A SUMMATION METHOD BASED ON
THE FOURIER SERIES OF PERIODIC DISTRIBUTIONS
AND AN EXAMPLE ARISING IN THE CASIMIR EFFECT

AMOL SASANE

ABSTRACT. A generalised summation method is considered based on
the Fourier series of periodic distributions. It is shown that
it
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where Pf 15 o) € D'(R) is the 27-periodic distribution given by

_ n (t — 71-)Qeit ! - " n . .
*ZL At enye L(l 0)¢" ((2n + )7 + 0(t — m))dbdt,

1 eit 2
neL +

for ¢ € D(R). Applying the generalised summation method, the sum of
the divergent series 1 + 2 + 3 + -+ (arising in a quantum field theory
calculation in the Casimir effect) is determined, and more generally also
the sum 1% + 28 + 3% + ... for k € N, is determined.

1. INTRODUCTION

A quantum field theoretic calculation predicts the so-called Casimir effect,
giving the correct' value of the attractive force between two parallel perfect
conductor plates in vacuum, if one uses the absurd sum

an—%. (1)
n=1

While there exists a generalised summation method (zeta function regulari-
sation) that allows one to show this, it is somewhat contrived in the context
of the Casimir effect calculation. On the other hand, Fourier series makes a
direct appearance in the quantum field calculation (see e.g. [7, §III]), since
one uses the quantised momentum space. We give an alternative summation
method, based on distributional Fourier series, which gives a derivation of
(1), and gives a rigorous mathematical justification of (1).
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'by now experimentally verified [4]
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A justification for
1

57
for example? given by Ramanujan in one of his notebooks [1, Ch.6, p.135],
is as follows:

14243+ =—

Ifs:=1+2+3+---, then formally

s = 1+24+3+4+5+6+-
—4s = -4 -8 —12.-. (2)
—3s = 1-24+3—-44+5—-6+—---.
The power series expansion
1
=122 +32% — 423 + — .. for |z] <1
(1+2)?

motivates associating the sum of the alternating series 1 —2+3—4+ —---
with

1
(1+z)2|,_’
and one writes 1

1-2+43—4+— = 1. (3)

In light of the last equation from (2), together with (3), we arrive at

11 1

=1+2 = = 4
S +2+3+ 31 2 (4)

There exist generalised summation techniques which allow one to obtain the
result (4), for example the zeta function regularisation method [16, p.301].
We briefly recall the idea behind the zeta function regularisation method in
Appendix B, in order to contrast it with our summation method introduced
here.

In this article, we give an alternative route to obtaining (4), based on
the Fourier series of periodic distributions. Distributional Fourier series
converge in the sense of distributions whenever the Fourier coefficients ¢,
grow at most polynomially, that is, they satisfy for some M > 0 and k£ > 0
that

for all n € Z, |c,| < M(1 + |n|)*,

and so one could try making the above manipulations (2) with divergent
series on a firmer footing by using the Fourier theory of distributions, where

2There are older justifications of this. For example, in [12], the determination of (—1)
is attributed to Euler. The related summation of the divergent series 1 —2 +3 — +---,
being assigned the sum 1/4, can be based on the so-called Euler summation method. (For
a modern discussion of the Euler summation method, see for example [8, §20, p.325-328].)
Euler had discovered a functional equation relating the zeta function with the Dirichlet eta
function (alternating zeta function) for integral values, which yields, using the alternating
sum 1 —2+ 3 — +--- = 1/4, also that ((-1) =1+2+3+--- = —1/12 [5, Vol. 14,
p. 442-443, 594-595; Vol. 15, p. 70-90]. The determination of the zeta function at all
negative integers, using the Euler summation method, can be found in [12].
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the place holders of the terms of the divergent series are naturally provided
by the characters e, and the operation in the second step of (2) can be
carried out by simply doubling the period, that is, by a homothetic dilation
by 2 of the distributional Fourier series. The question then arises if one can
give an explicit formula for the distribution corresponding to the Fourier
series (corresponding to the right hand side of the last line in (2))

ezt_2622t+3e3zt_4e4zt+_“_ )

The aim of this article is mainly to carry out this computation, and we give
an explicit expression for this distribution. We also give an operation which
can be justifiably thought of as being the operation of ‘setting ¢ = 0’ in such
a distributional Fourier series. Within the framework of our generalised
summation method, this allows us to arrive at

We remark that this last series plays a role in the Casimir effect in quantum
field theory [16, §6.6]. We briefly elaborate on this link in Appendix A.

The paper is organised as follows. We introduce the summation method
in Section 2. In the Sections 3 and 4, we construct a certain 2m-periodic
distribution S on R, and in Section 5, we determine its Fourier coefficients.
In Section 6, it is shown that S has a Fourier series that is summable at
t = 0. Finally, in Sections 7 and 8, we apply our generalised summation
method to determine 142+ 3+ -- -, and more generally, 1% +2F + 3% 4 ...
for any k € N.

2. SUMMATION METHOD

For the background on the Fourier series theory of periodic distributions,
we refer the reader to [10, Chap.IV], [17, p.91,101-104] and [3, Chap.33].
Throughout this article, unless otherwise indicated, we will use the standard
distribution theory notation from Schwartz [11] or Tréves [15]. We recall the
basic definitions below.

Definition 2.1 (Translation operator T,; periodic distributions).
Let a € R.

e For f:R—> R, T,f : R — R is defined by
(Tof)(t) = f(t—a), teR.
e For T € D'(R), T,T € D'(R) is defined by
(T T,9) =T, T_ap), »eDR).

e Let 7 > 0. A distribution 7" € D'(R) is said to be 7-periodic if
T.7T=T.
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For computational ease, we will now work with a 2m-periodic distribution.
A 27-periodic distribution T' € D'(R) possesses a Fourier series expansion
N . .
T = lim Z cn(T)e™ =: Z cn(T)e™,

N—o0
- n=—N neZ

where the ¢, (T) are complex numbers, and the convergence is in D'(R).
The Fourier coefficients ¢, (T') are best expressed in terms of the distribution
Teivae € D'(T), where T := {z € C : |z| = 1}, obtained by ‘wrapping T on the
circle’. We make this precise below.

For a ¢ € D(R), we first define the 27-periodic smooth function ¢,

gOCircle(eit) - Z (P(t - 277774)7 t € R

nez

We note that at each point ¢t € R, only finitely many terms in the series
above are nonzero. Then given a T.,.. € D'(T), this defines a 27-periodic
distribution T € D'(R) as follows:

<T7 SO> = <Tcirc1e7 Spcircle>7 QO € D(R)

It can be shown that this map is a bijection between D'(T) and the subspace
of D'(R) consisting of all 27-periodic distributions; see [10, p.150-151]. The
Fourier coefficients ¢, (T) are given by

1 p
Cn(T) = %<Tcircle7 (& Znt>, ne Z

We now consider a sequence of pointwise nonnegative test functions (gom)meN,
with shrinking supports, and unit area, which provides an approximation to
the Dirac delta distribution g with support at 0.

Definition 2.2 (Symmetric positive mollifier, approximate identity).
A test function ¢ € D(R) is said to be a symmetric positive mollifier if

e o(t) = @(—t) for all t € R,

e p(t) =0 for all t e R,

o f e(t)dt = 1.
R
Define the sequence (., )men by
om(t) = mp(mt), teR, meN.

Then ¢, — dp as m — oo in D'(R), where for a € R the notation §, is used
for the Dirac distribution on R with support {a}.

We call (¢m)men an approzimate identity.
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For a 27-periodic distribution 7', we have

T — Z lnt

neZ

and since this is an equality of distributions, we cannot in general ‘set t = 0’.
However, we could look at an approximate identity (., )men, and the limit

Jim (T, o),

if it exists, can be thought of as ‘setting t = 0 in 7”. For example, we have
the following elementary result.

Proposition 2.3. Let f e C(R\{0}) be such that the limits
0+) == li d f(0-) = li
£(0+) = T 1 (&) and J(0-) i= Ty ()

ezist, and let Ty € D'(R) be the distribution given by

Ty i= | £OU for b€ DR),
Then for any approzimate identity (pm )men, we have

F0+) + £(0-)

Proof. We have

|
—
~
=
©
3
=
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~
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By the Lebesgue dominated convergence theorem, it follows that

0 0
lim Ty = | 10+)elr)ir+ | 00

m—00

f<o+>fo p(rir +70-) [ " e(rir

—00

£04) 5 | ety + £0-)- 3 | o(rir

f(0+) + f(0-)
2 )
where we used the fact that ¢ is a symmetric positive mollifier. U
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Definition 2.4.
For a 27-periodic distribution 7T, let

Z cn(T)e™ =T
neZ
in D'(R).
If there exists a o € C such that for any approximate identity (., )men, the
limit lim (T, ¢, ) exists, and lim (T, p,,) = o, then we say the series
m—00 m—0o0

> en(T)

neZ
is summable, or the Fourier series of T is summable at t = 0, and we define
Z cen(T) = o.
neZ
We call a double-sided complex sequence (C),)nez summable if there exists

a 2m-periodic distribution 7' € D'(R) such that

e forall neZ, C,, = ¢,(T), and

e the Fourier series of T' is summable at ¢ = 0.

(Since for any 2m-periodic distribution the Fourier coefficients are unique,
this last definition is a well-defined notion.)

Notation 2.5 (o).
We denote the set of all 2r-periodic distributions that have a Fourier series
that is summable at ¢ = 0, in the sense of Definition 2.4, by o.

We have the following trivial observation that o is a subspace of the space
of all 27-periodic distributions in D'(R).

Proposition 2.6. If T, S € D'(R) are 2n-periodic distributions belonging to
o, then for any o, B € C, also o1 + S also belongs to o, and moreover

Z cn(aT + BS) =« Z cen(T) + 0 Z cn(S).
NnEL NEL neL

Proof. This follows immediately from Definition 2.4 of summability and the
linearity of the nth Fourier coefficient on the space of all 27-periodic distri-
butions. (]

Let us now show that o is strictly contained in the subspace of all 2r-periodic
distributions on R.

Proposition 2.7. Let T be the 2w-periodic distribution T = Z et

neZ

Then T ¢ o.
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Proof. Let ¢ € D(R) be a symmetric positive mollifier. Moreover, suppose
that supp(y) < (=27, 27) and ¢(0) > 0. For m € N, with ¢, := mp(m-),
we have

<T’ me> = Z <eint, me>

n=—auo

0 o0 ]
Z J ™o, (t)dt
n=—o0 v =%

o

Y, Pml(-n), (5)

n=—ao

where ,, denotes the Fourier transform of ¢,,. By the Poisson summation
formula for ¢, € D(R) < S(R) (where S(R) denotes the Schwartz space of
test functions), we have

0

=S Gtk = Y pnl2mn). (6)

[
8
5
2

(T, om)

= 2rme(0),

where we have used the fact that m € N and that supp(y) < (=27, 27) in
order to get the last equality. But then as ¢(0) > 0, we have

i (T, o) = 2mp(0) - lim m = +oo,
and so T ¢ o. O

In order to ‘insert zeroes’ between the series terms (in our case between
the Fourier series terms), as in the operation a la Ramanujan in (2) (when
the —4s sum is matched with the s sum in a particular manner), we will
consider HyT' for a periodic distribution 7', where HsT' is obtained from T
by dilation by a factor of 2, hence ‘doubling the period’.
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Definition 2.8 (Homothetic transformation). Let A > 0.
e For f:R—> R, Hy,f: R — R is defined by

(L)1) = M), teR
e For T € D'(R), H\T € D'(R) is defined by

1
H\T, @) = X<T’ Hy/np), ¢eD(R).

Proposition 2.9. Let T be a 2mw-periodic distribution T = Z cn(T)e'™,

neZ
Then the 2m-periodic distribution HoT' has the ‘lacunary’ Fourier series

HoT = ) e, (T)e™.
neZ

Moreover, HoT € o if and only if T € o. Furthermore if T € o, then we

also have that
Dlen(T) = > cn(HoT).

nez nez

Proof. The map Hy : D'(R) — D'(R) is continuous, and so it follows by a
termwise application of Hy on the Fourier series expansion of T' that
H,T = Z cn(T)e*m,

nez
Now suppose that (¢, )men is an approximate identity. Then we have that
om = me(m-), for a symmetric positive mollifier ¢ € D(R). But then
1 € D(R), given by

1
w = §I{%¢%

is also a symmetric positive mollifier. Hence (1y, ) men, where 1, = map(m-),
is also an approximate identity.

If T € o, then

. 1 .
Zelzcn(T ) = lim (T = lim (T Hyom) = lim (HT,on),  (7)

and so HyT € o too, and moreover,
Dlen(T) = D en(HoT). (8)
nez nez

Now suppose that HoT € o. Suppose that (i,,)men is an approximate
identity. Then 1, = mw(m-), for a symmetric positive mollifier ¢ € D(R).
But then ¢ € D(R), given by

® ::2112¢“

is also a symmetric positive mollifier. Hence (¢p,)men, where ¢,, = me(m-),
is also an approximate identity. Also,

SHion = Do () = Do) () = m (25-) = mp(m) = b
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Thus,
1
Y en(HoT) = lim (HoT, ) = lim —(T,Higpp) = lim (T, ).
m—o0 m—o0 2 2 m—00
nez
Consequently, T' € o, and again (8) holds. O

Let T € D'(R) be such that there exists a k # 1 such that T'— kHyT has
summable Fourier coefficients at ¢ = 0 in the sense of Definition 2.4, that is,

D en(T — KHT)
nez
is summable. Then we have two possible cases:
1° T € o. Then it follows from Propositions 2.6 and 2.9 that

D en(T) = ﬁ > en(T — FHLT).

nez nez

2° T ¢ o, that is, T has a Fourier series that is not summable at ¢t = 0
in the sense of Definition 2.4. Nevertheless, in light of 1° above, it
is now natural to define

1
D en(T) = g > en(T — FHLT).
nez nez
In order to make this a formal definition, we need to check well-

definedness, which is done below.

Proposition 2.10. Suppose that T € D'(R) is a 2w-periodic distribution,
such that T ¢ o, but there exist o, B € C\{1} such that T — aHyT € o and
T —B8HT €eo. Then a = (5.

Proof. Suppose that a # 8. As T'— aHsT € o and T'— SH,T € o, we have
that for any approximate identity (¢, )men, both the limits

n%i—r>noc(<T’ me> - OZ<H2T, Q0>)’ (9)
im (T, o) — BCHST, ) (10)

exist. But then taking the difference of (9) and (10) gives

On =

9B

0o —0p = lim (5 —a)(HT, ¢),

and as o # f3,

. 1
im (HoT', ) = 5 a (00 —05)
exists. But then, adding « times lim (HoT, @) to (9), gives
m—00
lim (T, ) = lim (T, pm) — a(HoT,9)) + a lim (HyT, ¢)
m—o0 m—00 m—0

exists, that is, T € o, a contradiction. Hence o = (3. O
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Proposition 2.10 takes care of the well-definition in 2° on page 9, and we
now have the following extension of the summation method for Fourier co-
efficients given in Definition 2.4, from o to the larger set 3, defined below.

Notation 2.11 (X).
We set X := {T' € D'(R) : 3k # 1 such that T — kHyT € o}.

Definition 2.12. Let T'€ D'(R) be a 2n-periodic distribution 7" such that
there exists a k € C\{1} such that T'— kHyT € o. Then we say that the

series
Z en(T)

nez

is summable, or the Fourier series ofT is summable at t = 0, and we define
D en(T) = T Z en(T — KH,T).
nez nez

We call a double-sided complex sequence (C),)nez summable if there exists
a 2m-periodic distribution 7" such that

e forall neZ, C,, = ¢,(T), and
e the Fourier series of T' is summable at ¢ = 0.
eit
3. THE DISTRIBUTION me e D'((0,2m))

For 0 <e <, let Q¢ := (0,7 —€) U (7 + €, 27).
For ¢ € D((0,27)), we define

() ([, 2. o

In the following result, we will give an alternative expression for the right
it
hand side of (11), and show that Pf % ___ defines a distribution on the

(1+eih)2

open interval (0, 27).

Proposition 3.1. For any ¢ € D((0,27)), we have

27r _ zt 1
O(t — m))dodt
< 1+elt2’¢> f 1+6”2L (m+0(t =) ’

et
and me S D,((O, 27T))
Proof. By Taylor’s Formula [17, (e),p.45] we have

1

p(t) = p(m) + (t =)' (m) + (t — m)° L (1= 0)¢"(m + 0(t — m))db.
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We have
et f M f (t=me"
fsze (1+ eit)th = o) o (1+ eit)th ) o (1+¢€")? “
[ — —_—
A B
+— )2t (1

v

C

We will treat the three summands A, B, C' separately below. It can be seen
that the second summand above vanishes, by splitting the integral B on
Qe = (0,7 —€) U (T +¢,2m) into two, and using the substitution 7 = 27 — ¢
for the integral on the domain (7 + €, 27):

- it
B — f (t—me”
Q. (1 =+ 6”)2

= dt — ——dr
0 1+ elt)2 0 (6” + 1)267227—
T—€ ( _ ﬂ_)eitd fn—e (T _ ﬂ)eiT
= 5 at — —dr
0 1+ ezt)Z 0 (1 + eZT)2
= 0.
d 1 ie't
In order to compute A, we note that — — = — — and so
dt 1+ et (1 + eit)?
eZt ) mT—€ 2 27
A= ——dt = ——— + —
fﬂe (1+ et)? 1+ettlo 1+ e?lnte

B ( 1 1 n 1 1 )
- 1 4 eilm—e) 2 2 1 4 eilm+e)

< eze 1 )
= (= — .
e —1 1—e*

Z,2(:08(6/2)
2isin(e/2)
b
tan(e/2) "

Finally we consider the integral C, and we are interested in taking the limit
of this integral as e \_ 0.
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—t
For ¢ € [0, 2], | cos(t/2)] = =4
1.
0.81
0.61
0.41
0.21
o —
m r 3r m 5m 3n 7m 2n
i 2 a 4 2 4
t
Thus
(t —m)2e| (t — )2 o (t—n)? _ 2
(1+et)2 | |eit/2 4 e=it/2]2 — 4(cos(t/2))2 ~ 4°
So we have
(t _ ﬂ.)Qeit

li 4
El\\Hé Q. (1+ezt)2

2m (4 _ 20t (1
_ fo %Luew(ww(tw))dadt.

r(l —0)¢" (7 + 0(t — m))dodt
0

Hence

(vame) = . i mim)

2 (1 _ )2t (1
_ L %L(19)¢”(w+9(7§w))d9dt.

The linearity of

o (P ) D0 ) — €

1+ et)

is obvious. In order to show continuity, we note that if (¢, )nen is a sequence
that converges to 0 in D((0,27)), then in particular, (¢” )nen converges to 0
uniformly on (0, 27), and so

- eit
Lt+en2?/| =
2
" n—0

T
e

o (1 _ )2git (1
L % L (1— 0)¢" (x + 0(t — 7))dodt

it
Consequently, Pf 5 € D'((0,27)). O
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4. 2m-PERIODIC EXTENSION
For ¢ € D(R), we define the 2m-periodic extension of

ezt

fm e D'((0,27))

to R, which we will denote denoted by the same symbol. This can be done
as follows: We note that as the function

elt

(1+ eit)?

is continuous around 0 and 2w, and there is no problem extending our old
distribution

eit ,
to a slightly bigger open set (0 — §, 27 + §) for a small § > 0, so that in fact

oit
Pf————— e D'((0 — 6,21 +6)).
e < D0 -8.27 +4)
Then the patching up of shifts of this distribution by integer multiples of 27
in order to define a global distribution on R can be done using the following
principle of piecewise pasting/‘recollement des morceaux’ [11, Theorem IV,

p.27] or [6, Theorem 1.4.3, p.16-17].

Proposition 4.1. Let {€;}icr be an open cover of R. Let T; € D'(Q;) be such
that whenever for i # j we have Q; 0 Q; # &, then Ti|a,~nq; = Tjlo,~0,-
Then there exists a unique distribution T € D'(R) such that T|y, = T; for
all i € 1, given by

<T’ SD> = Z<Tla QDO[Z>,
iel
where {o}ier is a locally finite partition of unity’.

Notation 4.2 (The distribution 5).
We define the distribution S € D'(R) by

eit .
S = me —+ Z 522n+1)ﬂ_.

nez

It follows from the construction of S that S is 2w-periodic.

3That is, i, i € I, are C” functions such that 0 < a; < 1, E; := supp(a;) < Q,
{Ei}ier is locally finite (that is, for all € R, there exists a neighbourhood of x that
intersects only finitely many of the F;, and Z a; = 1.

iel
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eit ) ,
5. FOURIER COEFFICIENTS OF § = Pf———— 41 | 0y, 1)

m
(1+ et) =

Theorem 5.1. The following Fourier series expansion is valid in D'(R):
it

€ - it 2t 3it 4it
5=me+m2 5E2n+1)7r = " —2e™" + 3’ — 4™ 4 — -
nez
o0
_ Z(_l)n—lnem‘t.
n=1

Proof. We produce, for each § > 0, a test function ps € D(R) such that

9

pé‘(a,zw—a) -

and such that we obtain a partition of unity on R by taking shifts of ps by
integer multiples of 27, that is,

Dlps(t+2mm) =1 (teR).

neZ

|

|

|
T T T T T t
-4 0 2r—§ 2w 2m+48

Start with a § > 0 small, and consider any even, nonnegative test function
© with support in [—d, ] and such that

)
f p(t)dt = 1.
—0
Define the function

d(t) := J;_OO ] o(T)dr.
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Then it can be seen that for all ¢ € R, ® satisfies ®(t) + ®(—t) = 1.
The desired ps can now be defined by

ps(t) = B(1) - B(2m —1).
Define ¢5 € D(R) by
ps(t) = ps(t)e ™.
Then we have
@57circle(eit) = Z o5t — 2mm) = Z ps(t — 27Tm)67int = e it
meZ meZ

Hence

1 . 1 1
Cn(S) = %<Scircle7 € Znt> = %<Scircle7 goé,circle> = %<S7 ¢5>

Before proceeding, we explain the idea in the calculation below: We note
that as 6 \{ 0, ¢s converges pointwise to 1 on (0,27), and to 0 on R\[0, 27].
So we expect (S, ps) to essentially be the action of S on e~™. However, to
show this, we need to work with the two limiting processes d \, 0 as well as
€ \\ 0 (arising from the definition of S involving the distribution Pf(---)).
So we will split the set containing the support of s into two parts, one
where the € limit is relevant, but where ps is ‘nice’, namely a constant equal
to 1, and the part where the § limit is relevant, but the distribution is ‘nice’,

namely it is a regular distribution®.
We partition O, = <—g,7r — e) U (77 +€,2m + g) as
O, = g%, g) v <3g,27r + g) u\(g,w — e) V) (7r + e,3%)).
v V.

Then we have

ot
Pf——
< <1+ezt>2’%>
N0 \Jo, (1 +€it)? tan(e/2)
(P(S(t)eit ) f 1- efinteit (_1)n
= Y dt +1 ——dt —
fv (1 + eit)? * 0 - (14 €)? tan(e/2)
—int it —int it _1\n
=limf P L i f T )
NOJy (1 +et)? N0 \ Uy, (1 + eit)? tan(e/2)
1- e—inteit e—inteit (71)n
= ———dt + 1i ——dt —
J, et ([, oo i)
—int it —_1)"
=limf et o DY
N0 \Jg, (1 + eit)? tan(e/2)

4Throughout the article, by a regular distribution Ty € D’'(R) corresponding to a locally
integrable function f € Li,.(R), we mean the distribution D(R) 3 ¢ > . f(t)p(t)dt € R.
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In the above, we used the Lebesgue dominated convergence theorem in the
evaluation of the d-limit in order to get the second-last equality. Also,

<i7T Z 5E2n+1)7r7 ‘P5>
NEL

Hence

(S) = 5-(5.0)

—impg ()
nm 1

—im(—in)e”

—(=1)"nm~.

it
e ) ,
= <Pf7(1 FEDP + Z 5(2n+1)7r, g05>

neZ

(=D"

1 efint it
= —1 ——dt
21 61{‘% <fﬂe (1 + 6“)2

e ).

Suppose that € € (0,7) is fixed. Let C. be the path along the circular arc
t > el for t € [m+¢,2m] U [0, T — €], traversed in the anticlockwise direction.
The straight line segment L, is given by t — — cos e—it, for t € [— sin ¢, sin €].
Moreover, let C' be the circular path with center 0 and radius 1/2, traversed

once in an anticlockwise manner.

Ce
We have
1 efinteit 1 —int )
— ——dt = — —iedt
o JQ (1 + )2 2mi Jo, (L+et)2©
1 —n
R
2mi Jo, (14 2)?
1 - 1 -n
N s R O
21t Jo,vp. (1+2)? 2mi Jp, (1+2)?
1 1 z " d
= —¢—-dz—— | ——d=z.
2mi J (1 + 2)? 2wt Jp, (1 + 2)?

C
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But by termwise differentiating the geometric series in the disk |z| < 1, we

obtain
1

z
and so
z" 1 2 3 n—1,_ n—1

which yields, by the Laurent series theorem [9, Thm.4.7,p.134], that

! 2 () —idy ifn—1,2,3
— P —dz = (— n =: in=
2mi J (1 + 2)2 "
C
Define
A = ¢, —d,

- 5 lm <L T e (”"””) |

We have, using the fundamental theorem of contour integration, that

1 d 1
N R T ) d
ZfLe(l—i-z)QZ ZLedzl—i—zz
( 1 1 )
= —i — — .
1—e*c 1—e
e +1 1

Yeie 1 tan(e/2)

So
L (~1)"
A = 1 E | A g (e
27761{%<L6(1+z)2d2 Le(l—i—z)de ( )””)

If n =0, then A = 0. If n # 0, then we have, by a Taylor expansion of 2~
around the point z = —1, that

= (=D + (—n)(=1)""" Yz 4+ 1) + h(2)

for z € L, where h(z) = O((z+1)?) as z — —1. Hence by the ML inequality,

"= (=" (—n)(=n"* =0
fL Wdz - J;/e sz ~e— 0.
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Hence

But

1 —sine 1
f dz = f ——idt
L€1+Z sine 1 —cose+ 1t

[75m€ 1 — cose — it
= dt
sin € (1 — COS 6)2 + t2

—sine 1 — cos
= ZJ _dt+0
sin e (1 — COS 6) +t

sin e 1
= —2(l- dt.
i(1 — cose) fo T 1

Thus

sin e

1 1 ;
f dz = —2i(1— cos e)itan*1 -
L. 1+z 1 —cose 1 —cose

1 sine

0

= —2itan” ——
1 —cose

= —2itan! M

sin(e/2)

So

Consequently,

it _ ) e
me—i_mrzé(%wl)n:el —2e" + 3¢’ — 4™+ — - -

nez

where the series on the right hand side converges in D'(R).
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6. THE FOURIER SERIES OF S IS SUMMABLE AT t = 0

In this section, we will show that the 27-distribution S € D/(R), given in
Notation 4.2 on page 13, belongs to o, that is, it has a Fourier series which
is summable at ¢ = 0 (in the sense of Definition 2.4).

Let (@m)men be any approximate identity. Then we have, for all large
enough m, that the support of ¢, is contained inside, say (—m/2,7/2), and
so, in particular, it is far from +x. Thus if U, := (—7/2,7 — €), then we
have for all large m, that

eit %) (t)eit 0
Pf—=+i o/ m )= li T dt— -0
< (1+eit)2 tTim Z @n+1)ms P > BN (JUS (1+eit)2 tan(e/Q)) tim

nez
/2 it
J emDe”
—m/2 (1 + elt)

Hence,

) ' eit '
lim (S, om) = lim <Pf7(1 o i > San 1y gom>

neZ
/2 et /2 et (t
— lim pmlt)e” ).f Sdt = lim pm(t)ep(t) Z’Z)g L,
m—® J_5 (14 e't) m=o | o (1+e)

where ¢ € D(R) is such that ¢ = 1 on (—n/2,7/2) and has compact support
contained inside (—m, 7). Thus

li_r>noo<sa90m> = lim <90m’(eii> (*)

m—on 1+ eft)?
1-1
BRCGEE ")
1

1
In the first equality (x) above, we view ¢, as the regular distribution in
E'(R) corresponding to ¢y, and
et
(1+ eit)?
as a test function in £(R). Then, since
li Pm = do
m—00
in D'(R), the second equality (%) above follows.
it
Consequently, S € o, that is, the distribution .S = Pf(lfw +im Z 522n+1)7r

nez
has a Fourier series that is summable at ¢t = 0, and

1
1—2+3—4+'~=ch(5)=1.

nez
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7. RAMANUJAN MANIPULATION USING FOURIER SERIES
Let Ty € D'(R) be the 2m-periodic distribution having the Fourier series
To := e +2e%" 4 33 4 ... . (12)

The series converges in D'(R). We show in this section that Ty € X, that
is, that Ty has a Fourier series which is summable at ¢ = 0 in the sense of
Definition 2.12, with the sum —1/12.

As T — H)\T : D'(R) — D'(R) is continuous, it follows from (12) that

HLT) — it + 264 4+ 3¢50t | 4eBit 4 510 4 ... (13)
Moreover,
AHL Ty = 4€* + 8¢* 4 1265 4 16e + 20610 + ... (14)
Subtracting (12) and (14), we obtain
Ty — AHoTy = et + 262t 4 363 4 4¢it | 5efit 4 Gebit 4 ...
— 4% _ getit 12680t _ ...

— it 92t | g.Bit _ g dit | 5it e 6it
Thus we arrive at the identity
it

e , , '
Ty — 4Ho T = me +im ). Slont1ys = S- (15)
neZ
1
But we know from the previous section that Z cn(S) = R

nez
Hence it follows from Definition 2.12 that
1 1 1 1
1+2+3+---= en(Tp) = —— ) cn(S)=— —=——.
3 ealli) = 15 S enls)

Here we used the (extended) summability notion from Definition 2.12, and
so we have shown that Ty € 3. Had T belonged to o, we would of course
obtain the same sum of the Fourier coefficients of Tj at ¢ = 0. But we now
show (in Proposition 7.1 below) that in fact Ty ¢ o (that is, the distribution
Ty has a Fourier series that is not summable at ¢t = 0 in the restricted sense
of Definition 2.4).

[ee}
Proposition 7.1. Ty := Z ne" ¢ o.
n=1

Proof. With T, denoting the translation operator by m, which we note is a
continuous map linear map from D’'(R) to itself, we have

o0 o0
T, T, = T, Z ne™t = Z T ne™
n=1 n=1
o0 o0
_ Z neni(tfﬂ) _ (_1)nnenlt =9,
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and so
To=-—-T_,S. (16)

Using this, we now calculate (for later use below) the action of Tj on test
functions of a special type. For any x € D(R) with the properties that
supp(x) < (—=7/2,7/2) and x(0) = x’(0) = 0, we have

(To,x) = (T8, x) = =5, Trx)
it _ _
(] it ), =)
eNO (0,mr—€)u(m+e,2m) (1 + eZt) tan(E/Q)

) e x(T) 0
51\I4I(1] ( J;ﬂ,e)u(e,w) (1 - BZT)ZdT tan(6/2)>

~ im TX(n)
eNO (—=m,—e)u(e,m) (1 - eZT)

In the above, we used the substitution 7 = ¢t — 7 in order to obtain the
equality in the third row.

Summarising, for x € D(R) with the properties that supp(x) < (—m/2,7/2)
and x(0) = x’(0) = 0, we have

: e x(7)
<T07 X> ll\r&% (—m,—e)u(e,m) (1 - eiT)QdT. (17)
This fact will be used below, where y will be replaced by the elements of an
approximate identity.
Let ¢ be a nonzero test function in D(R) which is symmetric and non-
negative, and has its support supp(¢)) < (—1,1) < (—n/2,7/2). Define
4 € D(R) by

tha(t) 1

o(t) = — =5 thp(t)  (t e R), where I := fl tYy(t)dt > 0.
f thp(t)dt !
-1

Then ¢ is a symmetric positive mollifier with ¢(0) = ¢’(0) = 0. Analogously,
we also define @ € D(R) by

2
95(75) — % =

1
- 2(t)  (teR), where I := f t2p(t)dt > 0.
J 24p(t)dt !
—1

~el =

Then ¢ is a symmetric positive mollifier with $(0) = ¢'(0) = 0.
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In (17), if in particular, we take x = ¢,,, then we obtain

eit@m(t)
(To,omd> = lim e pmll) 4
eNo (—=m,—e)u(e,m) (1 - eZt)Q
1 it . 4t4
— ~.lim cm-m 4t¢2(mt)dt
I eNo (—m,—e)u(e,m) (1 —e )
T 0242 2 it
— m?= . lim mem zlw(mt) e 5 dt
eNo0 (—m,—e)u(e,m) I (1 —e' )

I~ us t2 it t
2 f ~ eﬂ()dt,

= mi7- @m(t)m

—T

where 8 € D(R) is such that 5 = 1 on (—m,7) and has compact support
contained inside (—2m,27). Hence

T 2 itﬂ(t
<T0?s0m> = mQF : <¢m,ﬁ>a

where in right hand side of the equality, we view @, as the regular distri-
bution in &'(R) corresponding to @, and

t2e"B(t)
BRCEEDE

as a test function in £(R). Then, since
dim @, = 0o

in D'(R), it follows that

) N thit/B(t) B t2eit/8<t) L t2€itﬂ(t)
i (o) = ()~ B iy

_ OO e B(0)
=0 (1_eit)2 y ( d . )2
i : 2| —e
—it dz  1z=0
j— 1 ) 1 j—
112
Consequently,
lim (Tp, ) = lim mZZ-(—l) =~
Moo 0, Pm oo T 3

showing that Ty ¢ o. O
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8. COMPUTATION OF 1% + 2% 1 3% 4... poR ke N
We will first show the following result, where S®*) denotes the kth order
derivative of the distribution S, where S is the distribution

ezt

S = wa + s Z 6(2n+1)7r

neZ

It is easy to see, using the fact that the translation operator commutes with
the differentiation operator for test functions, that S*) is also 2r-periodic.

Proposition 8.1. For all k € N, the 2r-periodic distribution S*) € X,
that is, S*) has a Fourier series that is summable at t = 0 in the sense of
Definition 2.12.

Proof. Let (¢m)men be any approximate identity. For all large enough m,
the support of ¢, is contained inside (—m/2,7/2). Then we have

lim (—1)"(S, ()

m—00
T k )
(—1)kf i (pL (B)e tdt
m—n0 —/2 (1 + eit)Q

it
— T (Ve R €

- 00<80m’ dt 1+e”) >
<5°’ <%>km>
(

d\"* e't
E) (1 + eit)?

im (S*)
Jim (ST, o)

t=0

This completes the proof. O

We will also need the commutation relation between the operations of Hy
and differentiation below.

Lemma 8.2. For any distribution T € D'(R), any A > 0, and any k € N,

(H,T)® = AFH, <T(k)> .



24 A. SASANE

Proof. For any test function ¢ € D(R), we have

<(HAT)(k) ; <P>

Il
T
—
=
SN
s
>
~
S
=
~_

Hence (HA\T)® = MH, (T®). 0
As Ty — 4HoTy = S, we obtain by differentiating & times that
T — 4. 28 Hy(TF) = 9®.

As S®) € o, and since k := 4-2% # 1, we conclude that the Fourier series of
Ték) is summable at t = 0, and we have

k 1
2 en(T”) = 1—4-2k 2, en(59)

nez nez
1 d\* et
1—4.28 \dt) (1+et)?

But, because of the convergence of the Fourier series of Ty in D'(R), we
obtain by termwise differentiation of

t=0

TO _ eit + 262it + 363# 4+ ...
that
Ték_l) _ ikil(eit + ok ,2it + 3k it 4o )’

and so we obtain

bk pghg. = 1 ! NEA R
ol 1 —4.2k1 0 \ dt (1 + eft)?

1 1 d\" et
T k1] _okft’ (E) (1 + eit)2

t=0

(19)

t=0
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We note that (19) gives, for example,

1 eit

d
12492 132 4 ... - , ’
e i1 —4-2)di (1+ )2l
1

Z'ezt

B B 26it ‘
7\ (1+et)2  (1+e?)3 ) li=o

As one more example, (19) gives
1 d? et
2(1—4-4)dt2 (1 + eit)? L=o
1 ( eit 6(6“)2 6(6“)3 > ’
t=0

P+23 4384

15\ 1+et)2 " (1T4+et)3  (1+eit)

1 /1 N 6 6\ 1
~15\4 8 16/ 120
We note that these values match the values of the usual analytic continuation

of the Riemann zeta function ((s) at s = —2 and at s = —3 respectively; see
for example [13, §8.2]. Here ¢ denotes the Riemann-zeta function defined by

¢(s) := Z n-°.
n=1

The series for ((s) converges absolutely if Re(s) > 1, but it diverges when-
ever Re(s) < 1. However, one can use an analytic continuation of the zeta
function in the punctured plane C\{1} for determining the zeta function at
points where the series fails to converge. The analytic continuation satisfies
a functional equation (see for example [14, Theorem 2.1]), which yields for
k € N that

C(—k) = ﬁ sin (4%) KIC(L + k) (20)

We justify in the next two results below that our formula (19) coincides
with ¢(—k) for all k € N. Proposition 8.3 is due to Arne Meurman (personal
communication).

Proposition 8.3. For all odd k € N,

1 1 d\"t e
C( ) k=11 — 9k+1 (dz) (1 + 6zz)2
Proof. Let k be a positive odd integer and set
1

&)= ey

z=
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We shall consider (z)dz, where I'y denotes the contour (shown below)
I'n

[-N7(1+414),—Nmi+ Nn,Nmi+ Nm,Nwi — Nm,—Nm(1 +13)],

and N is a positive even integer that shall approach co.

'n

»]
)

~+

T

Estimating, one find that |f(z)| = O(N"F=1) on I'y, so that

lim f(z)dz = 0.

N—w T'n
As f has poles at z = 0 and z = (2j + 1)7, j € Z, the residue theorem gives
0 =Res.—of(2) + Y Res,_(3;41)rf(2). (21)
JEZ
One obtains 1
Resz=(2j+1)7rf(z) = [(2] + 1)7T]k+1(—z')’
so that
2 & 1
ZReSz:(2j+1)7rf(Z) = k1 Z . k1
= wh+ o, (27 + 1)k
2 S(& 1 & 1 )
R Z Z k+1 Z k1
e 7=0 \n=1 nt n=1 <2n) *
2i
= gkt (1 - 2k+1> C(k+1)
Moreover,
1 /d\" 1
“Resa=of(z) = -5 (d_> Tve|
B N S G
- k! \ dz (I+e=)2
i A
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Thus (21) gives

2 1 i (d\Ft o e
= (11— — = — (= -
st ( 2k+1> e+ 1) =5 (dz> (1 + ey

Recall that the functional equation for ( gives

-k = A otk + .

Comparing (22) and (23) gives the formula

(ery= b1 (AT e
C gkl — 2k \ dz (1 + e?2)?

This completes the proof.

z=

Proposition 8.4. For all even k e N,

1 1 d\F 1 ez
A . L _°
(k) =0 k=11 — 9k+1 <dz> (1 + e¥#)?

z=0

27

(23)

Proof. For even k € N, since sin (fk:g) = 0, it follows that ((—k) = 0. We

will show that in our formula (19), also
d k—1 eit
(@) @i,
for even k, so that (19) matches ((—k) = 0. Set

1
9(2) = 14e*

=0

Then g is holomorphic in a neighbourhood of 0. So h := g(i-) is also holo-
morphic in a neighbourhood of 0, and by a repeated application of the chain

rule,

(&) ’"‘| o (&) o

z=10=0

d\"'d 1
— — —fy
(dz) dz1+e”* |

d k—1 2
- <$> (1 +e)?

o - \dz (1 + e¥#)?
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We show that the right most expression in (24) is 0. We have

B 1 1 1e#2—e 22 1 1t L2
= = -——m = = — — 1n —.
I S s T3 T Qe e 2 2 Y

For k = 2,

d\"* d\F/1 1 2 1/d\* P
L) o=(L) (z—ZtannZ)=0-= (& hi.
(dz) g (dz> (2 5 tan 2> 0 2<dz> tanh o

But as z — tanh 5 is an odd function, it follows that for even k,

d\"* z
Z <£> tanh§

is an odd function too, and in particular, it vanishes at z = 0. Hence

()" 9|, =0, and using (24), also
z=

(3) e
gt it)2
dt (14 e) o

This completes the proof. [

9. APPENDIX A: CASIMIR EFFECT

In quantum field theory, upon quantising a classical field, one ends up with
infinitely many harmonic oscillators, one at each spacetime point. If we take
this picture seriously, then we run into the problem of having to add up all
of their ground state energies, and taking that as the ground state energy
of the quantum field. The Casimir effect, predicted in 1948 [2], allows the
experimental demonstration [4] of the existence of this ground state energy
obtained by summing the ground state energies of all the oscillators.

(e
&
\
A
8Y

Consider two parallel uncharged large plane conductors of area A separated
by a small distance d in empty space, as shown. This is like a capacitor, but
the plates do not have any charge on them. From the classical point of view,
there should not be any electromagnetic force between them. Nevertheless, it
can be demonstrated experimentally that the two plates attract each other.
This can be explained as follows. In the absence of the plates, the quantum
electromagnetic field (a superposition of an infinite number of oscillators) is



SUMMATION METHOD AND AN EXAMPLE 29

in its ground state. But upon the introduction of the two plates, we impose
perfect conductor boundary conditions for the electromagnetic field exactly
at x = 0 and = = d. So the ground state energy for the oscillators will now
be different (but still divergent) from the original ground state energy. The
difference between the ground state energies, calculated with and without
the plates, will involve subtracting one infinity from another, but seems
to be formally finite as we will see in the toy example below, and can be
used to predict the correct magnitude of the Casimir force, which has been
experimentally verified [4].

As a simplified toy model, consider a massless scalar field ¢ with only
one space dimension, and suppose that the field is constrained to vanish at
x =0 and x = d. The allowed oscillator modes

on(x) :cnsinnfzx, n=0,1,2,3,---

have wave numbers given by

The corresponding travelling wave is then
on(z,t) = cpsin(kpz —wpt), z,teR,

with the speed of propagation

The associated ground state energy with a quantum harmonic oscillator with
angular frequency w is
-2
2
Thus we now obtain that the total ground state energy in the superposition
of all possible modes is

E(d) = Z
—d

hwn
2
e}

JT_Ch
24d”

If we imagine two point particles at x = 0 and at z = d (analogous to
the two conducting plates), then this energy leads to an attractive force of
magnitude

wch

)= i
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10. APPENDIX B: ZETA FUNCTION REGULARISATION

In order for easy comparison and contrast of our summation method versus
the zeta regularisation method, both used in showing

= 1
n=1

we outline briefly here the idea behind the zeta function regularisation
method.

One first considers the Riemann zeta function, given by

C(s) := Z n-°.
n=1

So we would like to set s = —1, in order to get the desired sum
14+2+3+-.

The series for ((s) converges absolutely if Re(s) > 1, but it diverges when-
ever Re(s) < 1. However, one can use an analytic continuation of the zeta
function in the punctured plane C\{1} for determining the zeta function at
points where the series fails to converge. In [12], it was shown that a series
derived using Euler’s transformation provides the analytic continuation of
(¢ for all complex numbers s # 1, and in particular at negative integers, the
series becomes a finite sum, whose value is given by an explicit formula for
Bernoulli numbers. In particular, this formula then yields {(—1) = —1/12.
Our summation method yields

1 1 d\F1 et
ok ypsh = — —
k=1 1T —ok+L T \ gt (T+eh?|

(26)

We had seen in Proposition 8.3 of Section 8, our formula (26) gives values
matching exactly the corresponding values of ((—k).

However, our route to arriving at 1% 4+ 2% 4 3% 4 ... is quite different from
the analytic continuation of the zeta function, since we rely on distribution
theory. The formula (26) we obtained is afforded in particular by (x), ()
on page 19, and (18) on page 23, where the numbers

d\"* et
(%) (1 + eit)? ’t:O
appear.

The Fourier series appears in quantum field theory computations, and
hence it is conceivable that our summation method is more natural in this
context. We refer the reader to [7], where the Casimir effect is analysed
using the framework of quantum field theory, and in particular to [7, §III],
where Fourier series plays a role.



SUMMATION METHOD AND AN EXAMPLE 31

Acknowledgement: Useful discussions with Sara Maad-Sasane, are grate-
fully acknowledged. I thank Arne Meurman for the proof of Proposition 8.3.
Thanks are also due to the anonymous referee for the many insightful sug-
gestions which greatly improved the article. In particular, the query raised
of whether Ty € o, resulted in Proposition 7.1.

REFERENCES

[1] B. Berndt. Ramanujan’s Notebooks. Part I. Springer, 1985.

[2] H. Casimir. On the attraction between two perfectly conducting plates. Proceedings
of the Koninklijke Nederlandse Akademie van Wetenschappen, 10:261-263, 1948.

[3] W. Donoghue. Distributions and Fourier Transforms. Pure and Applied Mathematics
32, Academic Press, 1969.

[4] T. Ederth. Template-stripped gold surfaces with 0.4-nm rms roughness suitable for
force measurements: Applications to the Casimir force in the 20-100-nm range. Phys-
ical Reviews A, 62:062104, no.6, 2000.

[5] L. Euler. Opera Omnia, Series Prima. Teubner, Leipzig and Zurich, 1911-1956.

[6] S. Kesavan. Topics in Functional Analysis and Applications. John Wiley, 1989.

[7) N. Kawakami, M. Nemes and W. Wreszinski. The Casimir effect for parallel plates
revisited. Journal of Mathematical Physics, 48:102302, 2007.

[8] J. Korevaar. Tauberian theory. Grundlehren der Mathematischen Wissenschaften 329,
Springer, 2004.

[9] S. Maad-Sasane and A. Sasane. A Friendly Approach to Complex Analysis. World
Scientific, 2014.

[10] L. Schwartz. Mathematics for the Physical Sciences. Addison-Wesley, 1966.

[11] L. Schwartz. Théorie des Distributions. Hermann, 1966.

[12] J. Sondow. Analytic continuation of Riemann’s zeta function and values at negative
integers via Euler’s transformation of series. Proceedings of the American Mathemat-
ical Society, 120:421-424, no. 2, 1994.

[13] J. Stopple. A Primer of Analytic Number Theory. From Pythagoras to Riemann.
Cambridge University Press, 2003.

[14] E.C. Titchmarsh. The theory of the Riemann zeta-function. Second edition. Edited
and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University
Press, 1986.

[15] F. Treves. Topological Vector Spaces, Distributions and Kernels. Dover, 2006.

[16] E. Zeidler. Quantum Field Theory. I. Basics in Mathematics and Physics. A Bridge
Between Mathematicians and Physicists. Springer, 2006.

[17] C. Zuily. Problems in Distributions and Partial Differential Equations. North-Holland
Mathematics Studies 143, North-Holland, 1988.

DEPARTMENT OF MATHEMATICS, LONDON SCHOOL OF ECONOMICS, HOUGHTON STREET,
LonpoN WC2A 2AE, UNITED KINGDOM
E-mail address: A.J.Sasane@lse.ac.uk



