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Abstract
We design three continuous-time models in finite horizon of a commodity price, whose
dynamics can be affected by the actions of a representative risk-neutral producer and a
representative risk-neutral trader. Depending on the model, the producer can control the drift
and/or the volatility of the price whereas the trader can at most affect the volatility. The
producer can affect the volatility in two ways: either by randomizing her production rate or,
as the trader, using other means such as spreading false information. Moreover, the producer
contracts at time zero a fixed position in a European convex derivative with the trader. The
trader can be price-taker, as in the first two models, or she can also affect the volatility of
the commodity price, as in the third model. We solve all three models semi-explicitly and
give closed-form expressions of the derivative price over a small time horizon, preventing
arbitrage opportunities to arise. We find that when the trader is price-taker, the producer
can always compensate the loss in expected production profit generated by an increase of
volatility by a gain in the derivative position by driving the price at maturity to a suitable
level. Finally, in case the trader is active, the model takes the form of a nonzero-sum linear-
quadratic stochastic differential game and we find that when the production rate is already at
its optimal stationary level, there is an amount of derivative position that makes both players
better off when entering the game.
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1 Introduction

The methods and techniques of manipulation are limited only by the ingenuity of man,
in Cargill vs Hardin, US Court of Appeal, 8th circuit, December 7, 1971.

Price manipulation in financial markets is not the rare event as one may think. In their
paper, Aggarwal and Wu [1] provide data on more than 140 cases of market stock price
manipulation in the sole period of ten years from 1990 to 2001 released by the Security
Exchange Commission. As the authors quote, those cases only correspond to those who were
caught. On commodity markets, illegal practices of market manipulations are abundantly
documented and can compete with stock markets (see Pirrong [20] for a survey of those
practices). More recently, the LIBOR itself was the object of a coordinated manipulation
by a cartel of banks. The LIBOR, created more than fifty years ago and controlled by the
British Bankers Association, serves as a benchmark for loans and as an index in hundreds
of trillions of nominal in derivatives. It is enough to read Duffie and Stein [7] to measure
the extent of social welfare loss induced by the manipulators actions. In their report for the
Federal Reserve Bank of New York on the LIBOR scandal, Hou and Skeie [14] explain that
if the first motivation for this manipulation in the aftermath of the 2008 financial crisis was
to maintain a signal of credit worthiness, the second motivation was the express intent of
benefiting the bank’s derivatives positions.

Indeed, if the first generation of market price manipulation concentrated on using some
market power to increase the market price and then resell the good at a higher price (unravel-
ling strategy), it seems that the second generation ofmarketmanipulationwill use the leverage
effect provided by derivatives. Worrying enough to support this prognosis, the recent paper
of Griffin and Shams [12] asserts the possibility of an on-going VIXmanipulation using large
position in the out-of-the money options used to compute the VIX. If true, it would mean
that some traders are already engaged in what was thirty years ago a theoretical problem in
derivative pricing when academics would relax the hypothesis of no-market impact in the
Black and Scholes pricing framework (see Jarrow [15] for a seminal work on this subject).

In this paper, we takemarket pricemanipulationmodels one step further in considering the
possibility of the joint control of the average (the drift) and of the volatility of a commodity
price by the actions of a producer and a trader who exchange a derivative. To analyse the
behaviours of both players and the distortion of the prices of the commodity and of the
derivative, we design three continuous-time models of increasing complexity. In each model,
the commodity price is impacted by the actions of a representative risk-neutral producer and
a representative risk-neutral trader. Both agents want to maximize their respective expected
profits. The representative producer has market power and can increase or decrease the price
by reducing or increasing her production rate. Actions on the volatility can be performed
either by randomizing the production rate or by spreading false information. Production
randomization is just making a strategic use of outages and the question answered in this
paper is when this device has an interest for the producer. Further, regarding the use of
information on the volatility, we suppose that the trader or the producer has identified some
channels allowing her to act on the nominal volatility of the underlying by an appropriate
rate of information. For both agents, manipulation of the commodity price comes at some
costs, which are included in their profit functions.

We consider first the case of production-based manipulation: the producer acts alone and
can impact both the average price and its volatility by changing her average production rate
and the volatility of her production rate. Second, we consider the case of production and
information-based manipulation by a producer: the producer acts alone, she can affect the
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average price by changing her production rate and the volatility as mentioned above, e.g. by
spreading appropriate information. Finally, we consider the case of a competition between
a producer who can exert market power on the drift of the price and a trader who has an
impact on the volatility of the price. In each case, we suppose that the producer contracts at
time zero a constant (long or short) position of a European convex derivative and delivers (or
receives) its payoff at maturity. The trader has the opposite position in the derivative. Since
they have an asymmetric impact on the dynamics of the commodity price, we are able to
assess which instrument is more efficient, manipulation of the drift or manipulation of the
volatility. We aim at studying to which extent the producer and the trader can profit from
their market power and how the prices of the commodity and its derivatives can be distorted
by their actions.

In the classification of market manipulation provided by Allen and Gorton [3], the first
model corresponds to an action-based manipulation (using physical means such as produc-
tion); the second model is a mixture of action-based and information-based (spreading false
rumours on commodity scarcity or accounting and earnings’ manipulation); the last one is a
mixture of action-based, information-based and trading-based (buying to increase the price
and then selling back).

To our knowledge, this is the first paper to study the joint manipulation of a commodity
price and a derivative. We give now some reasons why our analysis might get even more
relevant in a near future.

First, the commodity business has gone through a concentration trend in the last decades
with the emergence of major players like Glencore/Xstrata, Rio Tinto or BHP Billinton. A
small amount of international firms concentrate in their hands a significant volume ofminerals
production. For instance, Glencore concentrate 60% of the zinc, 50% of the copper, 45% of
the lead and 38% of the aluminium. At the same time, they have to take significant position in
the financial markets to hedge their big physical positions. For instance, Glencore [10, note
28, p. 201] shows a position of $3.2 billion of commodity related contracts including futures,
options, swaps and physical forwards compared to an adjusted EBITDA of $15.8 billion or
a total asset value of $128 billion. Rio Tinto [21, notes p. 193] presents an exposition in
nominal value of derivatives in aluminum of $1.786 billion for an EBITDA for aluminum of
$3.1 billion and operating asset value of $16.5 billion. Players of this size cannot ignore that
the impact they may have on the price of a commodity will affect the value of their portfolio
derivatives too.

Second, large commodity firms are not the only big players in financialmarkets to hold sig-
nificant positions in commodity derivatives.With the financialization of commodity markets,
large hedge funds, banks and institutional players have increased their position in commodity
derivatives (see Cheng and Xiong [5] for an overview). Thus, when trying to move the price
at her own advantage, a producer may find some opposition from financial actors harmed by
her action. This problem is already documented in the case of large position of derivatives
exchanged between financial institution (see the case of Merrill Lynch selling $500 million
of knock-in put options to Leiter’s International in Gallmeyer and Seppi [11]).

Third, the activities of trading in commodity firms are in general isolated in a subsidiary
because they fall within the scope of financial regulation. Thus, the trading activity might
end up in conflict with the production activity regarding the use of market power.

Our main results can be summarized as follows. For each model we provide closed-form
solutions in terms of a coupled Riccati systems of ordinary differential equations. In each
model, the price of the derivative is a fair market price in the sense that it is consistent with
no-arbitrage condition. First, we find that in all models, the optimal production rate of the
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producer follows the same pattern: during a transitory phase, it reaches the production rate
that maximizes the profit rate, then it stays there and at maturity, the production rate increases
(resp. decreases) in case of short position (resp. long position). In the case of production-
based manipulation, it is optimal for the producer to increase the volatility of the production
rate to induce an increase in the volatility of the derivative if and only if she has a short
position in the derivative exceeding a given threshold. Without derivative position, the value
function of the producer is a non-increasing function of the volatility. Thus the producer
prefers to reduce the volatility. But, when she holds a sufficiently large short position in the
derivative, the increase in volatility that pushes the price of the derivative up can compensate
the induced indirect cost of volatility. Since her impact on the average price is significant,
the producer can compensate the loss in expected profit from production due to an increase
of volatility by an increased profit from the derivative position. When the producer action on
the volatility is information-based, the previous observations still hold, except that now her
value function is increasing in the volatility, providing strong incentive to raise the volatility
even without derivative position. Thus, it results that if the producer can impact the price to
increase her profit in her derivative position, she does it.

What happens if the producermanipulation canbe challengedbya trader taking anopposite
position in the derivative? We find that the actions of the trader on the volatility only reduces
the potential profit made by the producer on the derivative. Further, despite the asymmetry
of powers of the two players, we find that when the production rate is already at its optimal
stationary level, there is an amount of derivative position that makes both players better off
entering the game.

There is a considerable financial economics literature about market manipulation, which
follows in particular a game theoretic approach. A short review of the portion of such a
literature related to stock markets has to start with the seminal work of Kyle [16] and the
work of Allen and Gale [2] who provide a simple information condition under which an
uninformed trader can make a profitable unravelling strategy (buying the stock, making the
price rise and sell the stocks at an average higher price). Chatterjea and Jarrow [4] provide
a game theoretic model of US Treasury Securities manipulation. Cooper and Donaldson
[6] design a dynamic game theoretic model of corner strategy. Regarding commodity price
manipulation strategy, thorough analysis are available in the works of Pirrong [18–20].

It is also worth mentioning that our modelling and contribution are different from those in
the rich literature on market impact, for which we refer the reader to, e.g., the recent book by
Guéant [13] and the references therein. Indeed, while in market impact models the drift of the
market price is affected by the traders as a consequence of an optimal execution of a market
order, in our setting both drift and volatility are affected and the impact comes directly from
market manipulation. Moreover, the modelled financial phenomena are different and so are
the problems solved (optimal execution vs profit maximization).

The closest work to ours is the paper by Nyström and Parviainen [17]. The authors provide
a zero-sum game between two players who can control the drifts and the volatilities of a
multidimensional stock market and show under mild conditions that the game has a value
and that it is given by the unique viscosity solution of degenerate parabolic PDE. Considering
a more specific model of actors and impact functions, we are able to provide more insights
in the gains of the producer and the trader and the distortion of prices.

The paper is organised in the followingway. Sects. 2, 3 and 4present respectively themodel
of manipulation through production, manipulation through information and competition of
manipulation. Sect. 5 provides numerical illustration of the three models.
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2 Production-basedmanipulation

This section contains all our results on the first model of a producer of a commodity, who
can manipulate the price of the commodity through production.

More in detail, we consider a producer whose objective is to maximize her profit from
production and from investment in a financial market over the time period [0, T ] for some
T > 0. The producer can increase her production rate qt with the instantaneous control rate
ut at the expense of a cost κ

2 u
2 with κ > 0. We suppose that the production is entirely sold

at a market price S̃, which can be affected by the producer: the more the production rate
the less the market price. This effect leads to observed market price S̃t := s0 − a qt where
a > 0 is some fixed parameter and s0 > 0 is the market price before action of the producer
(which in this case is constant).Wewill relax the hypothesis of a constant market price before
impact in the second model (see Sect. 3). The former relation can also be seen as an inverse
demand function of the good, where a is its elasticity. Thus, the instantaneous profit rate is
Pt := qt S̃t .

We suppose that the production rate qt is affected by a random factor that gathers all the
randomness that usually affects production processes (outages, strikes and so on).We suppose
that, without intervention of the producer, uncertainty is normally distributed with standard
deviation σ > 0. Further, we suppose that the producer has an effect on the uncertainty of his
production rate. These hypotheses lead to the following dynamics for the production rate:

dqt = ut dt + σ
√
1 + zt dWt , q0 ∈ R, (2.1)

whereW is a standard Brownianmotion, defined on some probability space (�,F,P), and zt
is the effect (in percentage) on the variance of the production rate. The information available
to the producer is modelled by the natural filtration, (Ft )t∈[0,T ] = (FW

t )t∈[0,T ], generated by
the Brownian motion W and completed with all P-null sets. Hence, anywhere in this section
adaptedness will always be referred to this filtration.

We suppose that controlling zt requires some financial cost g
2 z

2 with g > 0. The producer
can choose either to decrease or to increase the volatility of the production rate qt . Although
the costs incurred to increase the volatility are less easy to grasp than the cost involved to
decrease it, they can be interpreted as the costs of the actions needed to hide them.

At this stage of the model description, we notice that an increase of the volatility of qt has
a negative impact on the expected instantaneous profit E[Pt ] = s0E[qt ] − aE[q2t ]. In other
terms, the producer is Gamma negative. Thus, he has no incentive to increase the volatility
of his production facilities.

Most large commodity producers make an important use of financial market for hedging
purposes. Hence, we suppose that the producer intervenes in the financial market for his
production good by selling derivatives at the initial time. Since the producer is Gamma
negative, a natural hedge would be to sell a Gamma positive derivative such as a call option.
Here, we suppose that the producer has a net derivative position λ which can be positive
(short, sale) or negative (long, purchase) with maturity T and payoff hT := S̃2T . Such a
quadratic payoff can be seen as a position over a portfolio of call options with the same
maturity T and different strike prices. We denote by h0 the price at time 0 of that option, its
precise definition will be given when specifying the set of admissible controls. Indeed, h0 is
not given from the outset, as it depends on the underlying which is in turn controlled.

The aim of the producer is to maximize the following objective functional

Jλ(u, z, h0) := E

[∫ T

0

(
Pt − κ

2
u2t − g

2
z2t
)
dt + λ

(
h0 − hT

)]
. (2.2)
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Now, within the producer firm, there are two distinct departments, a production department
and an investment department. The former takes any production-related decisions, i.e. it
controls u and z, while the latter is responsible for selling/buying the derivatives at a fair price
and pursuing the corresponding hedging strategy. It is natural to assume that the investment
department is using the nowadays classical no-arbitrage machinery to propose a derivative’s
price. The two departments are aware of the fact that their decision affects each other. In
particular, the fact that the investment department uses the no-arbitrage approach to price
derivatives implies the following natural constraints for the production side: the chosen
production plan should not lead to arbitrage opportunities. We are going to incorporate this
idea into the definition of admissible policies. After that, we will give the precise formulation
of the producer optimization problem.

Definition 2.1 We say that any pair (u, z) is admissible if the following properties are satis-
fied:

(i) (ut , zt )t∈[0,T ] are progressively measurable processes with values in R × (−1,∞) such
that

E

[∫ T

0
(u2t + z2t )dt

]
< ∞, E

[∫ T

0
q2t (1 + zt )dt

]
< ∞;

(ii) there exists a unique equivalent martingale measure Qu,z for the price process S̃, equiv-
alently for the production process (qt )t∈[0,T ], with hT ∈ L1(P) ∩ L1(Qu,z);

(iii) there exists a real-valued progressively measurable process (�
u,z
t )t∈[0,T ] satisfying

E

[∫ T

0

(|�u,z
t ut | + |�u,z

t |2(1 + zt )
)
dt

]
< ∞,

and such that the following holds Qu,z-a.s.

hu,z
t := E

Qu,z [hT |Ft ] = E
Qu,z [hT ] +

∫ t

0
�u,z

s d S̃s,

for all t ∈ [0, T ].
The set of all admissible pairs will be denoted by A.

Hence hu,z
0 = E

Qu,z [hT ] can be viewed as the price of the option hT under the production
control (u, z). Notice that such a price is clearly affected by the controls via the risk neutral
measure in (ii). It can be interpreted as “commitment price”: after selling the option, the
producer could deviate from the implementation of the hedging strategy that leads to the
measure Qu,z . Here we make the assumption that the producer implements the production
controls leading to precisely that measure and thus, that price.

Notice that from q’s dynamics we have that the measure Qu,z , whose existence is postu-
lated in (ii) above, is necessarily given by the following Radon–Nikodym derivative

dQu,z

dP
= exp

{
−
∫ T

0
δt dWt − 1

2

∫ T

0
δ2t dt

}
, δt = ut

σ
√
1 + zt

.

Before giving the final formulation of the producer optimization problem, we can exploit the
admissibility properties above to rewrite the objective functional (2.2) as follows

Jλ(u, z, h0) = E

[∫ T

0

(
Pt − κ

2
u2t − g

2
z2t − λ�

u,z
t ut

)
dt

]
=: J̃λ(u, z).
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Indeed, condition (iii) implies that

hT − h0 =
∫ T

0
�

u,z
t dqt =

∫ T

0
�

u,z
t (utdt + σ

√
1 + zt dWt ).

Condition (iii) implies that the dW -part above has zero expectation under P. Moreover, we
observe that the integrability assumptions in (i) and (iii) ensure that J̃λ(u, z) is finite.

Finally, after all these preliminaries, we can formulate the producer’s optimization prob-
lem

sup
(u,z)∈A

J̃λ(u, z). (2.3)

2.1 Heuristics

In this part we develop the heuristics needed to obtain a candidate for the solution of problem
(2.2). In the next sub-section, we will verify that the candidate is indeed the optimal solution
according to the definition above.

First, notice that, since the market is complete, there exists only one possible no-arbitrage
price for the derivative hT , which also gives the initial wealth needed to fund the hedging
strategy. The derivative can be perfectly replicated by trading in a self-financing way in the
underlying S̃t = s0 − aqt or, equivalently, in qt . Therefore

hT = E
Q[hT ] +

∫ T

0
�t dqt ,

whereQ is the unique equivalent martingale measure for S̃ (or, equivalently, for q), and � is
the delta hedging. More precisely, using Girsanov’s theorem we get the dynamics of q under
Q, which is

dqt = σ
√
1 + zt dW

Q
t , dWQ

t = dWt − δt dt,

where δt = ut
σ
√
1+zt

for t ∈ [0, T ]. Hence, defining the price at time t of the derivative as

ht = E
Q[(s0 − aqT )2|qt ] := ϕ(t, qt ),

we obtain the usual PDE for the price

ϕt + 1

2
σ 2(1 + z(t, q))ϕqq = 0, ϕ(T , q) = (s0 − aq)2. (2.4)

Finally, we have the usual relationship �t = ϕq(t, qt ).

Remark 2.1 Notice from Eq. (2.4) that ϕ depends on z in a functional way. However we
expect the optimal control to be Markovian, which justifies replacing zt (which could in
principle depend on the whole path of the state variable (qt )) with the function z(t, q) of
time and of the value q of state variable at time t . The PDE above needs to be solved together
with the HJB equation for the value function, since the coefficient of the second derivative
ϕqq depends on the control z.

The perfect replicability of the derivative allows us to rewrite the objective function in a
more suitable way as at the end of the previous sub-section. Indeed, observe first that

h0 − hT = −
∫ T

0
�t dqt = −

∫ T

0
ϕq(t, qt )(utdt + σ

√
1 + zt dWt ),
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where recall that W is a Brownian motion under P. Hence, given the hedging strategy
ϕq(t, qt ), the maximization problem on the production side can be expressed as follows

vλ(0, q0) := sup
u,z

E

[∫ T

0

(
qt (s0 − aqt ) − g

2
z2t − κ

2
u2t − λϕq(t, qt )ut

)
dt

]
. (2.5)

In other terms, the gain coming from selling the derivative has been absorbed by the running
profit term. Therefore, we can get the HJB equation

− vt = sup
u,z

{
q(s0 − aq) − g

2
z2 − κ

2
u2 − λϕq(t, q)u + uvq + σ 2

2
(1 + z)vqq

}
, (2.6)

with terminal condition v(T , q) = 0. Notice that the PDE for the price (2.4) and the HJB
equation for the value function are clearly coupled as the optimal z appears in the pricing PDE,
while the derivative of the price, ϕq , appears in the HJB equation (compare to Remark 2.1).
The first order conditions give the two (candidate) optimal controls

û = 1

κ

(
vq − λϕq

)
, ẑ = σ 2

2g
vqq . (2.7)

Notice that we have dropped the dependence upon λ in the value function for sake of read-
ability. In order to get the full solution, it is natural to make the following

Ansatz 2.1 Both solutions ϕ and vλ are quadratic in q, i.e.

ϕ(t, q) = A(t)q2 + B(t)q + C(t), vλ(t, q) = D(t)q2 + E(t)q + F(t),

where A, B,C, D, E, F are deterministic functions of time, to be determined.

Solving for ϕ. To ease the notation, we drop the dependence of time from A, B and so on.
First of all, applying the Ansatz 2.1 to the candidate optimal controls gives

û = 1

κ
(2q(D − λA) + E − λB) , ẑ = σ 2

g
D.

Next, we substitute the expression above for û and ẑ in the pricing PDE (2.4) and we obtain

σ 2

(

1 + σ 2

g
D

)

A + A′q2 + B′q + C ′ = 0, A(T )q2 + B(T )q + C(T ) = s20 − 2as0q + a2q2.

In particular, the terminal condition for ϕ gives the corresponding terminal conditions for
A, B,C as

A(T ) = a2, B(T ) = −2as0, C(T ) = s20 .

By identification of the terms in q , we get the following ODEs for A, B and C

A′ = 0, B ′ = 0, C ′ = −σ 2a2
(
1 + σ 2

g
D

)
,

which can be easily solved using the terminal conditions above. Indeed, we obtain

A(t) = a2, B(t) = −2as0, C(t) = s20 + σ 2a2
∫ T

t

(
1 + σ 2

g
D(r)

)
dr , (2.8)

for all t ∈ [0, T ]. Notice that the function D(t) will be obtained when solving the HJB
Eq. (2.6).
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Solving for vλ. Substituting the Ansatz 2.1 for vλ (together with the optimal controls) in the
HJB Eq. (2.6) and identifying the terms in q , we obtain the following ODEs for D, E and F

−D′ = −a + 2

κ
(D − λA)2, D(T ) = 0,

−E ′ = s0 + 2

κ
(D − λA)(E − λB), E(T ) = 0,

−F ′ = σ 4

2g
D2 + σ 2D + 1

2κ
(E − λB)2, F(T ) = 0.

Now, using (2.8) implies

− D′ = −a + 2

κ
(D − λa2)2, (2.9)

−E ′ = s0 + 2

κ
(D − λa2)(E + 2λas0), (2.10)

−F ′ = σ 4

2g
D2 + σ 2D + 1

2κ
(E + 2aλs0)

2, (2.11)

with null terminal conditions D(T ) = E(T ) = F(T ) = 0.

Remark 2.2 We observe that, while the equation for D is a one-dimensional Riccati ODE, the
second one is linear and the third one can be solved just by integration. The Riccati Eq. (2.9)
can be easily proved to have a unique solution over the whole time interval [0, T ]. Indeed,
this is a direct consequence of, e.g., Lemma 10.12 in [9]. Moreover, that lemma also implies
that

D(t) ≤ 0 for all t ∈ [0, T ] ⇔ D′(T ) = a − 2λ2a4

κ
≥ 0,

which will be important later for the interpretation of our results. The value a − 2λ2a4
κ

corresponds to the slope of D close to T .

Set θ = √
8a/κ . Solving the equations above gives the following expressions

D(t) = − 2(a − 2λ2a4
κ

)(eθ(T−t) − 1)

θ(eθ(T−t) + 1) + 4λa2
κ

(eθ(T−t) − 1)
, (2.12)

E(t) = s0

∫ T

t
e
∫ u
t

2
κ
(D(r)−λa2)dr

[
1 + 4aλ

κ
(D(u) − λa2)

]
du, (2.13)

F(t) =
∫ T

t

(
σ 4

2g
D(u)2 + σ 2D(u) + 1

2κ
(E(u) + 2aλs0)

2du

)
, (2.14)

for all t ∈ [0, T ].

2.2 Verification

We conclude the section with the verification that the candidate described above is indeed a
solution to problem (2.3).
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Theorem 2.1 Let D, E be deterministic functions of time as in, respectively, (2.12) and (2.13).
Whenever H := 1 − 2λa

κ
(λa2 − g

σ 2 ) > 0, we assume that the maturity T is small enough,
more precisely

T < Tmax := 2

θ
coth−1

(
2σ 2a

θg
H

)
. (2.15)

Then there exists an optimal policy (̂u, ẑ) ∈ A for problem (2.3), where the production
policies are

ût = 1

κ

(
2q̂t (D(t) − λa2) + 2as0λ + E(t)

)
, ẑt = σ 2

g
D(t), t ∈ [0, T ]. (2.16)

The no-arbitrage price process for the derivative hT is given by

ĥt := hû ,̂z
t = (s0 − aq̂t )

2 + σ 2a2
∫ T

t

(
1 + σ 2

g
D(u)

)
du, t ∈ [0, T ], (2.17)

and the hedging process is

�̂t := �
û ,̂z
t = 2a(aq̂t − s0), t ∈ [0, T ], (2.18)

where the production rate is

q̂t = eR(t)
{
q0 +

∫ t

0
e−R(s) 1

κ
(−2λa2 + 2as0λ + E(s))ds

+
∫ t

0
e−R(s)σ

√

1 + σ 2

g
D(s)dWs

⎫
⎬

⎭
, (2.19)

with R(t) := ∫ t0 2
κ
D(s)ds.

Proof The proof is structured in two steps.

1. Admissibility. Let us verify that the pair (̂u, ẑ) given in the statement above belongs
to A. We start from condition (i) in Definition 2.1. First, û, ẑ are trivially progressively

measurable and real valued.We need to check ẑt > −1, which is equivalent to σ 2

g D(t) >

−1. We distinguish two cases: if a ≤ 2λ2a4
κ

we have D(t) ≥ 0 (this is a consequence
of Remark 2.2 or, alternatively, the explicit formula (2.12)), hence ẑt > −1 for all

t ∈ [0, T ]. On the other hand, if a > 2λ2a4
κ

, it follows from expression (2.12) that D(t)
is nondecreasing with D(T ) = 0. Therefore, it suffices to check that D(0) > −g/σ 2,
where

D(0) = −
2
(
a − 2λ2a4

κ

)

θ coth( θT
2 ) + 4λa2

κ

.

After some computation, we obtain that D(0) > −g/σ 2 if and only if

coth

(
θT

2

)
>

2σ 2a

θg
H ,

where H is the constant defined in the statement. Now, if H < 0 the inequality above
is always satisfied as the LHS above is nonnegative. If H > 0, the inequality above is
guaranteed by the condition T < Tmax . We can conclude that even in this second case,
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provided T < Tmax , we have ẑt > −1 for all t ∈ [0, T ]. Regarding the integrability
properties, we verify now that

E

[∫ T

0
(̂u2t + ẑ2t )dt

]
< ∞, E

[∫ T

0
q̂2t (1 + ẑt )dt

]
< ∞, (2.20)

where q̂ = qû ,̂z . Since û is affine in q̂ with continuous time-dependent coefficients and ẑ
is deterministic and continuous in t , checking the properties above boils down to show

E

[∫ T

0
q̂2t dt

]
< ∞.

First, we use Fubini’s theorem to get E[∫ T0 q̂2t dt] = ∫ T0 E[̂q2t ]dt . Moreover, since q̂t is a
Gaussian randomvariable for any fixed t (see Remark 2.3 below), the function t 
→ E[̂q2t ]
is continuous over [0, T ], so its integral is finite.
Regarding condition (ii), we need to show that there exists a unique EMM Q̂ = Q

û ,̂z for
the production process q̂. Let us recall that

dQ̂

dP
= exp

{
−
∫ T

0
δ̂t dWt − 1

2

∫ T

0
δ̂2t dt

}
, δ̂t = ût

σ
√
1 + ẑt

.

We use [23, Theorem 2.1] to prove that under our assumptions the probability Q̂ is
well-defined (see also [22] for more general results of the same type). According to that
results, we need to check Assumption 2.2 in [23], which in our case is satisfied as long
as σ 2(1 + ẑt ) > 0 for all t ∈ [0, T ]. By the same arguments used for condition (i), we
get the result. A standard application of Girsanov theorem, together with the integrability
properties in (2.20), yields immediately that q̂ is a martingale under Q̂.
To end checking condition (ii), we have to show hT ∈ L1(P) ∩ L1(Q̂). Now, hT =
(s0 − aq̂T )2, hence quadratic in q̂T . Since under both probability measures q̂T is a
Gaussian random variable, we have q2T ∈ L1(P) ∩ L1(Q̂), which gives the desired
property.
We pass to condition (iii) in Definition 2.1. First, �̂ is trivially a progressivelymeasurable
process with real values. For the integrability property, since both û and �̂ are linear in
q̂t , we are again reduced to the square integrability E[∫ T0 q̂2t dt] < ∞, which has been
proved just before.
To conclude this part of the proof, it remains to check that, given (̂u, ẑ) as above, ĥt :=
hû ,̂z
t = E

Q̂[hT |Ft ] = E
Q̂[hT ] + ∫ t0 �̂sdqs a.s. under Q̂, for all t ∈ [0, T ]. This can be

done by direct computation as follows: applying Itô’s formula to ĥt in (2.17) we get

dĥt = −2a(s0 − aq̂t )dq̂t

whence, in integral form,

ĥt = ĥ0 − 2a
∫ t

0
(s0 − aq̂s)dq̂s = ĥ0 +

∫ t

0
�̂sdq̂s .

Moreover, one easily find

Ê[hT ] = Ê[(s0 − aq̂T )2] = s20 − 2as0q0 + a2Ê[̂q2T ],
where Ê denotes the expectation with respect to the measure Q̂. Using Itô’s isometry, we
also have

Ê[̂q2T ] = q20 +
∫ T

0
σ 2
(
1 + σ 2

g
D(t)

)
dt,
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which leads to the remaining property in (iii).
2. Optimality. To check the optimality condition, we are going to use the martingale opti-

mality principle (see [8]). Let us define the process

Yu,z
t :=

∫ t

0

(
qr (s0 − aqr ) − g

2
z2r − κ

2
u2r − λ�̂r ur

)
dr + V (t, qt ), (2.21)

with

V (t, q) = D(t)q2 + E(t)q + F(t).

Thanks to the martingale optimality principle, proving that Y u,z is a supermartingale for
all (u, z) ∈ A and a martingale for (u, z) = (̂u, ẑ), will give us the result. Itô’s formula
yields

dY u,z
t =

[
qt (s0 − aqt ) − g

2
z2t − κ

2
u2t − λ�̂t ut + Vt + Vqut + 1

2
Vqqσ

2(1 + zt )

]
dt

+ Vqσ
√
1 + zt dWt , (2.22)

where Vt , Vq , Vqq denote partial derivative of the function V (t, q). We have omitted
the dependence on (t, q) for sake of simplicity. First, notice that due to the integrability
properties in Definition 2.1(i) the process

∫ t
0 Vqσ

√
1 + zr dWr is a true P-martingale.

Therefore, it remains to show that the dt-part in (2.22) above is a nonincreasing process,
that is it is lower or equal to zero almost everywhere. By construction (see heuristics),
we know that the function V (t, q) satisfies the HJB Eq. (2.6), with

ϕq(t, q) = 2a2q − 2as0,

hence ϕq(t, qt ) = �̂t for all t . We can conclude that the drift in (2.22) is lower or equal
to zero a.e., yielding that Yu,z is a supermartingale for all (u, z) ∈ A. To show that Y û ,̂z

is a martingale, one proceeds in the same way getting equalities instead of inequalities.
In particular one gets that the drift in (2.22) is equal to zero a.e., implying the martingale
property.
Finally, we can solve for q̂t in explicit form, via standard resolution methods, since it is
the unique solution of the following linear SDE

dq̂t = 1

κ

(
2q̂t (D(t) − λa2) + 2as0λ + E(t)

)
dt + σ

√

1 + σ 2

g
D(t)dWt , q̂0 = q0.

�

Remark 2.3 Notice, from Eq. (2.19), that q̂t is a Gaussian random variable with time-
dependent mean and variance.

3 Production and information basedmanipulation

In this section we describe and solve explicitly a variant of the model presented before.
We still have a producer of a commodity, who is maximizing her profit coming from both
production and a short/long position in some derivative. The main differences are that the
market price of the commodity is no longer a constant as it is driven by the Brownian motion
W , that in turn does not affect the production rate anymore and, finally, the producer can
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directly control the volatility of the market price (by spreading false information on the state
of his production, for instance). Thus, the dynamics of the state variables is now given by

{
dSt = μ dt + σ

√
1 + zt dWt ,

dqt = ut dt .
(3.1)

Moreover in this model themarket price S̃ is given by S̃t = St −aqt , t ∈ [0, T ]. The objective
of the producer is the same as before, i.e.

Jλ(u, z, h0) := E

[∫ T

0

(
Pt − κ

2
u2t − g

2
z2t
)
dt + λ

(
h0 − hT

)]
. (3.2)

Analogously to the previous model, we will be working with the following definition of
admissible policies, which admits the same interpretation as before.

Definition 3.1 We say that any pair (u, z) is admissible if the following properties are satis-
fied:

(i) (ut , zt )t∈[0,T ] are progressively measurable processes with values in R × (−1,∞) such
that

E

[∫ T

0
(u2t + z2t )dt

]
< ∞, E

[∫ T

0
S̃2t (1 + zt )dt

]
< ∞;

(ii) there exists a unique equivalent martingale measure Qu,z for the price process S̃, with
hT ∈ L1(P) ∩ L1(Qu,z);

(iii) there exists a real-valued progressively measurable process (�
u,z
t )t∈[0,T ] satisfying

E

[∫ T

0

(|�u,z
t ut | + |�u,z

t |2(1 + zt )
)
dt

]
< ∞,

and such that the following holds Qu,z-a.s.

hu,z
t := E

Qu,z [hT |Ft ] = E
Qu,z [hT ] +

∫ t

0
�u,z

s d S̃s,

for all t ∈ [0, T ].
The set of all admissible pairs will be denoted by A.

Analogously as in the previous model, from S̃’s dynamics we have that the measureQu,z ,
whose existence is postulated in (ii) above, is necessarily given by the following Radon–
Nikodym derivative

dQu,z

dP
= exp

{
−
∫ T

0
γt dWt − 1

2

∫ T

0
γ 2
t dt

}
, γt = μ − aut

σ
√
1 + zt

.

Before giving the final formulation of the producer’s optimization problem in this model as
well, we can exploit the admissibility properties above to rewrite the objective functional
(3.2) as follows

Jλ(u, z, h0) = E

[∫ T

0

(
Pt − κ

2
u2t − g

2
z2t − λ�

u,z
t (μ − aut )

)
dt

]
=: J̃λ(u, z).

Finally, the producer’s optimization problem, that we are going to solve in the next sub-
section, is given by

sup
(u,z)∈A

J̃λ(u, z). (3.3)
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3.1 Heuristics

In this sub-section we describe the heuristics that led us to propose some candidate solution.
It follows the same lines as in the first model. Being the market complete, there exists a
unique martingale measure Q under which S̃ is a martingale. Indeed we have

d S̃t = (μ − aut )dt + σ
√
1 + zt dWt

= (μ − aut − γtσ
√
1 + zt )dt + σ

√
1 + zt dW

Q
t ,

where WQ is a Q-Brownian motion and by choosing γt = μ−aut
σ
√
1+zt

, S̃ is a Q-martingale.

The price at time t = 0 of the European claim hT equals EQ[S̃2T ], so that we expect that

hT = h0 + ∫ T0 �t d S̃t , where � is the corresponding delta hedging strategy. Hence, the
difference h0 − hT also reads

h0 − hT = −
∫ T

0
�t d S̃t . (3.4)

The last quantity to be introduced is the financial claim’s price, that we denote by ϕ:

ϕ(t, q, s) := E
Q
[
S̃2T |qt = q, St = s

]
.

Remark 3.1 Notice that the filtration generated by q and S̃ is the same as the one associated
with q and S, namely F S̃

t ∨Fq
t = F S

t ∨Fq
t for every t ∈ [0, T ]. We conveniently choose to

consider q and S as state variables.

We clearly expect ϕ to solve the following PDE
{

ϕt + σ 2

2 (1 + z(t, q, s))ϕss = 0
ϕ(T , q, s) = (s − aq)2.

(3.5)

Since we formally have � := ∂ϕ
∂ s̃ = ∂ϕ

∂s
∂s
∂ s̃ = ∂ϕ

∂s , using the dynamics S̃ under P together
with (3.4) we find that the value function vλ satisfies

vλ(0, q0, s0) = sup
u,z

Eq0,s0

[∫ T

0

(
qt (St − aqt ) − g

2
z2t − κ

2
u2t − λϕs(t, qt , St )(μ − aut )

)
dt

]
.

The value function vλ is solution to the following HJB equation, which depends on ϕ (satis-
fying (3.5))

⎧
⎪⎪⎨

⎪⎪⎩

−vt = sup
u,z

{
q(s − aq) − g

2
z2 − κ

2
u2 − λϕs(μ − au) + vqu + vsμ

+ σ 2

2 (1 + z)vss
}

v(T , q, s) = 0

(3.6)

Ansatz 3.2 We guess the value function v and the price ϕ have the following form

v(t, q, s) = A(t)q2 + B(t)s2 + C(t)qs + D(t)q + E(t)s + F(t),

ϕ(t, q, s) = Ā(t)q2 + B̄(t)s2 + C̄(t)qs + D̄(t)q + Ē(t)s + F̄(t).

The first order conditions on the (3.6) lead us to the candidate optimal controls

ẑ = σ 2

2g
vss , û = 1

κ

(
aλϕs + vq

)
,
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and thus, using the ansatz above,

ẑt = σ 2

g
B(t) ût = 1

k

{
λa
[
2B̄(t)s + C̄(t)q + Ē(t)

]+ 2A(t)q + C(t)s + D(t)
}
,

(3.7)

for all t ∈ [0, T ].
Solving for ϕ. We can now explicitly find ϕ by exploiting the Ansatz 3.2 and replacing the
control pair (̂u, ẑ) into (3.5). We find:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ā(t) ≡ a2

B̄(t) ≡ 1
C̄(t) ≡ −2a
D̄(t) ≡ 0
Ē(t) ≡ 0

F̄(t) =
∫ T

t
σ 2
[
1 + σ 2

g
B(u)

]
du

Solving for vλ. We proceed in the same way as above to find the value function vλ. We find
the following systems of ODEs

A′(t) = a − 2

κ
(A(t) − λa2)

2
(3.8)

B ′(t) = − 1

2κ
(2λa + C(t))2 (3.9)

C ′(t) = −1 − 2

κ
(2λa + C(t))(A(t) − λa2) (3.10)

D′(t) = −2

k
D(t)

(
A(t) − a2λ

)− μ
(
C(t) + 2aλ

)
(3.11)

E ′(t) = −1

k
D(t)

(
C(t) + 2aλ

)− 2μ(B(t) − λ) (3.12)

F ′(t) = −1

2

σ 4B(t)2

g
− D(t)2

2κ
− μE(t) − σ 2B(t) (3.13)

with null terminal conditions A(T ) = · · · = F(T ) = 0.

Remark 3.3 Notice, in particular, that B is a positive decreasing function of time, which
implies (recall Eq. (3.7)) that the control ẑ is always positive. This means that there is always
interest in increasing the market price volatility, even if the producer buys the derivative.

3.2 Verification

Theorem 3.1 Let A, B,C, D be solutions to the system (3.8)–(3.13). There exists an optimal
policy (̂u, ẑ) ∈ A for problem (3.3), where

ût = 1

κ

[
(2λa + C(t))Ŝt + 2(A(t) − λa2 )̂qt + D(t)

]
, ẑt = σ 2

g
B(t), t ∈ [0, T ].(3.14)

The no-arbitrage price process for the derivative hT is given by

ĥt := hû ,̂z
t = (Ŝt − aq̂t )

2 + σ 2
∫ T

t

(
1 + σ 2

g
B(u)

)
du, t ∈ [0, T ], (3.15)
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and the hedging process is

�̂t := �
û ,̂z
t = 2(Ŝt − aq̂t ), t ∈ [0, T ]. (3.16)

Proof The proof is very similar to the previous model (cf. Theorem 2.1), hence we give
details only for those steps which are slightly different.

1. Admissibility. First, we observe that checking the admissibility property (i), namely ẑt >

−1 for all t ∈ [0, T ], is actually easier as no conditions on small T are needed. Indeed,
ẑt > −1 if and only if B(t) > −g/σ 2, where B solves the corresponding equation
in the system (3.8)–(3.13). The latter inequality is satisfied since, being B ′(t) ≤ 0 and
B(T ) = 0, we have B(t) ≥ 0 for all t ∈ [0, T ].
Regarding the integrability properties in (i), checking them is equivalent to show that

E

[∫ T

0
q̂2t dt

]
< ∞, E

[∫ T

0
Ŝ2t dt

]
< ∞.

As for the condition on Ŝ, observe that under P the process Ŝ satisfies d Ŝt = μdt +
σ

√
1 + σ 2

g B(t)dWt , namely it is a Gaussian process. So, as previously noticed in the
proof of Theorem 2.1, we apply first of all Fubini’s theorem and then we remark that the
function t 
→ E[Ŝ2t ] is continuous over [0, T ] and its integral is finite. We now work on
E[̂q2t ], which is more delicate, since dq̂t = ût dt and û depends also on Ŝ [see (3.14)].
We have

q̂t = q0 + 1

κ

∫ t

0
(2λa + C(s))Ŝsds + 2

κ

∫ t

0
(A(s) − λa2 )̂qsds + 1

κ

∫ t

0
D(s)ds,

and so

E[̂q2t ] ≤ 3

(
q0 + 1

κ

∫ t

0
D(s)ds

)2
+ 3

κ2E

(∫ t

0
(2λa + C(s))Ŝsds

)2

+12

κ2E

(∫ t

0
(A(s) − λa2 )̂qsds

)2

≤ 3

(
q0 + 1

κ

∫ t

0
D(s)ds

)2
+ 3t

κ2

∫ t

0
[2λa + C(s)]2E[Ŝ2s ]ds

︸ ︷︷ ︸
:=α(t)

+12t

κ2

∫ t

0
[A(s) − λa2]2E[̂q2s ]ds.

Now, E[Ŝ2s ] is positive and finite and so we can safely introduce the positive continuous
function α as above and write

E[̂q2t ] ≤ α(t) + 12t

κ2

∫ t

0
[A(s) − λa2]2E[̂q2s ]ds.

An application of Gronwall’s lemma leads to

E[̂q2t ] ≤ α(t) +
∫ t

0
α(s)K (s)e

∫ t
s K (u)duds,

with K (u) := 12t
κ2

[A(u)−λa2]2 > 0. So, t → E[̂q2t ] is bounded by a continuous function
and its integral over [0, T ] is finite.
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Regarding condition (ii), we proceed again as in the proof of Theorem 2.1 by checking
Assumption 2.2 in [23], which in our case is satisfied as long as σ 2(1 + ẑt ) > 0 for
all t ∈ [0, T ]. This is automatically true, since here B(t) ≥ 0 for all t ∈ [0, T ] and so

σ 2(1 + ẑt ) = σ 2(1 + σ 2

g B(t)) ≥ σ 2 > 0. To end checking condition (ii), we have to

show ĥT ∈ L1(P) ∩ L1(Q̂). Now, ĥT = (ŜT − aq̂T )2, hence quadratic in both Ŝt and in
q̂T . For what we have seen up to now q2T and ŜT belong to L1(P) and they also belong
to L1(Q̂), which gives the desired property.
It remains to check (iii). We proceed again as in the previous theorem, except that now
ĥt in (3.15) is a function of both Ŝ and q̂. First, notice that

ĥt = ĥ0 + 2
∫ t

0
(Ŝs − aq̂s)(d Ŝs − adq̂s) = ĥ0 +

∫ t

0
�̂sd S̃s .

Now, since ĥT = (s0 − aq0)2 + 2
∫ T
0 (Ŝs − aq̂s)σ

√
1 + ẑsdŴs we have

Ê[hT |Ft ] = (s0 − aq0)
2 + 2

∫ t

0
(Ŝs − aq̂s)σ

√
1 + ẑsdŴs

+2 Ê

[∫ T

t
(Ŝs − aq̂s)σ

√
1 + ẑsdŴs

]
= ĥt .

Finally, progressive measurability and integrability of �̂ in condition (iii) in Definition
3.1 can be treated exactly as in the proof of Theorem 2.1, using (i).

2. Optimality This can be proved by proceeding exactly as in the proof of Theorem 2.1, by
taking into account that now the state variable is two-dimensional. �


4 Producer-trader competition

In this section, we finally consider a game between a producer who can manipulate the
commodity price through the drift and a trader who can manipulate the volatility of the price.
Hence, the trader is no longer price-taker or passive as in the previous two models. Here, she
can affect the price of commodity by paying some (quadratic) cost.

The dynamics for S and q are as in (3.1). The controls are still given by (u, z) with the big
difference that now only u is controlled by the producer, while z is controlled by the trader.
Clearly, the corresponding costs are allocated accordingly. When the strategy profile for both
players is (u, z) and the derivative price is h0, the producer payoff is

Jpr(u, z, h0) = E

[∫ T

0

(
qt (St − aqt ) − κ

2
u2t
)
dt + λ(h0 − hT )

]
. (4.1)

On the other hand, the trader who has the opposite position in the derivatives will get the
payoff

Jtr(u, z, h0) = E

[
−g

2

∫ T

0
z2t dt − λ(h0 − hT )

]
. (4.2)

Now, we can give the definition of admissible policies, including the strategy profiles of
both players together with the pricing and hedging strategy of the investment department
in the production firm. Notice that it is the same as for the model in Sect. 3. We recall that
S̃t = St − aqt , for t ∈ [0, T ].

123



Mathematics and Financial Economics

Definition 4.1 We say that any pair (u, z) is admissible if the following properties are satis-
fied:

(i) (ut , zt )t∈[0,T ] are progressively measurable processes with values in R× (−1,∞) such
that

E

[∫ T

0
(u2t + z2t )dt

]
< ∞, E

[∫ T

0
S̃2t (1 + zt )dt

]
< ∞;

(ii) there exists a unique equivalent martingale measure Qu,z for the price process S̃, with
hT ∈ L1(P) ∩ L1(Qu,z);

(iii) there exists a real-valued progressively measurable process (�
u,z
t )t∈[0,T ] satisfying

E

[∫ T

0

(|�u,z
t ut | + |�u,z

t |2(1 + zt )
)
dt

]
< ∞,

and such that the following holds Qu,z-a.s.

hu,z
t := E

Qu,z [hT |Ft ] = E
Qu,z [hT ] +

∫ t

0
�u,z

s dqs,

for all t ∈ [0, T ].
The set of all admissible pairs will be denoted by A.

On the other hand the definition of solution is slightly different, due to the fact that the
trader can also play strategically in this model. Before proceeding, we exploit the definition
of admissibility, conditions (ii) and (iii) in particular, to rewrite as in the previous two models
the payoffs of both the trader and the producer as follows

Jpr(u, z, h0) = E

[∫ T

0

(
qt (St − aqt ) − κ

2
u2t − λ(μ − aut )�

u,z
t

)
dt

]
=: J̃pr(u, z),

Jtr(u, z, h0) = E

[∫ T

0

(
−g

2
z2t + λ(μ − aut )�

u,z
t

)
dt

]
=: J̃tr(u, z),

for any admissible pair (u, z) ∈ A.

Definition 4.2 We say that the pair (̂u, ẑ) ∈ A is a Nash equilibrium if it is a Nash equilibrium
between the producer and the trader, i.e.,

J̃pr (̂u, ẑ) ≥ J̃pr(u, ẑ), J̃tr (̂u, ẑ) ≥ J̃tr (̂u, z), (4.3)

for all deviations u, z such that (u, ẑ) and (̂u, z) belong to A.

4.1 Heuristics

We want to compute explicitly a Nash equilibrium for the game between producer and
trader, described just above. We start from some heuristics that would lead to some candidate
equilibrium, while the rigorous verification is postponed to the next sub-section as usual.

First, assuming ht = ϕ(t, qt , St ) and consequently �t = ϕs(t, qt , St ), while exploiting
the market completeness as for the previous two models, we can rewrite the running best-
response functions of the two players as follows

v(t, q, s; z) = sup
u

E

[∫ T

t

(
qr (Sr − aqr ) − κ

2
u2r − λ(μ − aur )ϕs

)
dr | qt = q, St = s

]
,
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w(t, q, s; u) = sup
z

E

[∫ T

t

(
−g

2
z2r + λ(μ − aur )ϕs

)
dr | qt = q, St = s

]
,

where ϕs is the delta hedging of the derivative, that will have to be determined at the equi-
librium. It is reasonable to expect that the derivative’s price ϕ(t, q, s) is the solution to the
following PDE:

ϕt + σ 2

2
(1 + z)ϕss = 0, ϕ(T , s, q) = (s − aq)2, (4.4)

for some function z = z(t, q, s) coming from the trader’s best-response. The PDE above is
coupled with the following two HJB equations, arising from the best-response functions of
the two players:

− vt = sup
u

{
q(s − aq) − κ

2
u2 − λϕs(μ − au) + vqu + vsμ + σ 2

2
(1 + z)vss

}
, (4.5)

−wt = sup
z

{
−g

2
z2 + λϕs(μ − au) + wqu + wsμ + σ 2

2
(1 + z)wss

}
, (4.6)

with terminal conditions v(T ) = w(T ) = 0. Solving the optimization problems within the
HJB equations above, we get the (candidate) equilibrium strategies for the producer and the
trader in terms of the corresponding payoff functions:

û = 1

κ

(
vq + λaϕs

)
, ẑ = σ 2

2g
wss .

The HJB equations for the producer and the trader become respectively as

−vt = q(s − aq) + 1

2κ

(
vq + λaϕs

)2 − μλϕs + μvs + σ 2

2

(
1 + σ 2

2g
wss

)
vss

and

−wt = λμϕs − 1

κ

(
vq + λaϕs

)(
λaϕs − wq

)+ μws + σ 2

2
wss + σ 4

8g
w2
ss .

Furthermore, the PDE giving the option equilibrium price ϕ is given:

ϕt + σ 2

2

(
1 + σ 2

2g
wss

)
ϕss = 0,with ϕ(T , q, s) = (s − aq)2.

Analogously as in the previous two models, we use the following ansatz for w:

w(t, q, s) = Aw(t)q2 + Bw(t)s2 + Cw(t)qs + Dw(t)q + Ew(t)s + Fw(t),

and similarly for v and ϕ with self-explanatory notation for their coefficients. Therefore,
using the ansatz and proceeding in the usual way, we easily get

ϕ(t, q, s) = (s − aq)2 + Fϕ(t),

where

Fϕ(t) := σ 2
∫ T

t

(
1 + σ 2

g
Bw(r)

)
dr .

After tedious yet straightforward computations we obtain

−A
′
v = −a + 2

κ

(
Av − a2λ

)2
(4.7)
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−B
′
v = 1

2κ
(Cv + 2aλ)2 (4.8)

−C
′
v = 1 + 2

κ

(
Av − a2λ

)
(Cv + 2aλ) (4.9)

−D
′
v = μ (Cv + 2aλ) + 2

κ
Dv

(
Av − a2λ

)
(4.10)

−E
′
v = 2μ (Bv − λ) + 1

κ
Dv (Cv + 2aλ) (4.11)

−F
′
v = μEv + 1

2κ
D2

v + σ 2
(
1 + σ 2

g
Bw

)
Bv (4.12)

−A
′
w = 4

κ

(
Av − a2λ

) (
Aw + a2λ

)
(4.13)

−B
′
w = 1

κ
(Cw − 2aλ) (Cv + 2λa) (4.14)

−C
′
w = 2

κ

[
(Av − λa2)(Cw − 2aλ) + (Aw + a2λ)(Cv + 2λa)

]
(4.15)

−D
′
w = μ (Cw − 2aλ) + 2

κ
Dv

(
Aw + a2λ

)+ 2

κ
Dw

(
Av − a2λ

)
(4.16)

−E
′
w = 2μ (Bw + λ) + 1

κ
Dw (Cv + 2aλ) + 1

κ
Dv (Cw − 2aλ) (4.17)

−F
′
w = μEw + 1

κ
DvDw + σ 2Bw + σ 4

2g
B2

w (4.18)

with zero terminal condition for all ODEs above. The first equation, which is a Riccati ODE,
can be solved explicitly giving the same expression as for D in the first model:

Av(t) = − 2(a − 2λ2a4
κ

)(eθ(T−t) − 1)

θ(eθ(T−t) + 1) + 4λa2
κ

(eθ(T−t) − 1)
, θ :=

√
8a

κ
.

The other equations are linear, hence they can be solved in integral form. For the moment, we
give only the expressions for the coefficients that we need in order to compute the equilibrium
strategy ẑ of the trader. They are given by:

Aw(t) = 4a2λ

κ

∫ T

t
e

4
κ

∫ u
t (Av(r)−a2λ)dr (Av(u) − a2λ)du,

Bw(t) = 1

κ

∫ T

t
(Cw(r) − 2aλ)(Cv(r) + 2aλ)dr ,

Cw(t) = 2

κ

∫ T

t
e

2
κ

∫ u
t (Av(r)−a2λ)dr [(Aw(u) + a2λ)(Cv(u) + 2aλ) − 2aλ(Av(u) − a2λ)

]
du,

Cv(t) =
∫ T

t
e

2
κ

∫ u
t (Av(r)−a2λ)dr

(
1 + 4aλ

κ
(Av(u) − a2λ)

)
du.

4.2 Verification

Theorem 4.1 Let Av,Cv, Dv, Bw be solutions to the system (4.7)–(4.18) such that

Bw(t) > − g

σ 2 , t ∈ [0, T ]. (4.19)
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Then there exists a Nash equilibrium (̂u, ẑ) ∈ A as in Definition 4.2, where

ût = 1

κ

[
Cv(t)Ŝt + 2Av(t )̂qt + Dv(t) + 2λa(Ŝt − aq̂t )

]
, ẑt = σ 2

g
Bw(t), t ∈ [0, T ].

(4.20)

The no-arbitrage equilibrium price process for the derivative hT is given by

ĥt := hû ,̂z
t = (Ŝt − aq̂t )

2 + σ 2
∫ T

t

(
1 + σ 2

g
Bw(u)

)
du, t ∈ [0, T ], (4.21)

and the hedging process at equilibrium is

�̂t := �
û ,̂z
t = 2(Ŝt − aq̂t ), t ∈ [0, T ]. (4.22)

Proof Analogously as for the previous two models, the proof is structured in two steps.

1. Admissibility. We start from the verification that the pair (̂u, ẑ) belongs to A. The two
processes û, ẑ are clearly progressively measurable by definition, where û takes real
values. Moreover, assumption (4.19) implies that ẑt > −1 for all t ∈ [0, T ]. Concerning
the integrability properties in Definition 4.1(i), since both û and ẑ are affine in the state
variables q̂t , Ŝt with time continuous (hence bounded) coefficients, they boil down to
checking

E

[∫ T

0
(̂q2t + Ŝ2t )dt

]
< ∞. (4.23)

For the square integrability of Ŝ, observe that since ẑ is a deterministic continuous function
of time, each Ŝt is normally distributed, hence it has everymoment and they are continuous
in time. Therefore E[∫ T0 Ŝ2t dt] < ∞. To verify the square integrability of q̂ , notice that
at equilibrium we have

dq̂t = [α(t )̂qt + β(t)Ŝt + γ (t)]dt, q̂0 = q0,

for some deterministic continuous functions of time α, β and γ . Such a linear ODE can
be solved pathwise, giving

q̂t = e
∫ t
0 α(r)dr

(
q0 +

∫ t

0
e− ∫ r0 α(u)du (β(t)Ŝr + γ (r)

)
dr

)
, t ∈ [0, T ].

This implies that showingE[∫ T0 q̂2t dt] < ∞ reduces toE[∫ T0 (
∫ t
0 Ŝr dr)2dt] < ∞, which

follows since�t := ∫ t0 Ŝr dr is a Gaussian process with time continuous secondmoment.
Regarding condition (ii), we need to show that there exists a unique EMM Q̂ = Q

û ,̂z for
the production process q̂. Let γ̂t := μ−aût

σ
√
1+̂zt

and let us consider

Lû ,̂z
t := exp

{
−
∫ t

0
γ̂t dWt − 1

2

∫ t

0
γ̂ 2
t dt

}
, t ∈ [0, T ].

We use once more [23, Theorem 2.1] to prove that under our assumptions the probability
dQ̂ := Lû ,̂z

T dP is well-defined (see also [22]). For this model, Assumption 2.2 in [23] is
satisfied as long as σ 2(1+ ẑt ) > 0 for all t ∈ [0, T ], which is immediately given by our
assumption that Bw(t) > −g/σ 2 ensuring, as we already saw above, that ẑt > −1 for
all t ∈ [0, T ].
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To end this part, we need to check property (iii) in Definition 4.1. The first part, relative
to ĥ, is done as in the proof of Theorem 2.1, hence the details are omitted. Concerning
�̂, first notice that it is clearly progressively measurable and takes real values. Due to the
fact that �̂t is linear in both q̂t and Ŝt , its integrability property is equivalent to (4.23),
which has already been checked before.

2. Equilibrium. We are going to use the martingale optimality principle here as well to
verify that at the proposed equilibrium (̂u, ẑ) both players are implementing an optimal
response to each other strategy. Let us consider the producer first and define the following
process

Yu ,̂z
t :=

∫ t

0

(
qr (Ŝr − aqr ) − κ

2
u2r − λ�u ,̂z

r (μ − aur )
)
dr + W (t, qt , Ŝt ), (4.24)

with

W (t, q, s) = Aw(t)q2 + Bw(t)s2 + Cw(t)qs + Dw(t)q + Ew(t)s + Fw(t).

Similarly as in the proof of Theorem 2.1, one can verify by applying Itô’s formula and the
HJB equation (4.5) satisfied by the function W (t, q, s) by construction in the heuristics
part, that Yu ,̂z

t is a supermartingale for all u such that (u, ẑ) ∈ A, and a martingale for
u = û. For the trader, we consider the process

Zû,z
t :=

∫ t

0

(
−g

2
z2r + λ�û,z

r (μ − aûr )
)
dr +U (t, q̂t , St ), (4.25)

with

U (t, q, s) = Av(t)q
2 + Bv(t)s

2 + Cv(t)qs + Dv(t)q + Ev(t)s + Fv(t).

Applying the same arguments as for the producer, one can easily check that Zû,z is a
supermartingale for all z such that (̂u, z) ∈ A and a martingale for z = ẑ.
Finally, an application of the martingale optimality principle combined with the admissi-
bility of (̂u, ẑ), gives that the latter is a Nash equilibrium as in Definition 4.2. Therefore,
the proof is complete. �


Remark 4.1 Observe that in the theorem above we assumed that Bw(t) > −g/σ 2 for all
t ∈ [0, T ]. This is satisfied when the maturity T is small enough. Indeed, one can reason
heuristically in the following way: when T ≈ 0, using the Eq. (4.14) for Bw we have
B ′

w(T ) ≈ 1
κ
(2λa)2 > 0 and we also have Bw(T ) = 0. Therefore, it is natural to expect

Bw(t) > −g/σ 2 for all t ∈ [0, T ] when T is small enough, which would also guarantee that
the Radon–Nikodym derivative dQû ,̂z/dP = Lû ,̂z

T is well-defined (see the second part of the
proof above). Unfortunately, the study of the function Bw is much more difficult in this case
than in the model of Sect. 2, where we were able to quantify precisely how small T must be.

5 Numerical illustration

In this section, we use numerical simulations to illustrate and explain the behaviours of
the producer in the three models and of the trader in the third one. We set the drift of the
commodity price to zero, μ = 0, in Models 2 and 3, to simplify the analysis.
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Model 1: production-based manipulation. The understanding of the first model is quite
straightforward and it is illustrated by the first column of Fig. 1. Starting from a zero produc-
tion rate q , the optimal strategy of the producer, whether or not she holds a derivative position,
is to reach as fast as possible the optimal production rate that maximizes the running profit

q� := s0
2a

. We have seen that when the producer has no position in the derivative market, she

has no interest in increasing the volatility using some randomization of her production rate
q . Indeed, her expected profit is proportional to E

[− q2t ] and thus, increasing the volatility
decreases her expected profit. On the contrary, since controlling the volatility has a cost, she
makes costly efforts to reduce it. When the producer holds a derivative position, we first note
that she uses her market power to drive the price of the commodity at maturity to a level
that suits her profit. If she has bought (resp. sold) the derivative, she drives the commodity
price up (resp. down). For instance, in case of a sale, the derivative is sold at, say, 100, but
at maturity its payoff is close to zero, ensuring a profit of nearly 100. Figure 2 (left) gives
the value function of the producer at time zero as a function of the derivative position. We
see that selling derivatives (λ > 0) can only make her better off while buying derivatives
requires a certain amount of sales before it is worth the cost.

Regarding the volatility, since the price h0 of the derivative is an increasing function of
the realized volatility, the producer may have an interest in increasing the volatility to push
the value of the derivative up. But, since increasing the volatility has a negative effect on the
expected profit, the producer has to assess this trade-off. Using the Remark 2.2 together with
the expression for ẑ in (2.8) and noting that it makes sense to increase the volatility only in
case the producer has sold the derivative (λ > 0) we have that

ẑ ≥ 0 ⇔ λ ≥
√

κ

2a3
. (5.1)

If the net position exceeds the threshold above, the benefit of increasing the volatility out-
weighs the cost. The higher the market power, the lower the threshold. Besides, it is worth
noting that this threshold does not depend on the cost of intervention g to reduce the volatil-
ity. It only depends on the parameters affecting the drift of the commodity price process. In
Fig. 1, we choose a large short position of λ = 1 which makes the profit on the derivative
as important as the profit from production. In that case, the producer increases more than by
half the volatility. Figure 3 illustrates the variation of the price of the derivative h0, of the
expected payoff EP[hT ] but also of the price of the derivative if no volatility manipulation
was undertaken, noted hz=0

0 , as a function of the holding position λ. In these simulations,
we started the initial production rate at its optimal stationary level q� to get rid of transitory
effects. For the first model, we observe that h0 is an increasing function of the position, but
it varies much less than the expected terminal payoff. It means that much of the benefit from
holding a derivative position comes from the manipulation of the price at maturity.

Model 2: production and information basedmanipulation. The story for the second model
is illustrated by the second column of Fig. 1 and it has many points in common with the first
model: the producer optimal production strategy is to reach the stationary optimal level q�

and to drive the price at maturity up in case of a purchase and down in case of a sale. But, now,
contrary to the former case, as pointed out in Remark 3.3, the producer always increases the
volatility whatever her net position is, long or short, because her profit rate is an increasing
function of the volatility. As a consequence, we observe in the second column of Fig. 3 that
h0 is always greater than hz=0

0 . Further, the variation of EP[hT ] − h0 is much larger now,
when the producer can separate the manipulation of the drift and of the volatility, than in the
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Fig. 1 Optimal production rate q̂, derivative price ϕ̂, volatility σ̂ and commodity price Ŝ when the producer
has no derivative position λ = 0 (blue), bought the derivative λ < 0 (black) and sold the derivative, λ > 0
(red). Parameter values: s0 = 10, a = 0.5, g = 0.1, κ = 0.01, σ = 1, T = 1, μ = 0.0, q0 = 0, λ ∈ {−0.1, 1}
for Model 1 and 3, λ ∈ {−0.05, 0.1} for Model 3

first model. Figure 2 (middle) provides the value function of the producer at time zero as a
function of the derivative position. The situation here is very similar to what we observed in
the first model, namely selling derivatives (λ > 0) results in a profit, while buying derivatives
is worth the cost as soon as the amount of sales exceeds a threshold depending on the model
parameters.

In both models 1 and 2, the capacity of driving the price of the commodity at maturity
at a desired level reveals itself an efficient tool to take advantage of a derivative position. If
the producer has sold the derivative at, say, 100, she increases her production rate so that
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Fig. 2 Producer’s and trader’s value function at initial time as a function of derivative position λ. Parameter
values: s0 = 10, a = 0.5, g = 0.1, κ = 0.01, σ = 1, T = 1, μ = 0.0, q0 = 0

Fig. 3 Values of the derivative h0, the expected value of the payoff EP[hT ] and the value of the derivative
in case of no volatility manipulation hz=0

0 as a function of the net position λ. Parameter values: s0 = 10,
a = 0.5, g = 0.1, κ = 0.01, σ = 1, T = 1, μ = 0.0, q0 = q�

at terminal date, the price of the commodity decreases, making the price of the derivative
decrease below the initial price and thus ensuring a profit on the derivative.

Model 3: producer-trader competition. What happens when the producer is facing an
opponent who can control the level of volatility? The third column of Fig. 1 illustrates the
interaction between the producer and the trader. The fact that the producer now faces an
opponent does not change her overall production strategy: she still reaches the stationary
optimal level of production rate q� and she manipulates the commodity price at maturity
at her own advantage. But, the actions of the trader on the volatility reduces the potential
profit made by the producer on the derivative. When the producer has sold (resp. bought)
the derivative to the trader, the trader reduces (resp. increases) the volatility to push the price
h0 of the derivative down. The third column of Fig. 3 shows a much lower variation of the
derivative profit h0−E

P[hT ] than in the first twomodels. Besides, we observe that for λ > 0,
we have h0 − E

P[hT ] > 0 and for λ < 0, we have h0 − E
P[hT ] < 0, meaning that in each

case, the trader is making a loss.
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Fig. 4 Values of v(0, q0, s0) and w(0, q0, s0) as a function of the trading position λ, λ > 0 in red, λ < 0 in
blue, for q0 = s0/2a, and for different values of a

We have seen that the producer can drive the price at maturity at a level that would make
her derivative position a profitable trade for her, providing her with an efficient tool in this
asymmetric game of price manipulation. In this situation, considered the potential strong
asymmetry of power in this game, a natural question on whether an exchange level λ that
would make both players better off exchanging might arise. Figure 2 (right) gives the value
functions of the producer and of the trader at time zero as a function of the derivative position.
We observe that even if the value function of the producer exhibits the same pattern as in the
first two models, her expected profit is now considerably reduced due to the counteraction
of the trader. Besides, the value function of the trader is concave and admits an optimum at a
position that makes the producer worse off trading. Further, we observe that in this situation,
with a zero initial rate of production, neither the producer nor the trader are better off trading.

But, if we consider that the production rate starts at its optimal stationary level q�, we find
that whatever the market power of the producer, there is an exchange position making both
the producer and the trader better off than not making a trade. Figure 4 presents the value
functions of the producer and the trader at initial time for different values of the market power
parameter a and different cost of intervention for the trader g. In each case, we chose as an
initial production rate q0 = q� = s0/(2a), the stationary level of production, avoiding in this
way the transitory phase to optimal production rate. When the producer and the trader do not
trade (λ = 0), their respective value v(0, q0, s0) and w(0, q0, s0) stand at the intersection of
the black axis. As the trader starts to sell the derivative, λ becomes negative and both values
are greater than when λ = 0, showing that both are better off making the trade. Further,
we observe that both are worse off in the case where the trader buys the derivative from the
producer.
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