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THE STEINHAUS-WEIL PROPERTY:
II. THE SIMMONS-MOSPAN CONVERSE

NICHOLAS H. BINGHAM AND ADAM J. OSTASZEWSKII

In memory of Harry I. Miller (1939 - 2018)

ABSTRACT. In this second part of a four-part series (with Parts I, III, IV refer-
ring to [BinO4,5,6]), we develop (via Propositions 1, 2 and Theorems 1, 2) a
number of relatives of the Simmons-Mospan theorem, a converse to the Steinhaus-
Weil theorem (for another, see [BinO1], and for yet others [BinO3, §8.5]). In Part
III [BinO5, Theorems 1, 2], we link this with topologies of Weil type.

1. A LEBESGUE DECOMPOSITION

We study the Simmons-Mospan converse of the Abstract. We use the nota-
tion and terminology of Part I [BinO4] and refer also to the longer arXiv version
[BinO3] combining all four parts. In particular, we recall the following: K (G)
denotes the compact subsets of G, a metric group, M (G) (and its subset P (G))
denotes the family of regular σ-finite measures (respectively, probabilities) on G;
for t= {tn} a null sequence (i.e. tn → 1G), σ= σ(t) denotes the selective measure
corresponding to t, as guaranteed by the Subcontinuity Theorem of I (cf. Theorems
1 and 1S of I), generated via amenability at 1 from probability measures μn which
sum along t beyond n the Dirac point-masses with dyadic weights. Thus for K
compact, σ is (‘selectively’) subcontinuous down an appropriate subsequence of t.
(Such subsequences mimic the admissible directions in the Cameron-Martin theory
of Gaussian measures, cf. [Bog], [BinO2].) We make use of the Mospan property
of a probability measure μ (I Prop. 6) relating the failure of the interior-point prop-
erty that 1G ∈ int(K−1K) for non-null compact K to the failure of subcontinuity of
μ at K, that is: 0= μ−(K) := supδ>0 inf{μ(Kt) : t ∈ Bδ} (with Bδ the ball of radius
δ about 1G).
We begin with definitions isolating left-handed components in Christensen’s no-

tion of Haar null sets [Chr1,2], and Solecki’s left Haar null sets [Sol1,2]; whilst
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left-handedness is the preferred choice below, right-handed versions have analo-
gous properties. As far as we are aware, the component notions in parts (ii)-(iv)
here have not been previously studied. Below,G is a Polish group, unless otherwise
stated.

Definition. (i) Left μ-null: For μ ∈ M (G), say that N ⊆ G is left μ-null (N ∈
M L
0 (μ)) if it is contained in a universally measurable set B⊆ G such that

μ(gB) = 0 (g ∈G).

Thus a set S ⊆ G is left Haar null ([Sol3] after [Chr1]) if it is contained in a uni-
versally measurable set B⊆ G that is left μ-null for some μ∈ M (G).
(ii) Left μ-inversion: For μ∈ M (G), say that N ∈ M L

0 (μ) is left invertibly μ-null
(N ∈ M L-inv

0 (μ)) if
N−1 ∈ M L

0 (μ),
so that N−1 is contained in a universally measurable set B−1 such that

μ(gB−1) = 0 (g ∈ G).

(iii) Left μ-absolute continuity: For μ,ν ∈ M (G), ν is left absolutely continuous
w.r.t. μ (ν<L μ) if ν(N) = 0 for each N ∈ M L

0 (μ), and likewise for the invertibility
version: ν<L-inv μ.
(iv) Left μ-singularity: For μ,ν ∈ M (G),ν is left singular w.r.t. μ (on B) (ν⊥Lμ
(on B)) if B is a support of ν and B ∈ M L

0 (μ), and likewise ν⊥L-invμ.

Remark. For μ symmetric, since

g−1μ(B) = μg(B−1)

if B is left μ-null we may conclude only that B−1 is right μ-null. The ‘inversion
property’, property (ii) above, is thus quite strong (though obvious in the abelian
case).

Notice that each of M L
0 (μ) and M L-inv

0 (μ) forms a σ-algebra (since g
⋃
n∈NBn

=
⋃
n∈N gBn and g(

⋃
n∈NBn)

−1 =
⋃
n∈N gB−1n ). This implies the following left ver-

sions of the Lebesgue Decomposition Theorem (we need the second one below).
The ‘pedestrian’ proof demonstrates that the Principle of Dependent Choice (DC)
suffices, a further example that ‘positive’ results in measure theory follow from DC
(as Solovay points out in [Solo, p. 31]).

Theorem LD. For G a Polish group, μ,ν ∈ M (G), there are νa,νs ∈ M (G) with

ν= νa+νs with νa <L μ and νs⊥Lμ,

and likewise, there are ν′a,ν′s ∈ M (G) with

ν= ν′a+ν
′
s with νa <

L-inv μ and νs⊥L-invμ.
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Proof. As the proof depends on σ-additivity, it will suffice to check the ‘L’ case.
Write G =

⋃
n∈NGn with the Gn disjoint, universally measurable, and with each

ν(Gn) finite (say, with all but one term σ-compact, and their complement ν-null).
Put sn := sup{ν(E) : E ⊆ Gn,E ∈ M L

0 (μ)}. In M L
0 (μ), for each n with sn > 0,

choose En,m ⊆ Gn with ν(En,m)> sn−1/m, and put Bn :=
⋃
m∈NEn,m ⊆ Gn. Then

the sets Bn are disjoint and lie in M L
0 (μ), as also does B :=

⋃
n∈NBn; moreover,

ν(Gn\Bn) = 0 for each n. Put A := G\B. Then ν(M) = 0 for M ∈ M L
0 (μ) with

M ⊆ A, since A =
⋃
n∈N(Gn\Bn). So νa := ν|A <

L μ, and νs := ν|B⊥Lμ, since
B ∈ M L

0 (μ). �

Remark. A simpler argument rests on maximality: choose a maximal disjoint
family B of universally measurable sets M ∈ M L

0 (μ) with finite positive ν(M);
then, their union B ∈ M L

0 (μ) (as B would be countable, by the σ-finiteness of ν).

2. DISCONTINUITY: THE SIMMONS-MOSPAN THEOREM

It is convenient to begin by repeating the gist of the Simmons-Mospan argument
here, as it is short, despite its ‘near perfect disguise’, to paraphrase Loomis [Loo,
p. 85]. The result follows from their use of the Fubini Theorem and the Lebesgue
decomposition theorem of §1 above, but here we stress the dependence on the
Fubini Null Theorem (Part I §1 – Fubini’s Theorem for null sets) and on left μ-
inversion. We revert to the Weil left-sided convention and associated KK−1 usage.

Proposition 1 (Local almost nullity). For G a Polish group, μ∈ M (G), V ⊆ G
open and K ∈ K (G)∩M L-inv

0 (μ), so that K,K−1 ∈ M L
0 (μ) :

– for any ν ∈ M (G), ν(tK) = 0 for μ-almost all t ∈V, and likewise ν(Kt) = 0.

Proof. For ν invertibly μ-absolutely continuous (as in §1 above), the conclusion
is immediate; for general ν this will follow from Theorem LD (§1), once we have
proved the corresponding singular version of the assertion: that is the nub of the
proof.
Thus, suppose that ν⊥L-invμ on K. For t ∈ V let t = uw be any expression for t

as a group product of u,w ∈ G, and note that μ(uK−1) = 0, as K−1 ∈ M L
0 (μ). Let

H be the set ⋃
t∈V

({t}× tK),
here viewed as a union of vertical t-sections. We next express it as a union of
u-horizontal sections and apply the Fubini Null Theorem (Th. FN, Part I §1).
Since u= tk= uwk is equivalent to w= k−1, the u-horizontal sections of H may

now be rewritten, eliminating t, as

{(t,u) : uw = t ∈V,u ∈ tK = uwK}= {(uw,u) : uw ∈V,uw ∈ uK−1}.

So H may now be viewed as a union of u-horizontal sections as⋃
u∈G

(V ∩ (uK−1))×{u}),
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all of these u-horizontal sections being μ-null. By Th. FN, μ-almost all vertical
t-sections of H for t ∈ V are ν-null. As the assumptions on K are symmetric the
right-sided version follows. �

The result here brings to mind the Dodos Dichotomy Theorem [Dod1, Th. A] for
abelian Polish groups G: if an analytic set A is witnessed as Haar-null under one
measure μ∈ P (G), then either A is Haar-null for quasi all ν ∈ P (G) or else it is
not Haar-null for quasi all such ν, i.e. if A ∈ M0(μ) (omitting the unnecessary
superscript L), then either A ∈ M0(ν) for quasi all such ν, or A /∈ M0(ν) for quasi
all such ν (i.e. quasi all w.r.t. the Prokhorov-Lévy metric in P (G) [Dud, 11.3, cf.
9.2]). Indeed, [Dod2, Prop. 5] when A is σ-compact A is Haar-null for quasi all
ν ∈ P (G). The result is also reminiscent of [Amb, Lemma 1.1].
Before stating the Simmons-Mospan specialization to the Haar context and also

to motivate one of the conditions in its subsequent generalizations, we cite (and
give a direct proof of) the following known result (equivalence of Haar measure η
and its inverse η̃), encapsulated in the formula

η̃(K) := η(K−1) =

∫
K
dη(t)/Δ(t) (K ∈ K (G)),

exhibiting the direct connection between η and η̃ via the (positive) modular func-
tion Δ [HewR, 15.14], or [Hal, §60.5f]; this equivalence result holds more generally
between any two probability measures when one is left and the other right quasi-
invariant – see [Xia, Cor. 3.1.4]; this is related to a theorem of Mackey’s [Mac], cf.
the longer combined arXiv version [BinO3, §8.16]. As will be seen from the proof,
in Lemma H below, there is no need to assume the group is separable: a compact
metrizable subspace (being totally bounded) is separable.
Lemma H (cf. [Hal, §50(ff); §59 Th. D]). In a locally compact metrizable group
G, for K ∈ K (G), if η(K) = 0, then η(K−1) = 0, and, by regularity, likewise for
K measurable.
Proof. Fix an η-null K ∈ K (G). As K is compact, the modular function Δ of
G is bounded away from 0 on K, say by M > 0; furthermore, K is separable, so
pick {dn : n ∈ N} dense in K. Then for any ε > 0 there are two (finite) sequences
m(1), ...m(n) ∈ N and δ(1), ...,δ(n) > 0 such that {Bδ(i)dm(i) : i≤ n} covers K and

M∑i≤nη(Bδ(i))≤∑i≤nη(Bδ(i))Δ(dm(i)) =∑i≤nη(Bδ(i)dm(i))< ε.

Then, as η is left-invariant,

∑i≤nη(d
−1
m(i)Bδ(i)) =∑i≤nη(Bδ(i))≤ ε/M.

But {d−1m(i)Bδ(i) : i ≤ n} covers K
−1 by the symmetry of the balls Bδ (by the sym-

metry of the norm); so, as ε> 0 is arbitrary, η(K−1) = 0.
As for the final assertion, if η(E−1)> 0 for some measurable E, then η(K−1)>

0 for some compact K−1 ⊆ E−1, by regularity; then η(K)> 0, and so η(E)> 0. �
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Proposition 1 and Lemma H immediately give:
Theorem SakM (cf. [Sak, III.11], [Mos], [BarFF, Th. 7]). For G a locally
compact group with left Haar measure η and ν a Borel measure on G, if the set S
is η-null, then for η-almost all t

ν(tS) = 0.
In particular, this is so for S the support of a measure ν singular with respect to η.
This in turn allows us to prove the locally compact (separable) case of the

Simmons-Mospan Theorem, Theorem SM ([Sim, Th. 1], [Mos, Th. 7], recently
rediscovered in the abelian case [BarFF, Th. 10]). Then in Theorem 2 below we
pursue a non-locally compact variant.
Theorem SM. In a locally compact Polish group, a Borel measure has the Steinhaus-
Weil property if and only if it is absolutely continuous with respect to Haar mea-
sure.
Proof. ForK compact and μabsolutely continuous w.r.t. Haar measure η, if μ(K)>
0 then η(K)> 0 and so as η, being invariant, is subcontinuous, Lemma 1 of Part I
§2 gives the Steinhaus-Weil property. Otherwise, decomposing μ into its singular
and absolutely continuous parts w.r.t. η, choose K a compact subset of the support
of the singular part of μ; then μ(K) > μ−(K) = 0, by Theorem SakM above, and
so Prop 6 (ii) (the converse part – see I §2) on the Mospan property applies, giving
a non-null compact set C without the interior-point property. �

Proposition 2 (after Simmons, cf. [Sim, Lemma] and [BarFF, Th. 8]). For G a
Polish group, μ,ν ∈ M (G) and ν⊥L-invμ concentrated on a compact left invertibly
μ-null set K, there is a Borel B ⊆ K such that K\B is ν-null and both BB−1 and
B−1B have empty interior.
Proof. As we are concerned only with the subspace KK−1 ∪K−1K, w.l.o.g. the
group G is separable. By Prop. 1 above, Z :={x : ν(xK)=0} is dense and so also is

Z1 := {x : ν(K ∩ xK) = 0},
since ν(K∩xK)≤ ν(xK) = 0, so that Z ⊆ Z1. Take a denumerable dense setD⊆ Z1
and put

S :=
⋃
d∈D

K∩dK.

Then ν(S) = 0. Take B := K\S. If /0 �= V ⊆ BB−1 and d ∈ D∩V, then for some
b1,b2 ∈ B⊆ K

d = b1b−12 : b1 = db2 ∈ K∩dK ⊆ S,
a contradiction, since B∩ S = /0. So (K\S)(K\S)−1 has empty interior. A similar
argument based on

T :=
⋃
d∈D

Kd∩K

ensures that also (K\S\T )−1(K\S\T ) has empty interior. �
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In order to generalize the Simmons Theorem from its locally compact context
we will need to cite the following result. Here Q+ := Q∩ (0,∞) denotes the posi-
tive rationals, and BK,Δδ (σ) := {z ∈ Bδ : σ(Kz)> Δ} as in Part I §2.

Theorem 1 (Disaggregation Theorem, [BinO2, Th. 7.1, Prop. 7.1]). Let G be a
Polish group that is strongly amenable at 1, and let t be a regular null sequence.
For σ = σ(t) there are a countable family H with H ⊆ K +(σ), a countable set
D=D(H )⊆G dense in G, and a dense subset G(σ) of G on which the sets below
are the sub-basic sets of a metrizable topology:

BK,Δδ (σ) (K ∈ H ,δ,Δ ∈Q+, Δ< σ(K)).

In particular, the space G(σ) is continuously and compactly embedded in G.More-
over, each such sub-basic open set contains a cofinal subsequence of t.

For a proof we refer the reader to [BinO2]; the result relies on I Cor. 4, the clos-
ing result in I, establishing the sub-basic property referred to here. The subspace
G(σ) above is a topological analogue of the Cameron-Martin subspace H(γ) of a
locally convex topological vector space equipped with a Radon Gaussian measure
γ – see [BinO3, §8.2-3].
We are now ready for the promised generalization. This requires equivalence

of the selective measure σ(t) (Part I §2) and its inverse – which is valid at least in
Polish abelian groups (see Part I, Th. 4 §2 on strong amenability at 1).

Theorem 2 (Generalized Simmons Theorem, cf. [Sim, Th. 2]). Let G be a
Polish group that is strongly amenable at 1 (which holds e.g. if G is abelian), let
σ= σ(t) be a selective measure corresponding to a regular null sequence t, which
we assume is equivalent to its inverse σ̃ (e.g. if G is abelian), and let G(σ) be the
dense subspace endowed with the refinement topology as in the preceding theorem.
Then:
ν ∈ M (G) is left invertibly-singular w.r.t. σ iff ν has a support that is a σ-compact
union of compact sets Kn with each of the compact sets KnK−1

n and K−1
n Kn nowhere

dense (equivalently: having empty interior) in the topology of G(σ).

Proof. If ν ∈ M (G), by Theorem LD write

ν= νa+νs with νa <L-inv σ and νs⊥L-invσ.

If ν is concentrated as in the statement of the theorem on a σ-compact set B with
B−1B having empty interior inG(σ), then νa = 0, and so ν is left invertibly-singular
w.r.t. μ. Indeed, as ν is concentrated on B, so is νa. We claim that νa(B) = 0.
Otherwise, νa(Kn) > 0 for one of the sequence of compact sets Kn with union B.
So K := Kn /∈ M L-inv

0 (σ), as νa <L-inv σ. The argument now splits into two cases,
according as K /∈ M L

0 (σ) or K−1
/∈ M L

0 (σ)
First, suppose that σ(gK) > 0 for some g ∈ G; then, by Part I, Lemma 1, there

are δ> 0 and 0< Δ< σt−(gK) with
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BgK,Δδ (σ)⊆ (gK)−1gK = K−1K ⊆ B−1B,

contradicting the above property of B.
Next, suppose that σ(Kg) =σ−1(g−1K−1)> 0 for some g∈G; so σ(g−1K−1)>

0, as σ̃ is equivalent to σ. Then, again by Part I Lemma 1, there are δ > 0 and
0< Δ< σt−(g−1K−1) with

Bg
−1K−1

,Δ
δ (σ)⊆ (g−1K−1)−1g−1K−1 = KK−1 ⊆ BB−1,

again contradicting the above property of B. So ν = νa is invertibly singular w.r.t.
σ.
The rest of the proof is as in Simmons [Sim, Th. 2], using I Prop. 6 (Mospan

property): the Baire-category argument still holds, since compactness implies clo-
sure under the G(σ(t))-topology, the latter being a finer topology; avoidance of
interior-points requires second countability, assured by Th. 1 above. �

Corollary 5 (Simmons Theorem: [Sim, Th. 2]). For G separable and locally
compact and η left Haar measure:
ν ∈ M (G) is singular w.r.t. η iff ν has a support that is a σ-compact union of
compact sets Kn with each of the compact sets KnK−1

n nowhere dense (equivalently:
having empty interior).

For the non-separable version of the above, see [BinO3, §8.1].
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