated models, the log linear cognitive

diagnosis models (LCDM) and generalized DINA (Henson et al., 2009; Rupp et al.,

2010; de la Torre, 2011).

In the model specification, the key element is mapping a latent attribute α to

a positive response probability, cj,α, that additionally depends on the Q-matrix and

other model parameters. To motivate the general alternative representation with the

DINA model, we consider the following equivalent representation of the DINA model
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(c.f. (3))

cj,α = P (Rj = 1|α,βj)

= logit−1
{
βj0 +

K∑
k=1

βjkαk +
∑

1≤k1<k2≤K

βjk1k2αk1αk2 +
∑

1≤k1<k2<k3≤K

βjk1k2k3αk1αk2αk3

+ · · ·+ βj12...K

K∏
k=1

αk

}
, (11)

where logit(p) = log p
1−p for p ∈ (0, 1). On the right-hand side, inside the logit-inverse

function is a function of α = (α1, ..., αK) with all the interactions. Notice that the

response to item j is determined by the underlying attribute α. Thus, the above

generalized linear representation of cj,α is a saturated model, that is, all diagnostic

classification models admitting a K-dimensional attribute profile is a special case of

(11).

In what follows, we explain the adaptation of (11) to the DINA model and further

to a Q-matrix. The response distribution to each item under the DINA model could

be either Bernoulli (1 − sj) or Bernoulli (gj) depending on the ideal responses ξj.

Suppose that item j requires attributes 1, 2,..., and Kj, that is, qjk = 1 for all

1 ≤ k ≤ Kj and 0 otherwise. Then, the positive response probability (3) can be

written as

cj,α = logit−1
{
βj0 + βj12...Kj

Kj∏
k=1

αk

}
.

Thus, if αk = 1 for all 1 ≤ k ≤ Kj, then cj,α = 1− sj = e
βj
0+βj

12...Kj /(1 + e
βj
0+βj

12...Kj );

otherwise, cj,α = gj = eβ
j
0/(1+eβ

j
0). Generally speaking, if an item requires attributes

k1, ..., kj, the coefficients βj0 and βjk1...kj are non-zero and all other coefficients are

zero. Therefore, each row vector of the Q-matrix, corresponding to the attribute

requirement of one item, maps to two non-zero β-coefficients. One of these two

coefficients is the intercept βj0 and the other one is the coefficient for the product of

all the required attributes suggested by the Q-matrix.
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Therefore, each Q-matrix corresponds to a non-zero pattern of the regression

coefficients in (11). Estimating the Q-matrix is equivalent to identifying the non-zero

regression coefficients. There is a vast literature on variable and model selection, most

of which are developed for linear and generalized linear models. Technically speaking,

(11) is a generalized linear mixed model with α1, ..., αK and their interactions being

the random covariates and β being the regression coefficients. We would employ

variable selection methods for the Q-matrix estimation.

Notice that the current setup is different from the regular regression setting in that

the covariates αi’s are not directly observed. Therefore the variables to be selected

are all latent. The results in the previous section establish sufficient conditions under

which the latent variables can be consistently selected. The validity of the methods

proposed in this section stands on those theoretical results. We propose the usage

of the regularized maximum likelihood estimator. In doing so, we first present the

general form of diagnostic classification models. For each item j, the positive response

probability given the latent attribute profile admits the following generalized linear

form

cj,α = g−1([βj]>h(α)) (12)

where βj is a 2K-dimensional parameter (column) vector and h(α) is a 2K-dimensional

covariate (column) vector including all the necessary interaction terms. For instance,

in representation (11), h(α) is the vector containing 1, α1, α2,..., αK , and their

interactions of all orders α1α2, α1α3, ... For different diagnostic classification models,

we may choose different h(α) so that their coefficients correspond directly to a Q-

matrix. Examples will be given in the sequel. The likelihood function upon observing

αi for each subject is

L(β1, ...,βJ ; Ri,αi, i = 1, ..., N) =
∏
i,j

(cj,αi
)R

j
i (1− cj,αi

)1−Rj
i (13)
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where cj,α is given by (12). Notice that αi are i.i.d. following distribution pα. Then,

the observed data likelihood is

L(β1, ...,βJ ; Ri, i = 1, ..., N) =
N∏
i=1

∑
αi

[
pαi

J∏
j=1

(cj,αi
)R

j
i (1− cj,αi

)R
j
i

]
. (14)

To simplify the notation, we use L to denote both the observed and the complete

data likelihood (with different arguments) when there is no ambiguity. A regularized

maximum likelihood estimator of the β-coefficients is given by

(β̂
1
, ..., β̂

J
) = arg max

β1,...,βJ
log[L(β1, ...,βJ ; Ri, i = 1, ..., N)]−N

J∑
j=1

pλj(β
j) (15)

where pλj is some penalty function and λj is the regularization parameter. In this

paper, we choose pλ to be either the L1 penalty or the SCAD penalty (Fan and Li,

2001). In particular, to apply the L1 penalty, we let

pλ(β) = λ
k∑
k=1

|βk|

where β = (β1, ..., βk); to apply the SCAD penalty, we let

pλ(β) =
K∑
k=1

pSλ(βk).

The function pSλ(x) is defined as pSλ(0) = 0 and

dpSλ
dx

(x) = λ

{
I(x ≤ λ) +

max(0, aλ− x)

(a− 1)λ

}

for x > 0; for x < 0, the function is pSλ(x) = pSλ(−x). There is an additional “a”

parameter that is chosen to be a = 3.7 as suggested by Fan and Li (2001).
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On the consistency of the regularized estimator. A natural issue is whether

the consistency results developed in the previous section can be applied to the regu-

larized estimator. The consistency results for the regularized estimator can be estab-

lished by means of the techniques developed in the literature (Yu and Zhao, 2006; Fan

and Lv, 2011; Fan and Li, 2001). Therefore, we only provide an outline and omit the

details. First of all, the parameter dimension is fixed and the sample size becomes

large. The regularization parameter is chosen such that λj → 0 and
√
Nλj → ∞

as N → ∞. For the DINA (or DINO) model, let Q1 and Q2 be two matrices. If

Q1 � Q2, the consistency results in the previous section ensure that the two families

of distributions under different Q’s are separated. Thus, with probability tending

to one, the true matrix Q is the global maximizer of the profiled likelihood. Since

λj = o(1) and the penalty term is of order o(N), the results in the previous sec-

tion suggests that the maximized regularized likelihood has to be obtained within ε

distance from the true value, that is, the consistency results localize the regularized

estimator to a small neighborhood of their true values. The oracle properties of the

L1 regularized estimator and SCAD regularized estimator are developed for maximiz-

ing the penalized likelihood function locally around the true model parameters (Yu

and Zhao, 2006; Fan and Lv, 2011; Fan and Li, 2001). Thus, combining the global

results (Q-matrix identifiability) and the local results (oracle condition for the local

penalized likelihood maximizer), we obtain that the regularized estimators admit the

oracle property in estimating the Q-matrix under the identifiability conditions in the

previous section. We mention that for the L1 regularized estimator irrepresentable

condition is needed concerning the Fisher information matrix to ensure the oracle

condition (Yu and Zhao, 2006).

For other DCM’s, such as NIDA, reduced NC-RUM, and C-RUM, whose repre-

sentation will be presented immediately, the families of response distributions may

be nested among different Q’s. Then, the consistency results of the regularized esti-

18



mator could be developed similarly as those of generalized linear models or generic

likelihood functions given that Q is identifiable and the regularization parameter λj

is chosen carefully such that λj → 0 and
√
Nλj →∞ as N →∞. Further discussion

on the choice of λj will be provided later in the discussion section.

3.2 Reparameterization for other diagnostic classification mod-

els

We present a few more examples mentioned previously. For each of them, we present

the link function g, h(α), and the non-zero pattern of the β-coefficients corresponding

to each Q-matrix.

DINO model. For the DINO model, we write the positive response probability as

cj,α = logit−1
{
βj0 +

K∑
k=1

βjk(1− αk) +
∑

1≤k1<k2≤K

βjk1k2(1− αk1)(1− αk2)

+
∑

1≤k1<k2<k3≤K

βjk1k2k3(1− αk1)(1− αk2)(1− αk3)

+ · · ·+ βj12...K

K∏
k=1

(1− αk)
}
.

Similar to the DINA model, each row of the Q-matrix, corresponding to one item,

maps to two non-zero coefficients. One is the βj0 and the other one corresponds the

interactions of all the required attributes by the Q-matrix.

NIDA model. The positive response probability can be written as

log cj,α = βj0 +
K∑
k=1

βjkαk.

Then, the corresponding Q-matrix entries are given by qjk = I(βjk 6= 0). Unlike the

DINA and the DINO model, the number of non-zero coefficients for each item is
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unknown.

Reduced NC-RUM. This model is very similar to the NIDA model. The positive

probability can written as

log cj,α = βj0 +
K∑
k=1

βjk(1− αk)

and qjk = 1(βjk 6= 0).

C-RUM. The positive probability can written as

logit(cj,α) = βj0 +
K∑
k=1

βjkαk

and qjk = 1(βjk 6= 0).

As a summary, all the diagnostic classification models in the literature admit the

generalized linear form as in (12). Furthermore, each Q-matrix corresponds a non-

zero pattern of the regression coefficients and the regularized estimator has a wide

applicability.

3.3 Computation via EM algorithm

The advantage of the regularized maximum likelihood estimation for the Q-matrix lies

in computation. As mentioned previously, the computation of Q̂MLE in (9) requires

evaluation of the profiled likelihood for all possible Q-matrices and there are 2J×K

such matrices. This is computationally impossible even for some practically small

J and K. The computation of (15) can be done by combining the expectation-

maximization (EM) algorithm and the coordinate descent algorithm. In particular,

we view α as the missing data following the prior distribution pα. The EM algorithm
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consists of two steps. The E-step computes function

H(β1
∗, ...,β

J
∗ |β1, ...,βJ , pα)

= E[logL(β1
∗, ...,β

J
∗ ; Ri,αi, i = 1, ..., N)|Ri, i = 1, ..., N,β1, ...,βJ , pα]

where the above expectation is taken with respect to αi, i = 1, ..., N , under the

posterior distribution P ( · |Ri, i = 1, ..., N,β1, ...,βJ , pα). The E-step is a closed

form computation. First, the complete data log-likelihood function is additive

logL(β1, ...,βJ ; Ri,αi, i = 1, ..., N) =
N∑
i=1

J∑
j=1

[Rj
i log cj,αi

+ (1−Rj
i ) log(1− cj,αi

)].

Furthermore, under the posterior distribution α1,..., αN are jointly independent.

Therefore, one only needs to evaluate

E[Rj
i log cj,αi

+ (1−Rj
i ) log(1− cj,αi

)|Ri, i = 1, ..., N,β1, ...,βJ , pα]

for each i = 1, ..., N and j = 1, ..., J . Notice that α is a discrete random variable

taking values in {0, 1}K . Therefore, the posterior distribution of each αi can be

computed exactly and the complexity of the above conditional expectation is 2K

that is manageable for K as large as 10 that is a very high dimension for diagnostic

classification models in practice. Therefore the overall computational complexity of

the E-step is O(NJ2K).

The M-step consists of maximizing the H-function with the penalty term

max
β1
∗,...,β

J
∗

H(β1
∗, ...,β

J
∗ |β1, ...,βJ , pα)−N

J∑
j=1

pλj(β
j
∗).

Before applying the coordinate descent algorithm, we further reduce the dimension.
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The objective function can be written as

J∑
j=1

{ N∑
i=1

E[Rj
i log cj,αi

+(1−Rj
i ) log(1−cj,αi

)|Ri, i = 1, ..., N,β1, ...,βJ , pα]−pλj(βj∗)
}
.

For each j, the term

N∑
i=1

E[Rj
i log cj,αi

+ (1−Rj
i ) log(1− cj,αi

)|Ri, i = 1, ..., N,β1, ...,βJ , pα]− pλj(βj∗)

consists only of βj∗. Thus, the M -step can be done by maximizing each βj∗ indepen-

dently. Each βj∗ has 2K coordinate and we apply the coordinate descent algorithm

(developed for generalized linear models) to maximize the above function for each

j. For details about this algorithm, see Friedman et al. (2010). Furthermore, pα is

updated by
∑N

i=1 P (αi = α|R,β1, ...,βJ , pα)/N .

The EM algorithm guarantees a monotone increasing objective function. How-

ever, there is no guarantee that the algorithm converges to the global maximum. We

empirically found that the algorithm sometimes does stop at a local maximum, es-

pecially when λ is large. Therefore, we suggest applying the algorithm with different

starting points and select the best.

3.4 Further discussions

It is suggested by the theories that the regularization parameter λ be chosen such

that λ → 0 and
√
Nλ → ∞ that is a wide range. For specific diagnostic classifica-

tion models, we may have more specific choices of λ. For the DINA and the DINO

model, each row of the Q-matrix, corresponding to the attribute requirement of one

item, maps to two non-zero coefficients. Therefore, we may choose λj for each item

differently such that the resulted coefficients βj has exactly two non-zero elements.

The NIDA, NC-RUM, and C-RUM models do not admit a fixed number of co-

efficients for each item. To simplify the problem, instead of using item-specific reg-
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ularization parameters, we choose a single regularization parameter for all items.

Furthermore, we build a solution path for different λ. Thus, instead of providing one

estimate of the Q-matrix, a set of estimated Q-matrices corresponding to different λ

is obtained. We may further investigate these matrices for further validation based on

our knowledge of the item-attribute relationship. In case one does not have enough

knowledge, one may choose λ via standard information criteria. For instance, we may

choose λ such that the resulted selection of latent variables admits the smallest BIC.

4 Simulation study

In this section, simulation studies are conducted to illustrate the performance of

the proposed method. The DINO model is mathematically equivalent to the DINA

model (Proposition 1) and thus we only provide results for the DINA model. The

data from the DINA model are generated under different settings and then the es-

timated Q-matrix and the true Q-matrix are compared. Two simulation studies are

conducted when the attributes α1, ..., αK are independent and dependent. The re-

sults are presented assuming all the model parameters are unknown including the

Q-matrix, attribute distribution, slipping and guessing parameters.

4.1 Study 1: independent attributes

Attribute profiles are generated from the uniform distribution

pα = 2−K .

We consider the cases that K = 3 and 4 and J = 18 items. The following Q-matrices
are adopted
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N = 500 N = 1000 N = 2000 N = 4000

Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

K = 3 38 62 81 19 98 2 100 0

K = 4 20 80 48 52 77 23 99 1

Table 1: Numbers of correctly estimated Q-matrices among 100 simulations with
sample size 500, 1000, 2000, and 4000 for the L1 penalty.

N = 500 N = 1000 N = 2000 N = 4000

K = 3 98.1% 99.6% 100.0% 100.0%

K = 4 97.7% 98.9% 99.6% 100.0%

Table 2: Proportion of entries correctly specified by Q̂ for the L1 regularized estimator
averaging over all independent replications.

Q1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 0

1 0 1

0 1 1

1 1 1

1 1 1

1 1 1



, Q2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


These two matrices are chosen such that the identifiability conditions are satisfied.

The slipping and guessing parameters are set to be 0.2, but treated as unknown when

estimating Q. All other conditions are also satisfied. For each Q, we consider sample

sizes N = 500, 1000, 2000, and 4000. For each particular Q and N , 100 independent

data sets are generated to evaluate the performance.
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Q1 Q2

Sample size 500 1000 2000 4000 500 1000 2000 4000

Q̂1:15 = Q1:15 100 100 100 100 Q̂1:14 = Q1:14 98 100 100 100

Q̂1:15 6= Q1:15 0 0 0 0 Q̂1:14 6= Q1:14 2 0 0 0

Q̂16:18 = Q16:18 38 81 98 100 Q̂15:18 = Q15:18 20 48 77 99

Q̂16:18 6= Q16:18 62 19 2 0 Q̂15:18 6= Q15:18 80 52 23 1

Table 3: Numbers of correctly estimated Q1:15 and Q16:18 for Q1 and numbers of
correctly estimated Q1:14 and Q15:18 for Q2 among 100 simulations with solutions for
the L1 regularized estimator

L1 regularized estimator. The simulation results of the L1 regularized estimator

are summarized in Tables 1, 2, and 3. According to Table 1, for both K = 3 and 4,

our method estimates the Q-matrix almost without error when the sample size is as

large as 4000. In addition, the higher the dimension is the more difficult the problem

is. Furthermore, for the cases when the estimator misses the Q-matrix, Q̂ differs from

the true by only one or two rows. We look closer into the estimators in Table 2 that

reports the proportion of entries correctly specified by Q̂

CR(Q̂) = max
Q′∼Q

{
1

JK

J∑
j=1

K∑
k=1

1{q̂j,k=q′j,k}

}
.

We empirically found that the row vectors of Q1 and Q2 that require three at-

tributes or four attributes (rows 15 to 18 in Q1 and rows 16 to 18 in Q2) are much

more difficult to estimate than others. This phenomenon is reflected by Table 3, in

which the notation QI1:I2 represents the submatrix of Q containing row I1 to row I2.

In fact, for all simulations in this study, most misspecifications are due to the mis-

specification of the submatrices of Q1 and Q2 that the corresponding items require

three attributes or more.

SCAD estimator. Under the same setting, we investigate the SCAD estimator.

The results are summarized in Tables 4 and 5. The SCAD estimator performs better

than the L1 regularized estimator upon comparing Table 1 and Table 4.
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N = 500 N = 1000 N = 2000 N = 4000

Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

K = 3 98 2 100 0 100 0 100 0

K = 4 30 70 96 4 100 0 100 0

Table 4: Numbers of correctly estimated Q-matrices among 100 simulations with
sample size 500, 1000, 2000, and 4000 for the SCAD estimator.

N = 500 N = 1000 N = 2000 N = 4000

K = 3 99.9% 100% 100.0% 100.0%

K = 4 97.6% 99.9% 100.0% 100.0%

Table 5: Proportion of entries correctly specified by Q̂ (CR(Q̂)) for the SCAD esti-
mator averaging over all independent replications.

4.2 Study 2: dependent attributes

For each subject, we generate θ = (θ1, · · · , θK) that is a multivariate normal distri-

bution N(0,Σ), where the covariance matrix Σ has unit variance and has a common

correlation ρ, that is,

Σ = (1− ρ)IK + ρ11>

where 1 is the vector of ones and IK is the K by K identity matrix. We consider the

situations that ρ = 0.05, 0.15 and 0.25. Then the attribute profile α is given by

αk =


1 if θk ≥ 0

0 otherwise.

We consider K = 3 and Q1 be the Q-matrix. Table 6 shows the probability distribu-

tion pα. The slipping and the guessing parameters remain 0.2. The rest of the setting

is the same as that of Study 1.

L1 regularized estimator. The simulation results of the L1 regularized estimator

are summarized in Tables 7 and 8. Based on Table 7, the estimation accuracy is

improved when the sample size increases. We also observe that the proposed algorithm

performs better when ρ increases. A heuristic interpretation is as follows. The row
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Class (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

ρ = 0.05 0.137 0.121 0.121 0.121 0.121 0.121 0.121 0.137

ρ = 0.15 0.161 0.113 0.113 0.113 0.113 0.113 0.113 0.161

ρ = 0.25 0.185 0.105 0.105 0.105 0.105 0.105 0.105 0.185

Table 6: The distribution of the latent attributes of the three-dimensional DINA
model for ρ = 0.05, 0.15 and 0.25

N = 500 N = 1000 N = 2000 N = 4000

Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

ρ = 0.05 54 46 87 13 99 1 100 0

ρ = 0.15 67 33 93 7 100 0 100 0

ρ = 0.25 76 24 95 5 100 0 100 0

Table 7: Numbers of correctly estimatedQ-matrices among 100 simulations for sample
sizes 500, 1000, 2000, and 4000 for the L1 regularized estimator.

vector of Q tends to be more difficult to estimate when the numbers of subjects who

are capable and who are not capable to answer are not balanced. The row vector

(1, 1, 1) is the most difficult to estimate because only subjects with attribute profile

(1, 1, 1) are able to solve them and all other subjects are not. According to Table 6, as

ρ increases, the proportion of subjects with attribute profile (1, 1, 1) increases, which

explains the improvement of the performance. In fact, similar to the situation that

αi’s are independent, for most simulations in which the Q̂ misses the true, Q̂ differs

from the true at the row vectors whose true value is (1, 1, 1).

SCAD estimator. Under the same simulation setting, the results of the SCAD

estimator are summarized in Tables 9 and 10. Its performance is empirically better

than that of the L1 regularized estimator. When the sample size is as small as 500,

it has a very high probability estimating all the entries of the Q-matrix correctly.

N = 500 N = 1000 N = 2000 N = 4000

ρ = 0.05 98.5% 99.7% 100.0% 100.0%

ρ = 0.15 99.2% 99.8% 100.0% 100.0%

ρ = 0.25 99.4% 99.9% 100.0% 100.0%

Table 8: Proportion of entries correctly specified by Q̂ for the L1 regularized estimator
averaging over all independent replications.
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N = 500 N = 1000 N = 2000 N = 4000

Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q Q̂ = Q Q̂ 6= Q

ρ = 0.05 97 3 100 0 100 0 100 0

ρ = 0.15 98 2 100 0 100 0 100 0

ρ = 0.25 99 1 100 0 100 0 100 0

Table 9: Numbers of correctly estimatedQ-matrices among 100 simulations for sample
sizes 500, 1000, 2000, and 4000 under the SCAD penalty

N = 500 N = 1000 N = 2000 N = 4000

ρ = 0.05 99.7% 100.0% 100.0% 100.0%

ρ = 0.15 100.0% 100.0% 100.0% 100.0%

ρ = 0.25 100.0% 100.0% 100.0% 100.0%

Table 10: Proportion of entries correctly specified by Q̂ (CR(Q̂)) under the SCAD
penalty averaging over all independent replications.

Remark 4 Once an estimate of the Q-matrix has been obtained, other model param-

eters such as the slipping and the guessing parameters and the attribute population

can be estimated via the maximum likelihood estimator (10). Simulation studies show

that these parameters can be estimated accurately given that the Q-matrix is recovered

with a high chance. As the main focus of this paper is on the Q-matrix, we do not

report detailed simulation results for these parameters.

5 Real data analysis

5.1 Example 1: fraction subtraction data

The data set contains 536 middle school students’ responses to 17 fraction subtraction

problems. The responses are binary: correct or incorrect solution to the problem.

The data were originally described by Tatsuoka (1990) and later by Tatsuoka (2002);

de la Torre and Douglas (2004) and many other studies of diagnostic classification

models. In these works, the DINA model is fitted with a Q-matrix pre-specified. We

fit the DINA model to the data and estimate the Q-matrix for K = 3 and 4. Then

we validate the estimated Q-matrix by our knowledge of the cognitive processes of
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K = 3 K = 4

ID Content Q̂ ŝ ĝ Q̂ ŝ ĝ

1 5
3 −

3
4 1 0 0 0.12 0.03 1 0 0 0 0.12 0.03

2 3
4 −

3
8 1 0 0 0.05 0.04 1 0 0 0 0.04 0.03

3 5
6 −

1
9 1 0 0 0.13 0.00 1 0 0 0 0.12 0.00

4 3 1
2 − 2 3

2 0 1 0 0.13 0.17 0 1 1 0 0.13 0.21

5 1 1
8 −

1
8 0 0 1 0.07 0.28 0 0 1 0 0.07 0.24

6 3 4
5 − 3 2

5 0 0 1 0.04 0.20 0 0 1 0 0.04 0.13

7 4 5
7 − 1 4

7 0 0 1 0.08 0.20 0 0 1 1 0.05 0.27

8 4 3
5 − 3 4

10 1 0 1 0.18 0.31 1 0 1 0 0.19 0.31

9 3− 2 1
5 1 0 1 0.32 0.06 0 1 1 1 0.23 0.11

10 2− 1
3 1 0 1 0.23 0.07 0 1 1 1 0.15 0.14

11 4 4
12 − 2 7

12 0 1 1 0.23 0.03 0 1 1 0 0.24 0.03

12 4 1
3 − 2 4

3 0 1 1 0.07 0.07 0 1 0 0 0.09 0.06

13 7 3
5 −

4
5 0 1 1 0.13 0.05 0 1 1 0 0.15 0.04

14 4 1
10 − 2 8

10 0 1 1 0.15 0.13 0 1 1 0 0.16 0.12

15 4− 1 4
3 0 1 1 0.37 0.02 0 1 0 1 0.32 0.02

16 4 1
3 − 1 5

3 0 1 1 0.18 0.01 0 1 1 0 0.20 0.01

17 3 3
8 − 2 5

6 1 1 1 0.33 0.01 1 1 1 1 0.31 0.01

Table 11: The estimated Q-matrix based on L1 regularization and the corresponding
slipping and guessing parameters for the three and four dimensional DINA model for
the fraction subtraction data

problem solving.

Table 11 presents the estimated Q-matrix along with the slipping and the guess-

ing parameters for K = 3 based on L1 regularization. The slipping and the guessing

parameter are estimated by (10). According to our knowledge of the cognitive pro-

cesses, the items are clustered according to Q̂ reasonably. Roughly speaking, the three

attributes can be interpreted as “finding common denominator”, “writing integer as

fraction”, and “subtraction of two fraction numbers when there are integers involved”

respectively.

We further fit a four dimensional DINA model and the results are also summarized

in Table 11. The first attribute can be interpreted as “finding common denominator”,

the second as “borrowing from the whole number part”, and the third and fourth

attributes can be interpreted as “subtraction of two fraction numbers when there are

integers involved”. However, it seems difficult to interpret the third and the fourth
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ID Content A1 A2 A3 A4 A5 A6 A7 A8

1 5
3
− 3

4
0 0 0 1 0 1 1 0

2 3
4
− 3

8
0 0 0 1 0 0 1 0

3 5
6
− 1

9
0 0 0 1 0 0 1 0

4 31
2
− 23

2
0 1 1 0 1 0 1 0

5 11
8
− 1

8
0 0 0 0 0 0 1 1

6 34
5
− 32

5
0 1 0 0 0 0 1 0

7 45
7
− 14

7
0 1 0 0 1 1 1 0

8 43
5
− 3 4

10
0 1 0 1 0 0 1 1

9 3− 21
5

1 1 0 0 0 0 1 0

10 2− 1
3

0 1 0 0 1 0 1 0

11 4 4
12
− 2 7

12
0 1 0 0 1 0 1 1

12 41
3
− 24

3
0 1 0 0 1 0 1 0

13 73
5
− 4

5
0 1 0 0 1 0 1 0

14 4 1
10
− 2 8

10
0 1 0 0 1 1 1 0

15 4− 14
3

1 1 1 0 1 0 1 0

16 41
3
− 15

3
0 1 1 0 1 0 1 0

17 33
8
− 25

6
0 1 0 1 1 0 1 0

Table 12: The Q-matrix specified in de la Torre and Douglas (2004)

attributes separately.

This data set has been studied intensively. A Q-matrix (with a little bit variation

from study to study) is also prespecified based on understandings of each test problem.

Table 12 presents the Q-matrix used in de la Torre and Douglas (2004) that contains

eight attributes (K = 8). Each attribute corresponds one type of manipulation of

fractions:

A1: Convert a whole number to a fraction

A2: Separate a whole number from a fraction

A3: Simplify before subtracting

A4: Find a common denominator

A5: Borrow from whole number part
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A6: Column borrow to subtract the second numerator from the first

A7: Subtract numerators

A8: Reduce answers to simplest form

We believe that K is overspecified given that there are only 17 items. Nevertheless,

we are able to find some approximate matching between this prespecified matrix and

ours. Attributes one in Table 11 roughly corresponds to attribute four in Table 12,

attribute two in Table 11 to attribute five in Table 12, and attribute three in Table

11 to attribute two in Table 12.

We also estimate the Q-matrix using SCAD. The estimated Q-matrices are given

in Tables 13 for K = 3 and 4. The estimates are not as interpretable as those

by the L1 penalty, although SCAD has better performance in the simulation study.

We believe that this is mostly due to the lack of fit of the DINA model. This is

an illustration of the difficulties in the analysis of cognitive diagnosis. Most models

impose restrictive parametric assumptions such that the lack of fit may affect the

quality of the inferences. Thus, the performance in simulations does not extrapolate

to real data analysis. We also emphasize that the estimated Q-matrix only serves as

a guide of the item-attribute association and strongly recommend that researchers

verify or even modify the estimates based on their understanding of the items.

5.2 Example 2: Social anxiety disorder data

The social anxiety disorder data is a subset of the National Epidemiological Survey

on Alcohol and Related Conditions (NESARC) (Grant et al., 2003). We consider

participants’ binary responses (Yes/No) to thirteen diagnostic questions for social

anxiety disorder. The questions are designed by the Diagnostic and Statistical Manual

of Mental Disorders, 4th ed and are displayed in Table 14. Incomplete cases are

removed from the data set. The sample size is 5226. To understand the latent
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K = 3 K = 4

ID Content Q̂ ŝ ĝ Q̂ ŝ ĝ

1 5
3
− 3

4
1 0 0 0.13 0.03 1 1 1 1 0.12 0.24

2 3
4
− 3

8
1 0 0 0.06 0.04 1 0 0 0 0.05 0.04

3 5
6
− 1

9
1 0 0 0.14 0.00 1 0 0 0 0.14 0.01

4 31
2
− 23

2
1 1 1 0.13 0.26 1 1 1 1 0.14 0.25

5 11
8
− 1

8
0 0 1 0.05 0.52 1 1 1 1 0.04 0.54

6 34
5
− 32

5
0 0 1 0.04 0.49 0 1 1 0 0.03 0.50

7 45
7
− 14

7
1 1 1 0.05 0.50 1 1 0 1 0.06 0.49

8 43
5
− 3 4

10
1 1 1 0.17 0.39 1 1 1 1 0.17 0.38

9 3− 21
5

1 1 1 0.24 0.12 1 1 1 1 0.25 0.11

10 2− 1
3

1 1 1 0.16 0.14 1 1 1 1 0.17 0.14

11 4 4
12
− 2 7

12
0 0 1 0.25 0.03 0 1 1 1 0.23 0.03

12 41
3
− 24

3
0 0 1 0.10 0.07 0 1 0 0 0.12 0.07

13 73
5
− 4

5
0 0 1 0.16 0.04 0 1 0 0 0.17 0.04

14 4 1
10
− 2 8

10
0 0 1 0.16 0.11 0 1 0 1 0.15 0.10

15 4− 14
3

1 1 1 0.32 0.02 1 1 1 1 0.34 0.02

16 41
3
− 15

3
0 0 1 0.21 0.01 0 1 0 0 0.22 0.01

17 33
8
− 25

6
1 1 1 0.33 0.00 1 1 1 1 0.35 0.00

Table 13: The estimated Q-matrix based on SCAD regularization and the correspond-
ing slipping and guessing parameters for the three and four dimensional DINA model
for the fraction subtraction data

structure of social phobia, we fit the compensatory DINO model for K = 2, 3, and 4.

We first consider the L1 penalty and fit the two-dimensional DINO model. The

estimates Q̂, ŝ, and ĝ are summarized as Case K = 2 of Table 15. In addition, the

correlation between the two attributes is 0.47. We further explore the latent structure

by considering the three-dimensional DINO model. For the result, Q̂, ŝ, and ĝ are

summarized as Case K = 3 of Table 15. A similar latent structure as Q̂ in Case

K = 3 of Table 15 is considered in an item response theory model based confirmatory

factor analysis (Iza et al., 2014), where the item-attribute structure is prespecified. In

their study, the three (continuous) factors are interpreted as “public performance”,

“close scrutiny”, and “interaction”, which correspond roughly to those in Case K = 3

of Table 15. Finally, the four-dimensional DINO model is considered. The results
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ID Have you ever had a strong fear or avoidance of

1 speaking in front of other people?

2 taking part/ speaking in class?

3 taking part/ speaking at a meeting?

4 performing in front of other people?

5 being interviewed?

6 writing when someone watches?

7 taking an important exam?

8 speaking to an authority figure?

9 eating/drinking in front of other people?

10 having conversations with people you don’t know well?

11 going to parties/social gatherings?

12 dating?

13 being in a small group situation?

Table 14: The content of 13 items for the social anxiety disorder data.

are summarized as Case K = 4 in Table 15. According to the corresponding Q̂, the

third group (items 9 - 13) based on three-dimensional model splits into two attributes.

Furthermore, item 6 “writing when someone watches” becomes associated with at-

tribute three. Furthermore, we estimate the Q-matrix via SCAD. The estimates are

summarized in Tables 16 that are similar to those of the L1 penalty.

We observe that the estimated slipping parameters are relatively large for some

items (such as items 6, 9, 12 and 13) and their guessing parameters are small. These

are the low prevalence items that are unlikely to be present even among the abnormal

populations. On the other hand, if someone responds positively to that item, he/she

is very likely to possess the corresponding disorder (attribute). This is reflected by

the small guessing parameters.

6 Concluding remarks

This paper considers the estimation of Q-matrix that is a key quantity in the specifi-

cation of diagnostic classification models. The results are two-fold. First, we present

theoretical identifiability results of the Q-matrix for two stylized diagnostic classifica-
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K = 2 K = 3 K = 4

ID Q̂ ŝ ĝ Q̂ ŝ ĝ Q̂ ŝ ĝ

1 1 0 0.05 0.54 1 0 0 0.05 0.49 1 0 0 0 0.05 0.49

2 1 0 0.09 0.27 1 0 0 0.11 0.21 1 0 0 0 0.11 0.21

3 1 0 0.13 0.15 1 0 0 0.16 0.09 1 0 0 0 0.16 0.09

4 1 0 0.12 0.30 1 0 0 0.15 0.25 1 0 0 0 0.14 0.25

5 1 0 0.46 0.07 0 1 0 0.29 0.09 0 1 0 0 0.29 0.08

6 0 1 0.66 0.07 0 1 0 0.68 0.06 0 0 1 0 0.56 0.08

7 1 0 0.42 0.22 0 1 0 0.26 0.21 0 1 0 0 0.27 0.20

8 0 1 0.34 0.16 0 1 0 0.30 0.09 0 1 0 0 0.30 0.08

9 0 1 0.68 0.02 0 0 1 0.68 0.02 0 0 1 0 0.58 0.02

10 0 1 0.13 0.21 0 0 1 0.13 0.20 0 0 1 1 0.14 0.16

11 0 1 0.20 0.12 0 0 1 0.17 0.10 0 0 0 1 0.21 0.08

12 0 1 0.59 0.05 0 0 1 0.59 0.05 0 0 1 0 0.47 0.06

13 0 1 0.67 0.01 0 0 1 0.68 0.01 0 0 1 0 0.57 0.01

Table 15: The estimated Q-matrix based on L1 regularization and the slipping and
guessing parameters for the two, three and four dimensional DINO model for the
social anxiety disorder data.

tion models, the DINA model and the DINO model. A set of sufficient conditions is

provided, under which it is theoretically possible to reconstruct the matrix based on

only the dependence of the response patterns. The development of the theory is by

means of the maximum likelihood estimation (MLE). Unfortunately, MLE, though

consistent (under conditions), is not practically implementable due to the unaffordable

computational overhead. Thus, the second objective is to present a computationally

feasible estimator for Q. We formulate the Q-matrix estimation to a latent variable

selection problem and employ the regularized maximum likelihood as the main tool.

The L1 penalty and the SCAD penalty are considered. For the optimization, we com-

bine the expectation-maximization algorithm and the coordinate decent algorithm.

Both are well studied numerical methods for optimization. The estimation procedure

is applicable to most diagnostic classification models and is not limited to the DINA

or the DINO model.

The performances of the two penalty functions are compared via simulation stud-

ies, in which SCAD penalty yields better results. However, in the analysis of the
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K = 2 K = 3 K = 4

ID Q̂ ŝ ĝ Q̂ ŝ ĝ Q̂ ŝ ĝ

1 1 0 0.05 0.54 1 0 0 0.05 0.49 1 0 0 0 0.05 0.49

2 1 0 0.09 0.27 1 0 0 0.11 0.21 1 0 0 0 0.11 0.21

3 1 0 0.13 0.14 1 0 0 0.16 0.09 1 0 0 0 0.16 0.09

4 1 0 0.12 0.30 1 0 0 0.15 0.25 1 0 0 0 0.15 0.25

5 1 0 0.46 0.07 0 1 0 0.29 0.09 0 1 0 0 0.30 0.08

6 0 1 0.65 0.07 0 1 0 0.68 0.06 0 0 1 0 0.55 0.07

7 1 1 0.43 0.20 0 1 0 0.26 0.21 0 1 0 0 0.27 0.20

8 0 1 0.33 0.16 0 1 0 0.30 0.09 0 1 0 0 0.31 0.08

9 0 1 0.68 0.02 0 0 1 0.68 0.02 0 0 0 1 0.68 0.02

10 0 1 0.13 0.21 0 0 1 0.13 0.20 0 0 0 1 0.11 0.19

11 0 1 0.20 0.13 0 0 1 0.17 0.10 0 0 0 1 0.16 0.09

12 0 1 0.59 0.05 0 0 1 0.59 0.05 0 0 1 0 0.44 0.05

13 0 1 0.67 0.01 0 0 1 0.68 0.01 0 0 1 0 0.55 0.01

Table 16: The estimated Q-matrix based on SCAD regularization and the slipping
and guessing parameters for the two, three and four dimensional DINO model for the
social anxiety disorder data.

fraction subtraction data, SCAD yields results that are difficult to interpret, while

the L1 penalty produces more interpretable Q-matrices. We believe that this is mostly

due to the lack of fit of the DINA model. This data set in part illustrates the com-

plications in the real data analysis for diagnostic classification models. Although the

theory and estimation procedure do not require a prior knowledge of Q, we strongly

recommend researchers should try to combine their knowledge in the subject matter

and our inference tools. That is, our estimated Q-matrix serves as a guideline for the

item-attribute association. Further refinement (such as choosing the regularization

parameter or the penalty function) should rely on understanding of the items.

Throughout the discussion, the number of attributes (K) is assumed to be known.

A natural extension is to estimate K simultaneously with other parameters. This

can be done by introducing an additional penalty function added to the likelihood

function. We leave this topic for future study.
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A The duality between the DINA and the DINO

model and some technical constructions

We establish the duality between the DINA and the DINO model.

Proposition 1 Consider a response vector R = (R1, ..., RJ) following a DINA model with

latent attribute α and R′ = (R′1, ..., R′J) following the DINO model with latent attribute

α′. Their slipping and guessing parameters are denoted by sj, gj, s
′
j, and g′j, respectively.

If 1− sj = g′j, gj = 1− s′j, and αj = 1− α′j, then R and R′ are identically distributed.

The above proposition is straightforward to verify through the ideal response indicators

in (2) and (5). Thus, we omit the detailed proof. The above proposition suggests that

the DINA and the DINO model are mathematically the same but with different parame-

terizations. Therefore, all the theoretical results we developed for the DINA model can be

directly translated to the DINO model based on the above proposition. Therefore, the rest

of the technical proofs are all for the DINA model. In the rest of this subsection, we present

some technical construction for the subsequent proof.

T -matrix for the DINA model. For notational convenience, we will write

c = 1− s

that is the correct response probability for capable students (“c” for correct). Then,

c = 1− s

is the corresponding parameter vector.

The T -matrix serves as a connection between the observed response distribution and the

model structure. We first specify each row vector of the T -matrix for a general conjunctive

diagnostic model.

For each item j, we have

P (Rj = 1|Q,p,θ) =
∑
α

pαcj,α =
∑
α

pαP (Rj = 1|Q,α,θ), (16)

We create a row vector Bθ,Q(j) of length 2K containing the probabilities cj,α for all α’s and

arrange those elements in an appropriate order, then we write (16) in the form of a matrix

product ∑
α

pαcj,α = Bθ,Q(j)p,

where p is the column vector containing the probabilities pα. For each pair of items, we

may establish that the probability of responding positively to both items j1 and j2 is

P (Rj1 = 1, Rj2 = 1|Q,p,θ) =
∑
α

pαcj1,αcj2,α = Bθ,Q,(j1, j2)p.

where Bθ,Q(j1, j2) is defined as a row vector containing the probabilities cj1,αcj2,α for each

α. Note that each element of Bθ,Q(j1, j2) is the product of the corresponding elements of
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Bθ,Q(j1) and Bθ,Q(j2). With a completely analogous construction, for items j1, · · · , jl, we

can write the probability of responding positively to all items as

P (Rj1 = 1, . . . , Rjl = 1|Q,p,θ) = Bθ,Q(j1, . . . , jl)p,

Note that Bθ,Q(j1, . . . , jl) is the element-by-element product of Bθ,Q(j1),. . . ,Bθ,Q(jl).

The T -matrix for the DINA model has 2K columns and 2J rows. Each of the first

2J − 1 row vectors of the T -matrix is one of the vectors Bθ,Q(j1, ..., jl). The last row of the

T -matrix is taken as 1>. The T -matrix can be written as

Tc,g(Q) =



Bθ,Q(1)
...

Bθ,Q(J)

Bθ,Q(1, 2)
...

Bθ,Q(1, ..., J)

1>


. (17)

Response γ-vector. We further define γ to be the vector containing the probabilities of

the empirical distribution corresponding to those in Tθ(Q)p, e.g., the first element of γ is
1
N

∑N
i=1 I(R1

i = 1) and the (J + 1)-th element is 1
N

∑N
i=1 I(R1

i = 1 and R2
i = 1), i.e.,

γ =



1
N

∑N
i=1 I(R1

i = 1)
...

1
N

∑N
i=1 I(RJi = 1)

1
N

∑N
i=1 I(R1

i = 1 and R2
i = 1)

...
1
N

∑N
i=1 I(R1

i = 1, R2
i = 1, · · · , and RJi = 1)

1


. (18)

An objective function. Under the true Q-matrix Q, let (θ,p) be the true model param-

eters. By the the law of large number, we have that

γ =



1
N

∑N
i=1 I(R1

i = 1)
...

1
N

∑N
i=1 I(RJi = 1)

1
N

∑N
i=1 I(R1

i = 1 and R2
i = 1)

...


→



P (R1
i = 1|Q,θ,p)

...

P (RJi = 1|Q,θ,p)

P (R1
i = 1 and R2

i = 1|Q,θ,p)
...


= Tθ(Q)p

almost surely as N →∞. For each Q, we define

S(Q) = inf
c,g,p
|Tc,g(Q)p− γ|2, (19)
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where the minimization is subject to the natural constraints that cj , gj , pα ∈ (0, 1) and∑
α pα = 1. Here | · | means the Euclidian norm. Thanks to the law of large numbers,

S(Q)→ 0 as N →∞. The estimator

Q̃ = argminQS(Q)

is consistent meaning that

P (Q̃ ∼ Q)→ 1

if and only if the vector Tc,g(Q)p 6= Tc′,g′(Q
′)p′ for Q′ � Q and all possible c′, g′ and p′.

B Proof of Theorems

The following proposition provides a connection between the likelihood function and the

T -matrix, which makes it possible to the T -matrix to show the model identifiability.

Proposition 2 Under the DINA and DINO models, for two sets of parameters (ĉ, ĝ, p̂)

and (c̄, ḡ, p̄),

L(ĉ, ĝ, p̂, Q) = L(c̄, ḡ, p̄, Q)

for all R if and only if the following equation holds:

Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄. (20)

The following proposition provides a relationship between T -matrices of different model

parameters.

Proposition 3 There exists an invertible matrix Dg∗ depending only on g∗ = (g∗1, ..., g
∗
J),

such that

Dg∗Tc,g(Q) = Tc−g∗,g−g∗(Q).

Thus, (20) is equivalent to Tc̄−g∗,ḡ−g∗(Q)p̄ = Tĉ−g∗,ĝ−g∗(Q)p̂ for some g∗. This is a

very important technique that will be used repeatedly in the subsequent development. We

now cite a proposition.

Proposition 4 (Proposition 6.6 in Liu et al. (2013)) For the DINA model, under Con-

dition A1-3, Tc,g(Q)p is not in the column space of Tc′,g(Q′) for all c′, that is, Tc,g(Q)p 6=
Tc′,g(Q′)p′ for all c′ and p′. In addition, Tc,g(Q) is of full column rank.

The following proposition provides the first step result.

Proposition 5 Under the DINA and DINO models, with Q, s, and g being known, the

population proportion parameter p is identifiable if and only if Q is complete.

Proof of Proposition 5. When Q is complete, the matrix Tc,g(Q) has full column rank

from Proposition 4. Thus, p is identifiable by Proposition 2.

Consider the case where the Q is incomplete. Without loss of generality, we assume

e1 = (1, 0, · · · , 0) is not in the set of row vectors of Q. Then in the T -matrix Tc,g(Q),

the columns corresponding to attribute profiles 0 and e1 are the same. Therefore, by
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Proposition 2, we can always find two different set of estimates of p0 and pe1
such that

equation (20) holds and therefore p = (pα,α ∈ {0, 1}K) is nonidentifiable.

Proof of Theorem 2. The identifiability of the Q-matrix for the DINO model is an

application of Theorem 1 and Proposition 1. In what follows, we focus on the identifiability

of the model parameters c and p under the DINA model.

We only need to show that when g is known, for two sets of parameters (ĉ,g, p̂) and

(c̄,g, p̄), L(ĉ,g, p̂, Q) = L(c̄,g, p̄, Q) holds if and only if A4 satisfied. By Propositions 2

and 3, two sets of parameters (ĉ,g, p̂) and (c̄,g, p̄) yield identical likelihood if and only if

Tĉ−g,0(Q)p̂ = DgTĉ,g(Q)p̂ = DgTc̄,g(Q)p̄ = Tc̄−g,0(Q)p̄. (21)

Thus under the assumption that cj > gj , we only need to consider that g = 0.

Sufficiency of A4. For notational convenience, we write BQ(j1, ..., jl) = Bc,g,Q(j1, ..., jl)

when c = 1 and g = 0. For each item j ∈ 1, · · · , J , condition A4 implies that there exist

items j1, ..., jl (different from j) such that

BQ(j, j1, ..., jl) = BQ(j1, ..., jl),

that is, the attributes required by item j are a subset of the attributes required by items

j1, ..., jl.

Let a and a∗ be the row vectors in Dg corresponding to item combinations j1, ..., jl and

j, j1, ..., jl; see (21) for the definition of Dg. If (ĉ, p̂) and (c̄, p̄) satisfy by (21), then

a∗
>Tĉ,g(Q)p̂

a>Tĉ,g(Q)p̂
=
a∗
>Tc̄,g(Q)p̄

a>Tc̄,g(Q)p̄
.

On the other hand, we have that

a∗
>Tĉ,g(Q)p̂

a>Tĉ,g(Q)p̂
=
Bĉ−g,0;Q(j, j1, ..., jl)p̂

Bĉ−g,0;Q(j1, ..., jl)p̂
= ĉj − gj ,

a∗
>Tc̄,g(Q)p̄

a>Tc̄,g(Q)p̄
=
Bc̄−g,0;Q(j, j1, ..., jl)p̄

Bc̄−g,0;Q(j1, ..., jl)p̄
= c̄j − gj .

Therefore, ĉj = c̄j for all j = 1, · · · , J , which gives the identifiability of the slipping pa-

rameter. According to Proposition 5, the completeness of the Q-matrix ensures that the

identifiability of p, therefore we have the sufficiency of A4.

Necessity of A4. We reach the conclusion by contradiction. (21) suggests that it is

sufficient to show the necessity for g = 0. Without loss of generality, suppose that the first

attribute only appears once in the first column of the Q-matrix, i.e., the Q-matrix takes

the following form:

Q =


1 0>

0 IK−1

0 Q1

 . (22)
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We construct c̄ and p̄ different from ĉ and p̂ such that Tĉ,0(Q)p̂ = Tc̄,0(Q)p̄. We write

ĉ = (ĉ1, · · · , ĉJ) and p̂ = {p̂(b,a) : b ∈ {0, 1}, a ∈ {0, 1}K−1}. For some x close to 1, define

c̄ = (c̄1, c̄2, · · · , c̄J) = (xĉ1, ĉ2, · · · , ĉJ)

and

p̄ = {p̄(b,a) : p̄(1,a) = p̂(1,a)/x and p̄(0,a) = p̂(0,a) + p̂(1,a)(1− 1/x), for all a ∈ {0, 1}K−1}.

Notice that the parameters related to the first item have been changed. Consider the rows

in the T -matrix related to the first item. Keeping in mind that g = 0, we have that

ĉ1

∑
a∈{0,1}K−1

p̂(1,a) + g1

∑
a∈{0,1}K−1

p̂(0,a) = c̄1

∑
a∈{0,1}K−1

p̄(1,a) + g1

∑
a∈{0,1}K−1

p̄(0,a). (23)

This corresponds to P (R1 = 1). Similar identities can be established for P (R1 = Rj1 = ... =

Rjl = 1). Therefore, we have constructed (c̄, p̄) 6= (ĉ, p̂) such that Tc̄,0(Q)p̄ = Tĉ,0(Q)p̂.

Thus, c and p are not identifiable if A4 does not hold.

Proof of Theorem 3. Consider the true Q and a candidate Q′ � Q. According to the

discussion at the end of Section A, it is sufficient to show that it is impossible to have two

sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such that ĉj > ĝj , c̄j > ḡj , p̂α > 0, p̄α > 0, and

Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q′)p̄. (24)

We prove this first assuming that there exist two such sets of parameters and then reach

a contradiction. The true matrix Q is arranged as in (8) such that the first 2K rows form

two identity matrices. We try to reach a contradiction under the following two cases.

Case 1: either Q′1:K or Q′K+1:2K is incomplete. We only focus on the case when

Q′1:K is not IK . We borrow an intermediate result in the proof of Proposition 6.4 in Liu et al.

(2013): we can identify an item 1 ≤ h ≤ K and an item set H ⊂ {1, · · · ,K} (h /∈ H) such

that under Q′, H requires all attributes required by item h, that is, if someone is capable

of solving all problems in H then he/she is able to solve problem h. We say someone “is

able to” or “can” solve a problem or a set of problems if his/her ideal responses to the set

of problems are all one.

For items K + 1, · · · , 2K, since QK+1:2K = IK , there exists an item set B ⊂ {K +

1, ..., 2K} such that under Q it requires the same attributes as H, that is, if a person is

capable of solving all items in B if and only if they can solving all problems in H. Since

Q1:K = IK , under Q, the attributes required by H and B are different from those of item

h. Define

g̃ = (ḡ1, · · · , ḡK , ĝK+1, · · · , ĝJ).

Assumption (24) and Proposition 3 suggests Tĉ−g̃,ĝ−g̃(Q)p̂ = Tc̄−g̃,ḡ−g̃(Q′)p̄.

Under Q′ if h requires strictly fewer attributes thanH, there are three types of attributes

profiles: unable to answer h (denoted by 0h0H), unable to answer H but able to answer h
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(denoted by 0H1h), and able to answer H (denoted by 1H). We have

0h0H 0H1h 1H

Bc̄−g̃,ḡ−g̃,Q′(H) = ( 0 0
∏
j∈H(c̄j − ḡj) ),

Bc̄−g̃,ḡ−g̃,Q′(h) = ( 0 (c̄h − ḡh) (c̄h − ḡh) ),

Bc̄−g̃,ḡ−g̃,Q′(H, h) = ( 0 0 (c̄h − ḡh)
∏
j∈H(c̄j − ḡj) ),

If h and H require the same attributes, 0H1h case does not exist and the above equations

do not have the 0H1h column. Under both situations, we have

c̄h − ḡh =
Bc̄−g̃,ḡ−g̃,Q′(H, h)p̄

Bc̄−g̃,ḡ−g̃,Q′(H)p̄
=
Bc̄−g̃,ḡ−g̃,Q′(H, h,K + 1, · · · , 2K)p̄

Bc̄−g̃,ḡ−g̃,Q′(H,K + 1, · · · , 2K)p̄
. (25)

Under Q, we have

α 6= 1 α = 1

Bc̄−g̃,ḡ−g̃,Q(K + 1, · · · , 2K) = ( 0
∏2K
j=K+1(ĉj − ĝj) ),

Bc̄−g̃,ḡ−g̃,Q(H,K + 1, · · · , 2K) = ( 0
∏
j∈H(ĉj − ḡj)

∏2K
j=K+1(ĉj − ĝj) ),

Bc̄−g̃,ḡ−g̃,Q(H, h,K + 1, · · · , 2K) = ( 0 (ĉh − ḡh)
∏
j∈H(ĉj − ḡj)

∏2K
j=K+1(ĉj − ĝj) ).

This gives

ĉh − ḡh =
Bc̄−g̃,ḡ−g̃,Q(H, h,K + 1, · · · , 2K)p̂

Bc̄−g̃,ḡ−g̃,Q(H,K + 1, · · · , 2K)p̂
. (26)

Tĉ−g̃,ĝ−g̃(Q)p̂ = Tc̄−g̃,ḡ−g̃(Q′)p̄ allows to equate the right-hand sides of (25) and (26) which

yields

ĉh = c̄h. (27)

Now under Q′, with a similarly argument, we have

c̄h − ḡh =
Bc̄−g̃,ḡ−g̃,Q′(H, h,B)p̄

Bc̄−g̃,ḡ−g̃,Q′(H,B)p̄
. (28)

Under Q, consider three types of attributes profiles: unable to answer H (denoted by 0H),

able to answer H but unable to answer h (denoted by 0h1H), and able to answer both H
and h (denoted by 1H1h). We have

0H 0h1H 1H1h

Bc̄−g̃,ḡ−g̃,Q(H,B) = ( 0
∏
j∈H(ĉj − ḡj)

∏
j∈B(ĉj − ĝj)

∏
j∈H(ĉj − ḡj)

∏
j∈B(ĉj − ĝj)),

Bc̄−g̃,ḡ−g̃,Q(H, h,B) = ( 0 (ĝh − ḡh)
∏
j∈H(ĉj − ḡj)

∏
j∈B(ĉj − ĝj) (ĉh − ḡh)

∏
j∈H(ĉj − ḡj)

∏
j∈B(ĉj − ĝj)).

Since ĝh − ḡh < ĉh − ḡh and pα > 0 for all α, we have that

ĉh − ḡh 6=
Bc̄−g̃,ḡ−g̃,Q(H, h,B)p̂

Bc̄−g̃,ḡ−g̃,Q(H,B)p̂
=
Bc̄−g̃,ḡ−g̃,Q′(H, h,B)p̄

Bc̄−g̃,ḡ−g̃,Q′(H,B)p̄
. (29)

Tĉ−g̃,ĝ−g̃(Q)p̂ = Tc̄−g̃,ḡ−g̃(Q′)p̄ allows use to equate the right-hand sides of (28) and (29),

which yields ĉh > c̄h. This contradicts (27).
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Thus, under this case, we have that Tĉ−g̃,ĝ−g̃(Q)p̂ 6= Tc̄−g̃,ḡ−g̃(Q′)p̄ if ĉj > ĝj , c̄j > ḡj ,

p̂α > 0, p̄α > 0. Furthermore, if the conditions in the theorem are satisfied and Q′1:K

or Q′(K+1):2K is incomplete, then we cannot find parameters c̄, ḡ, and p̄ that yields the

same response distribution as Q and thus Q can be differentiated from Q′ by the maximum

likelihood.

Case 2: both Q′1:K and Q′K+1:2K are complete, but Q � Q′. In this case, we can

always arrange the columns of Q′ such that either Q′1:K = IK . Redefine

g̃ = (c̄1, · · · , c̄K , ĉK+1, · · · , ĉ2K , 0, · · · , 0)

and assumption (24) suggests that Tĉ−g̃,ĝ−g̃(Q)p̂ = Tc̄−g̃,ḡ−g̃(Q′)p̄.

The row vectors of T -matrices corresponding to items 1,..., 2K are

Bĉ−g̃,ĝ−g̃,Q(1, · · · , 2K) =

(∏K

k=1
(ĝk − c̄k)

∏2K

k=K+1
(ĝk − ĉk),0>

)
and

Bĉ−g̃,ĝ−g̃,Q′(1, · · · , 2K) =

(∏K

k=1
(ḡk − c̄k)

∏2K

k=K+1
(ḡk − ĉk),0>

)
where only the element corresponding to zero attribute is non-zero. Therefore, for any

j ≥ 2K + 1, we have

ĝj =
Bĉ−g̃,ĝ−g̃,Q(1, · · · , 2K, j)p̂
Bĉ−g̃,ĝ−g̃,Q(1, · · · , 2K)p̂

=
Bc̄−g̃,ḡ−g̃,Q′(1, · · · , 2K, j)p̄
Bc̄−g̃,ḡ−g̃,Q′(1, · · · , 2K)p̄

= ḡj .

Once again, we redefine g̃ = (ḡ1, · · · , ḡK , 0, · · · , 0, ĝ2K+1, · · · , ĝJ). By Condition A5, we

have for K + 1 ≤ j ≤ 2K

ĉj =
Bĉ−g̃,ĝ−g̃,Q(1, · · · ,K, j, (2K + 1), · · · , J)p̂

Bĉ−g̃,ĝ−g̃,Q(1, · · · ,K, (2K + 1), · · · , J)p̂

=
Bc̄−g̃,ḡ−g̃,Q′(1, · · · ,K, j, (2K + 1), · · · , J)p̄

Bc̄−g̃,ḡ−g̃,Q′(1, · · · ,K, (2K + 1), · · · , J)p̄
= c̄j .

Similarly take g̃ = (0, · · · , 0, ḡK+1, · · · , ḡ2K , ĝ2K+1, · · · , ĝJ). We have ĉj = c̄j for 1 ≤ j ≤ K.

Now take g̃ = (c̄1, · · · , c̄K , 0, · · · , 0), we have for K + 1 ≤ j ≤ 2K

ĝj =
Bĉ−g̃,ĝ−g̃,Q(1, · · · ,K, j)p̂
Bĉ−g̃,ĝ−g̃,Q(1, · · · ,K)p̂

=
Bc̄−g̃,ḡ−g̃,Q′(1, · · · ,K, j)p̄
Bc̄−g̃,ḡ−g̃,Q′(1, · · · ,K)p̄

= ḡj .

Similarly, for ĝj = ḡj for j = 1, ...,K. Thus, we have ĝj = ḡj for j = 1, ..., J . Therefore,

assumption (24) becomes

Tĉ,ĝ(Q)p̂ = Tc̄,ĝ(Q′)p̄. (30)

This contradicts Proposition 4. Thus, we have reached the conclusion that

Tĉ,ĝ(Q)p̂ 6= Tc̄,ḡ(Q′)p̄.
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for all ĉj > ĝj , c̄j > ḡj , p̂α > 0, p̄α > 0 and Q′ � Q. Thus, by maximizing the profiled

likelihood, Q can be consistently estimated.

Proof of Theorem 4. Suppose there are two sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such

that L(ĉ, ĝ, p̂) = L(c̄, ḡ, p̄), equivalently, Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄. We show that (ĉ, ĝ, p̂) =

(c̄, ḡ, p̄) if ĉj > ĝj , p̂α > 0, c̄j > ḡj , and p̄α > 0. Condition A5 allows us to consider the

following three cases.

Case 1. There exit at least three items with Q-matrix row vector e1. Without loss of

generality, we write the Q-matrix as (with reordering of the rows)

Q =



1 0>

1 0>

1 0>

0 IK−1

0 Q′


. (31)

In what follows, we show that ĉj = c̄j and ĝj = ḡj for j = 1, 2, 3. By Proposition 3,

Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄ suggests that Tĉ−ĝ,0(Q)p̂ = Tc̄−ĝ,ḡ−ĝ(Q)p̄. Together with the fact

that

Bĉ−ĝ,0;Q(1, 2, 3)p̂

Bĉ−ĝ,0;Q(1, 2)p̂
=
Bĉ−ĝ,0;Q(1, 3)p̂

Bĉ−ĝ,0;Q(1)p̂
= ĉ3 − ĝ3, (32)

we have that

Bc̄−ĝ,ḡ−ĝ;Q(1, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(1)p̄
=
Bc̄−ĝ,ḡ−ĝ;Q(1, 2, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(1, 2)p̄
. (33)

Expanding the above identity, we have

(ḡ1 − ĝ1)(ḡ3 − ĝ3)
∑

a∈{0,1}K−1 p̄(0,a) + (c̄1 − ĝ1)(c̄3 − ĝ3)
∑

a∈{0,1}K−1 p̄(1,a)

(ḡ1 − ĝ1)
∑

a∈{0,1}K−1 p̄(0,a) + (c̄1 − ĝ1)
∑

a∈{0,1}K−1 p̄(1,a)

=

∏3
j=1(ḡj − ĝj)

∑
a∈{0,1}K−1 p̄(0,a) +

∏3
j=1(c̄j − ĝj)

∑
a∈{0,1}K−1 p̄(1,a)

(ḡ1 − ĝ1)(ḡ2 − ĝ2)
∑

a∈{0,1}K−1 p̄(0,a) + (c̄1 − ĝ1)(c̄2 − ĝ2)
∑

a∈{0,1}K−1 p̄(1,a)
, (34)

which can be simplified to (ḡ1− ĝ1)(c̄1− ĝ1)(c̄2− ḡ2)(c̄3− ḡ3) = 0. Then under the constraint

that c̄j > ḡj , we have ḡ1 = ĝ1 or c̄1 = ĝ1. A similar argument yields

{
ḡ2 = ĝ2 or c̄2 = ĝ2

ḡ3 = ĝ3 or c̄3 = ĝ3

and


ĝ1 = ḡ1 or ĉ1 = ḡ1

ĝ2 = ḡ2 or ĉ2 = ḡ2

ĝ3 = ḡ3 or ĉ3 = ḡ3

.

For j = 1, 2, or 3, if ĝj 6= ḡj we have ĉj = ḡj and c̄j = ĝj . This contradict the condition that

ĉj > ĝj and c̄j > ḡj . Thus we have ĝj = ḡj for j = 1, 2, 3. Repeating the proof of Theorem

2, we have ĉj = c̄j for i = 1, 2, 3.
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Case 2. There exit two items with row vector e1. Without loss of generality, we write

the Q-matrix as

Q =



1 0>

1 0>

1 v>

0 IK−1

0 Q′


, Q1:4 =


1 0 0>

1 0 0>

1 1 v∗
>

0 1 0>

 , (35)

where v is a non-zero vector. Without loss of generality we assume v> = (1,v∗
>). Consider

the sub-matrix containing the first four items. i.e., Q1:4 in (35). Similar to the proof of

Case 1, for (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such that Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄, we will show{
ĉj = c̄j j = 1, 2, 4

ĝj = ḡj j = 1, 2, 3
. (36)

A similar argument as in Case 1 yields

Bĉ−ĝ,0;Q(1, 3)p̂

Bĉ−ĝ,0;Q(3)p̂
= ĉ1 − ĝ1 =

Bĉ−ĝ,0;Q(1, 4, 3)p̂

Bĉ−ĝ,0;Q(4, 3)p̂
.

Together with the fact that Tc̄−ĝ,ḡ−ĝ(Q)p̄ = Tĉ−ĝ,0(Q)p̂, we have

Bc̄−ĝ,ḡ−ĝ;Q(1, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(3)p̄
=
Bc̄−ĝ,ḡ−ĝ;Q(1, 4, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(4, 3)p̄
.

This implies

g̃1g̃4g̃3p̄0,0 + c̃1g̃4g̃3p̄1,0 + g̃1c̃4g̃3p̄0,1 + c̃1c̃4c̃3p̄1,1

g̃4g̃3p̄0,0 + g̃4g̃3p̄1,0 + c̃4g̃3p̄0,1 + c̃4c̃3p̄1,1

=
g̃1g̃3p̄0,0 + c̃1g̃3p̄1,0 + g̃1g̃3p̄0,1 + c̃1c̃3p̄1,1

g̃3p̄0,0 + g̃3p̄1,0 + g̃3p̄0,1 + c̃3p̄1,1
, (37)

where g̃j = ḡj − ĝj for j = 1, 3, 4, c̃j = c̄j − ĝj for j = 1, 4,

c̃3 =
(c̄3 − ĝ3)

∑
v∗�a∈{0,1}K−2 p̄(1,1,a) + (ḡ3 − ĝ3)

∑
v∗�a∈{0,1}K−2 p̄(1,1,a)∑

a∈{0,1}K−2 p̄(1,1,a)
,

and p̄i,j =
∑

a∈{0,1}K−2 p̄(i,j,a) for i, j ∈ {0, 1}. Here v∗ � a means that each element of v∗
is less than or equals to the corresponding element of a, and v∗ � a means that v∗ � a

does not hold.

Simplifying (37), we obtain p̄0,0p̄1,1g̃3c̃3(g̃1−c̃1) = p̄1,0p̄0,1g̃3g̃3(g̃1−c̃1). Since g̃1−c̃1 6= 0,

we have

g̃3 = 0 or p̄0,0p̄1,1c̃3 = p̄1,0p̄0,1g̃3. (38)

We show that g̃3 has to be zero. Otherwise, we have

p̄0,0p̄1,1(c̄∗3 − ĝ3) = p̄1,0p̄0,1(ḡ3 − ĝ3), (39)
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where

c̄∗3 = c̃3 + ĝ3 =
c̄3
∑

v∗�a∈{0,1}K−2 p̄(1,1,a) + ḡ3
∑

v∗�a∈{0,1}K−2 p̄(1,1,a)∑
a∈{0,1}K−2 p̄(1,1,a)

.

A similar argument gives that

p̂0,0p̂1,1(ĉ∗3 − ḡ3) = p̂1,0p̂0,1(ĝ3 − ḡ3), (40)

where

ĉ∗3 =
ĉ3
∑

v∗�a∈{0,1}K−2 p̂(1,1,a) + ĝ3
∑

v∗�a∈{0,1}K−2 p̂(1,1,a)∑
a∈{0,1}K−2 p̂(1,1,a)

.

Equations (39) and (40) imply that ĉ∗3 > ĝ3 > c̄∗3 > ḡ3 or c̄∗3 > ḡ3 > ĉ∗3 > ĝ3, which conflicts

with the equation that Bĉ,ĝ;Q(3)p̂ = Bc̄,ḡ;Q(3)p̄, i.e.,

ĝ3(p̂0,0 + p̂1,0 + p̂0,1) + ĉ∗3p̂1,1 = ḡ3(p̄0,0 + p̄1,0 + p̄0,1) + c̄∗3p̄1,1.

To see this, notice that p̂0,0 + p̂1,0 + p̂0,1 = 1 − p̂1,1, p̄0,0 + p̄1,0 + p̄0,1 = 1 − p̄1,1, and

p̂1,1, p̄1,1 ∈ (0, 1). By simple algebra, the above identity cannot be achieved if either ĉ∗3 >

ĝ3 > c̄∗3 > ḡ3 or c̄∗3 > ḡ3 > ĉ∗3 > ĝ3 is true. Therefore, we have g̃3 = ḡ3 − ĝ3 = 0. Let

g = (0, 0, ĝ3, 0, · · · , 0). Tc̄−g,ḡ−g(Q)p̄ = Tĉ−g,ĝ−g(Q)p̂ yields

c̄1 =
Bc̄−g,ḡ−g;Q(1, 4, 3)p̄

Bc̄−g,ḡ−g;Q(4, 3)p̄
=
Bĉ−g,ĝ−g;Q(1, 4, 3)p̂

Bĉ−g,ĝ−g;Q(4, 3)p̂
= ĉ1,

c̄2 =
Bc̄−g,ḡ−g;Q(2, 4, 3)p̄

Bc̄−g,ḡ−g;Q(4, 3)p̄
=
Bĉ−g,ĝ−g;Q(2, 4, 3)p̂

Bĉ−g,ĝ−g;Q(4, 3)p̂
= ĉ2,

c̄4 =
Bc̄−g,ḡ−g;Q(1, 4, 3)p̄

Bc̄−g,ḡ−g;Q(1, 3)p̄
=
Bĉ−g,ĝ−g;Q(1, 4, 3)p̂

Bĉ−g,ĝ−g;Q(1, 3)p̂
= ĉ4.

Consider items 1 and 2. Let c = (ĉ1, ĉ2, 0, · · · , 0). Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄ yields

ḡ1 =
Bc̄−c,ḡ−c;Q(1, 2)p̄

Bc̄−c,ḡ−c;Q(2)p̄
=
Bĉ−c,ĝ−c;Q(1, 2)p̂

Bĉ−c,ĝ−c;Q(2)p̂
= ĝ1,

ḡ2 =
Bc̄−c,ḡ−c;Q(1, 2)p̄

Bc̄−c,ḡ−c;Q(1)p̄
=
Bĉ−c,ĝ−c;Q(1, 2)p̂

Bĉ−c,ĝ−c;Q(1)p̂
= ĝ2.

Therefore, (36) is true.

Now combining the results in Cases 1 and 2, we have that for the Q-matrix taking the

form of (8), the following holds:{
ĉj = c̄j j = 1, · · · , 2K
ĝj = ḡj j = 1, · · · , J

. (41)

Let g∗ = (ĉ1, · · · , ĉK , ĝK+1, · · · , ĝJ). For each j ∈ {(2K + 1), · · · , J}, let Aj be the set of

items {(K + 1), · · · , J}\{j}, i.e., the set of all items from K + 1 to J except the jth one.

For the sub-matrix QK+1:J , condition A5 implies that each attribute appears at least twice.
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Therefore, we have

ĉj − ĝj =
Bĉ−g∗,ĝ−g∗;Q(Aj , j)p̂
Bĉ−g∗,ĝ−g∗;Q(Aj)p̂

=
Bc̄−g∗,ḡ−g∗;Q(Aj , j)p̄
Bc̄−g∗,ḡ−g∗;Q(Aj)p̄

= c̄j − ĝj .

This gives ĉj = c̄j for j = 2K + 1, · · · , J . Together with (41), ĉj = c̄j for all j = 1, · · · , J .

This further yields p̂ = p̄ due to the full column rank of the matrix Tĉ,ĝ(Q).

Therefore, for two sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄) such that Tĉ,ĝ(Q)p̂ =

Tc̄,ḡ(Q)p̄, we have (ĉ, ĝ, p̂) = (c̄, ḡ, p̄). This finishes the proof of Theorem 4.

C Proof of Propositions

Proof of Proposition 2. Notice that the column vector Tc,g(Q)p contains the probabil-

ities P (Rj1 = 1, ..., Rjl = 1) for all possible distinct combinations j1,...,jl. Thus, Tc,g(Q)p

completely characterizes the distribution of R. Two sets of parameters Tĉ,ĝ(Q)p̂ = Tc̄,ḡ(Q)p̄

if and only if they correspond to the same distribution of R. This concludes the proof.

Proof of the Proposition 3. In what follows, we construct a D matrix satisfying the

condition in the proposition. We show that there exists a matrix D only depending on g∗

so that DTc,g(Q) = Tc−g∗,g−g∗(Q). Note that each row of DTc,g(Q) is just a row linear

transform of Tc,g(Q). Then, it is sufficient to show that each row vector of Tc−g∗,g−g∗(Q)

is a linear transform of rows of Tc,g(Q) with coefficients only depending on g∗. We prove

this by induction.

First, note that

Bc−g∗,g−g∗;Q(j) = Bc,g;Q(j)− g∗j1>

where 1> is a row vector with all elements being 1. Then all row vectors of Tc−g∗,g−g∗(Q) of

the form Bc−g∗,g−g∗,Q(j) are inside the row space of Tc,g(Q) with coefficients only depending

on g∗. Suppose that all the vectors of the form

Bc−g∗,g−g∗;Q(j1, ..., jl)

for all 1 ≤ l ≤ ι can be written linear combinations of the row vectors of Tc,g(Q) with

coefficients only depending on g∗. Then, we consider

Bc,g;Q(j1, ..., jι+1) = Υι+1
h=1

(
Bc−g∗,g−g∗;Q(jh) + g∗jh1

>
)
,

where “Υ” refers to element by element multiplication. The left hand side is just a row

vector of Tc,g(Q). We expand the right hand side of the above display. Note that the last

term is precisely

Bc−g∗,g−g∗;Q(j1, ..., jι+1) = Υι+1
h=1Bc−g∗,g−g∗;Q(jh).

The rest terms are all of the form Bc−g∗,g−g∗;Q(j1, ..., jl) for 1 ≤ l ≤ ι multiplied by

coefficients only depending on g∗. Therefore, according to the induction assumption, we

have that Bc−g∗,g−g∗;Q(j1, ..., jι+1) can be written as linear combinations of rows of Tc,g(Q)

with coefficients only depending on g∗.
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