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Abstract. Given a linear, constant coefficient partial differential equation in R
d`1,

where one independent variable plays the role of ‘time’, a distributional solution
is called a null solution if its past is zero. Motivated by physical considerations,
distributional solutions that are tempered in the spatial directions alone (with no
restriction in the time direction) are considered. An algebraic-geometric characteri-
zation is given, in terms of the polynomial describing the PDE, for the null solution
space to be trivial (that is, consisting only of the zero distribution).

1. Introduction

Given a polynomial p P CrX1, ¨ ¨ ¨ ,Xd, T s “: CrX, T s, we associate with it the linear
constant coefficient differential operator Dp by making the replacements Xk  

B
Bxk

,

k “ 1, ¨ ¨ ¨ , d, T  B
Bt . A solution space is a subspace S of the space of distri-

butions D1pRd`1q. Unless otherwise indicated, we will use the standard distribu-
tion theory notation from Schwartz [11] or Tréves [12]. Fixing a solution space S,
p P CrX, T s gives rise to the differential operator Dp : S Ñ D1pRd`1q, defined by

Dpu :“ pp B
Bx1

, ¨ ¨ ¨ , B
Bxd

, B
Btqu, u P S. Let p P CrX, T s, and S be a solution space. A

null solution in S associated with p is a distribution u P S such that Dpu “ 0 and
u|tă0 “ 0. We denote by NSppq the subspace of S consisting of all null solutions in S

associated with p: NSppq :“ tu P S : Dpu “ 0 and u|tă0 “ 0u. The notion of a null
solution was considered in [4] and [5].

We are interested in giving an algebraic-geometric characterisation of the polyno-
mials p for which NSppq is the subspace t0u, consisting of only the zero distribution 0.
Such a characterization is expected to depend on the solution space S, as illustrated
by Propositions 1.1 and 1.2 below. In the following, E 1pRd`1q denotes the space of
compactly supported distributions.

Proposition 1.1. Let S“E 1pRd`1q or S “ DpRd`1q. Let p P CrX, T s. Then NSppq “
t0u if and only if p ‰ 0.

Proof. (‘If’ part): Let Dpu “ 0 and p ‰ 0. By the Payley-Wiener-Schwartz theorem
[12, Prop. 29.1,p. 307], the Fourier transform Fu of u (with respect to all the variables)
can be extended to an entire function on C

d`1. So Dpu “ 0 yields ppizq ¨ pFuqpzq “ 0,

z P C
d`1. But the ring ApCd`1q of entire functions in d ` 1 complex variables is an

integral domain. As ppi¨q ‰ 0 in ApCd`1q, Fu “ 0, and so u “ 0. Thus NSppq “ t0u.
(‘Only if’): Suppose that p “ 0. Then clearly NSppq “ S ‰ t0u. �
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2 EXISTENCE OF NULL SOLUTIONS

When S “ C8pRd`1q or D1pRd`1q, using [7, Thm. 8.6.7, 8.6.8], one can show the result
below. Here, degp¨q is used to denote the total degree.

Proposition 1.2. Let S “ D1pRd`1q or S “ C8pRd`1q. Let p P CrX, T s. Then

NSppq “ t0u if and only if degpppX, T qq “ degppp0, T qq.

Proof. [7, Thm. 8.6.7] says that for a characteristic plane with normal n, there exists a
solution in C8 whose support is ty : xy,nyRd`1 ď 0u. The hyperplane with the normal
n :“ p0, 1q P R

d`1 is characteristic for Dp if and only if degppq ‰ degppp0, T qq. This
gives the ‘only if’ part.

For the ‘if’ part, we use [7, Theorem 8.6.8], which says that if X1,X2 are open
convex sets such that X1 Ă X2, then the following are equivalent:
‚ If u P D1pX2q satisfies Dpu “ 0 in X2 and u|X1

“ 0, then u “ 0 in X2.
‚ Every characteristic hyperplane which intersects X2 also intersects X1.

Taking X1 “ tpx, tq : xpx, tq,nyRd`1 “ t ă 0u, where n :“ p0, 1q P R
d`1, and with

X2 :“ R
d`1, the above yields the ‘if’ part of the proposition. �

Example 1.3. The diffusion equation is p B
Bt ´ ∆qu “ 0, that is, Dpu “ 0, where

ppX, T q “ T ´ pX2
1 ` ¨ ¨ ¨ `X2

d q. As degpppX, T qq “ 2, but degppp0, T qq “ degpT q “ 1,
Proposition 1.2 implies that ND1pRd`1qppq ‰ t0u and NC

8pRd`1qppq ‰ t0u. 3

In this example, the outcome is physically unexpected, for example while considering
matter diffusion and u is the density of matter: then zero density up to time t “ 0
should mean that the density stays zero in the future as well. However, the above ex-
ample shows that there are ‘pathological’ null solutions in C8 or in D1 that are nonzero
in the future. Choosing a different, physically motivated solution space, namely where
at each time instant the spatial profile belongs to L1pRdq, the associated null solution
space is then trivial, as expected. It is well-known that the reason that the null solution
space is nontrivial in the above example when S “ C8pRd`1q or D1pRd`1q is that there
is no growth restriction on the spatial profiles of the solutions at each time instant,

and ‘rapid’ growth (roughly, faster than e}x}2 [3, Theorem, p.44]) is allowed. Indeed,
in most physical situations, we expect that at each time instant, the spatial profile is
typically in some Lp space or at most polynomially growing, etc. This motivates the
following solution space we consider. Below, S 1pRdq denotes the space of tempered
distributions.

The space of distributions on R
d`1 tempered in the spatial directions, is the space

LpDpRq,S 1pRdqq of all continuous linear maps from DpRq to S 1pRdq, where DpRq is
endowed with its inductive limit topology and S 1pRdq is equipped with the weak dual
topology σpS 1,Sq. LpDpRq,S 1pRdqq has the topology LσpDpRq,S 1pRdqq of pointwise
convergence. For u P LpDpRq,S 1pRdqq, Bu

Bxk
, Bu

Bt P LpDpRq,S 1pRdqq are defined by

x Bu
Bxk

pϕq, ψy “ ´xupϕq, Bψ
Bxk

y and x Bu
Bt pϕq, ψy “ ´xupϕ1q, ψy for ϕ PDpRq, ψ PSpRdq, k “

1, ¨ ¨ ¨ , d. For u P LpDpRq,S 1pRdqq, its ‘spatial’ Fourier transform pu P LpDpRq,S 1pRdqq

is given by xpupϕq, ψy “ xupϕq, pψy. LpDpRq,S 1pRdqq is a subspace of D1pRd`1q as fol-
lows: For u P LpDpRq,S 1pRdqq, define U by xU,ϕ b ψy “ xupϕq, ψy for ϕ P DpRq and
ψ P DpRdq Ă SpRdq. By the Schwartz kernel theorem [7, Thm. 5.2.1, p.128], there is
a unique such distribution U P D1pRd`1q. LpDpRq,S 1pRdqq is also isomorphic to the
completed projective- (or epsilon-)tensor product D1pRqpbπS

1pRdq of D1pRq and S 1pRdq.
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We will study the set of null solutions with respect to the space of distributions
tempered in the spatial directions, and give an algebraic-geometric characterization of
those polynomials p for which the corresponding null solution space consists of just
the zero solution.

Given a set I of polynomials from CrX1, ¨ ¨ ¨ ,Xds, we denote its variety in C
d by

V pIq. We make the following two observations, used later.
‚ If p P CrXs, u P S 1pRdq satisfy Dpu “ 0, then ppiξqpu “ 0, and so we have that

suppppuq Ă tξ P R
d : ppiξq “ 0u. Thus, V ppq X iRd “ H implies u “ 0.

‚ If p PCrT s, uPD1pRq satisfy Dpu“0, then uPspanttkeλt :λPC, k P Z`u. Thus
u|tă0 “ 0 implies u “ 0. Here Z` “ t0, 1, 2, 3, ¨ ¨ ¨ u.

As our solution space LpDpRq,S 1pRdqq » D1pRqpbπS
1pRdq, we expect our algebraic-

geometric characterisation to reduce to above extreme cases when the polynomial
belongs either to CrXs or to CrT s. For formulating this algebraic-geometric condition,
we give the following definition. For p “ a0 ` a1T ` ¨ ¨ ¨ ` anT

n P CrX, T s “ CrXsrT s,
where a0, ¨ ¨ ¨ , an P CrXs, the X-content CXppq of p is the ideal in CrXs generated
by a0, ¨ ¨ ¨ , an. We show that if V pCXppqq meets iRd, then the null solution space is
nontrivial.

Theorem 1.4. Let pPCrX, T s. If NLpDpRq,S 1pRdqqppq“t0u, then V pCXppqq X iRd“H.

Proof. Let V pCXppqq X iRd ‰ H, and ξ0 P R
d be such that iξ0 P V pCXppqq. Let

u :“ eixx,ξ0y
Rd b Θ, where Θ P C8pRq is nonzero and has a zero past, e.g. e´1{t if

t ą 0 and 0 otherwise. Then u P LpDpRq,S 1pRdqq and u|tă0 “0. If p“a0`¨ ¨ ¨`anT
n,

with the ak P CrXs, then ak P CXppq, and akpiξ0q “ 0 for all k. Consequently,

we have that Dpu “ a0piξ0qeixx,ξ0y
Rd b Θ ` ¨ ¨ ¨ ` anpiξ0qeixx,ξ0y

Rd b Θpnq “ 0. Hence
u P NLpDpRq,S 1pRdqqppq. But u ‰ 0, and so NLpDpRq,S 1pRqqppq ‰ t0u. �

Our main result (Thm. 4.1) is to show the sufficiency of V pCXppqq X iRd “ H for
NLpDpRq,S 1pRdqqppq “ t0u. Thus, Theorems 1.4 and 4.1 together give:

Theorem 1.5. Let p P CrX, T s. Then we have NLpDpRq,S 1pRdqqppq “ t0u if and only if

V pCXppqq X iRd “ H.

We will also consider distributions which have spatial profiles at each time instant
lying in certain Besov spaces. Summarising we have the following results:

Solution space S Test on p for NSppq “ t0u Result reference

1. C8pRd`1q degppq “ degppp0, T qq Prop. 1.2

2. D1pRd`1q degppq “ degppp0, T qq Prop. 1.2

3. DpRd`1q p ‰ 0 Prop. 1.1

4. E 1pRd`1q p ‰ 0 Prop. 1.1

5. LpDpRq,S 1pRdqq V pCXppqq X iRd “ H Thm. 1.4, 4.1

6. LpDpRq, Bp,qpRdqq p ‰ 0 Thm. 5.1

7. LpDpRq, HspRdqq p ‰ 0 Cor. 5.2

8. LpDpRq,SpRdqq p ‰ 0 Cor. 5.2

9. LpDpRq, E 1pRdqq p ‰ 0 Thm. 5.3

10. D1
A

pRd`1q @v P A´12πZd, Dt P C : ppiv, tq‰0. Thm. 6.1
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The key idea used in proving the sufficiency part of (5) above is as follows. By taking
Fourier transform, the partial derivatives Bxk with respect to the spatial variables xk
are converted into iξk, and so ppiξ, Btqpu “ 0, a family (parameterised by ξ P R

d)
of equations involving Bkt with the polynomial coefficients akpiξq. One would like to
‘freeze’ a ξ P R

d, to get an ODE for ppup¨qqpξq P D1pRq, where for such a solution to
an ODE we can indeed say that zero past implies zero future, and so the proof can
be completed easily by varying the arbitrarily fixed ξ. This is possible if the spatial
Fourier transform is a function, so that the evaluation at ξ is allowed, and this is
essentially how one shows the results in the second half of the table above.

For showing our main result for LpDpRq,S 1pRdqq, where spatial Fourier transform
will not result in a function of ξ, but rather a distribution, the idea is as follows. Using
Holmgren’s uniqueness principle, the support of pu is contained in V ˆr0,8q, where V is
the real zero set of the leading coefficient an. If d “ 1, so that an were a polynomial of
just one variable, then the real zeroes are isolated points, and we can complete the proof
using a structure theorem of Schwartz, which says that distributions supported on a
line must be essentially the Dirac delta and its derivatives, tensored with distributions
Tk of one variable (time). We can then boil down ppiξ, Btqpu “ 0 to give an ODE for
these distributions Tk of time, and since each Tk can be shown to have zero past, we
can conclude that the Tks must be zero. So this is how the proof works when d “ 1 and
when an was a polynomial of just one variable. In the general case, to handle the case
when an may be a polynomial of d variables, we proceed inductively on the number of
spatial dimensions d. It is too much to hope that at each inductive step we end up with
polynomials as coefficients of Bkt , since polynomial parametrisations of the zero sets of
the polynomial an may not be possible (e.g. tpX,Y q : X2`Y 2´1 “ 0u does not possess
a polynomial parametrisation). But the d “ 1 case just relied on the discreteness of
the zero set of an, which is also guaranteed if an were real analytic instead of being a
polynomial. So to carry out the induction, we use the set up where we make sure that
the coefficients of Bkt obtained at each inductive step are real analytic functions. To
begin with, polynomials are real analytic, real analytic varieties do possess locally real
analytic parametrisations ( Lojaciewicz structure theorem for real analytic varieties),
and composition of real analytic functions is real analytic. This allows us to complete
the induction step, by again appealing to a structure theorem of Schwartz, now for
distributions with support in a smooth manifold. The technical details are carried out
in Lemma 3.1. The organisation of the article is as follows.

‚ In Section 2, we recall some preliminaries needed for the proofs.
‚ In Section 3, we will prove the central technical result in Lemma 3.1,

which will lead to the proof of Theorem 4.1 on the sufficiency.
‚ In Section 4, we will prove Theorem 4.1.
‚ In Section 5, we consider distributions which have spatial profiles at each

time instant lying in certain Besov spaces.
‚ In Section 6 we consider spatially periodic distributions.
‚ Finally, a class of open problems on the null solution theme is mentioned.
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2. Preliminaries

Here we recall three results used in proving Lemma 3.1: Holmgren’s uniqueness the-
orem, Schwartz structure theorem for distributions supported on a manifold, and
 Lojaciewicz structure theorem for real analytic varieties.

2.1. Holmgren’s uniqueness theorem. Let Ω Ă R
d be open, and P be a differ-

ential operator of order N with coefficients an that are real analytic functions in Ω:
P px, BBBq “

ř
|n|ďN anpxq Bn1

Bx
n1
1

¨ ¨ ¨ Bnd

Bx
nd
d

. For n “ pn1, ¨ ¨ ¨ , ndq, |n| “n1 ` ¨ ¨ ¨ ` nd. Recall

the uniqueness theorem of Holmgren [6, Lemma 5.3.2, p.125]:

Proposition 2.1. In an open Ω Ă R
d, let P px, BBBq “

ř
|n|ďN anpxq Bn1

Bx
n1
1

¨ ¨ ¨ Bnd

Bx
nd
d

be a

differential operator having coefficients real analytic on Ω. Assume that the coefficient

of BN

BxN
d

never vanishes in Ω. If u P D1pΩq and P px, BBBqu “ 0 in Ωc :“ tx P Ω : xd ă cu

for some c, then u “ 0 in Ωc provided that Ωc X psupppuqq is relatively compact in Ω.

We will use the following consequence of this.

Lemma 2.2. Let U Ă R
d be an open set, c0, ¨ ¨ ¨ , cN be real analytic functions in U ,

u P D1pU ˆ Rq, u|tă0 “ 0, and c0pξqu ` c1pξqBu
Bt ` ¨ ¨ ¨ ` cN pξqBNu

BtN
“ 0. Then we have

that supppuq Ă tpξ, tq P U ˆ R : cN pξq “ 0u.

Proof. Let ξ0 P U be such that cN pξ0q ‰ 0. Let r ą 0 be such that the open ball
Bpξ0, 2rq Ă U and cN pξq ‰ 0 in Bpξ0, 2rq. We will use Holmgren’s uniqueness theorem

with Ωξ0 :“ Bpξ0, 2rq ˆ R and P ppξ, tq, BBBq :“ c0pξq ` c1pξq B
Bt ` ¨ ¨ ¨ ` cN pξq BN

BtN
. The

coefficient cN pξq of BN

BtN
never vanishes in Ωξ0 . Let ru be the restriction of u to the set

Ωξ0 “ Bpξ0, 2rqˆR Ă UˆR. We know supppruq Ă Bpξ0, 2rqˆr0,8q since ru|tă0 “ 0 (as
u|tă0 “ 0). For c ą 0, with Ωc :“ tpξ, tq : ξ P Bpξ0, rq, t ă cu, we have Ωc X supppruq
is relatively compact in Ωξ0 . Hence ru “ 0 in Ωc. As c ą 0 was arbitrary, ru “ 0 in
Bpξ0, rq ˆ R. By varying the ξ0 having the property that cN pξ0q ‰ 0, we obtain that
the restriction of u to the set V :“ tξ P U : cN pξq ‰ 0u ˆ R is the zero distribution
0 P D1pV q. So supppuq Ă tpξ, tq P U ˆ R : cN pξq “ 0u. �

2.2. Schwartz structure theorem for distributions with support in a sub-

manifold of R
d. We will need a local structure result [11, Thm. XXXVII, p. 102],

for distributions with support contained in a smooth submanifold of Rd. Here, for a
multi-index k “ pkd1`1, ¨ ¨ ¨ , kdq of nonnegative integers, we define |k| “ kd1`1`¨ ¨ ¨`kd,
and Bky “ p B

Byd1`1

qkd1`1 ¨ ¨ ¨ p B
Byd

qkd .

Proposition 2.3. Suppose that M is a submanifold of Rd of dimension d1, ξ0 P M ,

and y are coordinates in Bpξ0, Rq “ tξ P R
d : }ξ ´ ξ0}2 ă Ru in R

d, such that

Bpξ0, Rq X M “ tξ P Bpξ0, Rq : yd1`1pξq “ ¨ ¨ ¨ “ ydpξq “ 0u. Then a distribution T

on R
d with support in M can be locally decomposed as T “

ř
|k|ďK BkyTk, for some

distributions Tk on M .

2.3.  Lojasiewicz structure theorem for real analytic varieties. We now give
Lemma 2.4, which is a consequence of a more elaborate structure theorem for real an-
alytic varieties due to S.  Lojaciewicz [10] (see also [1]). We will not recall this theorem
here, but refer the reader to the exposition given in [9, Theorem 6.3.3, p.168], and we
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use the same terminology and notation here. This result given in [9, Theorem 6.3.3,
p.168] is stronger than what we need. We only require the following decomposition
into lower dimensional real analytic varieties and the local analytic parametrisation.

Lemma 2.4. Let V “ tx P R
d : fpxq “ 0u be the variety of a real analytic function

f : Rd Ñ R. Then for each point x0 of V , there exists a neighbourhood Ω such that

V X Ω “ Md´1 Y ¨ ¨ ¨ YM0, where some of the Md1s may be empty, and where the

Md1 are real analytic varieties which are analytic submanifolds of Rd of dimension d1,

admitting real analytic parametrisations as follows: For every x0 P Md1, there exists a

neighbourhood U of x0 PRd and a neighbourhood W of 0PRd, with a homeomorphism

ϕ : W Ñ U which is real analytic, Rd
1

ˆ R
d´d1

Ą W Q pτ ,σq ÞÑ ϕpτ ,σq P U, such that

Md1 X U “ tϕpτ ,0q : τ P R
d1

such that pτ ,0q P W u.

Proof. This follows immediately from [9, Theorem 6.3.3, p.168], since its part (2)
guarantees the local decomposition, and the real analytic parametrisation, namely
px1, ¨ ¨ ¨ , xkq ÞÑ px1, ¨ ¨ ¨ , xk, χηk

k`1

px1, ¨ ¨ ¨ , xkq, ¨ ¨ ¨ , χηk
d
px1, ¨ ¨ ¨ , xkqq corresponds to the

one we need in our lemma if we take τ “ px1, ¨ ¨ ¨ , xkq, σ “ pxk`1, ¨ ¨ ¨ , xdq, and
ξpτ ,σq “ pτ , χηk

k`1

px1, ¨ ¨ ¨ , xkq ´ xk`1, ¨ ¨ ¨ , χηk
d
px1, ¨ ¨ ¨ , xkq ´ xdq. Then we note that

the differential of ξ has the form

dξ “

„
Id1 0

˚ ´Id´d1


,

which is clearly invertible. Here Ik denotes the k ˆ k identity matrix. �

3. The main technical lemma

In this section, we will show the main technical result in Lemma 3.1, which will enable
us to show our result on sufficiency, namely Theorem 4.1.

Lemma 3.1. Let U Ă R
d be open, 0 ‰ p “ c0pξq ` ¨ ¨ ¨ ` cnpξqT n P CωpUqrT s, cn ‰ 0,

V pc0, c1, ¨ ¨ ¨ , cnq X U “ H, w P D1pU ˆ Rq, w|tă0 “ 0, and

c0pξq ` c1pξq
B

Bt
w ` ¨ ¨ ¨ ` cnpξq

Bn

Btn
w “ 0. (1)

Then w “ 0.

Proof. We prove this inductively on the number of spatial dimensions d.

Step 1. Let d “ 1. Holmgren’s uniqueness theorem (Lemma 2.2) implies that
supppwq Ă tpξ, tq P U ˆ R : cnpξq “ 0, t ě 0u. If cn is constant (which must nec-
essarily be ‰ 0, since cn was nonzero), then w “ 0, and we are done.

Let cn be not a constant. Let w ‰ 0. Let pξkqkPN be the real zeros of cn in U . Then
each ξk is isolated in U . We have supppwq Ă

Ť
kPN tξku ˆ r0,`8q. Each of the half

lines above carries a solution of the equation c0pξq ` c1pξq B
Btw ` ¨ ¨ ¨ ` cnpξq Bn

Btnw “ 0,

and w is a sum of these.
Let T P p0,8q. Take a ξ˚ P tξ1, ξ2, ¨ ¨ ¨ u, U a neighbourhood of ξ˚ not containing the

other ξks, and an α P DpRq which is identically 1 in a neighbourhood of r´T, T s such
that the distribution αw P D1pU ˆ Rq is nonzero. Then αw has compact support, and
by the structure theorem for distributions (e.g. [7, Theorem 2.3.5, p.47] or the result
from Subsection 2.2), it follows that there exist distributions T0, ¨ ¨ ¨ , TK P D1pRq (‘of

the time variable’), with TK ‰ 0, such that αw “
řK
k“0

pp B
Bξ qkδξ˚

q b Tk. Here δξ˚
is
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the Dirac delta of the spatial variable ξ, supported at ξ˚. From the above, it can be
shown that also w “

řK
k“0

pp B
Bξ qkδξ˚

q b Tk in the strip U ˆ p´T, T q.

We claim that TK |p´T,0q “ 0. For if not, then there is a ϕ P DpRq with support in

p´T, 0q such that xTK , ϕy ‰ 0. Hence the sum
řK
k“0

xTk, ϕyp B
Bξ qkδξ˚

is a nonzero distri-

bution in D1pUq. Otherwise, we get the contradiction that δξ˚
, ¨ ¨ ¨ , δ

pKq
ξ˚

are linearly de-

pendent in D1pUq. So there exists a ψ P DpUq such that x
řK
k“0

xTk, ϕyp B
Bξ qkδξ˚

, ψy ‰ 0,

that is, xw,ψ b ϕy ‰ 0. But the support of ψ b ϕ is in U ˆ p´T, 0q, and so we have
arrived at a contradiction to w|tă0 “ 0. This proves TK |p´T,0q “ 0.

Using 0 “
řn
ℓ“0

cℓpξqp B
Bt q

ℓw, we have, for pξ ´ ξ˚qK P C8pUq and ϕ P DpRq, that

0 “

C
nÿ

ℓ“0

cℓpξq
´ B

Bt

¯ℓ Kÿ

k“0

´ B

Bξ

¯k

δξ˚
b Tk, pξ ´ ξ˚qK b ϕ

G

“
nÿ

ℓ“0

Kÿ

k“0

B´ B

Bt

¯ℓ

Tk, ϕ

F
p´1qk

B
δξ˚

,
´ B

Bξ

¯k `
cℓpξqpξ ´ ξ˚qK

˘F
. (2)

But p B
Bξ qkpcℓpξqpξ ´ ξ˚qKq “

řk
m“0

´
k

m

¯
ppξ ´ ξ˚qKqpmqp B

Bξ qk´mcℓpξq, and if k ă K,

then for all m “ 0, ¨ ¨ ¨ , k, the mth derivative of pξ ´ ξ˚qK will be zero at ξ “ ξ˚ as
K ´ m ě K ´ k ě 1. So p B

Bξ qkpcℓpξqpξ ´ ξ˚qKq|ξ“ξ˚
“ 0 for k ă K. Hence the sum

over k “ 0, ¨ ¨ ¨ ,K in (2) collapses to one over k “ K, giving

0 “
nÿ

ℓ“0

B´ B

Bt

¯ℓ

TK , ϕ

F
p´1qK

B
δξ˚

,
´ B

Bξ

¯K `
cℓpξqpξ ´ ξ˚qK

˘F

“
nÿ

ℓ“0

B´ B

Bt

¯ℓ

TK , ϕ

F
p´1qKcℓpξ˚qK! “ p´1qKK!

C
nÿ

ℓ“0

cℓpξ˚q
´ B

Bt

¯ℓ

TK , ϕ

G
.

As ϕ P DpRq was arbitrary, pc0pξ˚q`c1pξ˚q d
dt

`¨ ¨ ¨`cnpξ˚qp d
dt

qnqTK “ 0. Owing to our
condition that V pc0, c1, ¨ ¨ ¨ , cnq XU “ H, we know that at least one of the coefficients
c0pξ˚q, ¨ ¨ ¨ , cnpξ˚q is nonzero (we know that cnpξ˚q “ 0 since ξ˚ was one of the roots
of cn). Thus we now have a solution TK to an ODE with constant coefficients. But
then TK is a classical smooth solution expressible as a linear combination of analytic
functions of the type tkeλt for some nonnegative integers k and some complex numbers
λ. The zero past condition TK |p´T,0q “ 0, furthermore implies that this analytic
function must in fact be identically zero, that is TK “ 0 in p´T, T q, a contradiction.
Hence our assumption that w is nonzero can’t be true. Consequently, w “ 0. This
completes the proof of the lemma when d “ 1.

Step 2. Suppose now that d ą 1, and that the statement of the lemma holds for all
spatial dimensions strictly less than d. We wish to prove the induction step that then
the result holds for d-many spatial dimensions too. Let w be a solution to

c0pξq ` c1pξq
B

Bt
w ` ¨ ¨ ¨ ` cnpξq

Bn

Btn
w “ 0, (3)

with zero past. Suppose that w is nonzero. Holmgren’s uniqueness theorem (Lemma 2.2)
implies that supppwq Ă tpξ, tq P U ˆ R : cnpξq “ 0, t ě 0u. If cn is constant (which
must necessarily be nonzero, since cn is nonzero), then w “ 0, a contradiction, and so
we are done.
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Suppose cn is not a constant. Then V pcnq :“ Md´1Y¨ ¨ ¨YM0, where Mk is the union
of k-dimensional real analytic varieties, each possessing an analytic parametrisation.

X1

Xd

τ

σ

U

W ξ

Md´1

Md´1

Md´1

Md´1

M0

M0

0

V pfq

ξ˚

Suppose that ξ˚ P Md1 , where 0 ă d1 ď d´1. Then there exists an open neighbourhood
Ω of ξ˚, an open neighbourhood W of 0 P R

d, and also a homeomorphism, namely

R
d1

ˆ R
d´d1

Ą W Q pτ ,σq ÞÑ ξpτ ,σq : W Ñ Ω, with τ ÞÑ ξpτ ,0q P CωprΩq, where
rΩ :“ tτ P R

d1

: pτ ,0q P W u, and Md´1XΩ “ tξpτ ,0q : pτ ,0q P W u. Suppose that w
is nonzero in Ω ˆ R. Then there is a large enough T ą 0 such that w is nonzero on
Ω ˆ p´T, T q. By the Schwartz structure theorem (§2.2), we can decompose w locally
in a neighbourhood Ω ˆ p´T, T q of pξ˚, 0q P R

d`1 as w “
ř

|k|ďK BkσTk, for some

distributions Tk on pMd1 X Ωq ˆ p´T, T q, such that not all Tk “ 0 when |k| “ K. Also,
as w|tă0 “ 0, Tk|tă0 “ 0 for all k. For a d´d1 tuple k “ pkd1`1, ¨ ¨ ¨ , kdq of nonnegative

integers, with |k| “ K, let ψk be the smooth function given by ψk :“ σ
kd1 `1

1
¨ ¨ ¨ σkd

d´d1 .

Then we have that Bk
1

σ ψk

ˇ̌
σ“0

“ kd1`1! ¨ ¨ ¨ kd! ¨ δkd1`1
,k1

d1`1

¨ ¨ ¨ δkd,k1

d
, where δℓ,ℓ1 is equal

to 1 if ℓ “ ℓ1, and 0 otherwise. Using c0pξq ` c1pξq B
Btw ` ¨ ¨ ¨ ` cnpξq Bn

Btnw “ 0, it

follows that for all ϕ P DprΩ ˆ p´T, T qq, where rΩ is as defined above, we have with
κ :“ p´1qKkd1`1! ¨ ¨ ¨ kd! that

0 “

C
nÿ

ℓ“0

ÿ

|k1|ďK

cℓpξpτ ,σqq

ˆ
B

Bt

˙ℓ

Bk
1

σ
Tk1 , ψk b ϕ

G
“

nÿ

ℓ“0

B
κcℓpξpτ ,0qq

´ B

Bt

¯ℓ

Tk, ϕ

F
.

As τ ÞÑ ξpτ ,0q P CωprΩq, and each cℓ P CωpUq, their (well-defined) composition,
namely τ ÞÑ cℓpξpτ ,0qq is real analytic. S As V pc0, c1, ¨ ¨ ¨ , cnqXU “ H, we obtain that

with rcℓpτ q :“ cℓpξpτ ,0qq, ℓ “ 0, ¨ ¨ ¨ , n, and with p0 :“
řn
ℓ“0

rcℓpξpτ , 0qqT ℓ P CωprΩqrT s,

we have V prc0,rc1, ¨ ¨ ¨ ,rcnq X R
d1

“ H, and Dp0Tk “ 0. We also recall from the above
that Tk|tă0 “ 0. By the induction hypothesis, we conclude that Tk “ 0. Repeating
this argument for each k satisfying |k| “ K, gives Tk “ 0 whenever |k| “ K, a
contradiction. So Md1 X supppwq “ H. As d1 such that 0 ă d1 ď d ´ 1 was arbitrary,
we conclude that supppwq Ă M0. But now we repeat the same argument above from
Step 1, when w was supported on isolated lines, to conclude that supppwq “ H, that
is, w “ 0. This completes the induction step. �
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4. Proof of sufficiency

Theorem 1.4 says V pCXppqq X iRd“H is necessary for NLpDpRq,S 1pRdqqppq“t0u. We now
show sufficiency.

Theorem 4.1. Suppose that p “ a0pXq`a1pXqT `¨ ¨ ¨`anpXqT n P CrXsrT s and that

an ‰ 0 P CrXs. If V pCXppqq X iRd “ H, then NLpDpRq,S 1pRdqqppq “ t0u.

Proof. Suppose that V pCXppqq X iRd “ H. Let u P LpDpRq,S 1pRdqq be such that
u|tă0 “ 0, Dpu “ 0 and such that u ‰ 0. Fourier transformation with respect to the

spatial variables in Dpu “ 0 yields a0piξqpu ` a1piξq B
Btpu ` ¨ ¨ ¨ ` anpiξqp B

Bt q
npu “ 0. By

Lemma 3.1, pu “ 0. Taking the inverse Fourier transform gives u “ 0. �

Example 4.2. Consider again the diffusion equation p B
Bt ´ ∆qu “ 0, that is, Dpu “ 0,

where ppX, T q “ T ´ pX2
1 ` ¨ ¨ ¨ ` X2

d q. The constant polynomial a1 “ 1 is nonzero,

and so V pCXppqq X iRd “ H. Theorem 4.1 implies that NLpDpRq,S 1pRdqqppq “ t0u, in
conformity with our physical intuition. 3

Modern physics rejects the diffusion equation as an accurate model of physical reality
since it is not ‘Lorentz invariant’, admitting infinite propagation speeds. This can
already be seen in the case of classical solutions to the initial value problem to the
diffusion equation, where the solution is given by a (spatial) convolution of the initial
data f with the Gaussian kernel, and so for arbitrarily small time instants t ą 0 and
at x “ 0, even arbitrarily far away initial data has an influence, which violates the
special relativistic tenet that nothing travels faster than the speed of light. With this
in mind, we illustrate our theorem with the Lorentz-invariant Klein-Gordon equation.

Example 4.3. For m P R, consider p B2

Bt2
´ ∆ ` m2qu “ 0, that is, Dpu “ 0, where

ppX, T q “ T 2 ´ pX2
1 ` ¨ ¨ ¨ ` X2

d q ` m2. The constant polynomial a2 “ 1 is nonzero,

and so V pCXppqq X iRd “ H. Theorem 4.1 implies that NLpDpRq,S 1pRdqqppq “ t0u.
We remark that Proposition 1.2 also gives a sensible result here, since we have

degppq “ degpT 2 ´ pX2
1 ` ¨ ¨ ¨ `X2

d q `m2q “ 2 “ degpT 2 `m2q “ degppp0, T qq, and so
ND1pRd`1qppq “ t0u and NC

8pRd`1qppq “ t0u.

If ηµν (µ, ν “ 0, 1, 2, 3) are the Minkowski metric tensor components in the Carte-
sian/inertial coordinates, then the only Lorentz-invariant scalar linear constant co-

efficient differential operator one can build has the form
řN
n“0

cnpηµνBµBνqn, where
rηµν s denotes the inverse of the metric matrix rηµνs, and ck P C. Then we have that

p “
řN
n“0

cnpT 2 ´ pX2
1 ` ¨ ¨ ¨ `X2

d qqn, and so degppq “ degppp0, T qq is always satisfied
for such Lorentz invariant partial differential operators. Thus Hörmander’s Proposi-
tion 1.2 is physically sound from the spacetime perspective of special relativity. 3

5. Spatial profile in Besov spaces

Besides the space LpDpRq,S 1pRdqq, one may consider also other natural solution spaces
with some growth restriction in the spatial directions. As an example, we consider
LpDpRq, Bp,kpRdqq, where Bp,kpRdq, defined below, is a subspace of S 1pRdq. We follow

[8, §10.1]. A function k : R
d Ñ p0,8q is a temperate weight function if there exist

C,N ą 0 such that for all ξ, η P R
d, kpξ`ηq ď p1`C}ξ}2qNkpηq, where } ¨ }2 denotes

the Euclidean norm on R
d. The set of all such functions is denoted by K. If k P K and



10 EXISTENCE OF NULL SOLUTIONS

1 ď p ď 8, then the Besov space Bp,k is the set of all distributions u P S 1pRdq such

that the Fourier transform pu is a function and }u}p,k “ p
ş
Rd |kpξqpupξq|pddξq1{p ă 8.

When p “ 8, }u}p,k :“ ess.sup |kp¨qpup¨q|. Then Bp,k is a Banach space with the above

norm. The scale of Sobolev spaces HspR
dq, parameterised by s P R, corresponds to

KSob :“ tks : s P Ru Ă K, where kspξq :“ p1 ` }ξ}2qs{2. The space LpDpRq, Bp,kpRdqq

is a subspace of D1pRd`1q: if u P LpDpRq, Bp,kpRdqq, then we define U P D1pRd`1q by

xU,ψ b ϕy “
ş
Rdpxu, ϕyqpξqψpξqddξ for ϕ P DpRq, ψ P DpRdq. We prove the following

result. Despite again using the Fourier transform as the main tool, akin to the proof of
Lemma 3.1, the proof is markedly simpler, thanks to the possibility of ‘evaluation’ at
ξ (as for each ‘time’ test function ϕPDpRq, pupϕq is a function of the variable ξPRd).

Theorem 5.1. Let p P CrX, T s. Then NLpDpRq,Bp,kpRdqqppq “ t0u if and only if p ‰ 0.

Proof. (‘Only if’ part:) Let p “ 0. Take any nonzero ψ P Bp,k, e.g. any nonzero ψ P

DpRdq. Let Θ P C8pRq be the nonzero function with zero past as in the proof of Theo-
rem. 1.4. Define u by upx, tq :“ ψpxqΘptq (x P R

d, t P R). Then u P LpDpRq, Bp,kpRdqq,
u|tă0 “ 0 and Dpu “ 0. But u ‰ 0, and so NLpDpRq,Bp,kpRdqqppq ‰ t0u.

(‘If’:) Let p ‰ 0, and u P LpDpRq, Bp,kpRdqq satisfy u|tă0 “ 0, Dpu “ 0. Let
p “ a0 ` a1T ` ¨ ¨ ¨ ` anT

n P CrXsrT s, where a0, a1, ¨ ¨ ¨ , an P CrXs and an ‰ 0 in
CrXs. Fourier transformation with respect to the spatial variables in Dpu “ 0 gives

a0piξqpu ` a1piξq B
Btpu ` ¨ ¨ ¨ ` anpiξqp B

Bt q
npu “ 0. Let ξ P R

d be such that anpiξq ‰ 0.
Then ppupϕqqpξq “ 0 for all ϕ P DpRq. Since the Lebesgue measure of the set of
zeros of the polynomial anpiξq is zero, it follows that for each ϕ P DpRq, the function
R
d Q ξ ÞÑ ppupϕqqpξq is 0 almost everywhere, and so pupϕq “ 0. But then pu “ 0 too,

and so u “ 0. �

As the HspR
dq are special instances of the spaces Bp,qpR

dq [8, Example 10.1.2, p.5],

and also SpRdq Ă Bp,kpRdq [8, Thm. 10.1.7, p.7], we have:

Corollary 5.2. Let p P CrX, T s and S “ LpDpRq,HspR
dqq or LpDpRq,SpRdqq. Then

NSppq “ t0u if and only if p ‰ 0.

By the Payley-Wiener-Schwartz theorem [12, Prop. 29.1, p. 307], the Fourier transform
of elements of E 1pRdq can be extended to entire functions on C

d. Thus the same proof,
mutatis mutandis, as of Thm. 5.1 gives:

Theorem 5.3. Let p P CrX, T s. Then NLpDpRq,E 1pRdqqppq “ t0u if and only if p ‰ 0.

6. Spatially periodic distributions

In this section, we consider the space D1
A

pRd`1q, which is, roughly speaking, the set

of all distributions on R
d`1 that are periodic in the spatial directions with a discrete

set A of periods. We now give the definition of D1
A

pRd`1q. For a P R
d, the translation

operation Sa on distributions in D1pRdq is defined by xSapT q, ϕy “ xT, ϕp¨ ` aqy for
all ϕ P DpRdq. T P D1pRdq is said to be periodic with a period a P R

d if T “ SapT q.
Let A :“ ta1, ¨ ¨ ¨ ,adu be an independent set vectors in R

d. We define D1
A

pRdq to be
the set of all distributions T that satisfy Sak

pT q “ T , k “ 1, ¨ ¨ ¨ , d. From [2, §34],

T is a tempered distribution, and taking Fourier transforms, p1 ´ eiak¨ξq pT “ 0 for

k “ 1, ¨ ¨ ¨ , d. It can be seen that pT “
ř

vPA´12πZd αvpT qδv, for some scalars αv P C,
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and where A is the matrix with its rows equal to the transposes of the column vectors
a1, ¨ ¨ ¨ ,ad: AJ :“

“
a1 ¨ ¨ ¨ ad

‰
. By the Schwartz Kernel Theorem [7, p. 128,

Thm. 5.2.1], D1pRd`1q is isomorphic as a topological space to LpDpRq,D1pRdqq, the
space of all continuous linear maps from DpRq to D1pRdq, thought of as vector-valued
distributions. In this section, we indicate this isomorphism by putting an arrow on
top of elements of D1pRd`1q. Thus for u P D1pRd`1q, we set ~u P LpDpRq,D1pRdqq to
be the vector valued distribution defined by x~upϕq, ψy “ xu, ψ b ϕy for ϕ P DpRq and
ψ P DpRdq. We define D1

A
pRd`1q “ tu P D1pRd`1q : for all ϕ P DpRq, ~upϕq P D1

A
pRdqu.

Then for u P D1
A

pRd`1q, B
Bxk

u P D1
A

pRd`1q for k “ 1, ¨ ¨ ¨ , d, and B
Btu P D1

A
pRd`1q. Also,

for u P D1
A

pRd`1q, we define pu P D1pRd`1q by xpu, ψbϕy “ x~upϕq, pψy, for ϕ P DpRq and

ψ P DpRdq. We have the following characterisation for the space of null solutions to
be trivial.

Theorem 6.1. Suppose that A“ta1, ¨ ¨ ¨ ,adu is a linearly independent set of vectors

in R
d. Let S “ D1

A
pRd`1q and p P CrX, T s. Then NSppq “ t0u if and only if for all

v P A´12πZd, there exists a t P C such that ppiv, tq ‰ 0.

Proof. (‘Only if’ part:) Let v0 P A´12πZd be such that for all t P C, ppiv0, tq “ 0.
Then ppiv0, T q “ 0 P CrT s. Let Θ P C8pRq be any nonzero smooth function such that
Θ|tă0 “ 0. Define u :“ eiv0¨x bΘ. Here v0 ¨x is the usual real Euclidean inner product

of v0,x P R
d. Then u P D1

A
pRd`1q, as Sak

u “ eiv0¨px`akq b Θ “ eiv0¨akeiv0¨x b Θ “ u.

We have u|tă0 “ 0, because Θ|tă0 “ 0. Also, u P ND1

A
pRd`1qppqzt0u since Θ ‰ 0 and

pp B
Bx1

, ¨ ¨ ¨ , B
Bxd

, B
Btqu “ eiv0¨xppiv0,

d
dt

qΘ “ eiv0¨x ¨ 0 “ 0.

(‘If’:) Suppose that for each v P A´12πZd, there exists a t P C such that ppiv, tq ‰ 0.
Then ppiv, T q ‰ 0 P CrT s. So ND1pRqpppiv, T qq “ t0u. Thus for each v P A´12πZd,

whenever T P D1pRq is such that T |tă0 “ 0 and satisfies ppiv, d
dt

qT “ 0, there holds that

T “ 0. Suppose that u P D1
A

pRd`1q satisfies u|tă0 “ 0 and pp B
Bx1

, ¨ ¨ ¨ , B
Bxd

, B
Btqu “ 0.

Taking Fourier transformation with respect to the spatial variables, ppiξ, B
Btqpu “ 0. For

each fixed ϕ P DpRq, ~upϕq P D1
A

pRdq, and so ÝÑu pϕq
Ź

“
ř

vPA´12πZd δvαvppu, ϕq, for appro-

priate coefficients αvppu, ϕq P C. So the support of pu is contained in A´12πZdˆr0,`8q.
Thus each of the half lines in A´12πZd ˆ r0,`8q carries a solution of ppiξ, B

Btqpu “ 0,
and pu is a sum of these. We show that each of these summands is zero. The map
ϕ ÞÑ αvppu, ϕq : DpRq Ñ C defines a distribution T pvq in D1pRq. Moreover, the support

of T pvq is contained in r0,`8q. For a small enough neighbourhood N of v P A´12πZd

in R
d, we have δv b ppiv, d

dt
qT pvq “ 0 in N ˆ R. But our algebraic hypothesis implies

that the set ND1pRqpppiv, T qq of null solutions is trivial, i.e. ND1pRqpppiv, T qq “ t0u,

and so T pvq “ 0. As this happens with each v P A´12πZd, we conclude that pu “ 0

and hence also u “ 0. Consequently, ND1

A
pRd`1qppq “ t0u. �

7. Open question: For which p is the set of futures of null solutions

dense in the set of futures of all solutions?

It follows from [5], that the set tu|tą0 : u P NC
8pRd`1qppqu of futures of smooth null

solutions, is dense in the set tu|tą0 : u P C8pRd`1q and Dpu “ 0u of futures of all
smooth solutions, if each irreducible factor p1 of p satisfies degpp1q ‰ degpp1p0, T qq. In
our alternative solution spaces, one could ask a similar question, that is, if it is possible
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to give a characterisation in terms of the polynomial p so that the set of futures of null
solutions is dense in the set of futures of all solutions. We leave this class of an open
questions for future investigation.
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[4] L. Hörmander. On the theory of general partial differential operators. Acta Mathematica, 94:161-

248, 1955.
[5] L. Hörmander. Null solutions of partial differential equations. Archive for Rational Mechanics and

Analysis, 255-261 no. 4, 1960.
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