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1 Introduction

Asset-pricing models make assumptions about how information arrives and
is disclosed to its investors (henceforth the market). For assets arising out
of a productive activity by a �rm, management reports based on internal
audits of the various accounting numbers (accounting variables), prepared
in time for the scheduled (publicly pre-speci�ed) dates, are one such source.
If, by the nature of their activity, management make more frequent audits
(for instance in directing replenishment to a speci�c level, which enforces
frequent stock-taking, as in the retail business), then opportunities arise for
�early�(unscheduled) disclosure. How should this additional information be
used to signal the �rm�s superior value, i.e. to upgrade its share-price? When
(or how) should the market �price in�the absence of early disclosures by a �rm
to include the possibility that no news is bad news. The answer must rely on
an equilibrium between the market�s ability to down-grade the share-price
and the �rm�s ability to take advantage of ignorance: hiding some bad news
within the uncertain cause of absent news, i.e. censoring the information.
The accounting literature has usually approached this question by includ-

ing a speci�ed (i.e. known in advance), single, �additional�interim reporting
date, ahead of the next scheduled disclosure, and allowing for absence of an
early disclosure by randomizing the possibility that management has held an
additional audit �see [Dye], [JunK]. However, with the early date a datum,
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this approach places limits on comparative analysis; for an equally spaced
multi-period model see [EinZ].

1.1 Earnings guidance: strategic considerations

In this the companion paper to [GieO] we propose an alternative general
approach, by instilling more realism into the stylized Black-Scholes model of
[GieO]. There the market determination of the (share-)price of the �rms in
a sector re�ects only the discretional information strategically released by a
�rm (i.e. with anticipation of its price e¤ect), usually in the form of earn-
ings guidance, as below, at a stochastic time-point (i.e. at unknown dates in
advance of a subsequent mandatory date of information disclosure). Despite
this highly speci�c origin for the arrival of information in the market, that
model holds considerable advantages, thanks to its continuous-time approach
which overcomes the limitations of the traditional �two-period analysis�just
mentioned. There unspeci�ed moments in time o¤er an early disclosure. By
way of an example from [GieO], which goes beyond the scope intended here,
there is a derivable �band-wagon�e¤ect whereby the introduction of multi-
ple sources of information reduces an individual �rm�s optimal frequency of
disclosures by reference to time left to the next mandatory disclosure date.
Typically, however, the market responds also to other public sources of

information, such as trading in the shares of the �rm, and by assessing the
exposure of the �rm to such economic risks as may be priced by market-
quoted options.
Here we create a more general framework to include such other, already

existing, market-based information enabling the market to make proper use
of this additional information about the �rm. This prompts a deeper analy-
sis, equivalently a formalization at a foundational level, of the various mech-
anisms at work, o¤ered in the Complements Section. For simplicity, we
consider here only the situation where the market�s concern is for a single
�rm, rather than a whole sector. In this we are guided by the clarifying sim-
pli�cations that occur in the case of an isolated (�single�) �rm in the stylized
model [GieO].
There the �rm itself comes to know (�observes�) its own state Vt only

at discrete, stochastically generated times t, not known to the market; the
manager, occupied by a variety of tasks, cannot receive observations except
when these breach agreed thresholds, as reported by personnel delegated
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to collect this information, perhaps continuously. This feature of a hidden
observation scheme enables the �rm to bury (hide) �bad�news and only report
�su¢ ciently good�news, principally because the manager cannot at any time
credibly claim as absent an observation at that time. That model prices the
�rm in periods of silence, i.e. when the �rm fails to supply an early report
of information. Key to this is identifying at each time t a value Lt such that
if Lt happened to coincide with the true and currently observed state Vt,
the �rm would be indi¤erent, as regards its market valuation (i.e. given the
market�s information ex ante), between choosing to disclose or to withhold
the current observed state Vt. Such an indi¤erence level Lt, determined by the
information available from before time t, is typically unique. Censoring, i.e.
suppression of an observation below this unique Lt, draws from the market a
valuation of the �rm at Lt. In fact, Lt is the largest possible valuation of the
�rm, consistent with the information available from before time t. As such
it is termed the optimal censor of time t. Note that observations above Lt
that are disclosed cause an upward jump in the �rm�s valuation. We should
emphasize that only truthful disclosures are allowed in the model.
The mathematical argument is based on risk-neutral valuation, which

must incorporate the potential future re-evaluations of �rm-value consequent
upon future early disclosures.
The existence of an indi¤erence pricing process is directly attributable

to the �rm knowing the market�s �ltration F ∗ = {F∗t }t and the mechan-
ics of how the market performs computations based on past disclosures (in
particular, the probabilities at each instant which the market attaches to
the �rm suppressing an observation of its state). Since the �rm�s �ltration
F = {Ft}t is an enlargement of F ∗ [Jeu], in that the �rm feeds the market
with information by choosing when to supply its private observations, one
may say that the �rm emulates (can simulate) the market. In turn the mar-
ket�s calculations are based on the �rm�s algorithm, though not on the �rm�s
up-to-date observations. The indi¤erence price arises from characterizing a
notional parametric equilibrium between the two agents: the �rm and the
market (we do not di¤erentiate between informed and noisy traders), select-
ing parameters in the computation they use to second-guess each other.
The paper identi�es the mechanisms underlying some fairly general val-

uation procedures, allowing the market to form its beliefs from additional
information and the �rm to exploit the market beliefs by disclosing value
superior to that belief, but nevertheless to give a fair view of future dis-
closures. As these mechanisms are inspired by the principal argument and
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�ndings of [GieO], we close here with a summary of that argument (in the
simpli�ed notation used below). Suppose the next mandatory disclosure is
at the terminal time 1 and that, under the market�s risk-neutral measure
Q, at time t < 1 the probability of a disclosure to the market occurring at
time T ∈ (t, 1] is τT . (In [GieO] opportunities to observe the state of the
�rm are generated by a Poisson clock.) Based on its information at time T ,
the earnings guidance announced at that time by the �rm gives its target
terminal value as V T = EQ[V1|FT ]; the target and the two �ltrations above
are related to the indi¤erence level LT of time T by the two equations

(1.1.1a) V T = τTE
Q[V1|VT ≥ LT ,FT ] + (1− τT )LT ,

(1.1.1b) LT = EQ[V1|NDT (LT ),F∗T ].

Here NDT (L) is the event that no disclosure occurs at time T, which means
that either there has been no opportunity to observe VT or else the manager
has observed VT but VT ≤ L. From here, in the context of [GieO], given how
F∗T is generated from FT via F∗T -measurable decisions, one deduces in the
limit as T → t from (1.1.1a) that t 7→ Lt satis�es a simple ordinary di¤er-
ential equation (involving the instantaneous variance of Q and the Poisson
clock�s intensity). Assuming multiplicative scalability, that VT+u = VT ~Vu
with independence of VT and ~Vu, equations (1.1.1a,b) can be further simpli-
�ed.
In summary, apart from simpli�cations, this paper�s contributions in-

clude: announcements of both su¢ ciently good and su¢ ciently bad news
(dual, �materiality�aspects in the release of private information), incorpora-
tion of current public information in modelling market sentiment, and com-
parative statics of early disclosures.
The paper is organized as follows. Section 2 contains a preliminary dis-

cussion of our modelling aims. Section 3 models the market�s beliefs as to
�rm value, based on expected performance indices and is supported by a
geometric Brownian (GMB) implementation. This is followed in Section 4
by a model of the �rm setting its target values; using a benchmark scheme
to be followed by the �rm in observing its own state, this is shown at its sim-
plest to be similar to determining option exercise values, and is supported
by an indicative GMB implementation. This enables us to perform compar-
ative statics in Section 5, which we conclude meets a primary objective: to
show how parameter values determine early or delayed voluntary release of
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information in equilibrium. We comment brie�y on the implications of our
approach in Section 6, thus rounding o¤ the paper�s contribution, and close
in Section 7 with Complements indicating a framework for generalizations
and potential variations. An Appendix gives details of well-known GMB
formulas needed in the paper.

2 Model preliminaries

In this section we introduce a model of how a �rm F decides to disclose
information intermittently at times t to the market M about its state Vt,
voluntarily between legally mandated (mandatory) disclosure dates. This
involves modelling how the market forms beliefs V ∗t in periods of silence
about the true current value Vt. (We regard the market as dual to the �rm,
hence the �star�notation here and below.)
Our �rst two tasks are: to model the beliefs of M (in §3) and then to

model F�s choice of �equilibrium�indi¤erence level (in §4), below which an
observation of Vt, if any, is not disclosed (as in the Introduction). We will
rely on tractable Black-Scholes frameworks, and in the second task we will
be guided by the �ndings of [GieO]. In §5 we prove the existence of these
indi¤erence levels in a benchmark context. We may then pass to calculations
which will yield conclusions, in particular, about the likelihood of early dis-
closure. This enables us in §6 to address comparative statics of voluntary
(i.e. early) disclosures, matters beyond the reach of [GieO].
Thereafter, we discuss generalizations identifying potential for more so-

phisticated models (e.g. inclusion of analyst forecasts).
The �rm has �private�access, according to some observation scheme �pos-

sibly also intermittent �to its �state�Vt (thought of as the income stream).
This is modelled as a random time τ not known toM. The �rm applies �xed
decision rules by which it determines at time t whether to withhold any obser-
vation it may have, or to disclose its information voluntarily (and truthfully)
to the market via two items of information: (i) the current value Vt, and (ii)
the expected state at the terminal date, i.e. the next mandatory disclosure
date. We term the former the declared current value V C and the latter its
declared target value V T (current as at the date of its disclosure). The �rm�s
intention is to achieve the highest possible market valuation at each point in
time; here this is implemented by use of a �xed decision rule, based both on
its own private information about its state and on the market�s public belief
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about the state of the �rm, which in turn depends on the market�s infor-
mation base. We term this, publicly held belief about the value, the market
sentiment. F forms its expectations by reference to a measure QV T (labelled
by the last declared target) under which its (discounted) observation process
is a martingale.
To model market sentiment, we borrow and amend a concept from con-

trol theory, that of a state observer (a.k.a. �state estimator�) system; for a
discussion see §7.1(iv).
In the [GieO] model the observation scheme was a Poisson clock with

known jump intensity; the market sentiment was an equilibrium valuation
obtained from the latest disclosed state-value, prudently discounted down-
wards (i.e. by incorporating the possible undisclosed poor performance);
discounting is by a rate determined by the (known) Poisson jump intensity.
Below, the market sentiment V ∗t is based on the latest disclosed infor-

mation and on the current value, or perhaps on the prevailing behaviour, of
some speci�ed portfolio of traded assets with value S∗t (e.g. current value,
average value, record value to date). The portfolio, termed the tracker, is
viewed by the market as capturing the �rm�s exposure to quotable (market-
priced) risks. The key property of S∗t is that it is priced by a risk-neutral
(i.e. market) measure. That is, M forms its expectations by reference to
a measure Q∗ under which the (discounted) tracker process is a martingale.
We note that, at each time t, since F has access to M�s information F∗t plus
its own observation, i.e. its own �ltration {Ft}t is an enlargement of {F∗t }t,

Q∗| F∗t = QV T | F∗t .

As in [GieO], so too here, the link between market sentiment V ∗ and asset
S∗ needs to be determined by equilibrium considerations: if at time t the �rm
applies a decision rule h to the observations of S∗ and V , it will determine
an indi¤erence level L (as in the Introduction) which, if F observed that
Vt = L, would make F indi¤erent between disclosure or otherwise of Vt.
While the �rm determines its disclosure using a rule h (below) that exploits
any superiority of the observed value over market sentiment, rather than its
expected terminal value, it complements such a disclosure by supplying the
market with information about the expected terminal value.
We take the decision rules for F and consequently also forM (with starred

notation for the latter�s rules) in the (time-independent) form

(2.0.1) hε,a(t, x, y) = (x− (1+a)y)ε, (x, y ∈ R, t > 0)
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where a > −1 is termed a mark-up, and ε = ±1 its signature, positive when
deciding a good-news disclosure event at time u, say, when

(2.0.1a) Vu ≥ (1+a)V ∗u ,

and respectively negative for a disclosure of bad-news. (A dynamic variant
is considered brie�y in §7.1) These may be viewed as backed by a theoret-
ical justi�cation for such a �principal-agent�delegation (here a shareholder-
mandated policy): see the classic paper [BaiD, Prop. 1.4] for a rigorous
derivation of control limits, using an �evaluation and control�method. The
argument there refers to the costs versus the bene�ts of extracting informa-
tion and the authors claim support of (perhaps, anecdotal) hard evidence
that such rules are observed in practice.
We close by stressing that the various asset-price dynamics here are mod-

elled only between consecutive disclosures �in �periods of silence�.

3 Market sentiment: shadowing the �rm

Our �rst task begins at a point in time T0 with 0 ≤ T0 ≤ 1 when the �rm is
assumed to have disclosed two items of data: current state V C and declared
target V T.We use V T as a su¢ x conveniently labelling the various processes
started at time T0 .
The next time of disclosure, following access to an observation of XT at

time T = T+, will occur provided

h(T, VT , V
∗
T ) ≥ 0.

Here the �rm F applies its decision rule h taken in general to depend on
the time-T values of V and V ∗, and perhaps on T itself, a possibility ruled
out below to simplify calculations (hence the rules in §2 above). Then at
time T = T+, the �rm will declare its current state VT and set a new target
value V T = V T+. So the main tasks are to devise a justi�able model for a
process V ∗, which we view as �shadowing the �rm�, and for V T+ (in the next
section).

3.1 Two modelling assumptions

We begin by identifying how to model V ∗t . This will be determined by two
components. Although the entire process is driven by a speci�ed market
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To complete the picture, note that the bad news scenario when �∗ is the
running-maximum can be read back from:

(3.2.5) Q∗(h−1,a�(�
∗, V T ) ≥ 0) = 0 , if S∗t > (1 + a∗)V T,

and that for A∗ > 0 this probability is given by equation (3.2.4c) above.

3.2.2 V ∗ from the running-min approximation

We now deal with running-min

�∗ := min{S∗u |u ∈ [t, T1]}.

The good-news and bad-news formulas hold good and, viewed technically,
may be derived by replacing µ∗ by −µ∗ and A∗ by −A∗ = log(S∗t /((1 +
a∗)V T )); and switching to probabilities complementary to those in (3.2.1):
see the discussion for equation (A8) in Section A2 of the Appendix. From
there, we have explicitly:

Proposition 3.3 If S∗t ≤ (1+a∗)V T, then

(3.2.6a) Q∗(h+1,a�(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0) = 0,

(3.2.6b) Q∗(h−1,a�(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0) = 1.

If S∗t > (1+a∗)V T, then

(3.2.6c) Q∗(h+1,a�(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0)

= 1−Q∗(h−1,a�(min{S∗u |u ∈ [t, T1]}, V T ) > 0),

where

(3.2.6d) Q∗(h−1,a�(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0) =

=
1

2
Erfc

(
A∗t − (T − t)µ∗
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√
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)
− 1
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exp

(
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(σ∗)2

)
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∗
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√
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.
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4 Setting new targets

The previous section determined how the �rm triggers disclosure by reference
to a �xed decision rule h and a model of market sentiment V ∗t (our proxy
for an observer-system of control theory). This replaces and simpli�es the
dynamics of the equilibrium approach of [GieO], but comes at the cost of
losing information about the expected terminal �rm-value (value at the next
mandatory disclosure date). The model of [GieO] identi�es that expected
�terminal value�as equal to the disclosed value. The modelling in the cur-
rent section provides the missing information in the form of a new target
value V T+ (so �plugs� the gap between the models). The framework here
is, nevertheless, inspired by the equilibrium argument in [GieO], as summa-
rized by the concept of an indi¤erence level (see equations (1.1.1a,b) in the
Introduction).
If the �rm were to use a threshold L to trigger disclosure at some, for

the moment arbitrary, future time moment u in (t, T ], the �rm�s adopted
decision rule, h say, determines disclosure i¤ hV T,u(u,Xu, L) ≥ 0. As only
truthful disclosures are assumed, this entails a market valuation at the dis-
closed level. However, absence of a disclosure entails, for some appropriately
selected threshold L, as in the model of [GieO], a valuation of L. In sum-
mary, if L = L(u) = Lu is selected appropriately for time u, then the time u
valuation of the �rm is given by the random variable

(4.0.1a) ZV T,u(Lu) = Xu 1{hV T,u(u,Xu,L(u))≥0} + L1{hV T,u(u,Xu,L(u))<0}.

Now let τV T be a random time, with the interpretation that the event
τV T (u) = u for u > 0 means that F observes Xu, the complementary event
being τV T (u) = 0.
We now modify the random variables in (4.0.1a) by taking into account

the times of observation and non-observation and de�ne

(4.0.1b) ZτV T
V T,u(Lu) = ZV T,u(L)1{τV T (u)=u} + L1{τV T (u)=0}.

Then the expected valuation is∫
(t,T ]

EQV T [ZτV T
V T,u(Lu) | Ft ] τV T (du),

denoting here the distribution of τV T by τV T again, for notational conve-
nience. As in §1.1 (cf. [GieO]), since QV T is risk-neutral, this should agree
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with Xt. Without loss of generality to the analysis of the interval (t, T ], we
may agree to resize (rescale) the observation process at time t to unity. Inter-
preting the values as discounted to present time t, our modelling assumption
is to seek a constant L = LV T solving

(4.0.2) 1 =

∫
[t,T ]

EQV T [ZτV T
V T,u(LV T ) | Ft ] τV T (du).

In setting the new target level, this formula relies not on the market �ltration
F∗ (so not on future market sentiment), but on fair value computed from the
larger �ltration F with which the �rm is equipped.
Granted the existence of a solution to (4.0.2), a matter addressed in §4.2

below, we take V T+ := Lu to correspond to hV T,u.

4.1 A bench-mark observation scheme

For a tractable implementation of the modelling assumption in formula (4.0.2),
we replace the random observation scheme τ by a deterministic one, known
only to the �rm but most certainly not known to the market. This permits
a decomposition

(4.1.1) [t, T ] = CV T ∪ DV T ∪NV T

according as observation extends over continuous intervals, or either at a
�nite number of (discrete) time moments, or not at all.
Then the equation above reduces to

1 =

∫
CV T

EQV T [ZτV T
V T,u(Lu) | Ft ]

du

T − t

(4.1.2) +
∑

u∈DV T
EQV T [ZτV T

V T,u(Lu) | Ft ] qV T

+

(
1− vol(CV T )

T − t

)
LV T

with qV T = 1/#DV T , e¤ectively the constant probability of discrete moni-
toring.
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Furthermore, taking hV T,u to be hε,aV T,u (with a mark-up aV T,u > −1)
leads to a decomposition of the variable ZV T,u into an option part and a non-
option part, appropriately corresponding to good-news and bad-news events.
For the good-news case (ε = +1), it can readily be checked that this is

(4.1.3a) ZV T,u(L) = L+max{Xu−(1+aV T,u)L, 0}+aV T,uL1{Xu≥(1+aV T,u)L},

and similarly for bad-news (ε = −1) :

(4.1.3b) ZV T,u(L) = L−max{(1+aV T,u)L−Xu, 0}+aV T,uL1{Xu≤(1+aV T,u)L}.

So the �optionality�in ZV T,u(L) reduces to a plain vanilla option corrected by
a digital option. Turning to the practicalities of options, one way to handle
positions in digital options is to approximate them by plain vanilla positions
using a selection of slightly amended strikes. From this perspective, the
optionality of ZV T,u(L) can be regarded as approximately induced by a plain
vanilla call- (respectively put-) option with strikes close to (1+aV T,u)L. In
view of its broader role we refer to LV T as the optimal censor (cf. §1.1).

Proposition 4.1 (Optimal censor optionality): When aV T,u = 0 for
all u, with the additional assumption of only discrete observations (CV T = ∅),
the equation (4.1.2) for the optimal censoring thresholds specializes for the
good-news event to

(4.1.4a) 1 = 2LV T + qV T
∑

u∈DV T
EQV T [max{Xu − LV T , 0} |Ft ],

and for bad-news

(4.1.4b) 1 = 2LV T − qV T
∑

u∈DV T
EQV T [max{LV T −Xu, 0} |Ft ].

4.2 Existence of LV T for the benchmark observation
scheme

This section demonstrates the existence of a target value V T+ := LV T for the
benchmark observation scheme of the preceding subsection as characterized
by equation (4.1.2). The existence theorems splits into two cases according as
the decision rule determines good- or bad-news announcements; in both cases
we analyze the functional form on the right of equation (4.1.2), treating LV T
as a free variable, now denoted by L. It is convenient to begin with bad-news
announcements.
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4.2.1 Bad-news case

The �nal term in equation (4.1.2), corresponding to non-monitoring, has a
simple functional form: it is linear in L. To understand the other contribu-
tions, we rewrite the equation in a form which re�ects the complementary
conditioning in the two summands of the earlier equation (4.0.1b). This gives
rise below to two corresponding functions of L and recasts the characteriza-
tion of LV T in the form:

(4.2.1a) 1 = NV T (LV T ) + BSV T,1(LV T ) + BSV T,2(LV T ).

The three functions appearing here are de�ned as follows:

(4.2.1b) NV T (L) =

(
1− vol(CV T )

T − t

)
L,

BSV T,1(L) =

∫
CV T

EQV T [Xu1{Xu≤(1+aV T,u)L} | Ft ]
du

T − t

(4.2.1c) + qV T
∑

u∈DV T
EQV T [Xu1{Xu≤(1+aV T,u)L} | Ft ],

BSV T,2(L)/L =

∫
CV T

EQV T [1{Xu>(1+aV T,u)L} | Ft ]
du

T − t

(4.2.1d) + qV T
∑

u∈DV T
EQV T [1{Xu>(1+aV T,u)L} | Ft ]

(with �B for bad news� and �S for Black-Scholes�). The relation between
their behaviour and consequent existence of a target value is captured in the
following result.

Proposition 4.2 In bad-news events, for a constant LV T to exist for
which equation (4.2.1a) holds, the following conditions (1) to (4) are suf-
�cient.

(1) BSV T,1(L) and BSV T,2 are continuous maps on [0,∞).

(2) BSV T,1(∞) > −∞.
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(3) vol(CV T ) 6= T−t, or BSV T,2 is unbounded.

(4) 1 ≥ BSV T,1(0).

Proof. First consider the behaviour of the function summands as L grows
large. In BSV T,1(L) the indicator-functions for large L will become those of
the entire space, i.e. the constant function 1; the summands of BSV T,1(L)
should thereby become expressible in terms of the �rst moments of X as
follows:
(4.2.1c)∞

BSV T,1(L)(∞) =

∫
CV T

EQV T [Xu | Ft ]
du

T−t + qV T
∑

u∈DV T

EQV T [Xu | Ft ].

Little can be said about the behaviour for large L of BSV T,2(L) except for
its being non-negative for L non-negative. As a consequence,

NV T (L) + BSV T,1(L) + BSV T,2(L) ≥ NV T (L) + BSV T,1(L) ,

for any L ≥ 0. On inspection from (4.2.1b), the right hand side of this
inequality will grow linearly in L arbitrarily provided vol(CV T )/(T−t) 6= 1.
Situations where vol(CV T ) = T−t amount to monitoring X at all points in
time in [t, T ] except perhaps on an in�nite sequence of points; this is contrary
to the spirit of this paper�s observation schemes τV T , and so little will be lost
in excluding such schemes. A minor problem arises, when BSV T,1(∞) = −∞.
Also, granting this technicality, the above line of reasoning gives conditions
of unboundedness to the right (one is able to make the right-hand side of
the inequality (4.2.1a) bigger than any given real by choosing L su¢ ciently
large); in particular, in the same way, it gives conditions for making the
right-hand side bigger than 1.
Assume the functions are continuous in L. An application of the intermediate-

value theorem will then establish the existence of LV T provided there is a
value of L for which the right-hand side of (4.2.1a) is smaller than 1. There
may be no way other than to postulate this, and it is most sensible to do so
for the smallest value L can take, namely 0.

4.2.2 Good-news case

We proceed similarly in this case, rewriting the characterizing equation again
so as to re�ect the relevant conditioning in (4.0.1). The di¤erence here is that
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now a reversal of inequalities in the passage from bad- to good-news decisions
requires corresponding new function de�nitions (below). These, alongside the
term NV T (L) from (4.2.1b), recast the existence problem to solving for LV T
the equation

(4.2.2a) 1 = NV T (LV T ) + GSV T,1(LV T ) + GSV T,2(LV T ).

Here (with �G for good news�) we de�ne:

GSV T,1(L) =

∫
CV T

EQV T [Xu1{Xu≥(1+aV T,u)L} | Ft ]
du

T − t

(4.2.2b) + qV T
∑

u∈DV T
EQV T [Xu1{Xu≥(1+aV T,u)L} | Ft ],

GSV T,2(L)/L =

∫
CV T

EQV T [1{Xu<(1+aV T,u)L} | Ft ]
du

T − t

(4.2.2c) + qV T
∑

u∈DV T
EQV T [1{Xu<(1+aV T,u)L} | Ft ].

Their behaviour and consequent relation to the existence of a target value is
again captured by a result analogous to Proposition 4.2.

Proposition 4.3 In good-news events, for a constant LV T to exist for
which equation (4.2.6a) holds, the two conditions (i) and (ii) below are su¢ -
cient.

(i) GSV T,1 and GSV T,2 are continuous maps on [0,∞).

(ii) 1 ≥ GSV T,1(0).

Proof. Mutatis mutandis, the line of reasoning developed for Proposition 4.2
now applies. Here, the larger L is, the closer the indicator functions in
GSV T,2(L) will come to the indicator function of the entire space; this trans-
lates into GSV T,2(L) becoming similar to some real GSV T,2(∞) as L grows
large, and this real is positive. Since GSV T,1(L) ≥ 0 for every L ≥ 0, the line
of reasoning of Section 4.2.1 now establishes without further conditions the
unboundedness in L of the right-hand side of (4.2.6a).
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4.2.3 Worked Example in the Geometric Brownian case

Corresponding to the mark-up decision rules of (2.0.1) there are six expecta-
tions appearing in the formulas of section §4.2.1 and §4.2.2 that are needed for
an explicit determination of LV T . Assume that X follows geometric Brown-
ian motion:

Xt+s = Xt exp

(
(µV T −

1

2
σ2
V T )s+ σV TWV T,s

)
s ∈ [0,∞),

with µV T ∈ R, σV T > 0, and WV T a standard Brownian motion indepen-
dent of time t information Ft as in (3.2.1). For �xed u = t+s in [t, T1],
these six expectations are provided by standard results on Brownian motion.
Corresponding to (4.2.1c)∞ one has

(4.2.3) EQV T [Xu | Ft ] = Xt exp(µV T s);

likewise, corresponding to the pair (4.2.1d), (4.2.6c) and the pair (4.2.1c),
(4.2.6b), taking

(4.2.4) �s :=
log((1 + aV T )L/Xt)− (µV T + 1

2
σ2
V T )s

σV T
,

one has respectively:

(4.2.5a) EQV T [1{Xu≥(1+aV T )V T} | Ft ] = 1
2
Erfc

(
�s/
√

2s
)
,

(4.2.5b) EQV T [1{Xu≤(1+aV T )V T} | Ft ] = 1
2
Erfc

(
−�s/

√
2s
)
,

(4.2.6a)EQV T [Xu1{Xu≥(1+aV T )V T} | Ft ] = 1
2
Xt exp(µV T s)Erfc

(
�s−σV T s√

2s

)
,

(4.2.6b)EQV T [Xu1{Xu≤(1+aV T )V T} | Ft ] = 1
2
Xt exp(µV T s)Erfc

(
−�s−σV T s√

2s

)
.

Here Erfc is again the complementary error function, for which speci�cally
see Appendix equations (A.7a, b) and (A.8).
For periods of continuous monitoring, integrals of these three expressions

need to be computed over time s. This is unproblematic for (4.2.2), where
it reduces to di¤erencing of the right-hand side across the endpoints of the
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the sign of these partials. Early disclosure thus becomes more likely the
larger the relevant parameter, provided the corresponding partial of V ∗T is
positive, and vice versa. The point of our choice of a geometric Brownian
framework is that explicit formulas for the probability factorsQ∗• are available
as standard results in Brownian motion; these are reviewed in Appendix A
below, with equations (A7a,b) pertinent for the present case of running-
maximum performance parameters. Establishing comparatice statics results
therefore reduces to straightforward partial di¤erentiation of explicitly given
functions, albeit of some complexity. Theorem 5.3 collects the results when
the relevant parameter there is the time left to the next mandatory date.

Remark 5.5 Proceeding along the same lines in the same situation, one ob-
tains results similar to those of Theorem 5.3 concerning the e¤ects of the
volatility σ∗, whereas the e¤ects of r−�∗ and r are unequivocally unidirec-
tional (with the signs of the pertinent partials being equal to minus that of
E∗T ). Provided E

∗
T > 0, early disclosure within (T, T1) is the more likely the

smaller are r−�∗ and r.

5.3.2 Explicit results for running-min

Here we note only that if the market proxies are instead constructed using
the running minimum of S∗ analogues of Theorem 5.3 and Remark 5.5 again
hold and preserve all the conclusions above except for a sign reversal in A∗T .
This shows how derivation of the e¤ects of T1−T on early disclosure requires
the speci�cs of a given model.

6 Managerial Implications

This paper�s approach to asset pricing allows the development of a richer ap-
preciation of how voluntary disclosure by �rms can a¤ect �rm asset valuation
in equilibrium. Existing research has typically modelled voluntary disclosure
as the choice by �rms to make additional voluntary (content) disclosures to
the market at �xed time points. As such this literature does not consider the
possibility that �rms may choose not only what to disclose voluntarily but
also when to disclose. Thus voluntary disclosure has at least two dimensions:
content and timing. As existing models typically do not consider the latter di-
mension, they are not truly dynamic, and hence do not provide the necessary
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building blocks to develop a realistic empirical model of (�two dimensional�)
voluntary disclosure. Here we have explicitly modelled the joint content-
timing interaction, so enabling more realistic formal modelling of problems
faced by managers of �rms: when private news is uncertain, how good does
that private news have to be before it is in the interests of the �rm to issue
a voluntary disclosure. The other side of this coin is what materiality stan-
dard needs to be followed in managing the voluntary disclosure process. The
comparative statics derived in the preceding section permit an understanding
of how changes in parameter values may explain di¤erences in equilibrium
behaviour between �rms �some voluntarily releasing additional information
early, others not. This meets the challenge of modelling equilibrium asset-
pricing with endogenously determined voluntary disclosures, wherein both
the content and the timing of disclosures are rationally chosen, making delay
or early release of information in capital markets an equilibrium outcome.

7 Complements

We close with some observations about the potential of the approach above
especially with regard to variations on the themes presented and generaliza-
tions away from the Brownian framework followed above.

7.1 Mechanisms

Implicit in our development of a markets-based general modelling framework
was the need to pick apart the �who does what and how�into �building bricks�,
and with these to build a variety of models. We implicitly identi�ed �ve such
bricks, which in fact are best considered as mechanisms, to borrow a phrase
from economic theory. These are made explicit here so as to stress both the
sensitivity of a model to its assumptions and its adaptability to alternative
contexts.

Mechanism (i). Evolution rules. The perspective adopted above is rather
like that of a scientist designing experiments and subsequently observing out-
comes and evolution. Ingredients thus include design dynamics, start time
and observation times. Thus mechanisms (i) amounts to formal rules for en-
coding these three aspects. Real-life features mapped via such �experiments�
include informational interplay between economic agents and �rm-to-market
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function of the Xn; simple, but typical, functions are linear or multiplicative
forms in the Xn as given respectively by

X =
∑N

n=1
anXn, or X =

∏N

n=1
Xan
n ,

with suitable real weights an ∈ R.

Examples of two factor portfolio observation variables. In the paper,
V was interpreted as representing the value of the �rm F , i.e. a process
internally observed by F . It is natural to complement it by a process that
encodes the external view of the �rm�s value, such as provided by the the
�rm�s market capitalization, S∗. Specializing to portfolios of additive type,
the associated observation variable may take the form

X = aV + bS∗,

for some a, b ∈ R. General structure of X apart, the modelling of V and S∗ is
far from straightforward, and Sections 7.2 to 7.4 below o¤er an amendment
to the simpli�ed treatment given in the main body of the paper.

Mechanism (iv). Observation process proxies V ∗ from state observer systems.
The task here is to enable speci�cally the �informationally under-privileged�
agents in the models to approximate V . To paraphrase a key idea in the
paper: here S∗ is seen as a public proxy for V in creating an estimate V ∗t of
Vt; for tractability we made speci�c approximation assumptions.
In so doing, we borrowed an idea from the control theory of an engineering

plant, where one way to deal with imperfect information about the plant is
to build a laboratory version (a model) of the plant with accessible full-
information of its state at any time (known as a �state observer�system [Rus,
Ch. 3], [Son, Ch. 7] �in reality a �state estimator�); state-correcting signals
are sent to this model, using plant-based, imperfect, or partial observations,
with which to guide the �observer system�(model) into greater agreement
with the plant.
Unlike in the engineering context, inclusion into a market-based model of

an observer-style system implies changes to the strategic behaviour of the �rm
in its decisions to hide certain observations of its state. Indeed, here each side
(each of the agents, F or M) enriches its algorithmic opportunities. In this
context, our version of an �observer system�responds to strategic behaviour,

27



F

V T

Lt Vt

Vt Vt
Lt

Vu F
u πw T , u

V C T

. . Vu V C

�
T ,u

πw w, u ∈ T , T ,

w �→ πw T , T

Vu V C
πw w

T u

≥
u πw w



u− w u u− , u πw

Vu u
Vu u

. . Vu V C Vu
sVu, u ∈ T , T ,

. . Vu

�
T , {T ,u− }

πw w,

. . Vu

�
{T ,u− },u

πw w.

Vu V C Vu
F Vu

F
F

T

F

V ∗

V

V



a, b ≥ a b < .
w w ,w

p

. . πCD p, w

p / − a b

�� a b

κ · c w
� a b / − a b

− κ · c w
� a b

κ · c w
� / − a b

	
,

c w wawb / a b

κ a/b a/ a b a/b − a/ a b /A / a b , A −a a− /aa.

X Q ,F ,F Fu u∈ T ,T , Q

Y

. . πw α Yw
β α α βYw , w ∈ T , T ,

α > β ∈ R Y X Q
u V

. . Vu α

�
{T ,u− },u

βYw w, u ∈ T , T .

w
V

Y X Q
Vu

u

πs



w w p

. . πCD p, w , w w
a/ a b−

w
b/ a b−

p a b− ·

·
��a b

κ

� a b / − a b

− κ
�a b

κ

� / − a b
	
,

a b > a b <

. . κ a/b b/ a b a/b −a/ a b / −a a− /aa / a b .

π

. . π ,T u π ,T μπu σπWπ,u , u ∈ ,∞ ,

Wπ T FFF,T
σπ > μπ

. . πs πCD,T s, s ∈ ,∞ ,

. .

�
T,T s

πw w πCD,T s, s ∈ ,∞ .

VT u

V T

S∗

T u ≥

. . S∗T u S∗T X∗
u , ST V C ,



X∗
u u≥ T F∗

T

T T , T

. . S∗T u S∗T X∗
u , u ∈ ,∞ ,

X∗
u u≥

T
F∗
T S∗

T T , T
T T T , T
T

T

F

M

F

M
A

M

t
F V C

V T T
M A

A
F

T V
V ∗ S S∗ V TA A



M F t A t, T
S S∗

V TA
F V ∗

F h T, VT , VT , V TA

τ < T T
F V C

V T
A

M

,F , P
F Fu u≥

X P ,F ,F, P

hε,a x, y ε x− a y ε ±
a > −

, Ft
t >

. EP 1{h ,a ,V T ≥ } | Ft P { ≥ a V T}| Ft ,

. EP 1{h ,a ,V T ≥ } | Ft − P { ≥ a V T}| Ft .

. EP 1{h ,a ,V T ≥ } | Ft − EP 1{h ,a ,V T ≥ } | Ft ,



a V T

S∗ ∗ ∗
t,T

S∗ t, T W ∗

F, P X P σ∗ >

. S∗u t S∗t μ∗u σ∗W ∗
u , u ∈ ,∞ ,

μ∗ r−δ− σ∗ r, δ ∈ R
W ∗ Ft

W ∗

EP 1{h ,a {Sw|w∈ t,T } ≥ } | Ft P
u∈ ,T−t

{μ∗u σ∗W ∗
u} ≥ A∗t ,

EP 1{h ,a {Sw|w∈ t,T } ≥ } | Ft P
u∈ ,T−t

{μ∗u σ∗W ∗
u} ≤ A∗t ,

A∗T a∗ V T/S∗t .

W ∗∗ −W ∗

P
u∈ ,T−t

{μ∗u σ∗W ∗
u} ≤ A∗t P

u∈ ,T−t
{−μ∗u σ∗W ∗∗

u } ≥ −A∗t .

W ∗ W ∗∗



being positive on time intervals of positive length; indeed, this follows from
the fact that the running-maximum of the process is zero on non-positive
time arguments. This is not directly of use here, since the drift µ∗ is in
general non-zero. But an appropriate Girsanov transformation applied to
the measure P will achieve a reduction to the zero-drift case (cf. [RogW, §
I.13, eqn. (13.9)]), at the cost, however, of an additional exponential factor
in (A.3):

(A7a) P ( max
u∈[0,T−t]

{µ∗u+ σ∗W ∗
u} ≥ A∗t ) = 1,

unless A∗t > 0, in which case

(A7b) P (maxu∈[0,T−t]{µ∗u+ σ∗W ∗
u} ≥ A∗t ) =

=
1

2
Erfc

(
A∗t − (T − t)µ∗

σ∗
√

2(T − t)

)
+

1

2
exp

(
2µ∗A∗t
(σ∗)2

)
Erfc

(
A∗t + (T − t)µ∗

σ∗
√

2(T − t)

)
,

with Erfc (z) := (2/
√
π)
∫

[z,∞)
exp(−w2) dw, for any complex z, the comple-

mentary error function. This result can be established, mutatis mutandis,
along the lines of [MusR, Lemma A.18.2, p. 617seq]); for a proof by a reduc-
tion to this result, start from the equality

P ( max
u∈[0,T−t]

{µ∗u+ σ∗W ∗
u} ≥ A∗t ) = 1− P ( max

u∈[0,T−t]
{µ∗u+ σ∗W ∗

u} ≤ A∗t );

on the right-hand side we have from [MusR, eq. (A.85)] the equality

P ( max
u∈[0,T−t]

{µ∗u+ σ∗W ∗
u} ≤ A∗t ) =

= N

(
A∗t − (T − t)µ∗

σ∗
√
T − t

)
− exp

(
2
µ∗A∗t
(σ∗)2

)
N

(
−A

∗
t + (T − t)µ∗

σ∗
√
T − t

)
,

if A∗t ≥ 0, but otherwise this probability is 0; then successively use the
identities 1 = N(ξ) + N(−ξ) and N(ξ) = (1/2)Erfc(−ξ/

√
2) to arrive at

(A7a,b).
Formulas for the tails of the running-minimum expressions of (A.4) are

a consequence of (A.7a,b). For this start by passing to the complementary
probability

P ( min
u∈[0,T−t]

{µ∗u+ σ∗W ∗
u} ≥ A∗t ) = 1− P ( min

u∈[0,T−t]
{µ∗u+ σ∗W ∗

u} ≤ A∗t );
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now use (A.6) to translate the right-hand side in terms of probabilities for
the running maximum, and apply (A.7a,b) to obtain

(A.8) P ( min
u∈[0,T−t]

{µ∗u+ σ∗W ∗
u} ≥ A∗t ) =

=
1

2
Erfc

(
+
A∗t − (T − t)µ∗

σ∗
√

2(T − t)

)
− 1

2
exp

(
2µ∗A∗t
(σ∗)2

)
Erfc

(
−A

∗
t + (T − t)µ∗

σ∗
√

2(T − t)

)
,

unless A∗t ≥ 0, in which case the probability is equal to 0; to obtain the �rst
summand here use the identity 2 = Erfc(ξ)+Erfc(−ξ) with

ξ := (A∗t − (T − t)µ∗) /
(
σ∗
√

2(T − t)
)
.
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