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Abstract. A generalised summation method is considered based on
the Fourier series of periodic distributions. It is shown that

e
it ´ 2e2it ` 3e3it ´ 4e4it ` ´ ¨ ¨ ¨ “ Pf

eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ
1
p2n`1qπ ,

where Pf
eit

p1 ` eitq2
P D1pRq is the 2π-periodic distribution given by

B
Pf

eit

p1 ` eitq2
, ϕ

F

“
ÿ

nPZ

ż
2π

0

pt ´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2pp2n ` 1qπ ` θpt ´ πqqdθdt,

for ϕ P DpRq. Applying the generalised summation method, the sum of
the divergent series 1 ` 2 ` 3 ` ¨ ¨ ¨ (arising in a quantum field theory
calculation in the Casimir effect) is determined, and more generally also
the sum 1k ` 2k ` 3k ` ¨ ¨ ¨ , for k P N, is determined.

1. Introduction

A quantum field theoretic calculation predicts the so-called Casimir effect,
giving the correct1 value of the attractive force between two parallel perfect
conductor plates in vacuum, if one uses the absurd sum

8ÿ

n“1

n “ ´
1

12
. (1)

While there exists a generalised summation method (zeta function regulari-
sation) that allows one to show this, it is somewhat contrived in the context
of the Casimir effect calculation. On the other hand, Fourier series makes a
direct appearance in the quantum field calculation (see e.g. [7, §III]), since
one uses the quantised momentum space. We give an alternative summation
method, based on distributional Fourier series, which gives a derivation of
(1), and gives a rigorous mathematical justification of (1).
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1by now experimentally verified [4]
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A justification for

1 ` 2 ` 3 ` ¨ ¨ ¨ “ ´
1

12
,

for example2 given by Ramanujan in one of his notebooks [1, Ch.6, p.135],
is as follows:

If s :“ 1 ` 2 ` 3 ` ¨ ¨ ¨ , then formally

s “ 1 ` 2 ` 3 ` 4 ` 5 ` 6 ` ¨ ¨ ¨
´4s “ ´ 4 ´ 8 ´ 12 ¨ ¨ ¨
´3s “ 1 ´ 2 ` 3 ´ 4 ` 5 ´ 6 ` ´ ¨ ¨ ¨ .

(2)

The power series expansion

1

p1 ` xq2
“ 1 ´ 2x ` 3x2 ´ 4x3 ` ´ ¨ ¨ ¨ for |x| ă 1

motivates associating the sum of the alternating series 1 ´ 2 ` 3´ 4 ` ´ ¨ ¨ ¨
with

1

p1 ` xq2

ˇ̌
ˇ̌
x“1

,

and one writes

1 ´ 2 ` 3 ´ 4 ` ´ ¨ ¨ ¨ “
1

4
. (3)

In light of the last equation from (2), together with (3), we arrive at

s “ 1 ` 2 ` 3 ` ¨ ¨ ¨ “ ´
1

3
¨
1

4
“ ´

1

12
. (4)

There exist generalised summation techniques which allow one to obtain the
result (4), for example the zeta function regularisation method [16, p.301].
We briefly recall the idea behind the zeta function regularisation method in
Appendix B, in order to contrast it with our summation method introduced
here.

In this article, we give an alternative route to obtaining (4), based on
the Fourier series of periodic distributions. Distributional Fourier series
converge in the sense of distributions whenever the Fourier coefficients cn
grow at most polynomially, that is, they satisfy for some M ą 0 and k ą 0
that

for all n P Z, |cn| ď Mp1 ` |n|qk,

and so one could try making the above manipulations (2) with divergent
series on a firmer footing by using the Fourier theory of distributions, where

2There are older justifications of this. For example, in [12], the determination of ζp´1q
is attributed to Euler. The related summation of the divergent series 1 ´ 2 ` 3 ´ ` ¨ ¨ ¨ ,
being assigned the sum 1{4, can be based on the so-called Euler summation method. (For
a modern discussion of the Euler summation method, see for example [8, §20, p.325-328].)
Euler had discovered a functional equation relating the zeta function with the Dirichlet eta
function (alternating zeta function) for integral values, which yields, using the alternating
sum 1 ´ 2 ` 3 ´ ` ¨ ¨ ¨ “ 1{4, also that ζp´1q “ 1 ` 2 ` 3 ` ¨ ¨ ¨ “ ´1{12 [5, Vol. 14,
p. 442-443, 594-595; Vol. 15, p. 70-90]. The determination of the zeta function at all
negative integers, using the Euler summation method, can be found in [12].
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the place holders of the terms of the divergent series are naturally provided
by the characters eint, and the operation in the second step of (2) can be
carried out by simply doubling the period, that is, by a homothetic dilation
by 2 of the distributional Fourier series. The question then arises if one can
give an explicit formula for the distribution corresponding to the Fourier
series (corresponding to the right hand side of the last line in (2))

eit ´ 2e2it ` 3e3it ´ 4e4it ` ´ ¨ ¨ ¨ .

The aim of this article is mainly to carry out this computation, and we give
an explicit expression for this distribution. We also give an operation which
can be justifiably thought of as being the operation of ‘setting t “ 0’ in such
a distributional Fourier series. Within the framework of our generalised
summation method, this allows us to arrive at

8ÿ

n“1

n “ ´
1

12
.

We remark that this last series plays a role in the Casimir effect in quantum
field theory [16, §6.6]. We briefly elaborate on this link in Appendix A.

The paper is organised as follows. We introduce the summation method
in Section 2. In the Sections 3 and 4, we construct a certain 2π-periodic
distribution S on R, and in Section 5, we determine its Fourier coefficients.
In Section 6, it is shown that S has a Fourier series that is summable at
t “ 0. Finally, in Sections 7 and 8, we apply our generalised summation
method to determine 1` 2` 3` ¨ ¨ ¨ , and more generally, 1k ` 2k ` 3k ` ¨ ¨ ¨
for any k P N.

2. Summation method

For the background on the Fourier series theory of periodic distributions,
we refer the reader to [10, Chap.IV], [17, p.91,101-104] and [3, Chap.33].
Throughout this article, unless otherwise indicated, we will use the standard
distribution theory notation from Schwartz [11] or Tréves [15]. We recall the
basic definitions below.

Definition 2.1 (Translation operator Ta; periodic distributions).
Let a P R.

‚ For f : R Ñ R, Taf : R Ñ R is defined by

pTafqptq “ fpt´ aq, t P R.

‚ For T P D1pRq, TaT P D1pRq is defined by

xTaT, ϕy “ xT,T´aϕy, ϕ P DpRq.

‚ Let τ ą 0. A distribution T P D1pRq is said to be τ -periodic if
TτT “ T .
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For computational ease, we will now work with a 2π-periodic distribution.
A 2π-periodic distribution T P D1pRq possesses a Fourier series expansion

T “ lim
NÑ8

Nÿ

n“´N

cnpT qeint “:
ÿ

nPZ

cnpT qeint,

where the cnpT q are complex numbers, and the convergence is in D1pRq.
The Fourier coefficients cnpT q are best expressed in terms of the distribution
Tcircle P D1pTq, where T :“ tz P C : |z| “ 1u, obtained by ‘wrapping T on the
circle’. We make this precise below.

For a ϕ P DpRq, we first define the 2π-periodic smooth function ϕcircle

ϕcirclepe
itq “

ÿ

nPZ

ϕpt ´ 2πnq, t P R.

We note that at each point t P R, only finitely many terms in the series
above are nonzero. Then given a Tcircle P D1pTq, this defines a 2π-periodic
distribution T P D1pRq as follows:

xT, ϕy “ xTcircle, ϕcircley, ϕ P DpRq.

It can be shown that this map is a bijection between D1pTq and the subspace
of D1pRq consisting of all 2π-periodic distributions; see [10, p.150-151]. The
Fourier coefficients cnpT q are given by

cnpT q “
1

2π
xTcircle, e

´inty, n P Z.

We now consider a sequence of pointwise nonnegative test functions pϕmqmPN,
with shrinking supports, and unit area, which provides an approximation to
the Dirac delta distribution δ0 with support at 0.

Definition 2.2 (Symmetric positive mollifier, approximate identity).
A test function ϕ P DpRq is said to be a symmetric positive mollifier if

‚ ϕptq “ ϕp´tq for all t P R,

‚ ϕptq ě 0 for all t P R,

‚

ż

R

ϕptqdt “ 1.

Define the sequence pϕmqmPN by

ϕmptq “ mϕpmtq, t P R, m P N.

Then ϕm Ñ δ0 as m Ñ 8 in D1pRq, where for a P R the notation δa is used
for the Dirac distribution on R with support tau.

We call pϕmqmPN an approximate identity.
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For a 2π-periodic distribution T , we have

T “
ÿ

nPZ

cnpT qeint,

and since this is an equality of distributions, we cannot in general ‘set t “ 0’.
However, we could look at an approximate identity pϕmqmPN, and the limit

lim
mÑ8

xT, ϕmy,

if it exists, can be thought of as ‘setting t “ 0 in T ’. For example, we have
the following elementary result.

Proposition 2.3. Let f P CpRzt0uq be such that the limits

fp0`q :“ lim
xŒ0

fpxq and fp0´q :“ lim
xÕ0

fpxq

exist, and let Tf P D1pRq be the distribution given by

xTf , ψy :“

ż

R

fptqψptqdt for ψ P DpRq.

Then for any approximate identity pϕmqmPN, we have

lim
mÑ8

xTf , ϕmy “
fp0`q ` fp0´q

2
.

Proof. We have

xTf , ϕmy “

ż

R

fptqϕmptqdt

“

ż 8

´8
fptqmϕpmtqdt

“

ż 8

´8
f

´ τ
m

¯
ϕpτqdτ

“

ż
0

´8
f

´ τ
m

¯
ϕpτqdτ `

ż 8

0

f
´ τ
m

¯
ϕpτqdτ.

By the Lebesgue dominated convergence theorem, it follows that

lim
mÑ8

xTf , ϕmy “

ż
0

´8
fp0`qϕpτqdτ `

ż 8

0

fp0´qϕpτqdτ

“ fp0`q

ż
0

´8
ϕpτqdτ ` fp0´q

ż 8

0

ϕpτqdτ

“ fp0`q ¨
1

2

ż

R

ϕpτqdτ ` fp0´q ¨
1

2

ż

R

ϕpτqdτ

“
fp0`q ` fp0´q

2
,

where we used the fact that ϕ is a symmetric positive mollifier. �
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Definition 2.4.

For a 2π-periodic distribution T , let
ÿ

nPZ

cnpT qeint “ T

in D1pRq.

If there exists a σ P C such that for any approximate identity pϕmqmPN, the
limit lim

mÑ8
xT, ϕmy exists, and lim

mÑ8
xT, ϕmy “ σ, then we say the series

ÿ

nPZ

cnpT q

is summable, or the Fourier series of T is summable at t “ 0, and we define
ÿ

nPZ

cnpT q “ σ.

We call a double-sided complex sequence pCnqnPZ summable if there exists
a 2π-periodic distribution T P D1pRq such that

‚ for all n P Z, Cn “ cnpT q, and

‚ the Fourier series of T is summable at t “ 0.

(Since for any 2π-periodic distribution the Fourier coefficients are unique,
this last definition is a well-defined notion.)

Notation 2.5 (σ).
We denote the set of all 2π-periodic distributions that have a Fourier series
that is summable at t “ 0, in the sense of Definition 2.4, by σ.

We have the following trivial observation that σ is a subspace of the space
of all 2π-periodic distributions in D1pRq.

Proposition 2.6. If T, S P D1pRq are 2π-periodic distributions belonging to

σ, then for any α, β P C, also αT ` βS also belongs to σ, and moreover
ÿ

nPZ

cnpαT ` βSq “ α
ÿ

nPZ

cnpT q ` β
ÿ

nPZ

cnpSq.

Proof. This follows immediately from Definition 2.4 of summability and the
linearity of the nth Fourier coefficient on the space of all 2π-periodic distri-
butions. �

Let us now show that σ is strictly contained in the subspace of all 2π-periodic
distributions on R.

Proposition 2.7. Let T be the 2π-periodic distribution T “
ÿ

nPZ

eint.

Then T R σ.
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Proof. Let ϕ P DpRq be a symmetric positive mollifier. Moreover, suppose
that supppϕq Ă p´2π, 2πq and ϕp0q ą 0. For m P N, with ϕm :“ mϕpm¨q,
we have

xT, ϕmy “
8ÿ

n“´8

xeint, ϕmy

“
8ÿ

n“´8

ż 8

´8
eintϕmptqdt

“
8ÿ

n“´8

ϕm

Ź

p´nq, (5)

where ϕm

Ź

denotes the Fourier transform of ϕm. By the Poisson summation
formula for ϕm P DpRq Ă SpRq (where SpRq denotes the Schwartz space of
test functions), we have

1

2π

8ÿ

k“´8

ϕm

Ź

pkq “
8ÿ

n“´8

ϕmp2πnq. (6)

Using (6) in (5), we obtain

xT, ϕmy “
8ÿ

n“´8

ϕm

Ź

p´nq

“
8ÿ

k“´8

ϕm

Ź

pkq psubstituting k :“ ´nq

“ 2π
8ÿ

n“´8

ϕmp2πnq

“ 2πm
8ÿ

n“´8

ϕp2πmnq

“ 2πmϕp0q,

where we have used the fact that m P N and that supppϕq Ă p´2π, 2πq in
order to get the last equality. But then as ϕp0q ą 0, we have

lim
mÑ8

xT, ϕmy “ 2πϕp0q ¨ lim
mÑ8

m “ `8,

and so T R σ. �

In order to ‘insert zeroes’ between the series terms (in our case between
the Fourier series terms), as in the operation à la Ramanujan in (2) (when
the ´4s sum is matched with the s sum in a particular manner), we will
consider H2T for a periodic distribution T , where H2T is obtained from T

by dilation by a factor of 2, hence ‘doubling the period’.
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Definition 2.8 (Homothetic transformation). Let λ ą 0.

‚ For f : R Ñ R, Hλf : R Ñ R is defined by

pHλfqptq “ fpλtq, t P R.

‚ For T P D1pRq, HλT P D1pRq is defined by

xHλT, ϕy “
1

λ
xT,H1{λϕy, ϕ P DpRq.

Proposition 2.9. Let T be a 2π-periodic distribution T “
ÿ

nPZ

cnpT qeint.

Then the 2π-periodic distribution H2T has the ‘lacunary’ Fourier series

H2T “
ÿ

nPZ

cnpT qe2int.

Moreover, H2T P σ if and only if T P σ. Furthermore if T P σ, then we

also have that ÿ

nPZ

cnpT q “
ÿ

nPZ

cnpH2T q.

Proof. The map Hλ : D1pRq Ñ D1pRq is continuous, and so it follows by a
termwise application of H2 on the Fourier series expansion of T that

H2T “
ÿ

nPZ

cnpT qe2int.

Now suppose that pϕmqmPN is an approximate identity. Then we have that
ϕm “ mϕpm¨q, for a symmetric positive mollifier ϕ P DpRq. But then
ψ P DpRq, given by

ψ “
1

2
H 1

2

ϕ,

is also a symmetric positive mollifier. Hence pψmqmPN, where ψm “ mψpm¨q,
is also an approximate identity.

If T P σ, then
ÿ

nPZ

cnpT q “ lim
mÑ8

xT, ψmy “ lim
mÑ8

1

2
xT,H 1

2

ϕmy “ lim
mÑ8

xH2T, ϕmy, (7)

and so H2T P σ too, and moreover,
ÿ

nPZ

cnpT q “
ÿ

nPZ

cnpH2T q. (8)

Now suppose that H2T P σ. Suppose that pψmqmPN is an approximate
identity. Then ψm “ mψpm¨q, for a symmetric positive mollifier ψ P DpRq.
But then ϕ P DpRq, given by

ϕ “ 2H2ψ,

is also a symmetric positive mollifier. Hence pϕmqmPN, where ϕm “ mϕpm¨q,
is also an approximate identity. Also,

1

2
H 1

2

ϕm “
m

2
ϕ

´m
2

¨
¯

“
m

2
2pH2ψq

´m
2

¨
¯

“ mψ
´
2
m

2
¨
¯

“ mψpm¨q “ ψm.
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Thus,

ÿ

nPZ

cnpH2T q “ lim
mÑ8

xH2T, ϕmy “ lim
mÑ8

1

2
xT,H 1

2

ϕmy “ lim
mÑ8

xT, ψmy.

Consequently, T P σ, and again (8) holds. �

Let T P D1pRq be such that there exists a k ‰ 1 such that T ´ kH2T has
summable Fourier coefficients at t “ 0 in the sense of Definition 2.4, that is,

ÿ

nPZ

cnpT ´ kH2T q

is summable. Then we have two possible cases:

1˝ T P σ. Then it follows from Propositions 2.6 and 2.9 that

ÿ

nPZ

cnpT q “
1

1 ´ k

ÿ

nPZ

cnpT ´ kH2T q.

2˝ T R σ, that is, T has a Fourier series that is not summable at t “ 0
in the sense of Definition 2.4. Nevertheless, in light of 1˝ above, it
is now natural to define

ÿ

nPZ

cnpT q “
1

1 ´ k

ÿ

nPZ

cnpT ´ kH2T q.

In order to make this a formal definition, we need to check well-
definedness, which is done below.

Proposition 2.10. Suppose that T P D1pRq is a 2π-periodic distribution,

such that T R σ, but there exist α, β P Czt1u such that T ´ αH2T P σ and

T ´ βH2T P σ. Then α “ β.

Proof. Suppose that α ‰ β. As T ´αH2T P σ and T ´ βH2T P σ, we have
that for any approximate identity pϕmqmPN, both the limits

σα :“ lim
mÑ8

pxT, ϕmy ´ αxH2T, ϕyq, (9)

σβ :“ lim
mÑ8

pxT, ϕmy ´ βxH2T, ϕyq (10)

exist. But then taking the difference of (9) and (10) gives

σα ´ σβ “ lim
mÑ8

pβ ´ αqxH2T, ϕy,

and as α ‰ β,

lim
mÑ8

xH2T, ϕy “
1

β ´ α
pσα ´ σβq

exists. But then, adding α times lim
mÑ8

xH2T, ϕy to (9), gives

lim
mÑ8

xT, ϕmy “ lim
mÑ8

pxT, ϕmy ´ αxH2T, ϕyq ` α lim
mÑ8

xH2T, ϕy

exists, that is, T P σ, a contradiction. Hence α “ β. �
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Proposition 2.10 takes care of the well-definition in 2˝ on page 9, and we
now have the following extension of the summation method for Fourier co-
efficients given in Definition 2.4, from σ to the larger set Σ, defined below.

Notation 2.11 (Σ).
We set Σ :“ tT P D1pRq : Dk ‰ 1 such that T ´ kH2T P σu.

Definition 2.12. Let T P D1pRq be a 2π-periodic distribution T such that
there exists a k P Czt1u such that T ´ kH2T P σ. Then we say that the

series ÿ

nPZ

cnpT q

is summable, or the Fourier series of T is summable at t “ 0, and we define

ÿ

nPZ

cnpT q “
1

1 ´ k

ÿ

nPZ

cnpT ´ kH2T q.

We call a double-sided complex sequence pCnqnPZ summable if there exists
a 2π-periodic distribution T such that

‚ for all n P Z, Cn “ cnpT q, and

‚ the Fourier series of T is summable at t “ 0.

3. The distribution Pf
eit

p1 ` eitq2
P D1pp0, 2πqq

For 0 ă ǫ ă π, let Ωǫ :“ p0, π ´ ǫq Y pπ ` ǫ, 2πq.

For ϕ P Dpp0, 2πqq, we define
B
Pf

eit

p1 ` eitq2
, ϕ

F
:“ lim

ǫŒ0

ˆż

Ωǫ

ϕptqeit

p1 ` eitq2
dt´

ϕpπq

tanpǫ{2q

˙
. (11)

In the following result, we will give an alternative expression for the right

hand side of (11), and show that Pf
eit

p1 ` eitq2
defines a distribution on the

open interval p0, 2πq.

Proposition 3.1. For any ϕ P Dpp0, 2πqq, we have
B
Pf

eit

p1 ` eitq2
, ϕ

F
“

ż
2π

0

pt´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2pπ ` θpt´ πqqdθdt,

and Pf
eit

p1 ` eitq2
P D1pp0, 2πqq.

Proof. By Taylor’s Formula [17, (e),p.45] we have

ϕptq “ ϕpπq ` pt´ πqϕ1pπq ` pt ´ πq2
ż

1

0

p1 ´ θqϕ2pπ ` θpt´ πqqdθ.
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We have
ż

Ωǫ

ϕptqeit

p1 ` eitq2
dt “ ϕpπq

ż

Ωǫ

eit

p1 ` eitq2
dt

loooooooomoooooooon
A

`ϕ1pπq

ż

Ωǫ

pt ´ πqeit

p1 ` eitq2
dt

loooooooomoooooooon
B

`

ż

Ωǫ

pt´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2pπ ` θpt´ πqqdθdt.
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

C

We will treat the three summands A,B,C separately below. It can be seen
that the second summand above vanishes, by splitting the integral B on
Ωǫ “ p0, π ´ ǫq Y pπ ` ǫ, 2πq into two, and using the substitution τ “ 2π ´ t

for the integral on the domain pπ ` ǫ, 2πq:

B “

ż

Ωǫ

pt ´ πqeit

p1 ` eitq2
dt

“

ż π´ǫ

0

pt ´ πqeit

p1 ` eitq2
dt`

ż
2π

π`ǫ

pt ´ πqeit

p1 ` eitq2
dt

“

ż π´ǫ

0

pt ´ πqeit

p1 ` eitq2
dt`

ż
0

π´ǫ

pπ ´ τqe´iτ

p1 ` e´iτ q2
p´1qdτ

“

ż π´ǫ

0

pt ´ πqeit

p1 ` eitq2
dt´

ż π´ǫ

0

pτ ´ πqe´iτ

peiτ ` 1q2e´2iτ
dτ

“

ż π´ǫ

0

pt ´ πqeit

p1 ` eitq2
dt´

ż π´ǫ

0

pτ ´ πqeiτ

p1 ` eiτ q2
dτ

“ 0.

In order to compute A, we note that
d

dt

1

1 ` eit
“ ´

ieit

p1 ` eitq2
, and so

A “

ż

Ωǫ

eit

p1 ` eitq2
dt “

i

1 ` eit

ˇ̌
ˇ
π´ǫ

0

`
i

1 ` eit

ˇ̌
ˇ
2π

π`ǫ

“ i
´ 1

1 ` eipπ´ǫq
´

1

2
`

1

2
´

1

1 ` eipπ`ǫq

¯

“ i
´ eiǫ

eiǫ ´ 1
´

1

1 ´ eiǫ

¯

“ i
2 cospǫ{2q

2i sinpǫ{2q

“
1

tanpǫ{2q
.

Finally we consider the integral C, and we are interested in taking the limit
of this integral as ǫ Œ 0.
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For t P r0, 2πs, | cospt{2q| ě
|π ´ t|

π
.

Thus ˇ̌
ˇ̌pt ´ πq2eit

p1 ` eitq2

ˇ̌
ˇ̌ “

pt ´ πq2

|eit{2 ` e´it{2|2
“

pt´ πq2

4pcospt{2qq2
ď
π2

4
.

So we have

lim
ǫŒ0

ż

Ωǫ

pt´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2pπ ` θpt´ πqqdθdt

“

ż
2π

0

pt´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2pπ ` θpt´ πqqdθdt.

Hence
B
Pf

eit

p1 ` eitq2
, ϕ

F
:“ lim

ǫŒ0

ˆż

Ωǫ

ϕptqeit

p1 ` eitq2
dt ´

ϕpπq

tanpǫ{2q

˙

“

ż
2π

0

pt´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2pπ ` θpt´ πqqdθdt.

The linearity of

ϕ ÞÑ

B
Pf

eit

p1 ` eitq2
, ϕ

F
: Dpp0, πqq Ñ C

is obvious. In order to show continuity, we note that if pϕnqnPN is a sequence
that converges to 0 in Dpp0, 2πqq, then in particular, pϕ2

nqnPN converges to 0
uniformly on p0, 2πq, and so
ˇ̌
ˇ̌
B
Pf

eit

p1 ` eitq2
, ϕn

Fˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż

2π

0

pt´ πq2eit

p1 ` eitq2

ż
1

0

p1 ´ θqϕ2
npπ ` θpt´ πqqdθdt

ˇ̌
ˇ̌

ď 2π ¨
π2

4
¨ 1 ¨ }ϕ2

n}8
nÑ8
ÝÑ 0.

Consequently, Pf
eit

p1 ` eitq2
P D1pp0, 2πqq. �
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4. 2π-periodic extension

For ϕ P DpRq, we define the 2π-periodic extension of

Pf
eit

p1 ` eitq2
P D1pp0, 2πqq

to R, which we will denote denoted by the same symbol. This can be done
as follows: We note that as the function

eit

p1 ` eitq2

is continuous around 0 and 2π, and there is no problem extending our old
distribution

Pf
eit

p1 ` eitq2
P D1pp0, 2πqq

to a slightly bigger open set p0 ´ δ, 2π ` δq for a small δ ą 0, so that in fact

Pf
eit

p1 ` eitq2
P D1pp0 ´ δ, 2π ` δqq.

Then the patching up of shifts of this distribution by integer multiples of 2π
in order to define a global distribution on R can be done using the following
principle of piecewise pasting/‘recollement des morceaux’ [11, Theorem IV,
p.27] or [6, Theorem 1.4.3, p.16-17].

Proposition 4.1. Let tΩiuiPI be an open cover of R. Let Ti P D1pΩiq be such
that whenever for i ‰ j we have Ωi X Ωj ‰ H, then Ti|ΩiXΩj

“ Tj|ΩiXΩj
.

Then there exists a unique distribution T P D1pRq such that T |Ui
“ Ti for

all i P I, given by

xT, ϕy “
ÿ

iPI

xTi, ϕαiy,

where tαiuiPI is a locally finite partition of unity3.

Notation 4.2 (The distribution S).

We define the distribution S P D1pRq by

S :“ Pf
eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ.

It follows from the construction of S that S is 2π-periodic.

3That is, αi, i P I , are C8 functions such that 0 ď αi ď 1, Ei :“ supppαiq Ă Ωi,
tEiuiPI is locally finite (that is, for all x P R, there exists a neighbourhood of x that

intersects only finitely many of the Ei, and
ÿ

iPI

αi “ 1.
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5. Fourier coefficients of S “ Pf
eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ

Theorem 5.1. The following Fourier series expansion is valid in D1pRq:

S “ Pf
eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ “ eit ´ 2e2it ` 3e3it ´ 4e4it ` ´ ¨ ¨ ¨

“
8ÿ

n“1

p´1qn´1nenit.

Proof. We produce, for each δ ą 0, a test function ρδ P DpRq such that

ρδ

ˇ̌
ˇ
pδ,2π´δq

“ 1,

and such that we obtain a partition of unity on R by taking shifts of ρδ by
integer multiples of 2π, that is,

ÿ

nPZ

ρδpt` 2πnq “ 1 pt P Rq.

δ

δ

δ

ϕ

Φ

2π

ρδ

0
t

t

t

1

1

2π´δ

´δ

´δ

´δ 2π`δ

Start with a δ ą 0 small, and consider any even, nonnegative test function
ϕ with support in r´δ, δs and such that

ż δ

´δ

ϕptqdt “ 1.

Define the function

Φptq :“

ż

p´8,ts
ϕpτqdτ.
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Then it can be seen that for all t P R, Φ satisfies Φptq ` Φp´tq “ 1.
The desired ρδ can now be defined by

ρδptq “ Φptq ¨ Φp2π ´ tq.

Define ϕδ P DpRq by

ϕδptq “ ρδptqe´int.

Then we have

ϕδ,circlepe
itq “

ÿ

mPZ

ϕδpt´ 2πmq “
ÿ

mPZ

ρδpt´ 2πmqe´int “ e´int.

Hence

cnpSq “
1

2π
xScircle, e

´inty “
1

2π
xScircle, ϕδ,circley “

1

2π
xS,ϕδy.

Before proceeding, we explain the idea in the calculation below: We note
that as δ Œ 0, ϕδ converges pointwise to 1 on p0, 2πq, and to 0 on Rzr0, 2πs.
So we expect xS,ϕδy to essentially be the action of S on e´int. However, to
show this, we need to work with the two limiting processes δ Œ 0 as well as
ǫ Œ 0 (arising from the definition of S involving the distribution Pfp¨ ¨ ¨ q).
So we will split the set containing the support of ϕδ into two parts, one
where the ǫ limit is relevant, but where ρδ is ‘nice’, namely a constant equal
to 1, and the part where the δ limit is relevant, but the distribution is ‘nice’,
namely it is a regular distribution4.

We partition Oǫ “
´

´
π

2
, π ´ ǫ

¯
Y

´
π ` ǫ, 2π `

π

2

¯
as

Oǫ “
´

´
π

2
,
π

2

¯
Y

´
3
π

2
, 2π `

π

2

¯

loooooooooooooooomoooooooooooooooon
V

Y
´π
2
, π ´ ǫ

¯
Y

´
π ` ǫ, 3

π

2

¯

loooooooooooooooomoooooooooooooooon
Vǫ

.

Then we haveB
Pf

eit

p1 ` eitq2
, ϕδ

F

“ lim
ǫŒ0

ˆż

Oǫ

ϕδptqeit

p1 ` eitq2
dt´

e´inπ ¨ ρδpπq

tanpǫ{2q

˙

“

ż

V

ϕδptqeit

p1 ` eitq2
dt ` lim

ǫŒ0

ˆż

Vǫ

1 ¨ e´inteit

p1 ` eitq2
dt´

p´1qn

tanpǫ{2q

˙

“ lim
δŒ0

ż

V

ρδptqe´inteit

p1 ` eitq2
dt ` lim

ǫŒ0

ˆż

Vǫ

e´inteit

p1 ` eitq2
dt´

p´1qn

tanpǫ{2q

˙

“

ż

V

1 ¨ e´inteit

p1 ` eitq2
dt ` lim

ǫŒ0

ˆż

Vǫ

e´inteit

p1 ` eitq2
dt´

p´1qn

tanpǫ{2q

˙

“ lim
ǫŒ0

ˆż

Ωǫ

e´inteit

p1 ` eitq2
dt´

p´1qn

tanpǫ{2q

˙
.

4Throughout the article, by a regular distribution Tf P D1pRq corresponding to a locally
integrable function f P L1

locpRq, we mean the distribution DpRq Q ϕ ÞÑ
ş
R
fptqϕptqdt P R.
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In the above, we used the Lebesgue dominated convergence theorem in the
evaluation of the δ-limit in order to get the second-last equality. Also,

C
iπ

ÿ

nPZ

δ1
p2n`1qπ, ϕδ

G
“ ´iπϕ1

δpπq

“ ´iπp´inqe´inπ ¨ 1

“ ´p´1qnnπ.

Hence

cnpSq “
1

2π
xS,ϕδy

“

C
Pf

eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ , ϕδ

G

“
1

2π
lim
ǫŒ0

ˆż

Ωǫ

e´inteit

p1 ` eitq2
dt´

p´1qn

tanpǫ{2q
´ p´1qnnπ

˙
.

Suppose that ǫ P p0, πq is fixed. Let Cǫ be the path along the circular arc
t ÞÑ eit for t P rπ` ǫ, 2πsYr0, π´ ǫs, traversed in the anticlockwise direction.
The straight line segment Lǫ is given by t ÞÑ ´ cos ǫ´it, for t P r´ sin ǫ, sin ǫs.
Moreover, let C be the circular path with center 0 and radius 1{2, traversed
once in an anticlockwise manner.

Lǫ

Cǫ

C

We have

1

2π

ż

Ωǫ

e´inteit

p1 ` eitq2
dt “

1

2πi

ż

Ωǫ

e´int

p1 ` eitq2
ieitdt

“
1

2πi

ż

Cǫ

z´n

p1 ` zq2
dz

“
1

2πi

ż

Cǫ`Lǫ

z´n

p1 ` zq2
dz ´

1

2πi

ż

Lǫ

z´n

p1 ` zq2
dz

“
1

2πi

¿

C

z´n

p1 ` zq2
dz ´

1

2πi

ż

Lǫ

z´n

p1 ` zq2
dz.
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But by termwise differentiating the geometric series in the disk |z| ă 1, we
obtain

1

p1 ` zq2
“ 1 ´ 2z ` 3z2 ´ 4z3 ` ´ ¨ ¨ ¨ p|z| ă 1q,

and so

z´n

p1 ` zq2
“

1

zn
p1 ´ 2z ` 3z2 ´ 4z3 ` ´ ¨ ¨ ¨ ` p´1qn´1nzn´1 ` ¨ ¨ ¨ p|z| ă 1q,

which yields, by the Laurent series theorem [9, Thm.4.7,p.134], that

1

2πi

¿

C

z´n

p1 ` zq2
dz “ p´1qn´1n “: dn if n “ 1, 2, 3, ¨ ¨ ¨ .

Define

∆ :“ cn ´ dn

“
1

2π
lim
ǫŒ0

ˆż

Lǫ

z´n

p1 ` zq2
dz ´

p´1qn

tanpǫ{2q
´ p´1qnnπ

˙
.

We have, using the fundamental theorem of contour integration, that

i

ż

Lǫ

1

p1 ` zq2
dz “ ´i

ż

Lǫ

d

dz

1

1 ` z
dz

“ ´i

ˆ
1

1 ´ eiǫ
´

1

1 ´ e´iǫ

˙

“ i
eiǫ ` 1

eiǫ ´ 1
“

1

tanpǫ{2q
.

So

∆ “
1

2π
lim
ǫŒ0

ˆż

Lǫ

z´n

p1 ` zq2
dz ´

ż

Lǫ

p´1qn

p1 ` zq2
dz ´ p´1qnnπ

˙

“
1

2π
lim
ǫŒ0

ˆż

Lǫ

z´n ´ p´1qn

p1 ` zq2
dz ´ p´1qnnπ

˙
.

If n “ 0, then ∆ “ 0. If n ‰ 0, then we have, by a Taylor expansion of z´1

around the point z “ ´1, that

z´n “ p´1qn ` p´nqp´1q´n´1pz ` 1q ` hpzq

for z P Lǫ, where hpzq “ Oppz`1q2q as z Ñ ´1. Hence by the ML inequality,

ˇ̌
ˇ̌
ż

Lǫ

z´n ´ p´1qn

p1 ` zq2
dz ´

ż

Lǫ

p´nqp´1q´n´1

1 ` z
dz

ˇ̌
ˇ̌ „ ǫ

ǫÑ0
ÝÑ 0.
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Hence

∆ “
1

2π
lim
ǫŒ0

ˆż

Lǫ

p´nqp´1q´n´1

1 ` z
dz ´ p´1qnnπ

˙

“
1

2π
np´1qn lim

ǫŒ0

ˆ
i

ż

Lǫ

1

1 ` z
dz ´ π

˙
.

But

ż

Lǫ

1

1 ` z
dz “

ż ´ sin ǫ

sin ǫ

1

1 ´ cos ǫ` it
idt

“ i

ż ´ sin ǫ

sin ǫ

1 ´ cos ǫ ´ it

p1 ´ cos ǫq2 ` t2
dt

“ i

ż ´ sin ǫ

sin ǫ

1 ´ cos ǫ

p1 ´ cos ǫq2 ` t2
dt` 0

“ ´2ip1 ´ cos ǫq

ż
sin ǫ

0

1

p1 ´ cos ǫq2 ` t2
dt.

Thus
ż

Lǫ

1

1 ` z
dz “ ´2ip1 ´ cos ǫq

1

1 ´ cos ǫ
tan´1

ˆ
t

1 ´ cos ǫ

˙ ˇ̌
ˇ
sin ǫ

0

“ ´2i tan´1 sin ǫ

1 ´ cos ǫ

“ ´2i tan´1 cospǫ{2q

sinpǫ{2q

“ ´2i
´π
2

´
ǫ

2

¯
.

So

∆ “
1

2π
np´1qn

´
ip´2iq

´π
2

´ 0
¯

´ π
¯

“
1

2π
np´1qn pπ ´ πq

“ 0.

Consequently,

Pf
eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ “ eit ´ 2e2it ` 3e3it ´ 4e4it ` ´ ¨ ¨ ¨ .

where the series on the right hand side converges in D1pRq. �
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6. The Fourier series of S is summable at t “ 0

In this section, we will show that the 2π-distribution S P D1pRq, given in
Notation 4.2 on page 13, belongs to σ, that is, it has a Fourier series which
is summable at t “ 0 (in the sense of Definition 2.4).

Let pϕmqmPN be any approximate identity. Then we have, for all large
enough m, that the support of ϕm is contained inside, say p´π{2, π{2q, and
so, in particular, it is far from ˘π. Thus if Uǫ :“ p´π{2, π ´ ǫq, then we
have for all large m, that

C
Pf

eit

p1`eitq2
`iπ

ÿ

nPZ

δ1
p2n`1qπ, ϕm

G
“ lim

ǫŒ0

ˆż

Uǫ

ϕmptqeit

p1`eitq2
dt´

0

tanpǫ{2q

˙
`iπ ¨0

“

ż π{2

´π{2

ϕmptqeit

p1 ` eitq2
dt.

Hence,

lim
mÑ8

xS,ϕmy “ lim
mÑ8

C
Pf

eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ , ϕm

G

“ lim
mÑ8

ż π{2

´π{2

ϕmptqeit

p1 ` eitq2
dt “ lim

mÑ8

ż π{2

´π{2

ϕmptqeitψptq

p1 ` eitq2
dt,

where ψ P DpRq is such that ψ ” 1 on p´π{2, π{2q and has compact support
contained inside p´π, πq. Thus

lim
mÑ8

xS,ϕmy “ lim
mÑ8

B
ϕm,

eitψ

p1 ` eitq2

F
p˚q

“
1 ¨ 1

p1 ` 1q2
p‹q

“
1

4
.

In the first equality (˚) above, we view ϕm as the regular distribution in
E 1pRq corresponding to ϕm, and

t ÞÑ
eitψptq

p1 ` eitq2

as a test function in EpRq. Then, since

lim
mÑ8

ϕm “ δ0

in D1pRq, the second equality p‹) above follows.

Consequently, S P σ, that is, the distribution S “ Pf
eit

p1 ` eitq2
`iπ

ÿ

nPZ

δ1
p2n`1qπ

has a Fourier series that is summable at t “ 0, and

1 ´ 2 ` 3 ´ 4 ` ¨ ¨ ¨ “
ÿ

nPZ

cnpSq “
1

4
.
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7. Ramanujan manipulation using Fourier series

Let T0 P D1pRq be the 2π-periodic distribution having the Fourier series

T0 :“ eit ` 2e2it ` 3e3it ` ¨ ¨ ¨ . (12)

The series converges in D1pRq. We show in this section that T0 P Σ, that
is, that T0 has a Fourier series which is summable at t “ 0 in the sense of
Definition 2.12, with the sum ´1{12.

As T ÞÑ HλT : D1pRq Ñ D1pRq is continuous, it follows from (12) that

H2T0 “ e2it ` 2e4it ` 3e6it ` 4e8it ` 5e10it ` ¨ ¨ ¨ . (13)

Moreover,

4H2T0 “ 4e2it ` 8e4it ` 12e6it ` 16e8it ` 20e10it ` ¨ ¨ ¨ . (14)

Subtracting (12) and (14), we obtain

T0 ´ 4H2T0 “ eit ` 2e2it ` 3e3it ` 4e4it ` 5e5it ` 6e6it ` ¨ ¨ ¨

´ 4e2it ´ 8e4it ´ 12e6it ´ ¨ ¨ ¨

“ eit ´ 2e2it ` 3e3it ´ 4e4it ` 5e5it ´ 6e6it ` ´ ¨ ¨ ¨ .

Thus we arrive at the identity

T0 ´ 4H2T0 “ Pf
eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ “: S. (15)

But we know from the previous section that
ÿ

nPZ

cnpSq “
1

4
.

Hence it follows from Definition 2.12 that

1 ` 2 ` 3 ` ¨ ¨ ¨ “
ÿ

nPZ

cnpT0q “
1

1 ´ 4

ÿ

nPZ

cnpSq “
1

´3
¨
1

4
“ ´

1

12
.

Here we used the (extended) summability notion from Definition 2.12, and
so we have shown that T0 P Σ. Had T0 belonged to σ, we would of course
obtain the same sum of the Fourier coefficients of T0 at t “ 0. But we now
show (in Proposition 7.1 below) that in fact T0 R σ (that is, the distribution
T0 has a Fourier series that is not summable at t “ 0 in the restricted sense

of Definition 2.4).

Proposition 7.1. T0 :“
8ÿ

n“1

nenit R σ.

Proof. With Tπ denoting the translation operator by π, which we note is a
continuous map linear map from D1pRq to itself, we have

TπT0 “ Tπ

8ÿ

n“1

nenit “
8ÿ

n“1

Tπne
nit

“
8ÿ

n“1

nenipt´πq “
8ÿ

n“1

p´1qnnenit “ ´S,
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and so

T0 “ ´T´πS. (16)

Using this, we now calculate (for later use below) the action of T0 on test
functions of a special type. For any χ P DpRq with the properties that
supppχq Ă p´π{2, π{2q and χp0q “ χ1p0q “ 0, we have

xT0, χy “ ´xT´πS, χy “ ´xS,Tπχy

“ ´ lim
ǫŒ0

˜ż

p0,π´ǫqYpπ`ǫ,2πq

eitχpt ´ πq

p1 ` eitq2
dt´

χpπ ´ πq

tanpǫ{2q

¸

“ ´ lim
ǫŒ0

˜
´

ż

p´π,´ǫqYpǫ,πq

eiτχpτq

p1 ´ eiτ q2
dτ ´

0

tanpǫ{2q

¸

“ lim
ǫŒ0

ż

p´π,´ǫqYpǫ,πq

eiτχpτq

p1 ´ eiτ q2
dτ

In the above, we used the substitution τ “ t ´ π in order to obtain the
equality in the third row.

Summarising, for χ P DpRq with the properties that supppχq Ă p´π{2, π{2q
and χp0q “ χ1p0q “ 0, we have

xT0, χy “ lim
ǫŒ0

ż

p´π,´ǫqYpǫ,πq

eiτχpτq

p1 ´ eiτ q2
dτ. (17)

This fact will be used below, where χ will be replaced by the elements of an
approximate identity.

Let ψ be a nonzero test function in DpRq which is symmetric and non-
negative, and has its support supppψq Ă p´1, 1q Ă p´π{2, π{2q. Define
ϕ P DpRq by

ϕptq “
t4ψptq

ż
1

´1

t4ψptqdt

“
1

I
¨ t4ψptq pt P Rq, where I :“

ż
1

´1

t4ψptqdt ą 0.

Then ϕ is a symmetric positive mollifier with ϕp0q “ ϕ1p0q “ 0. Analogously,
we also define rϕ P DpRq by

rϕptq “
t2ψptq

ż
1

´1

t2ψptqdt

“
1

rI
¨ t2ψptq pt P Rq, where rI :“

ż
1

´1

t2ψptqdt ą 0.

Then rϕ is a symmetric positive mollifier with rϕp0q “ rϕ1p0q “ 0.
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In (17), if in particular, we take χ “ ϕm, then we obtain

xT0, ϕmy “ lim
ǫŒ0

ż

p´π,´ǫqYpǫ,πq

eitϕmptq

p1 ´ eitq2
dt

“
1

I
¨ lim
ǫŒ0

ż

p´π,´ǫqYpǫ,πq

eitm ¨m4t4ψpmtq

p1 ´ eitq2
dt

“ m2
rI
I

¨ lim
ǫŒ0

ż

p´π,´ǫqYpǫ,πq

m ¨ m2t2ψpmtq

rI
t2eit

p1 ´ eitq2
dt

“ m2
rI
I

¨

ż π

´π

rϕmptq
t2eitβptq

p1 ´ eitq2
dt,

where β P DpRq is such that β ” 1 on p´π, πq and has compact support
contained inside p´2π, 2πq. Hence

xT0, ϕmy “ m2
rI
I

¨

B
rϕm,

t2eitβptq

p1 ´ eitq2

F
,

where in right hand side of the equality, we view rϕm as the regular distri-
bution in E 1pRq corresponding to rϕm, and

t ÞÑ
t2eitβptq

p1 ´ eitq2

as a test function in EpRq. Then, since

lim
mÑ8

rϕm “ δ0

in D1pRq, it follows that

lim
mÑ8

B
rϕm,

t2eitβptq

p1 ´ eitq2

F
“

B
δ0,

t2eitβptq

p1 ´ eitq2

F
“ lim

tÑ0

t2eitβptq

p1 ´ eitq2

“ lim
tÑ0

eitβptq

i2
ˆ
1 ´ eit

´it

˙2
“

ei0 ¨ βp0q

i2
ˆ
d

dz
ez

ˇ̌
ˇ
z“0

˙2

“
1 ¨ 1

´1 ¨ 12
“ ´1.

Consequently,

lim
mÑ8

xT0, ϕmy “ lim
mÑ8

m2
rI
I

¨ p´1q “ ´8,

showing that T0 R σ. �
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8. Computation of 1k ` 2k ` 3k ` ¨ ¨ ¨ for k P N

We will first show the following result, where Spkq denotes the kth order
derivative of the distribution S, where S is the distribution

S :“ Pf
eit

p1 ` eitq2
` iπ

ÿ

nPZ

δ1
p2n`1qπ.

It is easy to see, using the fact that the translation operator commutes with
the differentiation operator for test functions, that Spkq is also 2π-periodic.

Proposition 8.1. For all k P N, the 2π-periodic distribution Spkq P Σ,

that is, Spkq has a Fourier series that is summable at t “ 0 in the sense of

Definition 2.12.

Proof. Let pϕmqmPN be any approximate identity. For all large enough m,
the support of ϕm is contained inside p´π{2, π{2q. Then we have

lim
mÑ8

xSpkq, ϕmy “ lim
mÑ8

p´1qkxS,ϕpkq
m y

“ lim
mÑ8

p´1qk
ż π{2

´π{2

ϕ
pkq
m ptqeit

p1 ` eitq2
dt

“ lim
mÑ8

p´1qk
B
ϕpkq
m ,

eit

p1 ` eitq2

F

“ lim
mÑ8

C
ϕm,

ˆ
d

dt

˙k
eit

p1 ` eitq2

G

“

C
δ0,

ˆ
d

dt

˙k
eit

p1 ` eitq2

G

“

ˆ
d

dt

˙k
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

. (18)

This completes the proof. �

We will also need the commutation relation between the operations of H2

and differentiation below.

Lemma 8.2. For any distribution T P D1pRq, any λ ą 0, and any k P N,

pHλT qpkq “ λkHλ

´
T pkq

¯
.
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Proof. For any test function ϕ P DpRq, we have

A
pHλT qpkq , ϕ

E
“ p´1qk

A
HλT, ϕ

pkq
E

“
p´1qk

λ

A
T,H 1

λ

´
ϕpkq

¯E

“
p´1qk

λ

B
T, λk

´
H 1

λ
ϕ

¯pkq
F

“
λk

λ

A
T pkq,H 1

λ
ϕ

E

“ λk
A
Hλ

´
T pkq

¯
, ϕ

E

“
A
λk ¨ Hλ

´
T pkq

¯
, ϕ

E
.

Hence pHλT qpkq “ λkHλ

`
T pkq

˘
. �

As T0 ´ 4H2T0 “ S, we obtain by differentiating k times that

T
pkq
0

´ 4 ¨ 2k ¨ H2pT
pkq
0

q “ Spkq.

As Spkq P σ, and since k :“ 4 ¨ 2k ‰ 1, we conclude that the Fourier series of

T
pkq
0

is summable at t “ 0, and we have

ÿ

nPZ

cnpT
pkq
0

q “
1

1 ´ 4 ¨ 2k

ÿ

nPZ

cnpSpkqq

“
1

1 ´ 4 ¨ 2k
¨

ˆ
d

dt

˙k
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

.

But, because of the convergence of the Fourier series of T0 in D1pRq, we
obtain by termwise differentiation of

T0 “ eit ` 2e2it ` 3e3it ` ¨ ¨ ¨

that

T
pk´1q
0

“ ik´1peit ` 2ke2it ` 3ke3it ` ¨ ¨ ¨ q,

and so we obtain

1k ` 2k ` 3k ` ¨ ¨ ¨ “
1

ik´1
¨

1

1 ´ 4 ¨ 2k´1
¨

ˆ
d

dt

˙k´1
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

“
1

ik´1
¨

1

1 ´ 2k`1
¨

ˆ
d

dt

˙k´1
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

. (19)
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We note that (19) gives, for example,

12 ` 22 ` 32 ` ¨ ¨ ¨ “
1

ip1 ´ 4 ¨ 2q

d

dt

eit

p1 ` eitq2

ˇ̌
ˇ
t“0

“ ´
ieit

7i

ˆ
1

p1 ` eitq2
´

2eit

p1 ` eitq3

˙ ˇ̌
ˇ
t“0

“ ´
i

7i

ˆ
1

4
´

2

8

˙
“ 0.

As one more example, (19) gives

13 ` 23 ` 33 ` ¨ ¨ ¨ “
1

i2p1 ´ 4 ¨ 4q

d2

dt2
eit

p1 ` eitq2

ˇ̌
ˇ
t“0

“
1

15

ˆ
´

eit

p1 ` eitq2
`

6peitq2

p1 ` eitq3
´

6peitq3

p1 ` eitq4

˙ ˇ̌
ˇ
t“0

“
1

15

ˆ
1

4
`

6

8
´

6

16

˙
“

1

120
.

We note that these values match the values of the usual analytic continuation
of the Riemann zeta function ζpsq at s “ ´2 and at s “ ´3 respectively; see
for example [13, §8.2]. Here ζ denotes the Riemann-zeta function defined by

ζpsq :“
8ÿ

n“1

n´s.

The series for ζpsq converges absolutely if Repsq ą 1, but it diverges when-
ever Repsq ď 1. However, one can use an analytic continuation of the zeta
function in the punctured plane Czt1u for determining the zeta function at
points where the series fails to converge. The analytic continuation satisfies
a functional equation (see for example [14, Theorem 2.1]), which yields for
k P N that

ζp´kq “
2

p2πqk`1
sin

´
´k

π

2

¯
k!ζp1 ` kq; (20)

We justify in the next two results below that our formula (19) coincides
with ζp´kq for all k P N. Proposition 8.3 is due to Arne Meurman (personal
communication).

Proposition 8.3. For all odd k P N,

ζp´kq “
1

ik´1

1

1 ´ 2k`1

ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

.

Proof. Let k be a positive odd integer and set

fpzq “
1

zk`1p1 ` eizq
.
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We shall consider

ż

ΓN

fpzqdz, where ΓN denotes the contour (shown below)

r´Nπp1 ` iq,´Nπi `Nπ,Nπi `Nπ,Nπi ´Nπ,´Nπp1 ` iqs,

and N is a positive even integer that shall approach 8.

ΓN

Estimating, one find that |fpzq| “ OpN´k´1q on ΓN , so that

lim
NÑ8

ż

ΓN

fpzqdz “ 0.

As f has poles at z “ 0 and z “ p2j ` 1qπ, j P Z, the residue theorem gives

0 “ Resz“0fpzq `
ÿ

jPZ

Resz“p2j`1qπfpzq. (21)

One obtains

Resz“p2j`1qπfpzq “
1

rp2j ` 1qπsk`1p´iq
,

so that
ÿ

jPZ

Resz“p2j`1qπfpzq “
2i

πk`1

8ÿ

j“0

1

p2j ` 1qk`1

“
2i

πk`1

8ÿ

j“0

˜
8ÿ

n“1

1

nk`1
´

8ÿ

n“1

1

p2nqk`1

¸

“
2i

πk`1

ˆ
1 ´

1

2k`1

˙
ζpk ` 1q.

Moreover,

´Resz“0fpzq “ ´
1

k!

ˆ
d

dz

˙k 1

1 ` eiz

ˇ̌
ˇ̌
ˇ
z“0

“ ´
1

k!

ˆ
d

dz

˙k´1 p´iqeiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

“
i

k!

ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

.
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Thus (21) gives

2i

πk`1

ˆ
1 ´

1

2k`1

˙
ζpk ` 1q “

i

k!

ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

. (22)

Recall that the functional equation for ζ gives

ζp´kq “
2p´1q

k`1

2 k!

p2πqk`1
ζpk ` 1q. (23)

Comparing (22) and (23) gives the formula

ζp´kq “
1

ik´1

1

1 ´ 2k`1

ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

.

This completes the proof. �

Proposition 8.4. For all even k P N,

ζp´kq “ 0 “
1

ik´1

1

1 ´ 2k`1

ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

.

Proof. For even k P N, since sin
`
´k π

2

˘
“ 0, it follows that ζp´kq “ 0. We

will show that in our formula (19), also
ˆ
d

dt

˙k´1
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

“ 0

for even k, so that (19) matches ζp´kq “ 0. Set

gpzq “
1

1 ` ez
.

Then g is holomorphic in a neighbourhood of 0. So h :“ gpi¨q is also holo-
morphic in a neighbourhood of 0, and by a repeated application of the chain
rule,

ˆ
d

dz

˙k

h

ˇ̌
ˇ̌
ˇ
z“0

“ ik
ˆ
d

dz

˙k

g

ˇ̌
ˇ̌
ˇ
z“i0“0

.

But
ˆ
d

dz

˙k

h

ˇ̌
ˇ̌
ˇ
z“0

“

ˆ
d

dz

˙k´1
d

dz

1

1 ` eiz
h

ˇ̌
ˇ̌
ˇ
z“0

“

ˆ
d

dz

˙k´1 ´ieiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

“ ´i

ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

,

and so
ˆ
d

dz

˙k´1
eiz

p1 ` eizq2

ˇ̌
ˇ̌
ˇ
z“0

“ i

ˆ
d

dz

˙k

h

ˇ̌
ˇ̌
ˇ
z“0

“ iik
ˆ
d

dz

˙k

g

ˇ̌
ˇ̌
ˇ
z“0

. (24)
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We show that the right most expression in (24) is 0. We have

gpzq “
1

1 ` ez
“

1

2
´

1

2

ez{2 ´ e´z{2

ez{2 ` e´z{2
“

1

2
´

1

2
tanh

z

2
.

For k ě 2,
ˆ
d

dz

˙k

g “

ˆ
d

dz

˙k ˆ
1

2
´

1

2
tanh

z

2

˙
“ 0 ´

1

2

ˆ
d

dz

˙k

tanh
z

2
.

But as z ÞÑ tanh z
2
is an odd function, it follows that for even k,

z ÞÑ

ˆ
d

dz

˙k

tanh
z

2

is an odd function too, and in particular, it vanishes at z “ 0. Hence`
d
dz

˘k
g

ˇ̌
ˇ
z“0

“ 0, and using (24), also

ˆ
d

dt

˙k´1
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

“ 0.

This completes the proof. �

9. Appendix A: Casimir effect

In quantum field theory, upon quantising a classical field, one ends up with
infinitely many harmonic oscillators, one at each spacetime point. If we take
this picture seriously, then we run into the problem of having to add up all
of their ground state energies, and taking that as the ground state energy
of the quantum field. The Casimir effect, predicted in 1948 [2], allows the
experimental demonstration [4] of the existence of this ground state energy
obtained by summing the ground state energies of all the oscillators.

0 d x

Consider two parallel uncharged large plane conductors of area A separated
by a small distance d in empty space, as shown. This is like a capacitor, but
the plates do not have any charge on them. From the classical point of view,
there should not be any electromagnetic force between them. Nevertheless, it
can be demonstrated experimentally that the two plates attract each other.
This can be explained as follows. In the absence of the plates, the quantum
electromagnetic field (a superposition of an infinite number of oscillators) is
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in its ground state. But upon the introduction of the two plates, we impose
perfect conductor boundary conditions for the electromagnetic field exactly
at x “ 0 and x “ d. So the ground state energy for the oscillators will now
be different (but still divergent) from the original ground state energy. The
difference between the ground state energies, calculated with and without
the plates, will involve subtracting one infinity from another, but seems
to be formally finite as we will see in the toy example below, and can be
used to predict the correct magnitude of the Casimir force, which has been
experimentally verified [4].

As a simplified toy model, consider a massless scalar field ϕ with only
one space dimension, and suppose that the field is constrained to vanish at
x “ 0 and x “ d. The allowed oscillator modes

ϕnpxq “ cn sin
nπx

d
, n “ 0, 1, 2, 3, ¨ ¨ ¨

have wave numbers given by

kn “
nπ

d
.

The corresponding travelling wave is then

ϕnpx, tq “ cn sinpknx´ ωntq, x, t P R,

with the speed of propagation

c “
ωn

kn
.

The associated ground state energy with a quantum harmonic oscillator with
angular frequency ω is

E “
~ω

2
.

Thus we now obtain that the total ground state energy in the superposition
of all possible modes is

Epdq “
8ÿ

n“1

~ωn

2

“
π~c

2d

8ÿ

n“1

n

“ ´
πc~

24d
.

If we imagine two point particles at x “ 0 and at x “ d (analogous to
the two conducting plates), then this energy leads to an attractive force of
magnitude

E1pdq “
πc~

24d2
.
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10. Appendix B: Zeta function regularisation

In order for easy comparison and contrast of our summation method versus
the zeta regularisation method, both used in showing

8ÿ

n“1

n “ ´
1

12
, (25)

we outline briefly here the idea behind the zeta function regularisation
method.

One first considers the Riemann zeta function, given by

ζpsq :“
8ÿ

n“1

n´s.

So we would like to set s “ ´1, in order to get the desired sum

1 ` 2 ` 3 ` ¨ ¨ ¨ .

The series for ζpsq converges absolutely if Repsq ą 1, but it diverges when-
ever Repsq ď 1. However, one can use an analytic continuation of the zeta
function in the punctured plane Czt1u for determining the zeta function at
points where the series fails to converge. In [12], it was shown that a series
derived using Euler’s transformation provides the analytic continuation of
ζ for all complex numbers s ‰ 1, and in particular at negative integers, the
series becomes a finite sum, whose value is given by an explicit formula for
Bernoulli numbers. In particular, this formula then yields ζp´1q “ ´1{12.
Our summation method yields

1k ` 2k ` 3k ` ¨ ¨ ¨ “
1

ik´1
¨

1

1 ´ 2k`1
¨

ˆ
d

dt

˙k´1
eit

p1 ` eitq2

ˇ̌
ˇ̌
ˇ
t“0

. (26)

We had seen in Proposition 8.3 of Section 8, our formula (26) gives values
matching exactly the corresponding values of ζp´kq.

However, our route to arriving at 1k `2k `3k ` ¨ ¨ ¨ is quite different from
the analytic continuation of the zeta function, since we rely on distribution
theory. The formula (26) we obtained is afforded in particular by (˚), (‹)
on page 19, and (18) on page 23, where the numbers

ˆ
d

dt

˙k
eit

p1 ` eitq2

ˇ̌
ˇ
t“0

appear.
The Fourier series appears in quantum field theory computations, and

hence it is conceivable that our summation method is more natural in this
context. We refer the reader to [7], where the Casimir effect is analysed
using the framework of quantum field theory, and in particular to [7, §III],
where Fourier series plays a role.
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