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I. Introduction

Modern metropolitan areas include vast concentrations of economic activity, with Greater London and New York City

today accounting for around 8.4 and 8.5 million people respectively. These intense population concentrations involve

the transport of millions of people each day between their residence and workplace. Today, the London Underground

alone handles around 3.5 million passenger journeys per day, and its trains travel around 76 million kilometers each

year (about 200 times the distance between the earth and the moon). Yet relatively little is known about the role of these

commuting flows in sustaining dense concentrations of economic activity. On the one hand, these commuting flows

impose substantial real resource costs, both in terms of time spent commuting and the construction of large networks

of complex transportation infrastructure. On the other hand, they are also central to the creation of predominantly

commercial and residential areas, with their distinctive characteristics for production and consumption.

In this paper, we use the mid-19th-century transport revolution from the invention of steam railways, a newly-

created, spatially-disaggregated dataset for Greater London from 1801-1921, and a quantitative urban model to provide

new evidence on the contribution of the separation of workplace and residence to agglomeration. The key idea behind

our approach is that the slow travel times achievable by human or horse power implied that most people lived close

to where they worked when these were the main modes of transportation. In contrast, the invention of steam railways

dramatically reduced the time taken to travel a given distance, thereby permitting the first large-scale separation of

workplace and residence. Following this revolution in transport technology, we find that the night-time population

in the historical center of the City of London falls by an order of magnitude from around 130,000 in 1831 (before

the first railway line) to less than 14,000 in 1921, while its day-time population more than doubles over this period.

We provide reduced-form event-study evidence connecting the decline in population in central areas and the rise in

population in outlying areas to the arrival of the railway. We show that similar changes in patterns of population and

employment growth are observed for other large metropolitan areas following the transport improvements of the 19th

century, including Berlin, Paris, Boston, Chicago, New York and Philadelphia.

To interpret these empirical findings, we develop a theoretical framework that holds in an entire class of quantitative

urban models that are characterized by a gravity equation in commuting and a land market clearing condition in which

payments for commercial and residential floor space are constant multiples of income by workplace and income by

residence respectively. In this class of models, the spatial distribution of economic activity is determined by variation

in productivity, amenities and transport connections across locations. As commuting costs fall, workers become able

to separate their residence and workplace to take advantage of the high wages in places with high productivity relative

to amenities (so that these locations specialize as workplaces) and the low cost of living in places with high amenities

relative to productivity (so that these locations specialize as residences). Our finding that the central city specializes as

a workplace is consistent with it having high productivity relative to amenities compared to the suburbs and with the

transition from walking/horses to railways disproportionately reducing travel times into the central city. If productivity

and amenities depend on the density of workplace and residence employment respectively through agglomeration forces,

this concentration of employment in the center and dispersion of population to the suburbs further magnifies these

differences in productivity and amenities across locations.

Our quantitative framework has a recursive structure, such that we undertake our analysis in a sequence of steps,

where each step imposes the minimal set of additional assumptions relative to the previous step. In particular, our
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baseline quantitative analysis uses only a combined land and commuter market clearing condition that holds in this

entire class of quantitative urban models. Although we only observe bilateral commuting flows in 1921 at the end

of our sample period, we show how our framework can be used to estimate the impact of the construction of the

railway network going back to the early-19th century. We first use our bilateral commuting data for 1921 to estimate

the parameters that determine commuting costs. We next combine these parameter estimates with historical data on

population, land values and the evolution of the transport network from the beginning of the 19th century onwards.

Using our framework’s combined land and commuter market clearing condition, we solve for unobserved historical

patterns of employment by workplace and bilateral commuting flows.

Although we estimate the effect of the railway network on commuting costs using 1921 information alone, we show

that our model provides a good approximation to the available historical data on workplace employment and commuting

patterns. In particular, we show that it captures the sharp divergence between night-time and day-time population in

the City of London from the mid-19th century onwards, and replicates the property of the early commuting data that

most people lived close to where they worked at the dawn of the railway age. Despite the City of London experiencing

by far the largest absolute increase in employment, we find that the highest percentage rates of growth of employment

(and population) occur in the suburbs, as these areas are transformed from villages and open fields to developed land.

As a result, the gradient in log employment density in distance from the Guildhall in the center of the City of London

declines between 1831 (before the first railway) and 1921, and the share of the 13 boroughs within 5 kilometers of the

Guildhall in total workplace employment in Greater London falls from around 68 percent in 1831 to around 48 percent

in 1921. This pattern of results is in line with the findings of employment decentralization in studies of more recent

transport improvements, which are based on specifications using log employment or employment shares.

An advantage of our baseline quantitative analysis is that it holds for an entire class of urban models and conditions

on observed population and rateable values. Therefore, it controls for a wide range of other potential determinants of

economic activity, such as changes in productivity, amenities, the costs of trading goods, the supply elasticity for floor

space, and expected utility in the wider economy. Given the data for the initial equilibrium in 1921, we show that the

observed historical data on population and land values are sufficient statistics in the model for determining unobserved

historical workplace employment and commuting, because they control for changes in these other determinants of

economic activity within this class of urban models.

To further explore the respective contributions of changes in commuting costs and these other economic determi-

nants, and to examine the implications of our findings for the strength of agglomeration forces, we choose a version

of the canonical urban model of goods trade and commuting as one model from within our class. Using this model,

we first recover productivity and amenities for each location and census year, and show that most of the change in net

commuting into the City of London is explained by the change in commuting costs alone. Using these solutions for pro-

ductivity and amenities, we estimate the strength of agglomeration forces by requiring that the observed reorganization

of economic activity within Greater London following the invention of the steam railway is explained by the model’s

mechanism of a reduction in commuting costs and agglomeration forces. In particular, using the identifying assumption

that idiosyncratic shocks to productivity and amenities are uncorrelated with distance from the Guildhall conditional on

our controls, we estimate elasticities of productivity and amenities to workplace and residence employment density of

0.086 and 0.172 respectively. Our estimate of agglomeration forces in production of 0.086 lies close to the 3-8 range

discussed in the survey by Rosenthal and Strange (2004), while our estimate of agglomeration forces in residential
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decisions of 0.172 is consistent with recent findings of endogenous amenities, such as Diamond (2016).

We use our model to undertake counterfactuals for the removal of the railway network under a range of alternative

assumptions about the supply elasticity for floor space and the strength of agglomeration forces. Assuming an inelastic

supply of floor space and no agglomeration forces, we find that removing the entire railway network reduces the total

population and value of land and buildings in Greater London by 13.7 and 12.5 percent respectively, and decreases net

commuting into the City of London by more than 270,000 workers. In comparison, removing only the underground

railway network reduces the total population and value of land and buildings in Greater London by 3.5 and 4.0 percent

respectively, and decreases net commuting into the City of London by around 80,000 workers. In both cases, the

increase in the net present value of land and buildings exceeds historical estimates of the construction cost of the railway

network. Introducing a positive floor space supply elasticity and/or agglomeration forces magnifies these effects. Using

our calibrated floor space supply elasticity of 1.83 and our estimated agglomeration forces in production and residence,

we find that removing the entire railway network reduces the total population and value of land and buildings in Greater

London by 51.5 and 53.3 percent respectively, and decreases net commuting into the City of London by more than

350,000 workers .

London during the 19th century is arguably the poster child for the large metropolitan areas observed around the

world today. In 1801, London’s built-up area housed around 1 million people and spanned only 5 miles East to West.

This was a walkable city of 60 squares and 8,000 streets that was not radically different from other large cities up to that

time. In contrast, by 1901, Greater London contained over 6.5 million people, measured more than 17 miles across, and

was on a dramatically larger scale than any previous urban area. By the beginning of the 20th-century, London was the

largest city in the world by some margin (with New York City and Greater Paris having populations of 3.4 million and

4 million respectively at this time) and London’s population exceeded that of several European countries.1 Therefore,

19th-century London provides a natural testing ground for assessing the empirical relevance of theoretical models of

city size and structure.

Our empirical setting also has a number of other attractive features. First, during this period, there is a revolution

in transport technology in the form of the steam locomotive, which dramatically increased travel speeds from around 6

mph for horse omnibuses to 21 mph for railway trains. Steam locomotives were first developed to haul freight at mines

(at the Stockton to Darlington Railway in 1825) and were only later used to transport passengers (with the London and

Greenwich Railway in 1836 the first to be built specifically for passengers).2 Second, in contrast to other cities, such as

Paris, London developed through a largely haphazard and organic process. Until the creation of the Metropolitan Board

of Works (MBW) in 1855, there was no municipal authority that spanned the many different local jurisdictions that

made up Greater London, and the MBW’s responsibilities were largely centered on infrastructure. Only in 1889 was

the London County Council (LCC) created, and the first steps towards large-scale urban planning for Greater London

were not taken until the Barlow Commission of 1940. Therefore, 19th-century London provides a setting in which we

would expect the size and structure of the city to respond to decentralized market forces.

We contribute to several strands of existing research. Our paper connects with the theoretical and empirical litera-

tures on agglomeration, including Henderson (1974), Fujita, Krugman, and Venables (1999), Fujita and Thisse (2002),

Davis and Weinstein (2002), Lucas and Rossi-Hansberg (2002), Davis and Dingel (2019) and Kline and Moretti (2014),
1London overtook Beijing’s population in the 1820s, and remained the world’s largest city until the mid-1920s, when it was eclipsed by New York

(Chandler 1987). Greece’s population was 2.63 million in the 1907 census and Denmark’s 2.59 million in the 1906 census (Webb 1911, p. 457).
2Stationary steam engines have a longer history, dating back at least to Thomas Newcomen in 1712, as discussed further below.
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as reviewed in Rosenthal and Strange (2004), Duranton and Puga (2004), Moretti (2011) and Combes and Gobillon

(2015). A key challenge for empirical work in this literature is finding exogenous variation to identify agglomeration

forces. Rosenthal and Strange (2008) and Combes, Duranton, Gobillon, and Roux (2010) use geology as an instrument

for population density, exploiting the idea that tall buildings are easier to construct where solid bedrock is accessible.

Greenstone, Hornbeck, and Moretti (2010) provide evidence on agglomeration spillovers by comparing changes in to-

tal factor productivity (TFP) among incumbent plants in “winning” counties that attracted a large manufacturing plant

and “losing” counties that were the new plant’s runner-up choice. In contrast, we exploit the transformation of the

relationship between travel time and distance provided by the invention of the steam locomotive.

Our paper is also related to a recent body of research on quantitative spatial models, including Redding and

Sturm (2008), Allen and Arkolakis (2014), Ahlfeldt, Redding, Sturm, and Wolf (2015), Redding (2016), Allen, Arko-

lakis, and Li (2017), Caliendo, Parro, Rossi-Hansberg, and Sarte (2018), Desmet, Nagy, and Rossi-Hansberg (2018),

Monte (2018), Monte, Redding, and Rossi-Hansberg (2018) and Tsivanidis (2018), as reviewed in Redding and Rossi-

Hansberg (2017). All of these papers focus on time periods for which modern transportation networks by rail and/or

road exist, whereas we exploit the dramatic change in transport technology provided by the steam locomotive. Our

main contributions relative to these previous studies are as follows. First, we show that an entire class of urban models

feature the same combined land and commuter market clearing condition, which enables us to develop results that are

robust across this class of models, and to control for a range of unobserved determinants of the spatial distribution of

economic activity. Second, we develop a new structural estimation methodology for this class of urban models, which

uses bilateral commuting flows for a baseline year (in our case 1921) and undertakes comparative statics from this base-

line year (in our case backwards in time). We show that this estimation procedure can be used to recover unobserved

historical employment and commuting data (prior to 1921) from the bilateral commuting data for our baseline year and

historical data on population and land rents.3 This procedure is applicable in other contexts, in which historical data are

incomplete or missing, but bilateral commuting data are available for a baseline year. Third, we show that our class of

urban models can account quantitatively for the reorganization of economic activity in Greater London following the

invention of the steam railway.

Our paper also contributes to the empirical literature on the relationship between the spatial distribution of economic

activity and transport infrastructure, as reviewed in Redding and Turner (2015). One strand of this literature has used

variation across cities and regions, including Chandra and Thompson (2000), Michaels (2008), Duranton and Turner

(2011), Duranton and Turner (2012), Faber (2014), Duranton, Morrow, and Turner (2014), Donaldson and Hornbeck

(2016), Donaldson (2018) and Baum-Snow, Henderson, Turner, Zhang, and Brandt (2019). A second group of studies

have looked within cities, including Warner (1978), Jackson (1987), McDonald and Osuji (1995), Gibbons and Machin

(2005), Baum-Snow and Kahn (2005), Billings (2011), and Brooks and Lutz (2018). A third set of papers has examined

the welfare effects of transport infrastructure, as in Allen and Arkolakis (2017) and Fajgelbaum and Schaal (2017).

Within this literature, our work is most closely related to research on suburbanization and decentralization, includ-

ing Baum-Snow (2007), Baum-Snow, Brandt, Henderson, Turner, and Zhang (2017), Gonzalez-Navarro and Turner

(2018), and Baum-Snow (2019). Our contributions are again to use the large-scale variation from the transition from

3Our use of bilateral commuting data for our baseline year enables us to encompass this class of quantitative urban models and recover the
unobserved historical employment and commuting data. In contrast, Ahlfeldt, Redding, Sturm, and Wolf (2015) did not have access to bilateral
commuting data between blocks, and focused on one of the theoretical models from within our class in order to use observed data on employment by
residence and employment by workplace to predict unobserved commuting between blocks.
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human/horse power to steam locomotion and to show that our model can account both qualitatively and quantitatively

for the observed changes in city structure.

The remainder of the paper is structured as follows. Section II. discusses the historical background. Section III.

summarizes the data sources and definitions. Section IV. presents reduced-form evidence that the invention of the

steam railway enabled a large-scale separation of workplace and residence. Section V. formalizes this idea in a class of

quantitative urban models. Section VI. undertakes our baseline quantitative analysis. Section VII. chooses one urban

model from within our class to both recover productivity and amenities and also estimate the strength of agglomeration

forces. Section VIII. undertakes counterfactuals and compares the economic impact of the railway network to its

construction cost. Section IX. concludes. A separate online appendix establishes isomorphisms for our class of urban

models and contains the proofs of propositions, supplementary empirical results, and further details on the data.

II. Historical Background

London has a long history of settlement that dates back to before the Roman Conquest of England in 43 CE. We dis-

tinguish three geographical definitions of its boundaries, as illustrated in Figure Ia. First, we consider Greater London,

as defined by the modern boundaries of the Greater London Authority (GLA), which includes a 1921 population of

7.39 million and an area of 1,595 kilometers squared (shown by the thick red line). Second, we examine the historical

County of London, which has a 1921 population of 4.48 million and an area of 314 kilometers squared (indicated by

the thick purple line). Third, we consider the City of London, which has a 1921 population of 13,709 and an area of

around 3 kilometers squared, and whose boundaries correspond approximately to the Roman city wall (denoted by the

barely visible thick green line).4 Data are available at two main levels of spatial aggregation: boroughs (shown by the

medium black lines) and parishes (shown by the medium gray lines). Greater London contains 99 boroughs and 283

parishes; the County of London comprises 29 boroughs and 183 parishes; and the City of London is one borough that

includes 111 parishes.5 As apparent from the figure, our data permit a high-level of spatial resolution: the median parish

in Greater London has a 1901 population of 1,515 and an area of 0.97 kilometers squared; and the median borough in

Greater London has a 1901 population of 26,288 and an area of 11.41 kilometers squared.

In the first half of the 19th-century, there was no municipal authority for the entire built-up area of Greater London,

and public goods were largely provided by local parishes and vestries (centered around churches). As a result, in contrast

to other cities, such as Paris, London’s growth was largely haphazard and organic.6 In response to the growing public

health challenges created by an expanding population, the Metropolitan Board of Works (MBW) was founded in 1855.

However, its main responsibilities were for infrastructure, and many powers remained in the hands of the parishes and

vestries.7 With the aim of creating a central municipal government with the powers required to deliver public services

effectively, the London County Council (LCC) was formed in 1889. The new County of London was created from the

Cities of London and Westminster and parts of the surrounding counties of Middlesex, Surrey and Kent.8 As the built-up

4From medieval times, the City of London acted as the main commercial and financial center of what became Great Britain, with the neighboring
City of Westminster serving as the seat of Royal and Parliamentary government. For historical discussions of London, see for example Ball and
Sunderland (2001) and White (2007, 2008).

5Parish boundaries in the population census change over time. We use the constant definitions of mappable units (henceforth referred to for
simplicity as parishes) provided by Shaw-Taylor, Davies, Kitson, Newton, Satchell, and Wrigley (2010), as discussed further below.

6The main exceptions are occasional Royal interventions, such as the creation of Regent Street on the initiative of the future George IV in 1825.
7See Owen (1982). These public health challenges included cholera outbreaks, as examined in Ambrus, Field, and Gonzalez (2019). The MBW’s

main achievements were the construction of London’s Victorian sewage system and the Thames embankment, as discussed in Halliday (1999).
8The LCC continued the MBW’s infrastructure improvements, including some new road construction through housing clearance (e.g. Kingsway
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area continued to expand, the concept of Greater London emerged, which was ultimately reflected in the replacement of

the LCC by the Greater London Council (GLC) in 1965. Following the abolition of the GLC in 1985 by the government

of Margaret Thatcher, Greater London again had no central municipal government, until the creation of the Greater

London Authority (GLA) in 1999.

At the beginning of the 19th-century, the most common mode of transport was walking, with average travel speeds

in good road conditions of around 3 miles per hour (mph). The state of the art technology for long distance travel was

the stage coach, but it was expensive because of the multiple changes in teams of horses required over long distances,

and hence was relatively infrequently used. Even with this elite mode of transport, poor road conditions limited average

long distance travel speeds to around 5 mph (see for example Gerhold 2005 and Bogart 2017). Given these limited

transport options, most people lived close to where they worked, as discussed in the analysis of English 18th-century

time use in Voth (2001). With the growth of urban populations, attempts to improve existing modes of transport led

to the introduction of the horse omnibus from Paris to London in the 1820s. Its main innovation relative to the stage

coach was increased passenger capacity for short-distance travel. However, the limitations of horse power and road

conditions ensured that average travel speeds remained low at around 6 mph.9 A further innovation along the same lines

was the horse tram (introduced in London in 1860), but average travel speeds again remained low at around 6 mph, in

part because of road congestion.10

Against this background, the steam passenger railway constituted a major transport innovation, although one with a

long and uncertain gestation. The first successful commercial development of a stationary steam engine was by Thomas

Newcomen in 1712 to pump mine water. However, the development of the separate condenser and rotary motion by

James Watt from 1763-75 substantially improved its efficiency and expanded its range of potential applications. The

first commercial use of mobile steam locomotives was to haul freight from mines at the Stockton and Darlington railway

in 1825. However, in part as a result of fears about the safety of steam locomotives and the dangers of asphyxiation from

rapid travel, it was not until 1833 that carriages with passengers were hauled by steam locomotives at this railway. Only

in 1836 did the London and Greenwich railway open as the first steam railway to be built specifically for passengers.

The result was a dramatic transformation of the relationship between travel time and distance, with average travel speeds

using this new technology of around 21 mph.11

Railway development in London, and Great Britain more broadly, was undertaken by private companies in a com-

petitive and uncoordinated fashion.12 These companies submitted proposals for new railway lines for authorization by

Acts of Parliament. In response to a large number of proposals to construct railway lines through Central London,

a Royal Commission was established in 1846 to investigate these proposals. To preserve the built fabric of Central

London, this Royal Commission recommended that railways be excluded from a central area delineated by the Euston

close to the London School of Economics), and built some social housing. The first steps towards large-scale urban planning for Greater London
were not taken until the Barlow Commission in 1940, as discussed in Foley (1963).

9See Section J8 of the online appendix for historical data on average speeds from London County Council (1907) and Barker and Robbins (1963).
10A later innovation was the replacement of the horse tram with the electric tram (with the first fully-operational services starting in 1901). But

average travel speeds remained low at around 8 mph, again in part because of road congestion (see Section J8 of the online appendix). From 1900,
motor buses gradually replaced horse buses, but were again only marginally faster because of road congestion and the need for frequent stops. Private
car use was negligible with registered cars per person in the County of London in 1920 equal to 0.01 (London County Council 1921).

11Consistent with this difference in travel speeds, railways were more frequently used for longer-distance travel, while omnibuses and trams were
more important over shorter distances (including from railway terminals to final destinations), which tended to make these alternative modes of
transport complements rather than substitutes. The share of railways in all passenger journeys by public transport was 49 percent in 1867 (the first
year for which systematic data are available) and 32 percent in 1921 (see London County Council 1907). From 1860 onwards, Acts of Parliament
authorizing railways typically included clauses requiring the provision of “workmen’s trains” with cheap fares for working-class passengers, as
ultimately reflected in the 1883 Cheap Trains Act (see for example Abernathy 2015).

12For further historical discussion of railway development, see for example Croome and Jackson (1993), Kellet (1969), and Wolmar (2009, 2012).
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Road to the North and the Borough and Lambeth Roads to the South.13 A legacy of this recommendation was the

emergence of a series of railway terminals around the edge of this central area, which led to calls for an underground

railway to connect these terminals. These calls culminated in the opening of the Metropolitan District Railway in 1863

and the subsequent development of the Circle and District underground lines. While these early underground railways

were built using “cut and cover” methods, further penetration of Central London occurred with the development of the

technology for boring deep-tube underground railways, as first used for the City and South London Railway, which

opened in 1890, and is now part of the Northern Line.14

In Figures Ib, Ic and Id, we show the overground and underground railway networks in Greater London for 1841,

1881 and 1921 respectively, where a complete set of maps of the transport network for each census decade is found

in Sections J5-J7 of the online appendix. In 1841, which is the first population census year in which any overground

railways are present, there are only a few railway lines. These radiate outwards from the County of London, with a

relatively low density of lines in the center of the County of London. Four decades later in 1881, the County of London

is criss-crossed by a dense network of railway lines, with greater penetration into the center of the County of London,

in part because of the construction of the first underground railway lines. Another four decades later in 1921, there is a

further increase in the density of both overground and underground railway lines.

III. Data

We construct a new spatially-disaggregated dataset on economic activity in Greater London for the period 1801-1921.

Our main source of data for Greater London is the population census of England and Wales, which we augment with

other sources of data, as summarized below and discussed in further detail in Section J of the online appendix.

Bilateral Commuting: A first key component for our quantitative analysis of the model is the complete matrix of

bilateral commuting flows between boroughs within Greater London, which is reported for the first time in the 1921

population census for England and Wales.15 In this population census, we find that commuting flows between other

parts of England and Wales and Greater London were small in 1921, such that Greater London was largely a closed

commuting market.16 Summing across rows in the matrix of bilateral commuting flows for Greater London, we ob-

tain employment by workplace for each borough (which we refer to as “workplace employment”). Summing across

columns, we obtain employment by residence for each borough (which we refer to as “residence employment”). We also

construct an employment participation rate for each borough in 1921 by dividing residence employment by population.

Population by Residence: We combine our 1921 bilateral commuting data with historical data on population in

Greater London from earlier population censuses from 1801-1911. Assuming that the ratio of residence employment to

population is stable for a given borough over time, we use the 1921 value of this ratio and the historical population data

13This parliamentary exclusion zone explains the location of Euston, King’s Cross and St. Pancras railway terminals all on the Northern side of the
Euston Road. Exceptions were subsequently allowed, often in the form of railway terminals over bridges coming from the south side of the Thames
at Victoria (1858), Charing Cross (1864), Cannon Street (1866), and Ludgate Hill (1864), and also at Waterloo (1848).

14When it opened in 1863, the Metropolitan District Railway used steam locomotives. In contrast, the City and South London Railway was the
first underground line to use electric traction from its opening in 1890 onwards.

15The population census for England and Wales is the first to report bilateral commuting data. In the United States, the 1960 population census is
the first to report any commuting information, and the matrix of bilateral commuting flows between counties is not reported until 1990.

16In the 1921 population census, 96 percent of the workers employed in Greater London also lived in Greater London. Of the remaining 4 percent,
approximately half lived in the surrounding Home Counties, and the remainder lived in other parts of England and Wales. As residence is based on
where one slept on Census night, while workplace is usual place of work, some of this 4 percent could be due to business trips or other travel.
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to construct residence employment for earlier census years.17 Parish boundaries are relatively stable throughout most

of the 19th century, but experience substantial change in the early-twentieth century. For our reduced-form empirical

analysis using the parish-level data, we construct constant parish boundary data every census decade from 1801-1901

using the classification provided by Shaw-Taylor, Davies, Kitson, Newton, Satchell, and Wrigley (2010), as discussed

further in Section J1 of the online appendix. For our quantitative analysis of the model using the borough-level data, we

use constant borough definitions every census decade from 1801-1921 based on the 1921 boundaries. For years prior

to 1921, we allocate the parish-level data to the 1921 boroughs by weighting the values for each parish by its share of

the geographical area of the 1921 borough. Given that parishes have a much smaller geographical area than boroughs,

most parishes lie within a single 1921 borough.

Rateable Values: We measure the value of floor space in Greater London using rateable values, which correspond to

the annual flow of rent for the use of land and buildings, and equals the price times the quantity of floor space in the

model. In particular, these rateable values correspond to “The annual rent which a tenant might reasonably be expected,

taking one year with one another, to pay for a hereditament, if the tenant undertook to pay all usual tenant’s rates and

taxes ... after deducting the probable annual average cost of the repairs, insurance and other expenses” (see London

County Council 1907). With a few minor exceptions, they cover all categories of property, including public services

(such as tramways, electricity works etc), government property (such as courts, parliaments etc), private property (in-

cluding factories, warehouses, wharves, offices, shops, theaters, music halls, clubs, and all residential dwellings), and

other property (including colleges and halls in universities, hospitals and other charity properties, public schools, and

almshouses). All these categories of properties were assessed, regardless of whether or not their owners were liable

for income tax. The main exemptions include roads, canals, railways, mines, quarries, Crown property occupied by the

Crown, and places of divine worship. These rateable values have a long history in England and Wales, dating back to

the 1601 Poor Relief Act, and were used to raise revenue for local public goods. We construct data on the value of land

and buildings for each borough from 1831-1921, as discussed further in Section J2 of the online appendix.

Transport Network: We construct Geographical Information Systems (GIS) data on the transport network in Greater

London over time using historical maps of the overground railway network, the underground railway network, and

the omnibus and tram network, as discussed further in Sections J5-J8 of the online appendix. We measure bilateral

travel times by distinguishing four transport networks based on the historical average travel speeds by transport mode

in London reported in London County Council (1907): (a) overground railways (21 mph); (b) underground railways

(15 mph), (c) omnibuses and trams (6 mph), and (d) walking (3 mph).18 Following Donaldson (2018) and Donaldson

and Hornbeck (2016), we construct bilateral travel times between parish and borough centroids assuming that workers

follow the least cost path in terms of travel time. We assume that workers incur a travel time cost of 3 minutes in

changing between modes of transport and can only connect to the railway network at railway stations.

We denote the sets of points connected to each transport network at time t by =OR
t , =UR

t , and =OT
t , where the super-

scripts OR, UR, and OT indicate overground railways, underground railways, and omnibuses and trams respectively.

Similarly, we denote our vector of assumed travel time weights for each transport network by δ = [1 δUR δOT δWA],

where we normalize the weight for overground railways to one, and the superscript WA indicates walking. Using this
17Empirically, we find relatively little variation in employment participation rates across boroughs in 1921.
18In a robustness check, we find similar results if we instead use the travel speeds for England and Wales as a whole from Leunig (2006).

9



notation, we can write the bilateral travel times between boroughs n and i at time t as dWnit = dWnit(=OR
t ,=UR

t ,=OT
t , δ),

where the superscript W indicates the weighting by transport mode. In our econometric estimation below, we also use

an instrumental variable based on bilateral travel times in which walking is assumed to be the only mode of transport, so

that bilateral travel times depend solely on straight-line distance. We denote these bilateral travel times in the absence

of other modes of transport by dSni, where the superscript S is a mnemonic for straight-line distance.

Historical Employment by Workplace and Commuting Data: We compare our model’s historical predictions for

workplace employment within Greater London with data on the “day population” of the City of London that are avail-

able from the Day Censuses of 1866, 1881, 1891 and 1911.19 In the face of a declining residential population (“night

population”), the City of London Corporation undertook these censuses of the day population to demonstrate its endur-

ing commercial importance. The day population is defined as “... every person, male or female, of all ages, residing,

engaged, occupied, or employed in each and every house, warehouse, shop, manufactory, workshop, counting house,

office, chambers, stable, wharf, etc ... during the working hours of the day, whether they sleep or do not sleep there.”20

In other specification checks, we compare our model’s predictions for commuting distances with historical commuting

data based on the residence addresses of the employees of the tailor Henry Poole, which has been located at the same

workplace address in Savile Row in the City of Westminster since 1822.21

Data for Other Cities: To show that our findings for London are representative of those for other large metropolitan

areas following the improvements in transport technology during the 19th-century, we have also collected historical data

on population, employment and commuting distances for Berlin, Paris, Boston, Chicago, New York, and Philadelphia,

as discussed in further detail in Sections I5 and J11 of the online appendix.

IV. Reduced-Form Evidence

The key economic mechanism underlying our approach is that a reduction in commuting costs facilitates an increased

separation of workplace and residence. In particular, the hub and spoke structure of the railway network dispropor-

tionately reduced commuting costs into central locations within Greater London. If these central locations have high

productivity relative to amenities compared to suburban locations, this improvement in transport technology leads them

to specialize as a workplace, while the suburbs specialize as a residence. Before formalizing this idea in our class of ur-

ban models below, this section provides reduced-form evidence of such a change in patterns of specialization following

the invention of the steam railway.

In subsection IV.A., we first show that population declines in the City of London and rises in the suburbs following

the expansion of the railway network. We then establish that this decline in the City of London’s population is combined

with an increase in its employment. We next demonstrate that this change in specialization from a residence to a

workplace makes the City of London a relatively more valuable location, as reflected in a higher share of the value of

land and buildings, before this share again declines as a result of the expansion in the total area of developed land. In

subsection IV.B., we report difference-in-differences event-study specifications that tighten the connection between the

19For further discussion of the City of London Day Censuses, see Section J4 of the online appendix.
20Salmon (1891), page 97.
21For further discussion of the Henry Poole data, see Section J9 of the online appendix and Green (1988).
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timing of the expansion of the railway network and the changes in the spatial distribution of population. In subsection

IV.C., we confirm that our findings for London are representative of those for other large metropolitan areas.

IV.A. City Size and Structure over Time

We begin by illustrating the dramatic changes in the internal structure of economic activity within Greater London

between 1801 and 1921. In Figure II, we display residential population over time for the City of London (left panel)

and Greater London (right panel). In each case, population is expressed as an index relative to its value in 1801 (such

that 1801=1). In the first half of the 19th century, population in the City of London was relatively constant (at around

130,000), while population in Greater London grew substantially (from 1.14 million to 2.69 million). From 1851

onwards, there is a sharp drop in population in the City of London, which falls by around 90 percent to 13,709 in 1921.

Over the same period, the population of Greater London as a whole continues to grow rapidly from 2.69 million in

1851 to 7.39 million in 1921.22 Therefore, consistent with the expansion of the railway network after 1836 facilitating

a dispersion of population to the suburbs, we find a precipitous drop in population in the most central parts of Greater

London, combined with a rapid increase in population for the metropolitan area as a whole.

In the left panel of Figure III, we again show the City of London’s residential (or “night”) population, but now as

thousands of people rather than an index. Alongside, we also display its day population, as reported in the City of

London Day Censuses, except for the 1921 figure, which is workplace employment from our bilateral commuting data

for 1921. Consistent with the City of London increasingly specializing as a workplace, we find that the steep decline in

its night population from 1851 onwards coincides with a sharp rise in its day population. This evidence of an increasing

specialization of locations as either workplaces or residences is also consistent with a sharp rise in public transport

journeys per head of population from around 7 in 1834 to just under 400 in 1921, as shown in Figure I.1 in Section I1

of the online appendix.

To examine the implications of this change in specialization for the value of land and buildings, the right panel of

Figure III displays the City of London’s share of Greater London’s rateable value over time. In the early-19th century,

this share declines from around 14 to 9 percent, which is consistent with a geographical expansion in the built-up area of

Greater London. As this expansion occurs, and undeveloped land becomes developed, the share of already-developed

land in overall land values tends to fall, because the denominator of this share increases. In contrast to this pattern, in the

years after 1851 when the City of London experiences the largest declines in its residential population, its rateable value

share increases from 9 to 11 percent. Finally, in the decades at the end of the 19th century, the pattern of a decline in

this rateable value share again reasserts itself, consistent with the continuing geographical expansion in the built-up area

of Greater London. Therefore, the change in the City of London’s pattern of specialization in the decades immediately

after 1851 increases the relative value of this location.

Finally, in Figure IVa, we compare the evolution of the City of London’s population over time to an index of the

reduction in rail travel times from other London boroughs to the City. To compute this index, we calculate the bilateral

reduction in travel time from the railway network between all other boroughs and the City, measured as travel time

with the railway network in a census year divided by the travel time before the arrival of the railways. The index is

a weighted sum of these bilateral travel time reductions, where the weights are the population of the origin boroughs

22Although the second decade of the twentieth century spans the First World War from 1914-18, the primitive nature of aircraft and airship
technology at that time ensured that Greater London experienced little bombing and destruction (see for example White 2008).
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in each census year. Following the construction of the first railway in 1836, we observe a sharp reduction in the City

of London’s population-weighted average travel times to other boroughs, which is followed shortly thereafter by the

precipitous decline in its population discussed above. Although the decline in population-weighted average travel times

slightly leads the decline in the City’s of London’s population, both follow a similar trajectory, with their rates of decline

slowing towards the end of the 19th century and beginning of the 20th century.

IV.B. Difference-in-Differences Event-Study Specification

In this subsection, we provide further reduced-form evidence on the timing of changes in population growth relative

to the construction of the railway network using a difference-in-differences event-study specification and our spatially-

disaggregated parish-level data for Greater London from 1801-1901. The main identification challenge in examining

the relationship between population growth and the construction of the railway network is that railways are unlikely to

be randomly assigned, because they were built by private-sector companies, whose stated objective was to maximize

shareholder value. As a result, parishes in which economic activity would have grown for other reasons could be

more likely to be assigned railways. We address this identification challenge by considering event-study specifications

that include both a parish fixed effect and a parish time trend, and examining the relationship between the timing of

deviations from these parish trends and the arrival of the railway.

A key prediction of our economic mechanism of specialization as workplaces or residences is that the treatment

effect of the railway network on residential population should be heterogeneous, depending on whether parishes are

located in the center or suburbs of Greater London. As a first step, and to provide a point of comparison, we begin

by estimating a common average treatment effect for Greater London as a whole, before extending this specification to

allow for heterogeneous treatment effects. In particular, we consider the following baseline specification:

lnRjt = αj +

τ=60∑
τ=−60

βτ (Sj × Ijτ ) + (µj × Yeart) + dt + ujt (1)

where j indexes parishes; t indicates the census year; Rjt is parish population; αj is a parish fixed effect; Sj is an

indicator variable that equals one if a parish has an overground or underground railway station in at least one census

year during our sample period;23 τ is a treatment year indicator, which equals the census year minus the last census year

in which a parish had no railway station;24 Ijτ is an indicator variable that equals one in treatment year τ in parish j

and zero otherwise; the excluded category is treatment year τ = 0; Yeart is a census-year trend; µj is a parish-specific

coefficient on this census-year trend; dt is a census-year dummy; and ujt is a stochastic error. One of the parish-specific

census-year trends is colinear with the census-year dummies and hence is omitted without loss of generality. In our

baseline specification, we cluster the standard errors on boroughs, which allows the error term to be serially correlated

within parishes over time and to be spatially-correlated across parishes within boroughs.25

In this specification, the inclusion of the parish fixed effects (αj) allows parishes treated with a railway to have

higher population levels than other parishes in all years (both before and after the arrival of the railway). The census-year
23In our baseline specification, we combine both overground and underground railways, although we find a similar pattern of results in robustness

checks using only overground railways.
24Therefore, τ = 0 corresponds to the last year in which a parish had no railway and positive values of τ correspond to post-treatment years. For

example, if the railway arrives in a parish in 1836, census year 1831 corresponds to τ = 0, and census year 1841 corresponds to τ = 10.
25In Table I.2 in Section I2 of the online appendix, we show that we typically find somewhat smaller standard errors if we instead cluster on

parish, which only allows the error term to be serially correlated within parishes over time. We also experimented with Heteroskedasticity and
Autocorrelation Consistent (HAC) standard errors following Conley (1999), and again found these to be typically smaller than the standard errors
clustered on borough in our baseline specification.
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dummies (dt) control for secular changes in population across all parishes, including the aggregate growth of Greater

London. The parish-specific census-year trends (µj × Yeart) allow parishes treated with a railway to have higher trend

population growth than other parishes in all years (both before and after the arrival of the railway). The key coefficients

of interest (βτ ) are those on the interaction terms between the railway indicator (Sj) and the treatment year indicator

(Ijτ ), which capture the treatment effect of a railway on population in parish j in treatment year τ . They correspond to

deviations from the parish-specific census-year trends and have a “difference-in-differences” interpretation, where the

first difference compares treated to untreated parishes, and the second difference undertakes this comparison before and

after the arrival of the railway.

In our baseline specification, we include six interaction terms for decades from 10 to 60 years before and after a

parish receives a railway station. The inclusion of these interactions both before and after the arrival of a railway station

allows us to check non-parametrically the extent to which these deviations from the parish-specific census-year trends

coincide with the arrival of the railway. We aggregate treatment years more than 60 years before and more than 60

years after the arrival of a railway station to ensure that these initial and final categories have a sufficient number of

observations.26 As the railway arrives in some parishes in a different calendar years from others, parishes differ in terms

of the number of treatment years before and after the arrival of a railway station. Therefore, as we vary the number of

years before and after the treatment, we change the composition of the treatment group of parishes. In Section I2 of

the online appendix, we report a robustness test in which we hold the composition of this treatment group constant, by

restricting attention to treatment windows 30 years before and after the arrival of a railway station, and dropping any

treated parishes with less than 30 years before and after the arrival of a railway station.

In the top panel of Figure V, we display the estimated treatment effects (βτ ) from equation (1) and the 95 percent

confidence intervals, with the full regression results reported in Table I.1 in Section I2 of the online appendix. We

find positive and significant deviations in log population from the parish-specific time trends immediately after the

arrival of the railway and no evidence of significant deviations from these trends before the arrival of the railway. This

pattern of results provides strong evidence that the changes in population growth occur immediately after the arrival of

the railway and suggests that the parish fixed effects and time trends largely control for the non-random placement of

the railway. We next generalize this baseline specification to allow for heterogeneous treatment effects, distinguishing

between parishes in the center of Greater London and those in its outlying suburbs:

logRjt = αj +

τ=60∑
τ=−60

βτ (Sj × Ijτ ) +

τ=30∑
τ=−30

γτ
(
Sj × Ijτ × ICenter

j

)
+ dt + ujt, (2)

where ICenter
j is an indicator variable that equals one for parishes in central London and zero otherwise; the railway

treatment effect for parishes in central London is now given by (βτ + γτ ); and the railway treatment effect for other

parts of Greater London remains equal to βτ .

In this specification allowing for heterogeneous treatment effects, we consider two definitions of central London,

one based on parishes in the City of London, and another based on parishes with centroids within five kilometers of

the Guildhall in the center of the City of London. A legacy of the parliamentary exclusion zone is that relatively few
26As the first railway was constructed in 1836, the maximum possible value for τ is 70 for parishes that receive a railway station before 1841,

for which τ = 10 in 1841 and τ = 70 in 1901. Similarly, as our parish-level sample ends in 1901, the minimum possible value for τ is -90 for
parishes that receive a railway after 1891, for which τ = 10 in 1901 and τ = −90 in 1801. Of our 3,113 (283× 11) parish-year observations, 1,408
involve parishes that have a railway station in at least one census year during the sample period. The distribution of these 1,408 observations across
the treatment years is: τ <= −60 (133); τ = −50 (83) ; τ = −40 (106); τ = −30 (128); τ = −20 (128); τ = −10 (128); τ = 0 (128); τ = 10
(128); τ = 20 (119); τ = 30 (104); τ = 40 (96); τ = 50 (60); and τ >= 60 (67).
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parishes within the City of London are treated with overground railways. Furthermore, the treatments for underground

railways occur relatively late in the sample period. For both of these reasons, there is a relatively short interval after the

arrival of railway stations in these parishes. Therefore, we only include interaction terms for 30 years before and after

a parish receives a railway station for parishes in central London.27

In the middle and lower panels of Figure V, we display the estimated treatment effects (βτ ) and (γτ ) respectively

from equation (2) and the 95 percent confidence intervals, with the full regression results again reported in Table I.1 in

Section I2 of the online appendix. The first specification (gray circle markers) shows results using the City of London

as our definition of Central London. The second specification (black triangle markers) shows results using parishes with

centroids within 5 kilometers of the Guildhall as our definition of central London. In both cases, we find positive and

statistically significant treatment effects for the outer parts of Greater London in the middle panel, which are marginally

larger than those shown in the top panel. For both specifications, we also find that the estimated treatment effects for

central London are substantially and significantly smaller than those for the outer parts of Greater London, as shown in

the lower panel. In Table I.3 in Section I2 of the online appendix, we show that we find the same pattern of results using

our subsample with a constant composition of the treatment group over the period 30 years before and after the arrival

of a railway station.

For both outer and central London, we find estimated treatment effects that increase in absolute magnitude over time

up to 60 years after the arrival of the railway. One reason could be that the value of a connection to the railway network

increases over time as the network expands. To examine this possibility, we use a measure of travel time reductions

similar to that introduced in Section IV.A. above. First, we compute the bilateral reduction in travel time from the

railway network between each pair of parishes in each year, measured as travel time with no railways divided by travel

time with railways (the inverse of the measure of the fall in travel times used in Figure IVa). Second, we calculate for

each parish the population-weighted average of these reductions in travel times to other parishes. In census years before

the construction of any railway lines, this variable is equal to one for all parishes. In census years after the construction

of the first railway, this variable is greater than or equal to one, with higher values corresponding to greater reductions

in travel time. As our model predicts heterogeneous effects of reductions in travel time on parish population, depending

on whether a parish is located in the center or the suburbs, we include both the log of this variable and its interaction

with the log of distance from the Guildhall in the center of the City of London.

Consistent with our economic mechanism, we find a negative and significant coefficient on the population-weighted

average reduction in travel time from the construction of the railway network, and a positive and significant coeffi-

cient on its interaction with distance from the Guildhall, as reported in Table I.1 in Section I2 of the online appendix.

Therefore, after conditioning on our railway-treatment-year interactions, we find that reductions in travel times decrease

population growth in central London and increase population growth in the outlying suburbs of Greater London. In the

middle and lower panels of Figure V, the third specification (gray triangle markers) shows the corresponding estimated

coefficients on these railway-treatment-year interactions. Comparing with the first and second specifications in these

panels, we find that the estimated treatment effects fall by around one half and are often no longer statistically signif-

icant once we control for our travel time measure and its interaction with distance from the Guildhall, consistent with

an important role for the reductions in travel times from the expansion of the railway network.
27Of the 1,221 (111 × 11) parish-year observations for the City of London, only 154 of these observations involve parishes that have a railway

station in at least one census year during the sample period. The distribution of these 154 observations across the treatment years is τ <= −30 (73);
τ = −20 (14) ; τ = −10 (14); τ = 0 (14); τ = 10 (14); τ = 20 (11) and τ >= 30 (14).
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The fact that some of the estimated coefficients on the railway-treatment-year interactions remain significant and

continue to increase in magnitude over time has two sets of natural explanations within our class of urban models

below. First, population-weighted average travel time reductions are not in general a sufficient statistic in these models

for residence choice probabilities, which also depend on changes in wages, the price of floor space, productivity and

amenities. Therefore the continued significance of the railway-treatment-year interactions could reflect the omission of

controls for these other variables. Second, there could be a gradual response to the construction of the railway network,

because of adjustment costs for investments in durable building capital. In Section F of the online appendix, we develop

a dynamic model that features a gradual response because of such adjustment costs, and show that it falls within the

class of urban models for which our baseline quantitative analysis holds.

In Section I3 of the online appendix, we report a robustness check using an alternative non-parametric specification,

in which we estimate a separate railway treatment effect for each parish, using constant composition 30-year windows

before and after the arrival of a railway station. Again this specification has a “difference-in-differences” interpretation,

in which the railway treatment effect is identified from deviations from parish-specific time trends. Although we do not

impose any relationship with geographical location, we find that these estimates exhibit a sharp non-linear relationship

with distance from the Guildhall, with parishes close to the center of London experiencing decreased population growth

relative to trend, and outlying parishes experiencing increased population growth relative to trend.

Therefore, these event-study results provide further support for the idea that the reduction in population growth in

central London and its increase in the outlying parts of Greater London is closely connected to the railway. Indeed

it is hard to think of confounding factors that are timed to coincide precisely with the arrival of the railway, and are

structured to have exactly the same pattern of opposite effects on population in inner versus outer London.

IV.C. External Validity and Generalizability

A key advantage of our empirical setting of Greater London is the existence of rich historical data before and after

the arrival of the railway and the availability of bilateral commuting data for 1921. In this section, we confirm that

our findings for London are representative of those for other large metropolitan areas following the improvement in

transport technology from the invention of the steam railway during the 19th century.

In Section I5 of the online appendix, we show that the same pattern of declining downtown population and rising

metropolitan area population is observed for Berlin, Paris, Boston, Chicago, New York, and Philadelphia. We also

provide evidence that the same mechanism of a change in specialization of the central city from a residence to a

workplace operates for these other cities. Using workplace census data for Berlin, we show that the decline in population

in the central city is accompanied by a rise in employment by workplace. Using journey-to-work data for Boston, New

York and Philadelphia, we show that the decline in downtown population and increase in metropolitan area population

involves an increase in the distances travelled to work in the central city.

Taken together, these findings paint a remarkably consistent picture across a wide range of different contexts. Our

findings are also in line with the discussion in the existing economic history literature of a change in specialization of

central cities from residential to commercial activity following 19th-century transport improvements, including Leyden

(1933). Warner (1978), Hershberg (1981), Jackson (1987), Fogelson (2003), and Angel and Lamson-Hall (2014).
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V. Theoretical Framework

We now develop our theoretical framework to rationalize these observed changes in the organization of economic

activity within Greater London. We show that this theoretical framework encompasses an entire class of urban models

that satisfy the following three properties: (i) a gravity equation for bilateral commuting flows; (ii) land market clearing,

such that income from the ownership of floor space equals the sum of payments for residential and commercial floor

space; (iii) payments for residential floor space are a constant multiple of residence income (the total income of all

residents) and payments for commercial floor space are a constant multiple of workplace income (the total income of

all workers). Within this class of models, workplace incomes are sufficient statistics for the demand for commercial

floor space; residence incomes are sufficient statistics for the demand for residential floor space; and commuting costs

regulate the difference between workplace and residence incomes.

In Section D of the online appendix, we develop a number of isomorphisms, in which we show that this class of

urban models encompasses a wide range of different assumptions about consumption, production, goods’ trade costs

and the supply of floor space: (i) the canonical urban model with a single final good and costless trade (as in Lucas and

Rossi-Hansberg 2002 and Ahlfeldt, Redding, Sturm, and Wolf 2015); (ii) an extension of the canonical urban model

to incorporate non-traded goods; (iii) multiple final goods with costly trade and Ricardian technology differences (as

in Eaton and Kortum 2002 and Redding 2016); (iv) final goods that are differentiated by origin with costly trade (as

in Armington 1969, Allen and Arkolakis 2014 and Allen, Arkolakis, and Li 2017); (v) horizontally-differentiated firm

varieties with costly trade (as in Helpman 1998, Redding and Sturm 2008, and Monte, Redding, and Rossi-Hansberg

2018). In Section F of the online appendix, we show that our approach also encompasses a dynamic model, in which

there is a gradual response to the new transport technology, because of adjustment costs for investments in durable

building capital. In this setting, the spatial distribution of economic activity responds sluggishly to the new transport

technology, but our baseline quantitative analysis continues to hold. The reason is that this gradual response is captured

in the observed historical population and rateable values and our baseline quantitative analysis conditions on these

variables.

We consider a city (Greater London) that is embedded within a wider economy (Great Britain). The economy as a

whole consists of a discrete set of locations M. Greater London comprises a subset of these locations N ⊂ M. Time is

discrete and is indexed by t. In our data for 1921, we only observe aggregate bilateral commuting flows for all workers

together. Furthermore, the main effect of the steam railway was to permit the first large-scale separation of workplace

and residence for workers in all occupations and industries. Therefore, we abstract from ex ante heterogeneity across

different types of workers in the model by assuming a single worker type, although we do allow for ex post idiosyncratic

heterogeneity across workers.28 The economy as a whole is populated by an exogenous continuous measure LMt of

workers, who are geographically mobile and endowed with one unit of labor that is supplied inelastically. Workers

simultaneously choose their preferred residence n and workplace i given their idiosyncratic draws.29 With a continuous

measure of workers, the law of large numbers applies, and the expected values of variables for a given residence and

28In Section I4 of the online appendix, we provide further evidence that commuting is pervasive across workers in all occupations and industries.
First, we combine our 1921 bilateral commuting data with 1911 data on occupation by residence to show that there is little relationship between the
shares of occupations in employment by residence and net inflows and outflows of commuters as a share of employment and residents. Second, we
use data on occupation by residence back to the mid-19th century to show that there is an increase over time in the average distance of residences
from the Guildhall in the center of the City of London for workers in all occupations.

29To ease the exposition, we typically use n for residence and i for workplace, except where otherwise indicated.
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workplace equal their realized values. Motivated by the fact that net commuting into Greater London is small even

in 1921, we assume prohibitive commuting costs across the boundaries of Greater London. Therefore, each worker

chooses a residence-workplace pair either in Greater London or in the rest of the economy. We denote the endogenous

measure of workers who choose a residence-workplace pair in Greater London by LNt. We allow locations to differ

from one another in terms of their attractiveness for production and residence, as determined by productivity, amenities,

the supply of floor space, and transport connections, where each of these location characteristics can evolve over time.

V.A. Preferences

Worker preferences are defined over consumption goods and residential floor space. We assume that these preferences

take the Cobb-Douglas form, such that the indirect utility for a worker ω residing in n and working in i is:30

Uni (ω) =
Bnibni(ω)wi

κniPαnQ
1−α
n

, 0 < α < 1, (3)

where we suppress the time subscript from now onwards, except where important; Pn is the price index for consumption

goods, which may include both tradeable and non-tradeable consumption goods; Qn is the price of residential floor

space; wi is the wage; κni is an iceberg commuting cost; Bni captures amenities from the bilateral commute from

residence n to workplace i that are common across all workers; and bni(ω) is an idiosyncratic amenity draw that captures

all the idiosyncratic factors that can cause an individual to live and work in particular locations within the city.31 Each

of the isomorphisms in Section D of the online appendix involves a different specification for the consumption price

index (Pn). We show below that our baseline quantitative approach holds regardless of which of these specifications for

the consumption price index (Pn) is chosen.

We assume that idiosyncratic amenities (bni(ω)) are drawn from an independent extreme value (Fréchet) distribution

for each residence-workplace pair and each worker:

G(b) = e−b
−ε
, ε > 1, (4)

where we normalize the Fréchet scale parameter in equation (4) to one, because it enters worker choice probabilities iso-

morphically to common bilateral amenities Bni in equation (3); the Fréchet shape parameter ε regulates the dispersion

of idiosyncratic amenities, which controls the sensitivity of worker location decisions to economic variables (e.g. wages

and the cost of living). The smaller the shape parameter ε, the greater the heterogeneity in idiosyncratic amenities, and

the less sensitive are worker location decisions to economic variables.

We allow the common amenities (Bni) to vary bilaterally to capture the fact that the attractiveness of a given

commute may depend on characteristics of both the workplace and the residence. In particular, we decompose this

bilateral common amenities parameter (Bni) into a residence component that is common across all workplaces (BRn ), a

workplace component that is common across all residences (BLi ), and an idiosyncratic component (BIni) that is specific

to an individual residence-workplace pair:

Bni = BRnBLi BIni, BRn ,BLi ,BIni > 0. (5)

30For empirical evidence using US data in support of the constant housing expenditure share implied by the Cobb-Douglas functional form, see
Davis and Ortalo-Magné (2011).

31Although we model the idiosyncratic heterogeneity in worker preferences (bni(ω)), there is a closely-related formulation in terms of heterogene-
ity in worker productivity (effective units of labor), as discussed in Section E of the online appendix. Similarly, although we model commuting costs
(κni) in terms of utility, they enter the indirect utility function (3) multiplicatively with the wage, which implies that there is also a closely-related
formulation in terms of the opportunity cost of time spent commuting.
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We allow the levels of BRn , BLi and BIni to differ across residences n and workplaces i, although when we examine

the impact of the construction of the railway network, we assume that BLi and BIni are time invariant. In contrast, we

allow BRn to change over time, and for these changes to be potentially endogenous to the evolution of the surrounding

concentration of economic activity through agglomeration forces, as discussed further below.

Conditional on choosing a residence-workplace pair in Greater London, we show in Section C of the online appendix

that the probability a worker chooses to reside in location n ∈ N and work in location i ∈ N is given by:

λni =
Lni/LM

LN/LM
=
Lni
LN

=
(Bniwi)

ε (
κniP

α
nQ

1−α
n

)−ε∑
k∈N

∑
`∈N (Bk`w`)

ε (
κr`Pαk Q

1−α
k

)−ε , n, i ∈ N, (6)

where Lni is the measure of commuters from n to i.32

A first implication of our extreme value specification for idiosyncratic amenities is that bilateral commuting flows

in equation (6) satisfy a gravity equation. Therefore, the probability of commuting between residence n and workplace

i depends on the characteristics of that residence n, the attributes of that workplace i and bilateral commuting costs and

amenities (“bilateral resistance”). Furthermore, this probability also depends on the characteristics of all residences k,

all workplaces ` and all bilateral commuting costs (“multilateral resistance”).

Summing across workplaces i ∈ N, we obtain the probability that a worker lives in residence n ∈ N, conditional on

choosing a residence-workplace pair in Greater London (λRn = Rn/LN). Similarly, summing across residences n ∈ N,

we obtain the probability that a worker is employed in workplace i ∈ N, conditional on choosing a residence-workplace

pair in Greater London (λLi = Li/LN):

λRn =

∑
i∈N (Bniwi)

ε (
κniP

α
nQ

1−α
n

)−ε∑
k∈N

∑
`∈N (Bk`w`)

ε (
κk`Pαk Q

1−α
k

)−ε , λLi =

∑
n∈N (Bniwi)

ε (
κniP

α
nQ

1−α
n

)−ε∑
k∈N

∑
`∈N (Bk`w`)

ε (
κk`Pαk Q

1−α
k

)−ε , (7)

where Rn denotes employment by residence in location n and Li denotes employment by workplace in location i.

A second implication of our extreme value specification is that expected utility conditional on choosing a residence-

workplace pair (Ū ) is the same across all residence-workplace pairs in the economy:

Ū = ϑ

[∑
k∈M

∑
`∈M

(Bk`w`)
ε (
κk`P

α
k Q

1−α
k

)−ε] 1
ε

, (8)

where the expectation is taken over the distribution for idiosyncratic amenities; ϑ ≡ Γ((ε − 1)/ε); Γ(·) is the Gamma

function; and this result is derived in Section C2 of the online appendix. Using the probability that a worker chooses a

residence-workplace pair in Greater London (LN/LM), we can rewrite this population mobility condition as:

Ū

(
LN

LM

) 1
ε

= ϑ

[∑
k∈N

∑
`∈N

(Bk`w`)
ε (
κk`P

α
k Q

1−α
k

)−ε] 1
ε

, (9)

where only the limits of the summations differ on the right-hand sides of equations (8) and (9).

Intuitively, for a given common level of expected utility in the economy (Ū ), locations in Greater London must

offer higher real wages adjusted for common amenities (Bni) and commuting costs (κni) to attract workers with lower

idiosyncratic draws (thereby raising LN/LM), with an elasticity determined by the parameter ε.

32While we assume that workers make location decisions, we allow each worker to have non-working dependents, where we choose the ratio of
workers to non-working dependents to match the ratio of residence employment to population in our census data.
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V.B. Production

We assume that consumption goods are produced according to a Cobb-Douglas technology using labor, machinery

capital and commercial floor space, where commercial floor space includes both building capital and land. We allow

for Hicks-neutral productivity differences across locations, which can be potentially endogenous to the surrounding

concentration of economic activity. Cost minimization and zero profits imply that payments for labor, commercial floor

space and machinery are constant shares of revenue (Xi):

wiLi = βLXi, qiH
L
i = βHXi, rMi = βMXi, βL + βH + βM = 1, (10)

where qi is the price of commercial floor space; HL
i is commercial floor space use; Mi is machinery use; and machinery

is assumed to be perfectly mobile across locations with a common price r determined in the wider economy. Each of

the isomorphisms in Section D of the online appendix involves a different specification for consumption, production

and trade costs that affects the determination of revenue (Xi). We show below that our baseline quantitative approach

holds regardless of which of these different specifications is used to determine revenue.

Although an advantage of our empirical setting is the absence of any large-scale urban planning in 19th-century

London, we allow the price of commercial floor space (qi) to potentially depart from the price of residential floor space

(Qi) in each location i through a location-specific wedge (ξi):

qi = ξiQi. (11)

From the relationship between factor payments and revenue in equation (10), payments for commercial floor space are

proportional to workplace income (wiLi):

qiH
L
i =

βH

βL
wiLi. (12)

V.C. Commuter Market Clearing

Commuter market clearing implies that the measure of workers employed in each location (Li) equals the measure of

workers choosing to commute to that location:

Li =
∑
n∈N

λRni|nRn, (13)

where λRni|n is the probability of commuting to workplace i conditional on living in residence n:

λRni|n =
λni
λRn

=
(Bniwi/κni)

ε∑
`∈N (Bn`w`/κn`)

ε , (14)

where all characteristics of residence n (namely Qn and Pn) have cancelled from the above equation, because they do

not vary across workplaces for a given residence.

Commuter market clearing also implies that per capita income by residence (vn) is a weighted average of the wages

in all locations, where the weights are these conditional commuting probabilities by residence (λRni|n):

vn =
∑
i∈N

λRni|nwi. (15)
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V.D. Land Market Clearing

We assume that floor space is owned by landlords, who receive payments from the residential and commercial use of

floor space, and consume only consumption goods. Land market clearing implies that total income from the ownership

of floor space equals the sum of payments for residential and commercial floor space use:

Qn = QnH
R
n + qnH

L
n = (1− α)

[∑
i∈N

λRni|nwi

]
Rn +

βH

βL
wnLn, (16)

whereHR
n is residential floor space use; rateable values (Qn) equal the sum of prices times quantities for both residential

floor space (QnHR
n ) and commercial floor space (qnHL

n ); and we have used the expression for per capita income by

residence (vn) from the commuter market clearing in equation (15).

From this combined land and commuter market clearing condition (16), payments for residential floor space are

a constant multiple of residence income (vnRn), and payments for commercial floor space are a constant multiple of

workplace income (wnLn). Importantly, we allow the supplies of residential floor space (HR
n ) and commercial floor

space (HL
n ) to be endogenous, and we allow the prices of residential and commercial floor space to potentially differ

from one another through the location-specific wedge ξi (qi = ξiQi). In our baseline quantitative analysis below, we are

not required to make assumptions about these supplies of residential and commercial floor space or this wedge between

commercial and residential floor prices. The reason is that we condition on the observed rateable values in the data (Qn)

and the supplies and prices for residential and commercial floor space (HR
n , HL

n , Qn, qn) only enter the land market

clearing condition (16) through these observed rateable values.

VI. Quantitative Analysis

In this section, we undertake our baseline quantitative analysis. In Subsection VI.A., we introduce our general method-

ology, in which we use our combined land and commuter market clearing condition to evaluate the impact of changes

in the transport network on the spatial distribution of economic activity. In the remaining Subsections VI.B.-VI.F., we

implement this general methodology using our observed data for London. In particular, we use our bilateral commuting

data for our baseline line year of t = 1921, the changes in residence employment and rateable values going back to the

early-19th century in the data, and our estimates of changes in commuting costs to generate predictions for employment

by workplace and commuting patterns back to the early-19th century.

VI.A. Combined Land and Commuter Market Clearing

We evaluate the impact of changes in the transport network by using an “exact hat algebra” approach similar to that used

in the quantitative international trade literature following Dekle, Eaton, and Kortum (2007). In particular, we rewrite our

combined land and commuter market clearing condition (16) for another year τ 6= t in terms of the values of variables

in a baseline year of t and the relative changes of variables between years τ and t:

Q̂ntQnt = (1− α)v̂ntvntR̂ntRnt +
βH

βL
ŵntwntL̂ntLnt, (17)

where x̂nt = xnτ/xnt for the variable xnt and we now make explicit the time subscripts. Similarly, using equations

(13), (14) and (15), the relative change in employment (L̂it) and the relative change in average per capita income by
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residence (v̂nt) for year τ can be expressed as:

L̂itLit =
∑
n∈N

λRnit|nŵ
ε
itκ̂
−ε
nit∑

`∈N λ
R
n`t|nŵ

ε
`tκ̂
−ε
n`t

R̂ntRnt. (18)

v̂ntvnt =
∑
i∈N

λRnit|nŵ
ε
itκ̂
−ε
nit∑

`∈N λ
R
n`t|nŵ

ε
`tκ̂
−ε
n`t

ŵitwit, (19)

where these equations include terms in changes in wages (ŵn) and commuting costs (κ̂ni) but not in amenities, because

we assume that the workplace and bilateral components of amenities are constant (B̂Lit = 1 and B̂Init = 1), and changes

in the residential component of amenities (B̂Rnt 6= 1) cancel from the numerator and denominator of the fractions.

Using equations (18) and (19) to substitute for the terms in employment (L̂ntLnt) and expected income by residence

(v̂ntvnt) in equation (17), we obtain our combined land and commuter market clearing condition for year τ :

Q̂ntQnt = (1− α)

[∑
i∈N

λRnit|nŵ
ε
itκ̂
−ε
nit∑

`∈N λ
R
n`t|nŵ

ε
`tκ̂
−ε
n`t

ŵitwit

]
R̂ntRnt

+βH

βL
ŵntwnt

[∑
i∈N

λRint|iŵ
ε
ntκ̂
−ε
int∑

`∈N λ
R
i`t|iŵ

ε
`tκ̂
−ε
i`t

R̂itRit

]
.

(20)

Suppose that we observe the values of all variables in the initial equilibrium in our baseline year of t: the commuting

probabilities conditional on residence (λRnit|n), employment (Lnt), residents (Rnt), wages (wnt), and average per capita

income by residence (vnt). Suppose also that we observe relative changes in residents (R̂nt) and rateable values (Q̂nt)

between years τ and t. Given these observed variables and known values for changes in commuting costs (κ̂−εnit), this

combined land and commuter market clearing condition (20) provides a system of N equations that determines unique

values for the N unknown relative changes in wages in each location (ŵnt).

Lemma 1 Suppose that (Q̂nt, R̂nt, Lnit, λRnit|n, Qnt, vnt, Rnt, wnt, Lnt) are known. Given known values for model

parameters {α, βL, βH , ε} and the change in bilateral commuting costs (κ̂−εnit), the combined land and commuter

market clearing condition (20) determines a unique vector of relative changes in wages (ŵnt) in each location.

Proof. See Section B of the online appendix.

Using these solutions for the relative changes in wages (ŵnt), we can immediately recover the unique relative

change in employment (L̂nt) from the commuter market equilibrium condition (18). Similarly, we can solve for the

unique relative change in average per capita income by residence (v̂nt) from equation (19). Finally, we can obtain the

unique relative change in commuting flows (L̂nit) using the conditional commuting probabilities (14):

L̂nitLnit =
λRnit|nŵ

ε
itκ̂
−ε
nit∑

`∈N λ
R
n`t|nŵ

ε
`tκ̂
−ε
n`t

R̂ntRnt. (21)

Combining these estimates of relative changes in wages, workplace employment and commuting flows {ŵit, L̂it, L̂nit}

with the values of these variables in our baseline year of t {wit, Lit, Lnit}, we immediately recover wages, workplace

employment and commuting flows in another year τ 6= t {wiτ , Liτ , Lniτ}.

Our combined land and commuter market clearing condition (20) makes clear why our approach holds in the entire

class of urban models discussed above and examined in Section D of the online appendix. As long as payments for

residential floor space are proportional to residence income, payments for commercial floor space are proportional to

workplace income, and gravity in commuting holds, we are not required to make assumptions about other determinants
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of economic activity, such as goods’ trade costs, productivity, residential amenities, consumption goods price indexes,

market structure, agglomeration forces, expected utility in the wider economy, the floor space supply elasticity, or

adjustment costs in the construction sector. In our combined land and commuter market clearing condition (20), the

observed changes in rateable values and residents are sufficient statistics within this class of models that control for

changes in these other determinants of economic activity.

A final advantage of conditioning on the observed commuting probabilities conditional on residence (λRnit|n) in our

baseline year of t in equation (20) is that these observed probabilities control for unobserved differences in the level of

bilateral commuting costs across residence-workplace pairs. When we undertake our comparative static for removing

the railway network in earlier years τ < t, bilateral commuting flows necessarily remain zero for earlier years τ < t

for all pairs of boroughs with zero flows in our baseline year (λRnit|n = 0), which is consistent with the much more

primitive commuting technology in earlier decades going back to the beginning of the 19th century.

VI.B. Commuting Probabilities (Step 1)

We now apply this general methodology to the construction of the railway network in 19th-century London. In a

first step, we use the observed data on bilateral commuting flows (Lnit) from the population census in our baseline

year t = 1921 to directly compute the following variables in that baseline year: (i) total city employment, Lt =∑
n∈N

∑
i∈N Lnit; (ii) the commuting probability conditional on choosing a workplace-residence pair in Greater Lon-

don, λnit = Lnit/LNt; (iii) workplace employment, Lit =
∑
n∈N Lnit; (iv) residence employment, Rnt =

∑
i∈N Lnit;

(v) the commuting probabilities conditional on residence, λRnit|n = Lnit/Rnt.

VI.C. Wages in the Initial Equilibrium (Step 2)

In a second step, we solve for wages (wnt) and average per capita income by residence (vnt) in the initial equilibrium in

year t = 1921 using the observed workplace employment (Lnt), residence employment (Rnt) and rateable values (Qnt).

In order to do so, we calibrate the model’s utility and production function parameters based on historical data for our

sample period. First, we assume a value for the share of housing in consumer expenditure of 1−α = 0.25, which equals

the average share of rent in income across occupations in the Registrar General’s survey of 30,000 workers in Greater

London in 1887, as reported to the House of Commons (Parliamentary Papers 1887).33 Second, we assume a value for

the share of labor in production costs of βL = 0.55, which lies in the middle of the range of 0.43-0.63 considered for

the period 1770-1860 in Antrás and Voth (2003).34 Third, we assume a share of machinery and equipment in production

costs of βK = 0.20, and a share of land and building structures in production costs of βH = 0.25, which are in line

with the data on factor shares for 1856-1913 reported in Matthews, Feinstein, and Odling-Smee (1982), as discussed

further in Section J10 of the data appendix.

Given values for these parameters, our combined land and commuter market clearing condition (16) for our baseline

year of t = 1921 provides a system ofN equations in theN unknown wages (wnt). As this system of equations is linear

in the unknown wages (wnt), it determines a unique equilibrium value for the wage in each location in our baseline year

(wnt), as long as the rows of the observed matrix of bilateral commuting flows (Lnit) are linearly independent. Using
33See Section J10 of the data appendix for further discussion of these data and a comparison with other potential sources of historical data on the

share of rent in income. Consistent with our assumption of Cobb-Douglas preferences, the average share of rent in income is relatively stable across
the 35 occupations reported in Parliamentary Papers (1887).

34This value for the share of labor in production costs is close to the values of 0.56 and 0.50 used for similar historical time periods in Matthews,
Feinstein, and Odling-Smee (1982) and Crafts and Harley (1992) respectively.
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these solutions for wages (wnt) and the observed commuting probabilities conditional on residence (λRni|n), we can

recover average per capita income by residence (vnt) in each location for our baseline year from equation (15). This

use of our combined land and commuter market clearing condition to solve for wages is considerably less restrictive

than the alternative approach of using the estimated workplace fixed effects from a gravity equation estimation, as in

Ahlfeldt, Redding, Sturm, and Wolf (2015). In such an alternative approach, one is required to assume that there are

no unobserved workplace components of commuting costs or amenities. In contrast, we control for such unobserved

workplace components using the observed commuting probabilities conditional on residence (λRnit|n).

VI.D. Estimating Commuting Costs (Step 3)

In our third step, we use the model’s gravity equation predictions to estimate the relationship between commuting flows

and travel times, taking into account the endogeneity of the transport network using instrumental variables estimation.

In particular, we assume that bilateral commuting costs are a constant elasticity function of bilateral travel times and a

stochastic error for all pairs of boroughs with positive commuting flows:

− ε log κnit = −εφ log dWnit + uRnt + uLit + uInit, (22)

where dWnit is our measure of travel time based on our assumed travel speeds (δ) and the observed transport network

(=OR
t ,=UR

t ,=OT
t ); the composite elasticity−εφ captures both the elasticity of commuting flows to commuting costs (−ε)

and the elasticity of commuting costs to travel times (φ); uRnt is an unobserved residence component of commuting costs;

uLit is an unobserved workplace component of commuting costs; and uInit is an unobserved idiosyncratic component

of commuting costs that is specific to individual residence-workplace pairs. In our baseline specification, we assume

prohibitive commuting costs (κnit →∞) for all pairs of boroughs with zero commuting flows.

From equations (6), (9) and (22), we obtain the following gravity equation for the log commuting probability in our

baseline year t:

log λnit = Wit + Bnt − εφ log dWnit + enit (23)

where the workplace fixed effect includes the wage and any workplace component of amenities or commuting costs, as

well as the common expected utility in Greater London (Wit = ε logwit + ε logBLit− log (LNt/LMt)− ε log
(
Ūt/ϑ

)
+

uLit); the residence fixed effect includes the prices for goods consumption and floor space and any residence component

of amenities or commuting costs (Bnt = −εα logPnt− ε(1−α) logQnt+ ε logBRnt+uRnt); and the error term captures

idiosyncratic shocks to bilateral amenities and commuting costs (enit = ε logBInit + uInit).

A challenge in estimating equation (23) is that the transport network is endogenous, because overground and un-

derground railways, omnibuses and trams were operated by private-sector companies. Therefore, the sets of points

connected to the railway and hence the bilateral travel times (dWnit) are non-random. In particular, bilateral pairs that

have more commuters for unobserved reasons in the error term (unit) could have more bilateral transport connections,

and hence lower bilateral travel times (dWnit). To address this concern, we instrument our bilateral travel times based

on the transport network (dWnit) with our bilateral travel times from a world in which walking is assumed to be the only

mode of transport (dSni), in which case bilateral travel times depend solely on straight-line distance. Conditional on the

workplace and residence fixed effects, our identifying assumption is that the unobserved factors that affect commuting

in the error term (unit) are orthogonal to the straight-line distance (dSni) between locations. In our empirical setting,
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Greater London is relatively homogeneous in terms of other economic and geographic features that could be correlated

with straight-line distance, and we provide empirical checks on this identifying assumption below.

In Column (1) of the top panel of Table I, we begin by estimating the gravity equation (23) using ordinary least

squares (OLS). We find an elasticity of commuting flows with respect to travel times of around −4.90, which is statisti-

cally significant at the 1 percent level, and a regression R-squared of more than 0.8. In Column (2), we estimate the same

specification using two stage least squares (2SLS), instrumenting our log bilateral travel times with log straight-line dis-

tance. We find a somewhat larger elasticity of commuting flows with respect to travel times of around −5.20, which is

again statistically significant at the 1 percent level. This marginal increase in the coefficient between the OLS and IV

specifications suggests that a greater incentive to invest in routes with more commuters for unobserved reasons in the

error term may have been offset by other factors. In particular, the historical literature emphasizes the non-cooperative

behavior of the private-sector railways, and their attempts to carve out geographical territories of dominance through

a proliferation of branch lines. This struggle for areas of geographic dominance could have led to over-investment

in routes that were less attractive in terms of their unobserved characteristics in the error term, thereby resulting in a

marginally larger IV coefficient. As shown in the first-stage estimates reported in the bottom panel of Table I, we find

that travel time increases less than proportionately with straight-line distance (with an elasticity of 0.43), because rail-

ways reduce travel time by more over longer straight-line distances. As also shown in this bottom panel, straight-line

distance is a powerful instrument for travel times, with a first-stage F-statistic well above the conventional threshold

of 10. Consistent with this, we comfortably reject the null hypothesis of underidentification in the Kleibergen-Paap

underidentification test reported in the top panel.

In Section I6 of the online appendix, we report a number of robustness checks on this specification. First, we

examine potential heterogeneity in the local average treatment effect (LATE) implied by the instrumental variables

estimates. Second, we consider an overidentified specification, in which we include both the log of straight-line distance

and the square of this log of straight-line distance as instruments. Third, we examine potential heterogeneity in the

determinants of commuting patterns in different parts of Greater London by including fixed effects for bilateral flows

between different geographical regions of Greater London (Central London, the rest of the County of London, and

the rest of Greater London). Fourth, we control for potential heterogeneity in the determinants of commuting flows

over long versus short distances by including fixed effects for quintiles of straight-line distance. Fifth, instead of

assuming prohibitive commuting costs (κnit → ∞) for all pairs of boroughs with zero commuting flows, we estimate

the commuting gravity equation including the zeros and using the Poisson Pseudo Maximum Likelihood estimator of

Santos Silva and Tenreyro (2006). Across each of these specifications, we obtain a similar qualitative and quantitative

pattern of results.

Using our baseline instrumental variables estimates of the elasticity of commuting flows with respect to travel times

(−εφ) from Column (2), we construct measures of the change in commuting costs from the removal of the railway

network between our baseline year of t = 1921 and an earlier year τ < t:

K̂nit = κ̂−εnit =

(
κniτ
κnit

)−ε
=

(
dWniτ (=OR

τ ,=UR
τ ,=OT

τ , δ)

dWnit(=OR
t ,=UR

t ,=OT
t , δ)

)−εφ
, (24)

where the only source of changes in commuting costs between years τ and t is changes in the set of points connected

to the transport network (=OR
τ 6= =OR

t , =UR
τ 6= =UR

t , =OT
τ 6= =OT

t ).
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VI.E. Historical Workplace Employment (Step 4)

Given these estimates of changes in commuting costs (κ̂−εnit) and a value for the Fréchet shape parameter (ε), we can use

our combined land and commuter market clearing condition (20) to solve for unobserved workplace employment back

to the early-19th century. We calibrate the Fréchet shape parameter (ε) by minimizing the sum of squared deviations

between the model’s predictions for workplace employment and the data on the day population in the City of London

for the census years for which these data are available (1881, 1891 and 1911). We obtain a calibrated Fréchet shape

parameter of ε = 5.25, which lies in between the estimate using commuting flows of around 6 in Ahlfeldt, Redding,

Sturm, and Wolf (2015) and the estimate using migration flows of around 3 in Bryan and Morten (2019).

In Figure IVb, we compare the model’s predictions for workplace employment in the City of London using ε = 5.25

against the available data, which correspond to day population from the City of London day censuses for 1866, 1881,

1891 and 1911, and workplace employment from our bilateral commuting data for 1921. Our quantitative analysis con-

ditions on the observed historical changes in employment by residence, which implies that employment by residence is

identical in the model and data for all years. Similarly, our quantitative analysis conditions on workplace employment

in the initial equilibrium in our baseline year, which implies that for 1921 our model’s predictions and the data neces-

sarily coincide with one another. Additionally, we calibrate the Fréchet shape parameter (ε) by minimizing the sum of

squared deviations between the model’s predictions and the data for the census years for which these data are available.

Nonetheless, the model not only provides a good fit to the data on average, but also tracks the evolution of workplace

employment across census years relatively closely.

In Figure VI, we display the log of residence employment density and workplace employment density against

distance from the Guildhall in the center of the City of London, both for 1921 at the end of our sample period (when

both variables are observed), and for 1831 before the first railway in Greater London (when residence employment is

observed, but workplace employment is a model prediction). In each case, we display the fitted values from a locally-

weighted linear least squares regression of each variable against distance from the Guildhall. In 1831, we find a steep

gradient in both residence and workplace employment density with distance from the Guildhall. Between 1831 and

1921, residence employment falls and workplace employment rises in the most central parts of Greater London, as these

locations specialize as a workplace, and become large net importers of commuters. In contrast, in the outlying parts

of Greater London, residence employment rises more rapidly than workplace employment, such that these locations

become net exporters of commuters. This change in specialization in central locations from a residence to a workplace

is consistent with these central locations having high productivity relative to amenities compared to the suburbs and the

rail transport network disproportionately reducing travel times into the central city.

Using data from more recent transport improvements (typically for highways but sometimes also for railways),

an existing empirical literature has found evidence that these transport improvements decentralize employment, pop-

ulation and night lights, including Baum-Snow (2007), Baum-Snow, Brandt, Henderson, Turner, and Zhang (2017),

Gonzalez-Navarro and Turner (2018), and Baum-Snow (2019). In principle, the effect of these more recent transport

improvements on the location of economic activity could be quite different, depending on the extent to which they re-

duce travel times into central locations relative to those between peripheral locations. For example, as argued in Glaeser

and Kohlhase (2004), rail transport is infrastructure-heavy, which favored a hub and spoke structure that reduced travel

times into central locations. In contrast, road transport is relatively infrastructure-light, with dense networks of lateral
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connections, which is likely to have reduced travel times between outlying locations.

Despite these potential differences in the effect of transport improvements depending on their impact on bilateral

travel times, our findings for steam railways during the 19th century are in fact consistent with the evidence from

these more recent transport improvements. Although we find that the City of London experiences the largest absolute

increase in employment during our sample period, we find the largest percentage rates of growth of both employment

and population in the suburbs, as these areas are transformed from villages and open fields to developed land. As a

result, the gradient of log workplace employment density in distance from the Guildhall declines in Figure VI between

1831 and 1921, and the share of the 13 boroughs within 5km of the Guildhall in the total workplace employment of

Greater London also declines from around 68 percent in 1831 to around 48 percent in 1921. This pattern of results is

in line with the findings of employment decentralization in these studies of more recent transport improvements, which

are based on regression specifications using log employment or employment shares.

A key insight from our analysis is that what matters for the extent to which a location is specialized as a workplace

versus a residence is the ratio of workers to residents (Ln/Rn). Following the invention of the steam railway during the

19th century, the increased specialization of the central city as a workplace rather than a residence (a rise in Ln/Rn) was

achieved in a particularly dramatic form through an absolute increase in workplace employment (Ln) and an absolute

decrease in residence employment (Rn). However, this finding of a rise in the ratio of workers to residents (Ln/Rn) in

the central city relative to the suburbs is again consistent with existing studies of more recent transport improvements,

which find greater decentralization of population than employment, and hence also find a rise in the ratio of workers to

residents in central locations relative to peripheral locations.

VI.F. Specification Check (Step 5)

As a specification check, we now compare our model’s predictions for commuting patterns during the 19th century

to historical data that were not used in its calibration. In particular, we use data on commuting distances from the

personnel ledgers of Henry Poole bespoke tailors, as discussed further in Section J9 of the online appendix. We focus

on the model’s predictions for commuters into the workplace of Westminster, in which this company is located. In the

left panel of Figure VII, we compare the model’s predictions for 1861 with the commuting distances of workers who

joined Henry Poole between 1857 and 1877.35 In the right panel of this figure, we compare the model’s predictions for

1901 with commuting distances of workers who joined Henry Poole between 1891 and 1911. In these comparisons,

there are several potential sources of discrepancies between the model and data, including the fact that this company is

located in a specific site within Westminster, whereas the model covers all of that borough. Nevertheless, we find that

our model is remarkably successful in capturing the change in the distribution of commuting distances between these

two time periods. In the opening decades of the railway age, most workers in Westminster in both the model and the

data lived within 5 kilometers of their workplace. In contrast, by the turn of the twentieth-century, we find substantial

commuting over distances ranging up to 20 kilometers in both the model and data. This pattern of results is consistent

with a wealth of historical evidence that most people lived close to where they worked before the railway age. Further

evidence of an increase in the distance travelled to work following the transport improvements of the 19th century is

provided for Boston, New York and Philadelphia in Section I5 of the online appendix.

35As discussed in more detail in section J9 of the Appendix, we use the residential address of each worker at the time they joined Henry Poole to
compute their commuting distance.
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VII. Productivity, Amenities and the Supply of Floor Space

In our baseline quantitative analysis so far, we have evaluated the impact of the railway network on employment by

workplace and commuting patterns within an entire class of urban models, controlling for other potential determinants

of economic activity, such as the supply of floor space, productivity and amenities. In this section, we consider one

theoretical model from within our class in order to explicitly recover productivity, amenities and the supply of floor

space, and to examine the implications of our findings for the strength of agglomeration forces.

Again we show that the model has a recursive structure, such that we can proceed in a number of steps, where each

step involves the minimal set of additional assumptions. First, we use assumptions on the floor space supply elasticity to

decompose rateable values into the contributions of the price and quantity of floor space. Second, we use the resulting

solutions for changes in the price of floor space and additional assumptions about production, preferences and market

structure to solve for changes in productivity and amenities. Finally, we parameterize agglomeration forces in produc-

tion and residence to separate out these changes in productivity and amenities into the contributions of agglomeration

forces and idiosyncratic shocks to locational fundamentals. All derivations for the results in this section are reported in

Section G of the online appendix.

VII.A. Supply of Floor Space

We separate rateable values into the price and quantity of floor space by making the following two additional assump-

tions. First, we assume no-arbitrage between commercial and residential floor space use (qnt = Qnt), which is consis-

tent with the positive values for residents and workers for all boroughs in our data and the absence of large-scale urban

planning in 19th-century London. Second, we model the supply of floor space (Hnt) as depending on geographical land

area (Kn) and a constant elasticity function of the price of floor space (Qnt) following Saiz (2010):

Hnt = hQµntKn, (25)

where h is a constant; µ ≥ 0 is the floor space supply elasticity; and µ = 0 corresponds to the special case of a perfectly

inelastic supply of floor space.

Using these assumptions in our definition of rateable values (Qnt = QntH
R
nt + qntH

L
nt = QntHnt), we recover

both the price and quantity of floor space as constant elasticity functions of rateable values per land area (Qnt/Kn):

Qnt =

(
Qnt
hKn

) 1
1+µ

, Hnt = hKn

(
Qnt
hKn

) µ
1+µ

. (26)

We calibrate the floor space supply elasticity (µ) using data on the contribution of new buildings towards changes in

rateable values that were compiled by London County Council for part of our time period (1871-1921) for the subset of

our boroughs in the County of London. Using the overall change in rateable value and the contribution of new buildings,

we compute the change in the price and supply of floor space and hence the floor space supply elasticity for each of

these boroughs (ln Ĥnt/ ln Q̂nt), as discussed further in Section I7 of the online appendix. We set the floor space supply

elasticity in the model to the median value of these floor space supply elasticities across this subset of boroughs in the

data (µ = 1.83).

In the top-left panel of Figure VIII, we display log rateable value per land area against distance from the Guildhall

for both 1831 and 1921. In each year, we show the fitted values from a locally-weighted linear least squares regression,
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and we normalize these fitted values by their value for the City of London (such that the variable takes the value zero for

the City of London). As apparent from this figure, we observe the largest percentage growth in rateable value per land

area between these years for the areas that become the inner suburbs of Greater London (from 8-15 kilometers from the

Guildhall), as they are transformed from villages and open fields to developed land. Since both the price and supply of

floor space in equation (26) are constant elasticity functions of rateable values per land area, their evolution over time

displays the same patterns as shown in the top-left panel of Figure VIII.

As a check on our assumption of a common floor space supply elasticity (µ = 1.83), Section I7 of the online

appendix reports a specification check, in which we compare our model’s predictions for the change in the supply of

floor space from 1871-1921 for each borough in the County of London to the data on the construction of new buildings

compiled by London County Council. As discussed further in the online appendix, we find a strong correlation between

the model’s predictions and the data, with a correlation coefficient of 0.77.

VII.B. Productivity and Amenities

To recover productivity and amenities, we choose one urban model from within our class, and impose additional as-

sumptions on preferences, production and market structure. In particular, we choose an extension of the canonical

urban model to incorporate non-traded goods, as developed in Section D2 of the online appendix. This framework

permits a particularly tractable and transparent approach to recovering productivity and amenities and estimating the

strength of agglomeration forces. It also allows us to undertake counterfactuals for removing the railway network under

a range of alternative assumptions about the floor space supply elasticity and the strength of agglomeration forces. In

the remainder of this subsection, we use this framework to recover productivity and amenities for each location. In the

next subsection, we use these values for productivity and amenities to estimate the strength of agglomeration forces. In

Section VIII. below, we undertake our counterfactuals for removing the railway network.

Starting with preferences in equation (3), we assume that the consumption goods price index (Pnt) is a Cobb-

Douglas function of the price of a homogeneous traded good (PTnt) and a homogeneous non-traded good (PNnt ):

Pnt =
(
PTnt
)ν (

PNnt
)1−ν

, 0 < ν < 1. (27)

Within Greater London, we assume that the homogeneous traded good is costlessly traded, such that PTnt = PTt for

all n ∈ N. Between Greater London and the rest of Great Britain, we allow for changes in trade costs for this good,

which are reflected in changes in its price at the boundaries of Greater London (PTt ).

Turning now to the production technology and market structure, we assume that both the traded and non-traded

goods are produced with labor and floor space according to the same Cobb-Douglas production technology under

conditions of perfect competition. From profit maximization and zero profits, we recover a composite measure of

productivity in the traded sector (ATnt) using our solutions for wages (wnt) and the price of floor space (Qnt):

ATnt = wβ
L

nt Q
βH

nt , ATnt ≡ ATntPTt r
−βM
t , (28)

where this composite traded productivity (ATnt) captures traded productivity (ATnt), the common price of the traded good

(PTt ), and the common price of machinery (rt).

In the top right panel of Figure VIII, we display the log of composite productivity against distance from the Guildhall

for 1831 and 1921. Again, we show the fitted values from locally-weighted linear least squares regressions, normalized
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by their value for the City of London. We find that productivity declines monotonically in distance from the Guildhall,

with a similar gradient for both years up to around 15 kilometers from the Guildhall. As Greater London becomes

increasingly developed between these two years, we observe an increase in the relative productivity of locations within

15 kilometers of the Guildhall compared to those beyond 15 kilometers from the Guildhall.

Using our additional assumptions on preferences, production and market structure in the residence choice probabil-

ities in equation (7), we now recover a composite measure of changes in amenities. We focus on changes in amenities,

because our baseline quantitative analysis uses estimates of changes in commuting costs from the construction of the

railway network (κ̂−εnit) and controls for unobserved determinants of the level of commuting costs in our baseline year

using the initial commuting probabilities conditional on residence (λRnit|n). Using our estimates of changes in commut-

ing costs (κ̂−εnit), we show in Section G2 of the online appendix that we can recover changes in composite amenities

(B̂nt) from the residence choice probabilities as follows:

λ̂Rntλ
R
nt =

λRntB̂εntQ̂
−ε(1−α)
nt R̂MA

ε

nt∑
k∈N λ

R
ktB̂εktQ̂

−ε(1−α)
kt R̂MA

ε

kt

, (29)

R̂MAnt =

[∑
`∈N

λRn`t|nŵ
ε
`tκ̂
−ε
n`

] 1
ε

B̂nt ≡ B̂Rnt
(
ÂNnt

)α(1−ν) (
ÂTnt

)−α(1−ν)

,

where recall that λ̂Rnt = λRnτ/λ
R
nt for τ < t; we observe the residence probabilities (λRnt) and the commuting prob-

abilities conditional on residence (λRnit|n) in our baseline year of t = 1921; we also observe the relative changes in

residence probabilities (λ̂Rnt); we solved for changes in wages (ŵnt) and floor prices (Q̂nt) above; R̂MAnt denotes the

change in residents’ commuting market access, as determined by changes in commuting costs (κ̂nit) and wages (ŵnt);

changes in composite amenities (B̂nt) capture changes in the residential component of amenities (B̂Rnt) and changes in

productivity in each sector (ÂNnt, Â
T
nt); and we assume that the workplace and idiosyncratic components of amenities

remain constant over time (B̂Lnt = 1 and B̂Int = 1). Using equation (29), we solve for a unique vector of changes in

composite amenities (B̂nt) up to a normalization or choice of units. We determine these changes in composite ameni-

ties (B̂nt) without making an assumption about the traded goods expenditure share (ν), which only affects the relative

contributions of ÂNnt and ÂTnt towards the overall value of B̂nt pinned down by this equation.

In the bottom left panel of Figure VIII, we display the log changes in composite amenities (B̂nt) against distance

from the Guildhall. We show the fitted values from a locally-weighted linear least squares regression, normalized such

that the value for the City of London is equal to zero. As apparent from the figure, we find the highest percentage rates of

growth of composite amenities for the areas that become the inner suburbs of Greater London at intermediate distances

from the Guildhall. From the residence choice probabilities (29), this pattern of results implies that the combination

of higher growth rates of residence employment (λ̂Rnt) and the price of floor space (Q̂nt) in these locations is not fully

explained by higher growth rates of commuting market access (R̂MAnt), and hence we require higher growth rates of

composite amenities (B̂nt) to rationalize the observed data, through either higher amenities (B̂nt) or higher non-traded

productivity (ÂNnt) relative to traded productivity (ÂTnt).

Our model solutions for changes in the supply of floor space (Ĥnt), composite traded productivity (ÂTnt), and

composite amenities (B̂nt) are structural residuals, in the sense that they exactly rationalize the observed changes in

residence employment (R̂nt) and rateable values (Q̂nt) in the data and the changes in wages (ŵnt), workplace employ-

ment (L̂nt) and commuting patterns (L̂nit) from our baseline quantitative analysis. Therefore, if we start at our initial
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equilibrium in our baseline year of t = 1921, and feed into the system of equations for the general equilibrium of the

model our estimated changes in commuting costs (κ̂−εnit) and the changes in these structural residuals (Ĥnt, ÂTnt, B̂nt),

we exactly replicate the the observed data (Rnτ , Qnτ ) and the results of our baseline quantitative analysis (Lnτ , wnτ ,

Lniτ ) for an earlier year τ < t, as shown in Section G3 of the online appendix.

We can use this property of the model to undertake decompositions, in which we examine the relative contributions

of changes in commuting costs (κ̂−εnit), the supply of floor space (Ĥnt), productivity (Ânt) and amenities (B̂nt) towards

the observed reorganization of economic activity within Greater London during the 19th-century. Although we use

these model-based decompositions to assess the relative importance of different mechanisms, it should be kept in mind

that these different mechanisms can influence one another. In particular, these decompositions treat productivity and

amenities as exogenous. However, in the presence of agglomeration forces, productivity and amenities can respond

endogenously to the reorganization of economic activity induced by the change in commuting costs, as examined in our

counterfactuals in Section VIII.. Notwithstanding this limitation of the decompositions in this subsection, we find that

much of the increase in net commuting into the City of London can be explained by the change in commuting costs

alone (κ̂−εnit), as shown in Figure G.1 in Section G3 of the online appendix. Taken together, these results provide further

support for the idea that the invention of the steam railway was central to the emergence of the large-scale separation of

workplace and residence in Greater London over our sample period.

VII.C. Agglomeration Forces

While the main focus of our analysis is quantifying the impact of the construction of the railway network on the internal

organization of economic activity within Greater London, we now briefly examine the implications of our findings for

the strength of agglomeration forces. Estimating agglomeration forces in our setting is challenging for several reasons.

First, our data only includes 99 boroughs, compared to the thousands of city blocks considered in Ahlfeldt, Redding,

Sturm, and Wolf (2015). Second, we do not directly observe land or floor space prices, and have to use assumptions

about the supply of floor space to infer them from our rateable value data. Third, we estimate agglomeration forces

over a much longer time period than usually considered, over which there is greater scope for other factors to change

over time. Nevertheless, in Figures VI and VIII, areas with high rates of growth of composite traded productivity (ÂTn )

and composite amenities (B̂nt) also typically have high rates of growth of workplace employment (L̂nt) and residence

employment (R̂nt), which is potentially consistent with the presence of agglomeration forces in both production and

residence.

To provide further evidence on these agglomeration forces, we assume that productivity and amenities depend on

two components: (i) production and residential externalities from the surrounding concentration of economic activity

and (ii) production and residential fundamentals that are unrelated to the surrounding concentration of economic activity

(e.g. natural water and green areas). We model production externalities as a constant elasticity function of a borough’s

own workplace employment density (with elasticity ηL) and residential externalities as a constant elasticity function of

a borough’s own residence employment density (with elasticity ηR). We specify these externalities as a function of a

borough’s own employment density, because of the relatively large area of the boroughs in our data, and the typical high

rates of spatial decay of agglomeration economies. Taking differences between τ = 1831 before the first railway line

and our baseline year of t = 1921, we obtain the following expressions for the log changes in composite productivity
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and amenities, as shown in Section G4 of the online appendix:

ln ÂTnt = ςL + ηL ln L̂nt + ln ânt, (30)

ln B̂nt = ςR + ηR ln R̂nt + ln b̂nt, (31)

where recall L̂nt = Lnτ/Lnt for τ < t; the constants ςL and ςR control for any factors that are common across all

locations within Greater London, such as common changes in productivity or amenities, or changes in expected utility

in the wider economy; and ln ânt and ln b̂nt capture idiosyncratic shocks to production and residential fundamentals.

A key challenge in estimating the strength of agglomeration forces (ηL, ηR) in equations (30) and (31) is that work-

place and residence employment are endogenous to productivity and amenities. In particular, the workplace choice

probabilities (λLnt) in equation (7) depend on the wage (wnt), which in turn depends on traded productivity (ATnt).

Therefore, changes in workplace employment are likely to be positively correlated with idiosyncratic shocks to pro-

duction fundamentals (ln ânt) in the error term, thereby inducing an upwards bias in the estimated production elasticity

(ηL). Similarly, the residence choice probabilities (λRnt) in equation (7) are determined by amenities (Bnt). Hence,

changes in residence employment are likely to be positively correlated with idiosyncratic shocks to residential funda-

mentals (ln b̂nt), thus imparting an upward bias in the estimated residential elasticity (ηR).

To address this challenge, we use the quasi-experimental variation from the invention of the steam railway to es-

timate the strength of agglomeration forces. In particular, we require that the observed reorganization of workplace

and residence employment within Greater London is explained by the model’s mechanisms of a change in commuting

costs and agglomeration forces, rather than by systematic changes in production and residential fundamentals. Using

this assumption, we estimate equations (30) and (31) using two-stage least squares, instrumenting the log changes in

workplace and residence employment with indicator variables for 5 km distance grid cells from the Guildhall, where

our excluded category is locations more than 20 km away. To allow changes in production and residential fundamentals

to depend on the initial density of economic activity, we include as controls initial log employment (workplace and resi-

dence respectively) and log land area. Additionally, we include as a control an indicator variable for whether a borough

is located in the London County Council (LCC) area to allow for potential differences in the supply of local public goods

within and outside the LCC boundaries. Therefore, we estimate the production and residential externalities parameters

(ηL and ηR respectively) using the identifying assumption that conditional on our controls the idiosyncratic shocks to

production and residential fundamentals (ln ânt, ln b̂nt) are unrelated to distance from the Guildhall, and hence have

the same mean value across these distance grid cells.

Table II reports the estimation results. As a point of comparison, in Columns (1) and (2), we estimate equations

(30) and (31) using OLS. We find positive and statistically significant relationships between the growth of productivity

and amenities and the growth of workplace and residence employment, with elasticities of 0.148 and 0.248 respectively.

In Columns (3) and (4), we estimate the same specifications using two stage least squares, instrumenting the growth

in workplace and residence employment with our indicator variables for grid cells in distance from the Guildhall.

Consistent with the upward bias discussed above from the dependence of workplace and residence employment density

on productivity and amenities, our instrumental variables estimates are smaller than our OLS estimates, with an elasticity

of productivity (amenities) with respect to workplace (residence) employment density of 0.086 (0.172). We find that

our instruments have power in the first-stage regressions, with first-stage F-statistics above the conventional threshold
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of 10. In Hansen-Sargen overidentification tests, we are unable to reject the model’s overidentifying restrictions at

conventional levels of significance.

As discussed above, these results come with a number of caveats. Our identifying assumption that the idiosyncratic

shocks to productivity and residential fundamentals are uncorrelated with distance from the Guildhall conditional on

our controls could be violated if there are changes to other determinants of productivity and amenities that are correlated

with distance from the Guildhall and not captured by our controls for initial log employment (workplace and residence

respectively), log land area and whether a borough is located in the County of London. Notwithstanding these caveats,

we find estimates of the strength of agglomeration forces that are broadly in line with those in the existing empirical

literature. Our estimated production agglomeration parameter of 0.086 lies close to the 3-8 percent range discussed in

the survey by Rosenthal and Strange (2004) and well within the range of estimates reported in the meta-analysis by

Melo, Graham, and Noland (2009). Our estimated residential agglomeration parameter of 0.172 is also close to the

value of 0.155 reported in Ahlfeldt, Redding, Sturm, and Wolf (2015), and is consistent with the finding of endogenous

amenities in Diamond (2016). Therefore, viewed through the lens of this extension of the canonical urban model and

our identifying assumptions, the observed reorganization of economic activity within Greater London following the

invention of the steam railway implies substantial agglomeration forces in both production and residence.

VIII. Counterfactuals

A key advantage of our baseline quantitative analysis in Section VI. is that it allows us to use our estimates of changes in

commuting costs to recover the unobserved historical values of workplace employment and commuting patterns, while

using the observed historical residence employment and rateable values to control for other determinants of economic

activity. In Section VII., we used additional structure from the canonical urban model with non-traded goods to recover

changes in the supply of floor space, productivity and amenities and estimate the strength of agglomeration forces.

In this section, we use this model to examine the counterfactual question of how the spatial distribution of economic

activity within Greater London would have evolved if the only thing that changed were the railway network, holding

constant other determinants of economic activity.

We undertake our counterfactuals under a range of alternative assumptions about the floor space supply elasticity

(µ) and the strength of agglomeration forces (ηL, ηR). In our first specification, we remove the railway network,

holding constant the supply of floor space, productivity and amenities at their values in our baseline year of t = 1921

(µ = ηL = ηR = 0). In our second specification, we set the floor space supply elasticity equal to our calibrated value

and hold productivity and amenities constant (µ = 1.83 and ηL = ηR = 0), thereby only allowing for an endogenous

response in the supply of floor space. In our third specification, we introduce our estimated agglomeration forces in

production (µ = 1.83, ηL = 0.086 and ηR = 0), thus capturing endogenous responses in the supply of floor space

and productivity. In our fourth specification, we incorporate our estimated agglomeration forces in production and

residence (µ = 1.83, ηL = 0.086 and ηR = 0.172), thereby allowing for endogenous responses in the supply of floor

space, productivity and amenities. Finally, to address the concern that the floor space supply elasticity in 19th-century

London could be larger than in other settings with more building regulations, we report results using a floor space supply

elasticity equal to half our calibrated value (µ = 1.83/2 = 0.92) in Section H of the web appendix.

For each of these specifications, we undertake two sets of counterfactuals. First, we examine the overall impact
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of the new transport technology on economic activity within Greater London by removing the entire railway network

decade-by-decade back to 1831 (before the first railway line). Second, we examine the role of the underground in

enabling passengers to travel into the most central parts of London by removing only the underground network decade-

by-decade back to 1861 (before the first underground line). This second counterfactual further isolates a pure change

in commuting costs, because the underground network is exclusively used to transport people. In both cases, we hold

expected utility (Ūt) and total employment (LMt) in the wider economy constant, and allow the share of the economy’s

workers that choose residence-workplace pairs in Greater London (LNt/LMt) to adjust until expected utility in Greater

London in the population mobility condition (9) is equal to its unchanged value in the wider economy.

In each case, we hold omnibus and tram routes constant at the 1921 network structure. In principle, one could allow

for changes in omnibus and tram routes in response to the removal of the railway network, although the direction of this

response is unclear. On the one hand, some of the increase in commuting costs from the removal of the railway network

could be offset by an expansion of the omnibus and tram network. On the other hand, these two modes of transport

are imperfect substitutes, with quite different average travel speeds. Indeed, over our sample period, omnibuses and

trams were largely complementary to railways, expanding in tandem with them, and being more important for shorter

journeys (including from railway terminals to final destinations). Therefore, to focus on the direct effect of the railway

network, we hold the omnibus and tram network constant.

Given a change in commuting costs (κ̂−εrit) implied by the removal of parts of the railway network and the observed

variables (Qnt, λLnt, λRnt, L̄t, λRnit|n, λnit, wit) in our baseline year of t = 1921, we solve for counterfactual changes in

the following five endogenous variables: (i) the workplace choice probability (λ̂Lnt); (ii) the residence choice probability

(λ̂Rnt); (iii) the price of floor space (Q̂nt); (iv) the wage (ŵnt); (v) total city population (L̂Nt). These counterfactual

changes solve the system of five equations for the general equilibrium of the model: (i) the land market clearing

condition; (ii) the zero-profit condition; (iii) the workplace choice probability; (iv) the residence choice probability; and

(v) the population mobility condition, as shown in Section H of the online appendix.

In the special case of the model in which productivity, amenities and the supply of floor space are exogenous

ηL = ηR = µ = 0, there are no agglomeration forces and the supply of land is perfectly inelastic, which ensures the

existence of a unique equilibrium, as shown in Proposition H.1 in Section H of the online appendix. Therefore, our

counterfactuals yield unique predictions for the impact of the change in commuting costs on the spatial distribution of

economic activity. In the presence of agglomeration forces (ηL > 0 and ηR > 0) and an elastic supply of land (µ > 0),

whether or not the equilibrium is unique depends on the strength of these agglomeration forces relative to the model’s

congestion forces and the exogenous differences in production and residential fundamentals across locations. In each of

the counterfactuals considered in this section, we obtain the same counterfactual equilibrium regardless of our starting

values for the counterfactual changes in the model’s endogenous variables.

In Figure IX, we display the model’s counterfactual predictions for removing the entire railway network (left panels)

and the underground railway network (right panels). As the first underground line was built in 1863, the counterfactuals

in the right-hand panels are flat before 1861. We report results for net commuting into the City of London in the top two

panels, the total population of Greater London in the middle two panels, and total rateable values in Greater London

in the bottom two panels. In each case, the solid black line with no markers (labelled “Baseline”) corresponds to our

baseline quantitative analysis from Section VI. above. Our first counterfactual holding constant the supply of floor space,

productivity and amenities (µ = ηL = ηR = 0) is shown by the solid gray lines (labelled “Inelastic No Agglom”). In
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this specification, we find that removing the entire railway network reduces net commuting into the City of London to

98,173 in 1831 (panel (a)), while eliminating only the underground network decreases these net commuting flows to

293,165 in 1861 (panel (b)). As apparent from panel (a), the counterfactual net commuting of 98,173 in 1831 holding

floor space, productivity and amenities constant compares to 30,375 in our baseline quantitative analysis from Section

VI. above. Therefore, consistent with the results from our model-based decompositions in the previous section, we find

that much of the increased separation of workplace and residence in Greater London during the 19th century can be

explained by the pure change in commuting costs from the new transport technology rather than by other determinants

of economic activity.

Our second counterfactual with our calibrated floor space supply elasticity and constant productivity and amenities

(µ = 1.83 and ηL = ηR = 0) is shown by the black dashed line with circle markers (labelled “Elastic No Agglom”).

We find that introducing an endogenous response in the supply of floor space magnifies the effect of the new transport

technology. In this specification, removing the entire railway network reduces net commuting into the City of London

to 65,962 in 1831 (panel (a)), while eliminating only the underground network decreases these commuting flows to

258,115 in 1861 (panel (b)). This pattern of results highlights a complementarity between the development of the built

environment and improvements in transport infrastructure.

Our third counterfactual with our calibrated floor space supply elasticity and our estimated production agglomeration

force (µ = 1.83, ηL = 0.086 and ηR = 0) is shown by the gray dashed line with circle markers (labelled “Elastic Prod

Agglom”). We find that the introduction of production agglomeration forces further enhances the impact of the new

transport technology. In this specification, removing the entire railway network reduces net commuting into the City

of London to 25,347 in 1831 (panel (a)), while eliminating only the underground network decreases these commuting

flows to 205,537 in 1861 (panel (b)). Our fourth counterfactual with our calibrated floor space supply elasticity and our

estimated production and residential agglomeration forces (µ = 1.83, ηL = 0.086 and ηR = 0.172) is shown by the

black dashed line with triangle markers (labelled “Elastic Prod + Amen Agglom”). In this specification, removing the

entire railway network reduces net commuting into the City of London to a value below that in our baseline quantitative

analysis (12,099 compared to 30,375 in 1831 in panel (a)). Therefore, the model with an elastic supply of floor space

and our estimated agglomeration forces generates a decline in net commuting into the City of London in the second half

of the 19th century of a comparable magnitude to that observed in the data.

In panels (c) and (d), we examine the counterfactual predictions of the model for the total population of Greater

London, where we compute counterfactual population using the model’s predictions for residence employment and our

constant employment participation rate for each borough. As shown by the solid black line, the observed population

for Greater London rises from 1.92 to 7.39 million between 1831 and 1921. Our model predicts that the removal of

the railway network leads to a reduction in the total population of Greater London, because boroughs specialize less

according to their comparative advantages as workplaces or residences, which reduces real income in Greater London

for a given population. This in turn leads to a population outflow until expected utility in Greater London is equal to its

unchanged value in wider economy (Ūt).36

36To the extent that the overground railway network was also removed in other parts of Great Britain, and this reduced expected utility in the wider
economy (Ūt), the effects on Greater London’s population would be reduced. Nevertheless, the degree of separation of workplace and residence in
Greater London is much greater than in other less-densely-populated locations, implying that Greater London would be more adversely affected by
the removal of overground railways than these other locations. Furthermore, the underground railway network is largely specific to Greater London,
because Glasgow is the only other city in Great Britain with an underground line.
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In our first counterfactual holding constant the supply of floor space, productivity and amenities (“Inelastic No

Agglom”), we find that removing the entire railway network reduces the total population of Greater London by 13.72

percent from 7.39 million in 1921 to 6.38 million in 1831 (panel (c)), while eliminating only the underground network

decreases total population by 3.51 percent to 7.13 million in 1861 (panel (d)). Again we find that introducing a positive

floor space supply elasticity and agglomeration forces magnifies the predicted impact of the new transport technology.

With our calibrated floor space supply elasticity and our estimated production agglomeration force (“Elastic Prod Ag-

glom”), removing the entire railway network reduces the total population of Greater London by 26.09 percent to 5.46

million in 1831 (panel (c)).37 By comparison, with our calibrated floor space supply elasticity and our estimated pro-

duction and residence agglomeration forces (“Elastic Prod + Amen Agglom”), eliminating the entire railway network

decreases the total population of Greater London by 51.45 percent to 3.59 million in 1831 (panel (c)). Therefore, we find

sizeable effects of the new transport technology of the steam railway on the total population of Greater London, with

both production and residential agglomeration forces making quantitatively relevant contributions towards the impact

of this new transport technology.

We find a similar pattern of results for the total value of land and buildings in Greater London (panels (e) and (f)) as

for population (panels (c) and (d)), with the following two differences. First, an important advantage of our quantitative

analysis is that our estimation results are invariant to goods price inflation, because both rateable values and wages are

homogenous of degree one in goods prices. Therefore, multiplying all goods prices by a constant leaves unchanged the

allocation of workers and residents and the relative values across locations of the supply of floor space, productivity and

amenities. However, in our counterfactuals, we remove the railway network holding goods prices constant. Therefore,

it is unsurprising that the counterfactual changes in rateable values are smaller than the observed changes, because these

observed changes include goods price inflation, whereas the counterfactual changes do not. Second, under our Cobb-

Douglas assumptions on preferences and technology, rateable values and wage bills move by the same proportion, but

the percentage changes in rateable values and population differ from one another, because of movements in wages.

Despite these two differences, we obtain similar qualitative and quantitative conclusions for the total value of land

and buildings in Greater London as for its total population. We again find that the introduction of a positive floor space

supply elasticity and agglomeration forces magnifies the counterfactual effects of the removal of the railway network.

With our calibrated floor space supply elasticity and no agglomeration forces (“Elastic No Agglom”), we find that

removing the entire railway network reduces the total value of land and buildings in Greater London by 23.61 percent,

from 65.86 million in 1921 to 50.31 million in 1831 (panel (e)). Introducing our estimated production agglomeration

forces (“Elastic Prod Agglom”), we find a larger decline in the total value of land and buildings of 31.56 percent to 45.08

million in 1831 (panel(e)). Incorporating both our estimated production and residence agglomeration forces (“Elastic

Prod + Amen Agglom”) further magnifies these effects, with a decline in the total value of land and buildings of 53.25

percent to 30.79 million in 1831 (panel(e)).

We now use these counterfactual predictions of the model to evaluate the welfare effects of the construction of the

railway network. Under our assumptions of population mobility and a constant value of expected utility in the wider

economy, the total population of Greater London adjusts such that the expected utility of workers in Greater London

37Comparing the “Elastic No Agglom” and “Elastic Prod Agglom” specifications, we find a different organization of economic activity within
Greater London (as reflected in the results for net commuting into the City of London in panels (a) and (b)), but the differences in the impact on the
total population of Greater London are more visible for the removal of the entire railway network in panel (c) than they are for the elimination of only
the underground network in panel (d) (where we find only a small difference in total population of 6,828,255 compared to 6,837,185 in 1861).
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is unaffected by the construction of the railway network. Therefore, as in the classical approach to valuing public

goods using land values following George (1879), the welfare gains from the new transport technology are experienced

by landlords through changes in the value of land and buildings. We assess the magnitude of these welfare gains

by comparing the counterfactual changes in the net present value of rateable values from the removal of the railway

network to its construction costs. We measure these construction costs using historical estimates of authorized capital

per mile for the private-sector companies that built these lines, which yields estimates of £555, 000 per mile for bored-

tube underground railways, £355, 000 per mile for cut-and-cover underground railways, and £60, 000 per mile for

overground railways (all in 1921 prices), as discussed further in Section J6 of the online appendix.

In Table III, we report the results of these comparisons of the economic impact of the removal of the railway

network with its construction costs. In the top panel, we remove the entire railway network. In the middle panel,

we eliminate only the underground railway network. In the bottom panel, we examine the extent to which there were

diminishing returns to the construction of the railway network, by only removing overground and underground railway

lines constructed in the final decade of our sample from 1911-1921. In Column (1), we assume an inelastic supply

of floor space and constant productivity and amenities (µ = ηL = ηR = 0). In Column (2), we introduce our

calibrated floor space supply elasticity, while continuing to assume constant productivity and amenities (µ = 1.83

and ηL = ηR = 0). In Column (3), we augment this specification with our estimated production agglomeration

force (µ = 1.83, ηL = 0.086 and ηR = 0). In Column (4), we incorporate our estimated production and residential

agglomeration forces (µ = 1.83, ηL = 0.086 and ηR = 0.172). In each specification, we compute the net present value

of changes in rateable values assuming an infinite lifetime and either 3 or 5 percent discount rates, and report the ratio

of these reductions in the net present value of rateable values to the savings in construction costs.38

As shown in Table III, regardless of whether we assume a 3 or 5 percent discount rate, and irrespective of whether

we consider the entire railway network (top panel) or only the underground railway network (middle panel), we find

ratios of reductions in the net present value of rateable values to construction costs that are substantially greater than

one. This pattern of results suggests that the large-scale investments in the construction of the 19th-century railway

network in Greater London can be rationalized in terms of their effects on the net present value of economic activity.

Comparing Columns (1) and (2), we find that allowing for a positive floor space supply elasticity substantially increases

the economic impact of the railway network, again highlighting the role of complementary expansions in the supply of

floor space. Comparing Columns (2), (3) and (4), we also find that incorporating agglomeration economies further mag-

nifies the economic effects of the railway network, illustrating the relevance of endogenous changes in both productivity

and amenities for the evaluation of transport improvements. Consistent with diminishing returns to the expansion of the

railway network, we find lower ratios of reductions in the net present value of rateable values to savings in construction

costs for overground and underground railway lines added in the final decade of our sample (bottom panel) than for the

entire railway network (top panel). Nevertheless, even for these late railway lines, we find that the change in the net

present value of rateable values exceeds construction costs.

38These discount rates of 3-5 percent are in line with the reported report rates of dividends paid on ordinary shares for London railways in the
official London Statistics publication of the London County Council and are standard values in cost-benefit analyses.
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IX. Conclusions

We use the natural experiment of the invention of the steam railway to provide evidence on the role of modern trans-

port technologies in underpinning the concentration of economic activity in large metropolitan areas. The key idea

underlying our approach is that a reduction in commuting costs facilitates an increased separation of workplace and

residence. In particular, the hub and spoke structure of the railway disproportionately reduced commuting costs into

central locations. If these central locations have high productivity relative to amenities compared to the suburbs, this

transport improvement leads them to specialize as a workplace, while the suburbs specialize as a residence. In the pres-

ence of agglomeration forces, this increased concentration of workers in the center and residents in the suburbs further

reinforces these differences in productivity and amenities across locations.

We begin by providing reduced-form evidence in support of this mechanism. First, we show that population de-

clines in the City of London and rises in the suburbs following the construction of the railway network. Second, we

establish that this decline in the City of London’s population is combined with an increase in its employment. Third,

we find that this change in specialization from a residence to a workplace makes the City of London a relatively more

valuable location. We demonstrate the same pattern of results for other large metropolitan areas following the transport

improvements of the 19th century. Using our parish-level data for London, we find no evidence of deviations in popu-

lation growth from parish time trends before the arrival of the railway, and substantial deviations from these trends after

its arrival. Consistent with our mechanism, we find reductions in parish population growth relative to trend in central

London, and increases in parish population growth relative to trend in the suburbs.

To interpret these patterns in the data, we develop a new structural estimation procedure for an entire class of

urban models, which satisfy a gravity equation in commuting flows and are characterized by a constant proportional

relationship between labor income and payments for floor space. Although we only observe bilateral commuting flows

in 1921 at the end of our sample period, we show that this framework can be used to estimate the impact of the

construction of the railway network going back to the early-19th century. As this approach holds for an entire class of

urban models and conditions on observed population and rateable values, it controls for a wide range of other potential

determinants of economic activity, such as changes in productivity, amenities, the costs of trading goods, the supply

of floor space, and the expected utility in the wider economy. We show that our model successfully captures the

sharp divergence between night and day population in the City of London from the mid-19th century onwards and also

replicates the property of early commuting data that most people lived close to where they worked at the dawn of the

railway age.

To further explore the role of changes in commuting costs relative to other determinants of economic activity and to

examine the implications of our findings for the strength of agglomeration forces, we consider a version of the canonical

urban model of goods trade and commuting from within our class of models. Using the identifying assumption that the

change in the organization of economic activity within Greater London following the invention of the steam railway is

explained by the resulting change in commuting costs and agglomeration forces rather than by a systematic change in

locational fundamentals, we estimate substantial agglomeration forces for both production and residence. Undertaking

counterfactuals for the removal of the railway network, we find that the change in commuting costs alone accounts

for most of the observed separation of workplace and residence. Holding the supply of floor space, productivity and

amenities constant, we find that removing the entire railway network reduces the total population and rateable value
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of Greater London by 13.7 and 12.5 percent respectively, and decreases net commuting into the City of London by

more than 270,000 workers. Introducing an endogenous supply of floor space and agglomeration forces magnifies

these effects, highlighting the relevance of complementary changes in the built environment and agglomeration forces

for cost-benefit analyzes of transport improvements. Using our calibrated floor space supply elasticity and estimated

agglomeration forces, these declines in total population and rateable value reach 51.5 and 53.3 percent respectively.

Across a wide range of different specifications, we find increases in the net present value of land and buildings that

exceed historical estimates of the railway network’s construction costs.

Taken together, we find that a class of quantitative urban models is remarkably successful in explaining the large-

scale changes in the organization of economic activity observed in 19th-century London, and our findings highlight the

role of modern transport technologies in sustaining dense concentrations of economic activity.
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TABLE I:
Gravity Equation Estimation Using 1921 Bilateral Commuting Data

(1) (2)
Second-stage Regression

log λnit log λnit
log dWnit −4.899∗∗∗ −5.203∗∗∗

(0.062) (0.069)
Workplace fixed effects yes yes
Residence fixed effects yes yes
Kleibergen-Paap (p-value) 0.000
Estimation OLS IV
Observations 3023 3023
R-squared 0.851 -
First-stage Regression

log dWnit
log dSni 0.429∗∗∗

(0.003)
Workplace and Residence fixed effects yes
First-stage F-statistic 22,235
Observations 3023
R-squared 0.949

Note: λnit is the commuting probability from equation (6); dWnit is our least-cost-path travel time measure based on the transport network; dSni
is straight-line travel time based on walking; Kleibergen-Paap is the p-value for the Kleibergen-Paap underidentification test; OLS refers to ordinary
least squares; the second-stage R-squared is omitted from the instrumental variables (IV) specification (two-stage least squares), because it does not
have a meaningful interpretation; First-stage F-statistic is the F-statistic for the joint significance of the excluded exogenous variables in the first-stage
regression; Heteroskedasticity robust standard errors in parentheses: ∗ denotes statistical significance at the 10 percent level; ∗∗ denotes statistical
significance at the 5 percent level; ∗∗∗ denotes statistical significance at the 1 percent level.
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TABLE II:
Estimation of Agglomeration Forces in Production and Residence

(1) (2) (3) (4)

ln ÂTnt ln B̂nt ln ÂTnt ln B̂nt
ln L̂nt 0.148∗∗∗ - 0.086∗∗ -

(0.027) (0.037)
ln R̂nt - 0.248∗∗∗ - 0.172∗∗∗

(0.023) (0.031)
lnLnt 0.029∗ - 0.011 -

(0.017) (0.017)
lnRnt - 0.033 - −0.015

(0.024) (0.027)
lnKn 0.078∗∗∗ −0.067 0.092∗∗∗ −0.056

(0.020) (0.042) (0.023) (0.038)
ILCC
n −0.112∗∗ 0.085 −0.033 0.252∗∗∗

(0.048) (0.074) (0.060) 0.089

First-stage F-statistic - - 11.26 12.76
Kleibergen-Paap (p-value) - - 0.000 0.000
Hansen-Sargen (p-value) - - 0.416 0.483
Estimation OLS OLS IV IV
Observations 99 99 99 99
R-squared 0.428 0.648 - -

Note: ln ÂTnt = ln
(
ATnτ/ATnt

)
is the log change in composite traded productivity; ln B̂nt = ln (Bnτ/Bnt) is the log change in composite ameni-

ties; ln L̂nt = ln (Lnτ/Lnt) is the log change in workplace employment; ln R̂nt = ln (Rnτ/Rnt) is the log change in residence employment;
lnLnt is initial log workplace employment; lnRnt is initial log residence employment; lnKn is log land area; ILCC

n is an indicator variable for
whether a borough is located within the London County Council (LCC) area; instruments are indicator variables for 5 km distance grid cells from
the Guildhall in the center of the City of London; the excluded category is > 20 km from the Guildhall; first-stage F-statistic is the F-statistic for the
joint significance of the distance grid cell indicators; Kleibergen-Paap is the p-value for the Kleibergen-Paap underidentification test; Hansen-Sargen
is the p-value for the Hansen-Sargan overidentification test; OLS refers to ordinary least squares; the R-squared is omitted from the instrumental
variables (IV) estimates (two-stage least squares) of the second-stage equation, because it does not have a meaningful interpretation; the results of
the first-stage regression are reported in Table G.1 in Section G4 on the online appendix; Heteroskedasticity robust standard errors in parentheses: ∗
denotes statistical significance at the 10 percent level; ∗∗ denotes statistical significance at the 5 percent level; ∗∗∗ denotes statistical significance at
the 1 percent level.
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TABLE III:
Counterfactuals for Removing the Entire Railway Network, the Entire Underground Railway Network, or Railway

Lines Constructed from 1911-21, Starting from the Initial Equilibrium in our Baseline Year of 1921

(1) (2) (3) (4)
Floor Space Supply Elasticity µ = 0 µ = 1.83 µ = 1.83 µ = 1.83
Production Agglomeration Force ηL = 0 ηL = 0 ηL = 0.086 ηL = 0.086
Residential Agglomeration Force ηR = 0 ηR = 0 ηR = 0 ηR = 0.172

Removing the Entire Overground and Underground Railway Network
Economic Impact
Rateable Value −£8.24m −£15.55m −£20.78m −£35.07m
NPV Rateable Value (3 percent) −£274.55m −£518.26m −£692.76m −£1, 169.05m
NPV Rateable Value (5 percent) −£164.73m −£310.96m −£415.66m −£701.43m
Construction Costs
Cut-and-Cover Underground −£9.96m
Bored-tube Underground −£22.90m
Overground Railway −£33.19m
Total All Railways −£66.05m
Ratio Economic Impact / Construction Cost
NPV Rateable Value (3 percent)

Construction Cost 4.16 7.85 10.49 17.70
NPV Rateable Value (5 percent)

Construction Cost 2.49 4.71 6.29 10.62

Removing the Entire Underground Railway Network
Economic Impact
Rateable Value −£2.65m −£6.21m −£8.22m −£14.16m
NPV Rateable Value (3 percent) −£88.46m −£206.87m −£274.05m −£471.85m
NPV Rateable Value (5 percent) −£53.08m −£124.12m −£164.43m −£283.11m
Construction Costs
Cut-and-Cover Underground −£9.96m
Bored-tube Underground −£22.90m
Total All Underground −£32.86m
Ratio Economic Impact / Construction Cost
NPV Rateable Value (3 percent)

Construction Cost 2.69 6.30 8.34 14.36
NPV Rateable Value (5 percent)

Construction Cost 1.62 3.78 5.00 8.62

Removing Overground and Underground Railway Lines Constructed from 1911-21
Economic Impact
Rateable Value −£0.17m −£0.24m −£0.37m −£0.39m
NPV Rateable Value (3 percent) −£5.63m −£8.09m −£12.46m −£12.96m
NPV Rateable Value (5 percent) −£3.38m −£4.86m −£7.47m −£7.77m
Construction Costs
Cut-and-Cover Underground −£0.00m
Bored-tube Underground −£2.35m
Overground Railway −£0.34m
Total All Railways −£2.69m
Ratio Economic Impact / Construction Cost
NPV Rateable Value (3 percent)

Construction Cost 2.09 3.01 4.63 4.82
NPV Rateable Value (5 percent)

Construction Cost 1.26 1.81 2.78 2.89

Note: Counterfactuals start in our baseline year of 1921 and remove either the entire railway network or parts thereof; we hold the omnibus and
tram network constant at its 1921 structure; all values reported in the table are expressed in millions of 1921 pounds sterling; µ = 0 corresponds to an
inelastic supply of floor space; µ = 1.83 is our calibrated floor space supply elasticity; ηL = 0 corresponds to no production agglomeration force;
ηR = 0 corresponds to no residential agglomeration force; ηL = 0.086 corresponds to our estimated production agglomeration force; ηR = 0.172
corresponds to our estimated residential agglomeration force; all specifications assume population mobility between Greater London and the wider
economy, with the elasticity of population supply determined by our calibrated Fréchet shape parameter of ε = 5.25; net present values are evaluated
over an infinite lifetime, assuming either 3 or 5 percent discount rate; construction costs are based on capital issued per mile for cut-and-cover,
bored-tube and surface railway lines and the length of lines of each type of railway in Greater London in 1921, as discussed further in Section J6 of
the online appendix.
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FIGURE I:
Administrative Boundaries and the Railway Network over Time

Note: Panel (a): Greater London Authority (GLA) referred to as Greater London (red outer boundary); London County Council (LCC) (purple
outer boundary); City of London (green outer boundary); River Thames (thick blue); boroughs (medium black lines); and parishes (medium gray
lines). Panels (b)-(d): Greater London outside County of London (white background); County of London outside City of London (blue background);
City of London (gray background); River Thames shown in blue; overground railway lines shown in black; underground railway lines shown in red.
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FIGURE II:
Population Indexes Over Time (City of London and Greater London, 1801 equals 1)

Note: Indexes of residence (night) population from the population censuses over time.
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FIGURE III:
City of London Day and Night Population and Rateable Value Share Over Time

Note: Residence (night) population from the population census; day population from the City of London day census for 1866, 1881, 1891 and 1911
and from workplace employment in the population census for 1921; City of London’s share of rateable value is its share in the total value of all land
and buildings in Greater London.
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FIGURE IV:
Population-Share-Weighted Average Travel Time and Day and Night Population in the City of London

Note: Left panel (a): Night (residence) population index from the population census; rail travel time index is the population-share-weighted average
of the reduction in travel time from each borough to the City of London (relative to 1801). Right panel (b): “Data Night Population” is residential
population from the population census; “Data Day Population” is day population from the City of London Day Census for 1866, 1881, 1891 and 1911
and workplace employment in the population census for 1921; “Model Employment Workplace” equals the data on workplace employment from the
population census for 1921 and the model’s predictions for workplace employment using our calibrated Fréchet shape parameter of ε = 5.25 for the
other years; we calibrate this Fréchet shape parameter of ε = 5.25 by minimizing the sum of squared deviations between the model’s predictions for
workplace employment and the data on the day population of the City of London in the census years for which these data are available (1881, 1891
and 1911); the model’s predictions use the estimated change in commuting costs from removing the railway network and condition on the observed
changes in population and rateable values in the data.
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FIGURE V:
Event-Study Treatment Effects for the Arrival of an Overground or Underground Railway Station

in Greater London Parishes from 1801-1901

Note: Estimated treatment effects from the arrival of an overground or underground railway station on log parish population; sample includes 283
parishes in Greater London in census years from 1801-1901 (every 10 years); all specifications include parish fixed effects, year fixed effects and
parish-specific time trends; estimated coefficients and standard errors are reported in Table I.1 in the online appendix; in all three panels, the horizontal
axis shows the treatment year τ , which equals census year minus the last census year in which a parish had no railway, so that positive values of τ
correspond to post-treatment years; the excluded category is treatment year τ = 0; top panel shows estimated treatment effects across all parishes
in Greater London (the coefficients βτ from equation (1)); middle panel shows estimated treatment effects for parishes outside central London (the
coefficients βτ from equation (2)); lower panel shows the difference in estimated treatment effects between parishes in central and outer London
(the coefficients γτ from equation (2)); the vertical lines in each panel show the estimated 95 percent confidence intervals, based on standard errors
clustered on boroughs; in the middle and lower panels, the first specification (gray circle markers) estimates equation (2) using the City of London
as the definition of central London, while the second specification (black triangle markers) estimates equation (2) using parishes with centroids less
than 5 kilometers from the Guildhall as the definition of central London, and the third specification (gray triangle markers) estimates equation (2)
augmented with travel time controls and using parishes with centroids less than 5 kilometers from the Guildhall as the definition of central London;
the travel time controls are the log population-weighted average travel time reduction to other parishes from the railway network and its interaction
with the log of straight-line distance from the centroid of each parish to the Guildhall.

51



4
6

8
10

12
Lo

g 
Em

pl
oy

m
en

t D
en

si
ty

0 10 20 30
Distance to Guildhall (kilometers)

Workplace 1831 Workplace 1921
Residence 1831 Residence 1921

FIGURE VI:
Employment Workplace and Residence Density and Distance to the Guildhall in 1831 and 1921

Note: Employment residence density is measured per unit of land area and the values for both 1831 and 1921 are from the population census data.
Employment workplace density is measured per unit of land area; the values for 1921 are from the population census data; the values for 1831 are
model predictions from our baseline quantitative analysis. Figure shows the fitted values from locally-weighted linear least squares regressions of the
log of each variable on distance to the Guildhall.
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FIGURE VII:
Commuting Distances in the Model and the Henry Poole Data

Note: Shares of workers by commuting distance for all workers employed in the borough of Westminster in the model and for workers employed
by Henry Poole, Westminster. Model predictions are for 1861 and 1901. Henry Poole data are for workers hired in 1857-1877 and 1891-1911.
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FIGURE VIII:
Rateable Values and Productivity in 1831 and 1921 and Amenity Growth from 1831-1921

Note: Figure shows the fitted values from locally-weighted linear least squares regressions of the log of each variable on distance to the Guildhall.
The fitted values for each variable are normalized such that they take the value zero for the City of London.
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(b) Net Commuting into City of London (Underground)
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(c) Population Greater London (All Rail)
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(d) Population Greater London (Underground)
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(e) Rateable Value Greater London (All Rail)
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FIGURE IX:
Counterfactuals for Removing the Railway Network

Note: “Baseline” shows the values of variables from our baseline quantitative analysis from Section VI.; “Inelastic No Agglom” shows the values
of variables from our counterfactual with a perfectly inelastic supply of floor space and exogenous productivity and amenities (µ = ηL = ηR =
0); “Elastic No Agglom” shows the values of variables from our counterfactual using our calibrated floor space supply elasticity and exogenous
productivity and amenities (µ = 1.83 and ηL = ηR = 0); “Elastic Prod Agglom” shows the values of variables from our counterfactual using our
calibrated floor space supply elasticity, estimated production agglomeration forces and exogenous amenities (µ = 1.83, ηL = 0.086 and ηR = 0);
“Elastic Prod + Amen Agglom” shows the values of variables from our counterfactual using our calibrated floor space supply elasticity and estimated
production and residential agglomeration forces (µ = 1.83, ηL = 0.086 and ηR = 0.172).
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