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Abstract

There is little evidence on the relevance of social networks in the aggregate spatial
diffusion of localised economic shocks. This paper uses novel data on the universe
of online friendships in the US to uncover how plausibly exogenous surges in the
local demand for jobs in the oil and gas industry can affect the economy of spatially
distant but socially proximate places. Although most of the diffusion is limited to
geographically proximate areas, social networks matter too. According to 2SLS
estimates, a million dollar per capita increase in oil and gas extraction raises per
capita wages by over 5,000 dollars for workers reporting their incomes in counties
located as far as 1,200 km away from the drilling site, but strongly socially con-
nected to it. This effect is likely explained by the relocation of transient workers
within the industry, providing new aggregate evidence in support of the literature
on job information networks.
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1 Introduction

The aim of this paper is to study how localised economic shocks can propagate across a

country through interaction of people on social networks. In particular, the paper looks

at shocks associated to the ‘fracking revolution’ in the US, taking place since the early

2000s. Fracking, or hydraulic fracturing, is a resource-extraction technology that uses

highly-pressured liquid to obtain gas and oil from shale rock deposits. The presence of

rich oil and gas deposits in shale formations across the US has been known for some

time. It was however only around the turn of this century that a combination of tech-

nological innovation in extraction techniques and favourable market conditions allowed

these reserves to be profitably exploited (DOE, 2009; Wang and Krupnick, 2015). Due

to hydraulic fracturing and horizontal drilling, domestic production of oil and gas has

been increasing steadily in the US. In 2017, crude oil production exceeded 1972 levels,

and natural gas production reached a new record-high (EIA, 2018). As a result, drilling,

extraction and support jobs in oil and gas operations nearly doubled between 2001 and

2014, with nominal wages growing by about 60% according to the US Bureau of Labor

Statistics (Figure 1). Feyrer et al. (2017) emphasise that this activity is highly localised,

making it a suitable case for the analysis proposed herein.

Figure 1: Growth in employment and annual average pay in private sector firms

Source: US Bureau of Labor Statistics, Quarterly Census of Employment and Wages

There is abundant literature on the regional economic effects of natural resources and

the spillovers of local shocks to the economy in general, many of which focus on the US.1

1Outside the US, other recent evidence specific to oil and gas extraction is offered for instance by Caselli
and Michaels (2013) for Brazil, by Borge et al. (2015) for Norway, by Percoco (2012) for Italy, and by
Gibbons et al. (2016) for the UK. The latter paper offers evidence on fracking, which is rare for Europe
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Some scholars argue that the discovery of natural riches can harm local economies, in

line with the resource curse literature (Sachs and Warner, 1995, 2001), for instance by

crowding out employment from other sectors (Corden and Neary, 1982). Jacobsen and

Parker (2016) show that the 1970s US oil boom caused harm to long term income and

employment of local communities despite some short-term gains. Similarly, Black et al.

(2005) study the boom and bust of the coal sector in four US states around the same pe-

riod, finding small employment spillovers only into sectors producing locally traded goods.

By contrast, several papers highlight the benefits that can accrue to regional economies.

Michaels (2011) shows that in the very long run oil abundant counties in the southern

US increased local employment density in mining as well as manufacturing, contributing

to population growth, better infrastructure, and higher per capita income. Other studies

confirm that resource extraction can benefit the manufacturing sector rather than harm-

ing it, contributing to local economic development (Fetzer, 2014; Weber, 2014; Allcott

and Keniston, 2017). Some studies have also looked at non-monetary outcomes, such as

marriage and fertility rates, and risky sexual behaviour. Shale gas extraction is associ-

ated with an increase in marital and non-marital birth rates due to the higher earnings

potential of low-skilled men (Kearney and Wilson, 2018), as well with higher gonorrhea

rates, with significant spatial spillovers from fracking sites (Cunningham et al., 2020).

Bartik et al. (2019) provide a comprehensive discussion of the economic and welfare con-

sequences of fracking for local communities, studying a wide range of outcomes including

income, employment, housing and crime. The paper documents net average welfare gains

from hydraulic fracturing across US shale plays, albeit with large heterogeneity between

them. Recently, Feyrer et al. (2017) look at the dispersion of fracking-determined income

shocks over space, time, and industries using novel data on yearly production of oil and

gas from new wells in US counties between 2004 and 2014. The authors find that the

effect of fracking on income and employment becomes larger as one considers the wider re-

gion around the county where production occurs, peaking at about 100 miles of distance.

This effect is persistent over time and, while changes in mining wages disappear within

two years, workers in other industries such as transport, manufacturing, and services,

benefit from sustained growth in their earnings. Taken together, these results suggest

that benefits from local shocks can propagate to the wider economy of a country.

While the majority of extant literature has focused on geographic spillovers of localised

shocks to proximate areas, however, the role of networks in this process is relatively un-

derstudied. To address this gap, Amarasinghe et al. (2018) jointly investigate the role of

geographic, transport and ethnic networks in the propagation of mining-related shocks

across African administrative districts. Their findings highlight the importance of road

and ethnic networks in the diffusion of economic shocks well beyond immediately con-

given widespread bans on this technology. All papers emphasise the importance of local institutional
arrangements in determining economic effects, so the rest of this discussion focuses on the US.
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tiguous areas. Other scholars have focussed on the macroeconomic relevance of networks

in transmitting micro-level shocks, studying for instance input-output relationships be-

tween firms (Acemoglu et al., 2012; Carvalho, 2014). This paper is interested in studying

the relevance of social networks, or better, the social connectedness of places arising

from the interaction of people across the entire US geography. Bailey et al. (2018b) show

that social connectedness correlates with many economic outcomes, including trade flows,

mobility and innovation.2 The micro-level literature on economic networks provides valu-

able insights into some of the mechanisms underlying these findings (Jackson et al., 2017).

From the viewpoint of this paper, of particular relevance is the work of Calvó-Armengol

and Jackson (2004, 2007), who develop a network model in which workers rely on their

social relationships to obtain information about employment opportunities. The model

predicts positive correlation of wages and employment status on networks. This intuition

finds validation in subsequent empirical work on the labour market effects of information

and referral networks (Bayer et al., 2008; Patacchini and Zenou, 2012; Beaman, 2012;

Dustmann et al., 2016; Gee et al., 2017).3

Empirically, this can also be seen in the aggregate data used for the analysis in this

paper. The binned scatterplot in Figure 2 plots percentiles of income per capita and log

employment in US counties against averages of the same measures taken over the top

five percent most closely socially connected counties.4 Evidently, there appears to be a

strong positive autocorrelation of both income and employment in the network. Note

that this is not in itself evidence of endogenous network effects. It is well possible that

counties that are socially connected are similar in demographic composition due to sorting

of people into places and networks, or that connected counties are exposed to the same

economic shocks. It is also uncertain whether the correlation arises because of a change

in outcomes of connected counties, or of local socio-economic conditions. Borrowing the

terminology of Manski (1993), the relationship described in Figure 2 could be the result

of correlated or contextual effects, the latter being especially difficult to distinguish from

endogenous effects. As emphasised by Gibbons and Overman (2012) and Gibbons et al.

(2015), it is possible to make some way forward in the identification of the desired effects

if one can find exogenous instruments as a source of variation in the network variables.

In this respect, fracking provides a suitable setting for the study of such effects insofar as

resource extraction is a function of the exogenous pre-existing geology of shale formations.

As such, the study of diffusion of fracking shocks can also be interpreted as the reduced-

form analysis of endogenous network effects. This aligns with what recommended in

2In a related paper, Bailey et al. (2018a) use micro-data on social connections to show that exposure
to fluctuations in housing prices via one’s network influences beliefs about attractiveness of property
investments and ultimately housing market activity of this individual.

3See Topa (2011) and Topa and Zenou (2015) for recent reviews of this literature.
4Social connections are defined in terms of number of online friendships the counties share. More infor-
mation on these data are available in Section 3.
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Gibbons and Overman (2012), who suggest to rely on spatially lagged X models (SLX)

in place of spatial autoregressive models (SAR), as the former are more amenable to

be studied with an experimentalist paradigm in mind. More in general, while it may

be difficult to separately identify endogenous and contextual effects, studying plausibly

exogenous fracking shocks can help address concerns related to correlated effects.

Figure 2: Autocorrelation of county labour market outcomes in social networks

Sources: US BLS Quarterly Census of Employment and Wages; Facebook Social Connectedness Index

Finally, this analysis also indirectly dialogues with a broader line of investigation con-

cerning the effects of localised shocks to labour demand, geographic mobility, and the

subsequent adjustments to equilibrium in labour markets (Blanchard et al., 1992; Bound

and Holzer, 2000; Notowidigdo, 2011; Manning and Petrongolo, 2017; Amior and Man-

ning, 2018; Ahlfeldt et al., 2020). Most of these studies discuss the limited role that

mobility of low-skill workers play in the adjustment process. Conversely, by studying

the fracking industry, this paper documents effects operating predominantly through the

channel of low skilled employment.

Motivated by the stylised fact noted in Figure 2, and building on the existing literature

discussed above, this paper therefore aims to investigate how localised exogenous shocks

from new oil and gas production diffuse via social connectedness across the entire US

geography. To the best of my knowledge, no research has looked at this question yet.

The paper thus aims to describe a new geography for the income and employment effects

of resource booms, which has been largely overlooked in local economic development

studies. In line with existing evidence (Feyrer et al., 2017), I find that the largest effects

of localised shocks are felt in geographically proximate areas. However, social networks do

play a role. On average, a million dollar per capita increase in oil and gas extraction in the

top 25 most strongly socially connected counties raises per capita wages by about 2,000
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dollars for workers reporting their income in counties located as far as 1,200 km away from

the drilling site. This effect is likely to be explained by the relocation of itinerant workers

within the industry, providing new aggregate evidence in support of the literature on job

information networks. This finding is of relevance to policy makers interested in local

economic development. If being socially connected to thriving places can benefit local

economies above and beyond immediately contiguous areas, then this research sheds light

onto the importance of considering a new dimension of access to opportunity, namely one

that takes into account the interaction of people across distant geographies. Further, this

analysis reveals the potential of spillovers of place-based interventions beyond contiguous

areas, in a way that depends on the geography of social interactions.

Importantly, it is beyond the scope of this analysis to evaluate the overall welfare effects

of hydraulic fracturing. While some places stand to gain in terms of wages or employ-

ment, there are well documented negative externalities associated with this extraction

technology. Fracking has been associated to environmental damages (Howarth and In-

graffea, 2011) including deterioration of air quality (Colborn et al., 2014; Roy et al.,

2014; Caulton et al., 2014) and contamination of water reserves due to by-products of the

drilling process (Olmstead et al., 2013; Warner et al., 2013; Jackson et al., 2013; Vengosh

et al., 2013; Fontenot et al., 2013). It was also found to increase crime rates, inequality

and road traffic accidents (James and Smith, 2017; Graham et al., 2015), and to lower

educational outcomes (Cascio and Narayan, 2015; Rickman et al., 2017). Shale gas ex-

traction has even been linked to seismic activity (Koster and van Ommeren, 2015). In

line with hedonic models, these externalities have been found to negatively affect house

prices (Muehlenbachs et al., 2015; Gibbons et al., 2016). Moreover, the analysis in this

paper is limited to short-term responses to the resource boom, thus overlooking potential

adjustments following a bust in the medium- and long-term.

The remainder of the paper is structured as follows. Section 2 conceptualises the role

of social networks in the transmission of economic shocks across local markets. Section

3 outlines the empirical strategy adopted by this paper and presents the econometric

model. Section 4 discusses the main results. Section 5 concludes.

2 Conceptual Framework

This section discusses a conceptual framework useful to motivate the empirical analysis

of the paper, clarifying how localised shocks can diffuse in space via networks. Consider

an economy organised in multiple local labour markets (regions), producing two goods.

One is traded (e.g., manufactures and energy), another is not (e.g., local services). There

is a fixed number of homogeneous workers in the economy, each supplying inelastically

one unit of labour. In this context, labour supply to local markets is fully determined by
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the workplace location choice of workers. As emphasised by Allcott and Keniston (2017),

geographic spillovers from fracking are a consequence of general equilibrium effects in

the economy. There are two main mechanisms through which a positive shock to the

local energy producing sector can diffuse to other markets. One is via multipliers in the

tradable and non-tradable sectors. Another is via labour mobility.5 These two channels

are interdependent, as there might be relocation of workers both across labour markets

and sectors. Nonetheless, it is useful to consider them separately, for clarity. Moreover,

this analysis is especially interested in the channel operating through worker mobility,

which will be given special attention.

2.1 Industry Multipliers

Fracking can be thought of as a positive increase in local labour demand in the oil and gas

extraction industry within the tradable sector. This shock has a direct effect on employ-

ment in the affected industry, but is also likely to increase wages in other local industries,

whether tradable or non-tradable, depending on the local elasticity of labour supply (as

will be explained more in detail below). Moretti (2010) discusses the impact on other

tradable and non-tradable sectors. As a result of higher local wages and employment,

demand for non-traded local services also increases due to higher local incomes, benefit-

ing industries such as construction, retail, restaurants, entertainment and personal care,

among others. In their study of booming resource sectors on de-industrialisation, Corden

and Neary (1982) term this the ‘spending effect’. Some of this additional demand results

in higher wages, some other leads to expansion of the non-tradable sector, with new jobs

filled by workers moving into the local market from elsewhere in the economy. Benefits

are thus shared between existing workers and new ones who relocate as a consequence of

the shock. Mobility in this case is key to transmission of the shock. With fixed labour

in the overall economy, supply in originating markets falls, which raises wages as firms

compete for a reduced pool of workers (unless the production technology allows perfect

substitution with capital). With respect to tradables, the effect is ambiguous. Due to

higher overall wages in the local market experiencing the shock, firms face higher produc-

tion costs. This affects their competitiveness as they cannot adjust output prices, which

are fixed across all regions. Some production is likely to relocate to other regions, leading

to a contraction of the local tradable sector, but potentially expanding it elsewhere in

the economy. Corden and Neary (1982) refer to this as the ‘resource movement effect’.6

Conversely, some local and non-local tradable industries may stand to gain due to input-

5Another channel could operate via redistribution of tax revenues by the producer state to different
counties, although this is arguably unrelated to the network structure of the economy.

6This, they argue, combined with the ‘spending effect’, explains the Dutch disease phenomenon, that
is, the simultaneous expansion and contraction of industries in the tradable sector, where a booming
resource extraction activity is associated with a weakening manufacturing base.

7



output linkages and demand for intermediate goods (Hirschman, 1958). The increased

production of oil and gas may require specialised inputs related to drilling, storing, and

refining, for instance. This may affect employment locally, if these industries tend to clus-

ter geographically, but can also result in job creation elsewhere in the economy. These

spillovers have to do with the geography of production networks, which is not the focus of

this paper. However, any additional local employment effect also diffuses to other regions

by selectively attracting new workers depending on social networks, as emphasised in the

next section. In the specific case of fracking, Fetzer (2014) also highlights how trade costs

and pipeline constraints in oil and gas lead to falling local energy prices. This ‘energy

effect’ counteracts higher labour costs, potentially sustaining an expansion, rather than

contraction of the tradable sector.

2.2 Selective Worker Mobility

The multiplier effects discussed so far allow for indirect diffusion of localised shocks across

regions, but do not clarify how diffusion relates to interaction over social networks. To

this end, it is useful to consider the mobility channel more closely. The key takeaway

form the previous paragraphs is that a shock to the energy extraction sector can have a

knock-on effect on other sectors, whether tradable or non-tradable. The relative impact

on employment and wages is then mediated by the elasticity of local labour supply, which,

in the proposed setting with fixed total workforce, amounts to the ability of workers to

relocate or commute across local markets. This mobility, however, is selective, so that

the propensity to take on work in a particular local market is higher for some region-pairs

than for others. Increasingly, spatial general equilibrium models allow for constraints in

worker mobility due to frictional spatial linkages (Amior and Manning, 2018; Ahlfeldt

et al., 2020). There may be differences in preferences or constraints across workers in

different local labour markets influencing the mobility outcome. Two key channels come

to mind when thinking about social networks: preferences for location, and job search.

The former can be traced back conceptually to the work of Sjaastad (1962), who discusses

the non-monetary ‘psychic costs’ of leaving behind family and friends (or, symmetrically,

the gains from re-joining them). Moretti (2011) was perhaps the first to acknowledge

this in a formal model, by introducing idiosyncratic worker attachment to places, as

individuals weight-off relative preferences for location-pairs. The second channel, job

search, emphasises spatial frictions in access to information. Recent contributions in this

area of research include Manning and Petrongolo (2017) and Schmutz and Sidibé (2019).

Conceptually, this paper focuses on the information channel associated with job search.

Who gets to hear about job opportunities in distant markets? The news might not reach

evenly across regions. The role of social networks, in this interpretation, is grounded

on an intuitive argument: the greater the intensity of social interaction between two
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places, the higher the probability that information is channelled across these markets.

It is also possible to relate this statement to micro-level foundations. According to the

aforementioned model by Calvó-Armengol and Jackson (2007), individuals are more likely

to receive information through their network about jobs paying higher wages than their

current one (‘better jobs’) if a larger share of their social ties connects to agents with jobs

paying higher wages (‘satisfied agents’). Intuitively, the more agents in the network have

better jobs, the more likely they are to have first-hand information on better jobs. At

the same time, since workers compete for information on better jobs, if more agents in a

network are satisfied with their current job, the likelihood that the information is passed

on to someone else in the network increases, eventually reaching a dissatisfied agent who

can take up the better job.7 In short, by this argument localised shocks are more likely

to diffuse between places that are more strongly connected with one another socially.

As emphasised in Monte et al. (2018), the choice of workplace location in response to a

localised labour demand shock can result in either permanent relocation of workers across

regions (effectively migration), or simple commuting. In fact, the authors point out that

the effects of a shock are heterogeneous depending on the commuting openness of the

affected area, as this influences local labour supply elasticity. I therefore consider both

cases. With migration, spatial diffusion of shocks operates through general equilibrium

effects mediated by labour and housing supply. This adjustment is best described with

the local labour market model of Moretti (2011), where a demand shock in the destina-

tion region generates a real wage change at the origin due to falling housing demand.8

The model makes several simplifying assumptions which, however, allow to highlight the

critical role played by the local elasticity of labour supply in the transmission of shocks.

Social networks play a role to the extent that the likelihood of relocation between region-

pairs increases with the social connectedness of these regions. In addition, one could also

imagine that migrant workers send remittances to social connections back in their origin

region.

With commuting, diffusion operates directly via new jobs or higher nominal wages, as

workers reside close enough to the fracking site to take on new jobs without changing their

place of residence. Commuting is a particularly relevant case to consider in this analysis,

for two reasons. First, sociological accounts of the oil and gas industry document that

employees often do not live directly by the drilling site but rather in the surrounding

areas, due to negative externalities linked to drilling, as well as limited provision of

services and consumption amenities where extraction takes place (Christopherson and

7I refer to the original paper for analytical derivations of these findings.
8In his framework, perfect substitution between capital and labour means that nominal wages do not
adjust to the outflow of workers. Thus, gains accrue solely via real wages due to falling house prices.
Introducing imperfect substitution in the production technology, however, would allow for gains in
nominal wages too.
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Rightor, 2012). Second, most jobs generated by fracking tend to be relatively short-lived,

mainly occurring in relation to the set-up of the drilling site. As a result, employees

are frequently out-of-town hires: transient workers active on several sites across vast

regions, temporarily living in purposely arranged caravan camps while maintaining their

permanent residence in a different state (Jacquet, 2011; Christopherson and Rightor,

2012). Workers effectively act as if they were commuting over long distances for as long

as they are needed to fulfil the job. They do not change their permanent address, but

travel across the entire economy depending on availability of jobs in the industry. Under

these conditions, the nominal wages gained by the workers leave the host community

and are recorded in places potentially kilometres away from the drilling site. While some

of these gains may be spent locally around the wells, most of the money is likely to be

used elsewhere. Finally, commuting is also relevant from an empirical viewpoint. The

geographical units of analysis in this paper are US counties, which do not represent self-

contained labour markets. Conceptually discussing commuting thus allows to remain a

priori agnostic regarding the definition of the catchment area of local labour markets.

2.3 Commuting with Social Connections

What follows formalises the intuition about selective mobility in the spirit of Ahlfeldt

et al. (2015), focusing on commuting. As discussed above, sociological accounts of shale-

gas workers suggest that this adjustment channel should prevail. A theory for the spatial

diffusion of fracking shocks over social networks cannot abstract from what is known

about industry practices. Analytically, the temporary long haul relocation of workers

who do not change their original place of residence can indeed be thought of as analogous

to commuting. In their quantitative spatial model, Ahlfeldt et al. (2015) provide a useful

way to think structurally about the determinants of commuting flows in a gravity form.

The commuting part of the model can be adapted to the context at hand by introducing

a social connectedness term that counterweights the effect of geographical distance in

determining commuting probabilities, where the act of commuting is interpreted in a

broad way, to encompass the case of transient workers who do not change their place of

residence.9

Consider an economy divided into i = 1, ..., S discrete locations (regions). Each location

offers a fixed amount of land, available for residential or commercial use. Land income

is earned by absentee landlords and spent outside the economy. As before, workers

are homogeneous and mobile, inelastically supplying one unit of labour. They choose

residence i and workplace j pairs that maximise their utility. For simplicity, imagine

9What follows provides a synthetic description of the model for illustrative purposes, which is also
somewhat simplified. A comprehensive discussion of the model falls beyond the scope of this analysis
which is by and large empirical. Please refer to the paper by Ahlfeldt et al. (2015) and companion
supplementary materials for a detailed description and complete analytical derivation.
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there is now only one industry. Firms produce a single final good, traded at unit price.

Indirect utility for worker o living in i and commuting to j is given by:

vij,o =
zij,oBiwjQ

β−1
i

dij
(1)

Where Bi and Qi are residential amenities and cost of land consumption, wj are wages

paid at the workplace, dij are commuting costs, and zij,o is an idiosyncratic preference

term specific to each worker that depends on residential and workplace location. The

disutility from commuting is modelled as an iceberg cost dij = eκτij−ησij ∈ [1,∞) which

increases in geographical distance between place of work and residence, τij, but decreases

in the degree of social connectedness between the two, σij, with strengths of κ and η

respectively. When thinking about transient workers in the fracking industry, this cost

can be interpreted as the overall decrease in utility from distance to home arising, for

instance, due to less effective job search. The idiosyncratic preference term zij,o captures

heterogeneity in individual preferences for places of work and residence, and is drawn

from an independent Fréchet distribution:

F (zij,o) = e−TiEjz
−ε
ij,o , Ti, Ej > 0, ε > 1 (2)

Where Ti is a scale parameter that determines the utility that the average worker derives

from living in region i, Ej captures the average utility from working in region j, and ε is a

shape parameter that describes the dispersion of idiosyncratic preferences across workers.

Because indirect utility increases monotonically in the idiosyncratic term zij,o, which

follows a Fréchet distribution, indirect utility for any worker living in region i and working

in j is also Fréchet distributed. In equilibrium, workers choose to live and work in a

location pair ij such that their utility is maximised, taking into account commuting

costs. Ahlfeldt et al. (2015) show that, as the maximum of Fréchet distributed variables

also follows a Fréchet distribution, the probability that a worker commutes from i to j is

given by:

πij =
TiEj(dijQ

1−β
i )−ε(Biwj)

ε∑S
r=1

∑S
s=1 TrEs(drsQ

1−β
r )−ε(Brws)ε

(3)

Other things equal, individuals prefer living in regions with higher amenities Bi (e.g., not

living in close proximity to the wells), low cost of land Qi, and higher average idiosyncratic

utility Ti. Similarly, they privilege regions with higher wages wj and average idiosyncratic

utility Ej as a workplace. Moreover, by conditioning 3 on place of residence, it is possible

to obtain the probability of commuting to j for a worker living in i, where all terms
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indexed with i are fixed:

πij|i =
Ej(wj/dij)

ε∑S
s=1Es(ws/dis)

ε
(4)

This highlights that workers are more likely to commute to regions where they can earn

higher wages and draw higher average utility relative to those in all other workplace lo-

cations s. It also shows that the probability of working in j decreases in the bilateral

resistance term dij, relative to that across all possible locations dis (multilateral resis-

tance). As a result, the income a worker living in i can expect to earn is given by the

expression:

E[wj|i] =
S∑
j=1

πij|iwj (5)

Whereby the expected wage for an individual residing in i reflects the weighted average

of wages that can be earned across all workplace locations j that can be accessed from

the place of residence, with weights proportional to a measure of distance that takes

into account commuting costs. Note that the expression in (4) implies a semi-log gravity

commuting equation:

ln πij = −δτij + γσij + ςj, δ = εκ, γ = εη (6)

Where the log probability of commuting between i and j decreases in geographical dis-

tance τij with strength δ, and increases in social connectedness σij with strength γ.

Workplace characteristics are absorbed by the fixed-effect ςj. This highlights the depen-

dence of expected wages earned by living in i on the geographical distance and social

connectedness with workplace location.

These last two equations are also helpful in that they provide a link between this con-

ceptual discussion and the applied analysis of this paper. An empirical counterpart to

(5) consistent with the relationship highlighted in (6) expresses wages observed in region

i as a weighted average of wages in all other connected locations:

∆wi,t = γ ×m(∆w, s)i,t + εi,t (7)

Where m(∆w, s)i,t is a function determining ‘spatial’ averages, considering geographical

or social distance. As we observe multiple realisation of wages over time in the data,

Equation (7) is indexed with t for each year, and expressed in first differences to account

for time-invariant unobservables. Moreover, acknowledging the above-mentioned chal-

lenges associated with estimation of a SAR model of this kind (Gibbons and Overman,

2012; Gibbons et al., 2015), spatially lagged ∆w can be replaced with plausibly exoge-
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nous characteristics of each region that correlate with wages, such as fracking shocks.

The resulting reduced-form SLX model provides the workhorse empirical specification

used in this analysis. The next section discusses more in detail the empirical methods

used in this paper to identify the role of social networks in the transmission of localised

economic shocks in space. The methods were designed taking into account the conceptual

intuitions developed in the above paragraphs.

3 Data and Empirical Methods

3.1 Variables Definition and Measurement

This paper relies on two main sources of data. To capture social networks, it uses a newly

released measure of social connectedness that draws on information on the universe of

online friendship links on Facebook, a popular social media site. On the other hand,

the paper uses data from Feyrer et al. (2017) to measure fracking shocks and labour

market outcomes.10 What follows gives details on the original sources and definitions of

all variables. The geographical units of analysis used throughout the paper are counties

located in the contiguous US, observed yearly between 2004 and 2012.

3.1.1 Labour Market Outcomes

Labour market outcomes are measured for all US counties in the sample using information

from two sources: the Quarterly Census of Employment and Wages (QCEW) by the

Bureau of Labor Statistics (BLS), and the Adjusted Gross Income (AGI) statistics of the

Internal Revenue Service (IRS). The former has the advantage of providing information

disaggregated to the level of six NAICS industries.11 The latter gives information on

wages and salaries (of main interest in this paper), but also includes data on other sources

of income such as rents, royalties, and other non-wage business revenues. Importantly

for this analysis, the data are collected in different ways. The BLS data are reported by

employers at their location, and therefore accurately describe economic activity where it

takes place. The IRS data, on the other hand, are based on declarations filed by employees

at their address of permanent residence, thus giving information on money earned (and

likely spent) where people live. The two should be the same to the extent that people

live and work in the same county, but can differ in case of commuting or temporary

relocation across county borders. In other words, the income of a worker living in county

i and working in county j will be allocated to i by IRS data and to county j by BLS data.

The IRS outcomes are thus more likely to pick up any effect that might be observed on

10The data are available at this link: https://www.aeaweb.org/articles?id=10.1257/aer.20151326
11These are: natural resources and mining; transportation, trade and utilities; construction; manufac-

turing; education and health services; government (local, state and federal levels).
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commuting and transient workers, who indeed appear to represent the bulk of earners in

the industry.

3.1.2 Local Economic Shocks

To measure local economic shocks, Feyrer et al. (2017) compile a new dataset using

information obtained from Enverus (formerly Drillinginfo), a company that systematically

gathers data on the oil and gas industry. For each county, the authors isolate wells that

began producing in any given year, and compute the total value of new production in

that year as the quantity of oil and gas produced by those wells, times its market value

(using EIA prices). All figures are then deflated to 2014 USD using the CPI and scaled

by the one-year lagged value of county employment, to ensure the measure is comparable

across differently sized counties. The resulting measure of local economic shocks from

fracking is thus the per capita value of new oil and gas production in any given year, or

more formally, for each county i in year t:12

∆Xi,t =
∆Qoil

i,t × P oil
i,t + ∆Qgas

i,t × P
gas
i,t

Li,t−1
(8)

In line with Feyrer et al. (2017), the estimating dataset excludes the smallest two percent

of counties in the sample, as these represent outliers especially when expressed in per

capita terms. We refer to the original paper for any further detail on these data. Appendix

Table B.1 ranks the top 20 US states in terms of new per capita production over 2005-

2012, along with average yearly changes in employment and wages using BLS data.13 The

five states experiencing the largest shocks were North Dakota, Wyoming, New Mexico,

Oklahoma, and Texas. To give a more detailed overview of the spatial distribution of

these shocks, Figure 3 maps quintiles of the total value of new production of oil and gas

per capita over the 2005-2012 period.

3.1.3 Social Network Matrices and Socially Lagged Shocks

The proposed measure of social networks, or social connectedness, relies on an index

developed by Bailey et al. (2018b): the Social Connectedness Index (SCI). This index

essentially captures the social graph for the universe of active US Facebook users as of

April 2016, aggregated up to the level of counties.14 Users are deemed active if they

interacted with Facebook in the 30 days prior to the April 2016 snapshot. Geographic

location is assigned using the IP address from which users login most frequently. For all

12Per capita and per worker are used interchangeably in what follows.
13Appendix A includes all additional figures, Appendix B includes all additional tables.
14In principle it would be more accurate to refer to Facebook accounts rather than users. However, the

same expression as in Bailey et al. (2018b) is used here for consistency.

14



Figure 3: Total value of new production per capita in 2005-2012 (in millions)

users m and n and for each pair of counties i and j, the index is constructed as:

SCI ij =
∑
m6=n

∑
n

1mn, for m ∈ i and n ∈ j (9)

Where 1ij is an indicator variable that takes the value of 1 if two users are friends with

each other, and 0 otherwise. Due to confidentiality concerns, Facebook only releases a

re-scaled version of these data. The index thus ranges between 0 and 1,000,000, the

highest observed value, which is assigned to Los Angeles County to Los Angeles County

connections. The result is a weighted social graph consisting of 3,136 nodes and 9,462,485

edges. Despite some limitations in terms of user representativeness, the SCI can be

thought of as one of the most comprehensive measures of revealed social interaction

available to date for the entire US geography. At the time the data were extracted,

there were over 220 million active monthly Facebook users in the United States and

Canada.15 Moreover, concerns about possible bias introduced into the present analysis

due to erroneous measurement should be minor unless there are reasons to believe that

mismeasurement is systematic and correlated with the outcome of interest.

15Information obtained from Facebook’s 2016 quarterly results report, retrieved at: https://s21.q4cdn.
com/399680738/files/doc_presentations/FB-Q4’16-Earnings-Slides.pdf. Unfortunately, Face-
book would not release covariates for these data. However, it is possible to gauge some descriptive
facts from secondary sources. A Pew Research Center study published in that same year estimates
that about 70% of US adults (aged 18 or more) used the social media platform (Greenwood et al.,
2016). Women, younger individuals (aged 50 or less), college educated and relatively poorer adults
were slightly overrepresented, albeit by small margins. Most Facebook friendships are with people
with whom users have ongoing interaction in real life. According to Hampton et al. (2011), ties be-
tween Facebook users tend to occur among high school or college peers (31%), immediate or extended
family members (20%), co-workers (10%), and neighbours or acquaintances (9%). The remaining ties
are with friends of friends, or ‘dormant relationships’, that may become useful to users in the future.
However, only 3% of Facebook friendships are with someone the user has never met in person. More-
over, several studies have shown that Facebook ties are good predictors of real life friendships and
friendship strength (Gilbert and Karahalios, 2009; Jones et al., 2013). All this suggest that there is
strong potential in these data to be used to study social relationships on a large-scale (Bailey et al.,
2018b).
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As will be discussed in Section 3.2, the empirical analysis considers the impact that

shocks occurring in one place have on counties that are socially connected to this place,

at varying degrees of (social) distance. To obtain matrices of social weights suitable

for this analysis, I proceed as follows. First, the SCI is normalised by the product of

each county’s population for all pairs. This corrects for the fact that larger counties

mechanically share more friendship links, giving a measure that is comparable across

county-pairs. It can be thought of as the relative probability of friendship between any

two counties, henceforth RSCI (Bailey et al., 2018b). For simplicity, in what follows I

still refer to this normalised measure as social connectedness, despite the transformation.

Second, for every county the resulting distribution of connectedness to all other counties

is discretised into 20 bins of five nearest social neighbours each. Connections ranking

below the 100th neighbour in terms of strength are discarded, assuming there is a steep

decay in network effects. This assumption can be directly tested in the data and appears

to be valid, as will be shown. I thus obtain 20 matrices Gd (one for each bin), where each

element gij takes the value of 1 if county i is socially connected to county j at distance-bin

d, and 0 otherwise. A comparable set of matrices Wd based on the first 20 bins of five

nearest neighbours in terms of geographical distance is also produced. The map in Figure

A.1 in Appendix shows these bins for the top five largest counties in terms of new oil and

gas production over the 2005-2012 period. Counties are coloured in progressively lighter

shades as the geographical or social distance of each bin increases (unit increases from 1

to 20).

Figure 4: Cumulative socially lagged new production in 2005-2012

(a) First bin (b) Up to 5th bin

(c) Up to 10th bin (d) Up to 20th bin
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Finally, for each county and year, I create lagged measures of fracking shocks Gd,i∆Xt

in the social space, computed as the total new production per capita occurring in each

bin of five nearest social neighbours respectively. To this end, I sum up new production

for each bin, and divide this by the total number of workers in the same bin during

the previous year. A measure Wd,i∆Xt of spatially lagged shocks is also obtained using

the same method, based on geographical nearest neighbours. Figure 4 visualises the

cumulative total value of socially lagged fracking shocks in US counties up to selected

distance-bins. For each county, the choropleth maps show the total per capita value of

new production taking place in its social neighbours over 2005-2012, with darker polygons

corresponding to higher quintiles of the distribution. It is noteworthy that, by and large,

socially weighted shocks are greatest in counties in close geographical proximity to where

the extraction takes place, and display distinct decay patterns over space. This is due

to positive correlation between social and spatial distances: individuals are more likely

to become friends and interact with peers living close to them (Bailey et al., 2018b).

Moreover, it is also interesting to notice that by the 20th bin, nearly every county in the

contiguous US is exposed to fracking shocks through one of its social neighbours.

3.2 Identification Strategy

3.2.1 Baseline Specification

This paper is interested in estimating the inward effects on wages and employment in

county i of new oil and gas production taking place in socially connected counties, con-

ditional on energy production in i itself. Additionally, due to the spatial clustering of

drilling sites, it is also important to consider inward effects from counties located in close

geographic proximity to i, which could potentially bias results upwards if not accounted

for (James and Smith, 2020). To this end, and consistent with what discussed in Sec-

tion 2, the following empirical model in first differences is estimated using ordinary least

squares (OLS):

∆Yi,t = β ×∆Xi,t +
20∑
d=1

γd ×Gd,i∆Xt +
20∑
d=1

δd ×Wd,i∆Xt + θt + εi,t (10)

Where ∆Yi,t denotes the change in income or employment per capita in county i in

year t, ∆Xi,t is the value of new production per capita in the county itself, Gd,i∆Xt

is the total value of new production in the network of county i for twenty bins of five

nearest social neighbours each, and Wd,i∆Xt is a comparable measure computed over

20 concentric doughnuts of five nearest geographical neighbours each. Additionally, the

model includes year dummies θt to account for general time trends. Robustness checks

also include county fixed effects αi, which renders parameters in Equation 10 comparable
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to difference-in-difference estimators. Finally, not explicitly mentioned in the model are

also one-year lags of all new production variables (in the county itself, as well as in

socially- and spatially-lagged counties), to account for possible dynamic effects of fracking

shocks, whereby past production may continue to affect outcomes in subsequent years.

This is in line with Feyrer et al. (2017). The error term εi,t is heteroscedasticity-robust

and clustered by spatial bins (whether geographical or social, depending on the case at

hand). Standard errors are adjusted using the approach discussed in Colella et al. (2019)

to obtain cluster-robust inference in the presence of unobserved dependence of εi,t in the

geographical or social space. This is implemented in Stata using the package acreg.

The adjustment is akin to that in Conley (1999) but allows greater flexibility in the

definition of the distance metric. I set the distance in terms of nearest neighbours bins,

with a cut-off threshold at 10, the 50th neighbour, also allowing for a decay structure

in the cross-sectional dependence using a linearly decreasing Bartlett kernel as distance

increases (similar to Newey and West, 1987).

The main parameters of interest are captured by the vector γd. Controlling for county i’s

own production and for production in i’s 100 nearest geographical neighbours, γ1 gives

the inward effect on outcomes in i of production in the five counties i is most strongly

socially connected to, net of inward effects from other socially connected counties up

to the 100th social neighbour. Similarly, γ2 estimates this effect for the next five most

strongly socially connected counties, γ3 considers the ones after that, and so forth. This

set-up allows to study how far in the social network fracking shocks are felt. The effects

are expected to be strongest among the nearest social neighbours (the socially closest

counties), and decay rapidly as one moves out in the network. Note that geographically

and socially neighbouring counties are likely to overlap due to the tendency to interact

over close physical distances noted earlier. As a result, jointly estimating parameters on

both social and geographical lags of fracking shocks is likely to yield biased results. In

baseline specifications, therefore, the model in Equation 10 is estimated separately for

geographical and social lags, respectively constraining either γd or δd to zero. Next, I

address some further concerns with respect to this baseline specification and describe the

proposed solutions.

3.2.2 Endogenous Network Formation

Social networks form endogenously as a result of several unobserved factors. Bias is intro-

duced in the proposed estimating equation if these factors correlate with the outcome of

interest. Two main concerns stand out. First, as already mentioned above, geographical

and social neighbours are likely to overlap due to the fact that people are more likely

to interact when they live close to each other. In other words, it is hard to separately

estimate the effect of geographical and social proximity to the extent that the two are co-
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determined. Second, there could be reverse causality whereby fracking shocks determine

the observed network by creating incentives for workers to relocate or commute between

counties, rather than the other way around. The latter concern is particularly severe

considered that the social connectedness data has no time dimension. The SCI gives a

snapshot of networks connecting counties in 2016 only, which is posterior to the period

under analysis. In practice, for large enough counties, it seems unlikely that the aggregate

ties of all residents would be affected by the mobility of workers in one particular indus-

try in any sensible way, unless local multipliers are strong enough to generate a sizeable

migration and commuting response across other industries. In this case, the identifying

assumption is that social connectedness represents a structural, slow-changing, feature of

places determined over the long term and unaffected by the mobility of few workers over

a relatively short time period. For smaller counties, however, this assumption is likely

to fail. Reassuringly, however, as mentioned above, the smallest two percent of counties

is dropped from the estimating sample, which further mitigates this concern. In addi-

tion, I address concerns about reverse causality and geographical distance by creating a

new measure of social connectedness that partials-out bilateral migration and distance

between counties. In particular, social connectedness between counties i and j, or better,

the relative probability of friendship between the two, can be represented analytically by

the following relationship:

RSCI ij = f(dij,Mij, υij) (11)

Where dij denotes the geographical distance separating i and j (due to the cost of in-

teracting over space), Mij captures cumulative mobility between i and j, and υij is a

bilateral residual term for each place-pair combination. Assuming this relationship is

log-linear, I estimate the following empirical model:

ln RSCI ij = β × ln dij + γ × ln(Mij + 1) + υij (12)

Where Mij captures cumulative gross migration flows between all county pairs in the

2002-2016 period. This variable is constructed using counts of yearly county-to-county

migration flows, obtained from the IRS Statistics of Income Division (SOI).16 I predict the

residuals υ̂ij and use those to create alternative matrices Gres
d , discretising the distribution

of social connectedness captured by υ̂ij the same way outlined in Section 3.1. The third

column in the set of maps in Appendix Figure A.1 shows the resulting bins. I then

compute alternative measures of socially lagged shocks based on these matrices. Appendix

Figure A.3 maps them. Note how there is no clearly emerging spatial pattern over

16These data provide one of the most detailed sources of information on migration at this level, based
on address changes in the records of all individual income tax forms filed between 1990 and today. For
more information, see: https://www.irs.gov/uac/soi-tax-stats-migration-data
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the different distance bins. These measures are indeed based on a set of connectedness

matrices that do not depend on physical distance or past mobility, thus further mitigating

the endogeneity concerns expressed above, and allowing to jointly estimate γd and δd in

one model.

Figure 5 shows the average value across all counties of the median geographical distance of

each county from each bin, for the three set of matrices discussed above. By construction,

average geographical distance increases monotonically as bins of neighbours farther away

in space are considered. Interestingly, the same is true when bins formed using the plain

measure of social connectedness (RSCI) are considered. Note that this does not need

to be the case by construction, but is due to the aforementioned relationship between

likelihood of interaction and physical distance. Despite this, it appears that neighbours

in the social space are systematically farther away in a geographical sense than physical

neighbours are. This is evidenced by the fact that the 99 percent confidence intervals

drawn around mean values in each bin are non-overlapping. Finally, observe how av-

erage geographical distances for bins formed using the partialled-out measure of social

connectedness are much greater than those in both other measures. On average, the

median social neighbour in the first bin of each county is nearly 1,200 kilometres apart

geographically from that county.

Figure 5: Average across all counties of the median distance in each bin

In terms of interpretation, the residual term υ̂ij can be thought of in a broad sense

as anything, net of past migration, that supports interaction over physical distance.

Examples include accessibility and transportation networks, business and professional

collaborations, as well as knowledge networks and socio-cultural ties. Irrespective of
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endogeneity concerns, whilst there is an interest in studying the overall role of social

connectedness in and of itself, it is especially relevant to policy makers to know whether

the residual term υ̂ij matters above and beyond physical distance and past migration,

since the former is at least partly amenable to policy intervention (e.g., via improvements

in transport infrastructure).

3.2.3 Endogenous Production and Instrumental Variable

A final concern with the baseline model is that new production of oil and gas might

be endogenous. As pointed out by Feyrer et al. (2017), production is a function of two

factors. On the one hand, it requires the presence of oil and gas deposits, or plays, which

are exogenously determined by geology. On the other, exploitation of available resources

depends on the endogenous decision of mining companies to invest in extraction activities.

Endogeneity is linked to the fact that firms might prioritise sparsely populated areas or

high unemployment areas due to cost saving considerations. In the former case, the firm

can save on land leases and royalties. In the latter, it can pay relatively lower nominal

wages to local workers. Firms might also try to avoid regulatory responses from local

policy makers in more populated areas. Moreover, the timing of extraction can depend

on international fluctuations in oil and gas prices.

The use of time dummies addresses concerns related to changing prices for oil and gas,

while estimating the baseline model in first differences mitigates issues related to priori-

tisation of certain counties over others, assuming the drivers of this decision are fixed.

Explicitly introducing county fixed effects further addresses this issue. In addition, I fol-

low Feyrer et al. (2017) and instrument production as a function of county and play-year

fixed effects. The predicted per capita value of new production for every county and year

is obtained in two steps. First, the following equation is estimated:

ln(∆Qoil
i,t × P oil

i,t + ∆Qgas
i,t × P

gas
i,t + 1) = αi + πp,t + εi,t (13)

Whereby the total value of new production is obtained as a combination of time variant,

play-specific, technological shocks, and a county’s time invariant characteristics (e.g.,

its area). Expressing the outcome in logs allows for non-linearities in this relationship.

Second, I obtain predictions for total new production in every county and normalise this

by lagged employment:

∆Zi,t =
exp(α̂i + π̂p,t)− 1

Li,t
(14)

The validity of this instrument, which mimics a traditional shift-share measure, relies on

the identifying assumption that a county’s production is a sufficiently small share of the
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overall production of the play in each year, which can thus be considered exogenous. I

rely on the same definitions of plays used by Feyrer et al. (2017), who in some instances

combine small plays into larger groups in support of instrument validity. Figure A.2

in Appendix maps these plays. Note that, for every bin defined by the matrices Gd,

Gres
d and Wd, I construct equivalent measures by aggregating the predicted value of new

production and employment within each bin d, then dividing the former by the latter.

Finally, I estimate the following empirical model using two stage least squares (2SLS),

where the estimates of new production ∆Zi,t (and equivalent lagged ones) are used as

instruments in the first stage to predict observed new production:

∆Yi,t = β ×∆X̂i,t +
20∑
d=1

γd ×Gres
d,i ∆X̂t +

20∑
d=1

δd ×Wd,i∆X̂t + θt + εi,t (15)

Note that the set of matrices Gres
d is used, which allows to estimate the inward effects on

i of new production in counties socially connected to i, while also controlling for shocks

in geographically neighbouring places. This model, either estimated with OLS using

observed new production or with 2SLS using the above described instruments, represents

the preferred specification for most results presented in this paper. Because implementing

the Colella et al. (2019) standard error correction is computationally very demanding,

I cluster residuals by commuting zones (Tolbert and Sizer, 1996) in 2SLS estimates.

However, reduced form estimates for 2SLS regressions are also provided, where standard

errors are again corrected for spatial clusters. Next, I discuss my findings. Table B.2 in

Appendix gives summary statistics for all the main variables used in the analysis.

4 Results and Discussion

This section summarises the key results of this paper. Due to the large number of coeffi-

cients, each with a similar interpretation, the findings are best reported graphically rather

than with traditional regression tables. I thus present coefficient plots summarising the

magnitude of the estimated effects γd (on the first vertical axis) for different bins of near-

est neighbours (on the horizontal axis).17 This allows to visualise how the average effect

of fracking shocks in a county’s social network changes as one considers progressively

farther away neighbours. Grey areas denote 90, 95 and 99 percent confidence intervals,

respectively in lighter shades. In the same diagram, I also overlay the average kilome-

tre distance of neighbouring counties in each bin (measured on the second vertical axis

and displayed in light gray). This allows to intuitively grasp how far away geographically

fracking shocks disperse over social networks. I report findings that compare the strength

17The empirical estimates always include the full set of 20 distance-bins, although only the first 10 are
reported (that is, up to the 50th neighbour), since coefficients are mostly insignificant after that.
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of diffusion using the plain measure of social connectedness (RSCI) and the one obtained

by partialling-out physical distance and migration.18 Appendix A provides similar coeffi-

cient plots capturing the effect of shocks occurring in neighbours in terms of geographical

distance (δd) as well as in terms of an additional measure of social connectedness that

considers nearest neighbours using the RSCI, but forcing neighbours to be at least 200

kilometres apart geographically. The latter is included for robustness. I also report 2SLS

along with reduced form estimates. Tables for all underlying regressions, including 2SLS

first stages, are reported in Appendix B.

4.1 Effects on Wages

I begin by showing effects on wages. The conceptual framework predicts that in response

to positive shocks to a social neighbour, wages should increase by a larger amount the

more socially connected two counties are. In this specific application, a fracking-related

shock to a county with which many friendship connections are shared should matter

more for local outcomes than one taking place in a more ‘socially distant’ county. Figure

6 reports OLS estimates of the effects for BLS wages, that is to say, wages reported

by employers at their location. Changes in this outcome should reflect direct gains by

workers in the industry itself (or employed in activities immediately tied to it, such as

transportation), to the extent that they live close enough to the drilling site. They can

also reflect gains made by workers elsewhere in different industries due to local multiplier

effects and input-output relationships (e.g., higher wages gained in non-tradable services

due to higher local demand). Table B.3 in Appendix reports exact estimates for all

coefficients.

In both panels, a one million dollar increase in new production in oil and gas per capita

is associated with an increase of wages per capita of about 25,000 dollars in the county

itself.19 Panel (a) further shows that, controlling for own production and inward effects

from other social neighbours, a marginal increase in production taking place in the first

five nearest social neighbours increases wages by as much as 42,000 dollars per capita,

while new production in the next five neighbours raises wages in the socially connected

county by just under 12,000 dollars per capita. Effects decay rapidly after that and

converge towards zero. When the plain measure of social connectedness is used, therefore,

it appears that shocks diffuse in space up to about 100 kilometres away. To what extent

is this an effect specific to interaction via networks, as opposed to simple geographic

proximity? Panel (b) in the same figure suggests that geography is by and large the

18Since the graphs are read left-to-right, the horizontal axis is more easily interpreted as capturing
distance in social networks rather than proximity/connectedness. I therefore title each graph as ‘Social
Distance’ and ‘Residuals of Social Distance’, respectively.

19This estimate is lower but comparable in magnitude to that of Feyrer et al. (2017), who give a point
estimate of about 34,000 dollars.

23



Figure 6: Coefficients plot for wages (BLS) using OLS (main)

main reason for this. None of the socially lagged shocks appear significant in this model.

This can also be confirmed by looking directly at the impact of spatially lagged shocks,

shown in panel (a) of Figure 7. The plot shows that effects are much larger for new

production taking place in the first five nearest geographical neighbours, up to about

60,000 dollars per capita. Interestingly, however, effects decay much more rapidly after

that for geographical distance than for social distance, and are only marginally significant

at the 10 percent level. This would suggest that looking at social networks can provide a

more accurate representation of economic interaction than simple geographical distance,

especially as one considers relationships over progressively more (geographically) distant

places.

Introducing county fixed effects to the BLS wage regressions leaves the results virtually

unchanged (Appendix Figure A.4), except for a small effect of about 2,000 dollar per

capita associated to new production in the five most socially connected counties (panel

b, partialled-out measure). Finally, considering instrumental variable estimates also con-

firms these findings, although the point estimates are somewhat larger (Appendix Figure

A.6).

As mentioned, shocks diffusing from socially connected places can be felt beyond the

mining and extraction industry itself due to input-output relationships and local multi-

pliers. To gauge which industries are more likely to benefit from the effects described

above, Figure 8 offers a sector breakdown of the OLS estimates obtained using the simple
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Figure 7: Coefficients plot for wages (BLS) using OLS (additional)

social connectedness measure.20 The diagram shows that, in relative terms, the largest

surge in wages is observed in mining activities and extraction activities, followed by trans-

portation. In addition, it appears that services benefit somewhat from fracking shocks,

although only in the most closely socially connected counties. This aligns to previous

findings in the literature and with what discussed in Section 2.1. A corresponding set of

results for geographical distance is available in Appendix (Figure A.10).

In sum, it seems that most of the effects of fracking shocks accrue to workers directly

involved in extraction activities and, unsurprisingly, diffusion is therefore limited to ar-

eas immediately surrounding the drilling site (which also tend to be the most socially

connected ones). This could simply be businesses registered or operating around the

wells, with workers commuting daily. However, as discussed, a large portion of workers

involved in extraction activities is often transient and from out-of-state. Does social con-

nectedness play a role in the flows of transient workers? In particular, could it be that

transient workers are disproportionately attracted to drilling sites if they live in places

with stronger social ties to these sites? This would be consistent with the literature on

job information networks. Directly testing this hypothesis is difficult. However, valuable

indirect evidence can be obtained by looking at wages declared by workers at their place

20I only report results based on the plain measure of social connectedness, rather than the partialled-out
one, because there were no detectable effects on BLS wages in the latter. Feyrer et al. (2017) provide
more details on effects across industries, space and time. An alternative way of studying this question
could rely on the ‘fields of influence’ approach proposed by Sonis and Hewings (1992), which looks
at perturbations in industry input-output relationships. However, an application of this method falls
beyond the scope of this analysis.
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Figure 8: Coefficients plot for wages (BLS) by industry using OLS (soc. dist)

of permanent residence. To the extent that employees are transient and do not change

their home address, this should reflect their county of origin. To this end, Figure 9 re-

ports OLS estimates of the effects for IRS wages. Table B.7 in Appendix reports exact

estimates for all coefficients.

Figure 9: Coefficients plot for wages (IRS) using OLS
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Panel (a) largely confirms previous findings, although the relevance of social connect-

edness (RSCI) decays more slowly, with effects diffusing up to the 25th nearest social

neighbour, or about 170 kilometres away. The key take-away from this diagram, however,

is in panel (b), which uses the partialled-out measure of social connectedness to define

neighbours. In this case, it appears that fracking shocks can result in small but signifi-

cant wage increases up to the 25th most closely connected county, which corresponds to

a pattern of spatial diffusion to regions over 1,000 kilometres away from where the initial

shock was experienced. More accurately, a million dollar per capita increase in oil and

gas extraction raises per capita wages by about 2,700 dollars per capita on average for

workers reporting their incomes in counties located as far as 1,200 kilometres away from

the drilling site, but strongly socially connected to it (up to the 25th nearest social neigh-

bour, net of physical distance and migration). This finding is robust to controlling for the

effects of new production in the county itself, and for inward effects from new production

in the 100 counties surrounding it. The result is also confirmed when absorbing county

fixed effects, and when using 2SLS estimators.21 Figure 10 summarises results for IRS

wages obtained using the proposed instrumental variable strategy on the partialled-out

measure of social connectedness. Standard errors are adjusted to allow spatial correla-

tion in the network measure by clustering over social bins. Results are slightly larger in

this case, although decay is faster. A marginal increase in new production in connected

counties is associated with an increase of wages of over 5,000 dollars per capita up to the

10th nearest social neighbour, once again controlling for incoming shocks from geograph-

ically proximate counties. These estimates are statistically significant at the 99 and 95

percent level for the first and second nearest neighbours bins respectively. Based on these

estimates and the summary statistics reported in Table B.2, the average combined effect

on wages of a one standard deviation change in new production in the ten most strongly

connected counties is of about 400 additional dollars per capita each year.

According to the models presented in this analysis, geographical dispersion is almost one

order of magnitude larger than that described by Feyrer et al. (2017), who place it at

about 160 kilometres. In terms of interpretation, however, the evidence of dispersion

documented herein differs. This is not money that is directly earned in far away places.

Rather, I argue, it is information about new high paying jobs that travels over distance

as a result of social networks, selectively attracting transient workers from regions across

the country. The wage increases, thus, are earned by employees deployed on-site, but

declaring their income in their place of origin. Whether and to what extent these accrued

gains are transferred back to their homes and injected into the local economies of distant

places is hard to tell. However, the evidence from BLS wage regressions would not suggest

that this takes place in any appreciable way, at least in the short run.22

21See Appendix, Figures A.11 and A.13, and Tables B.8 and B.10, respectively.
22Unfortunately, the IRS wage measure does not provide an industrial breakdown. This would have
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Figure 10: Coefficients plot for wages (IRS) using 2SLS (res. soc. dist.)

4.2 Effects on Employment

What is the effect of new production of oil and gas in socially connected places on the

employment of a county? Figure 11 provides baseline OLS estimates for this relationship

(Table B.11 in Appendix reports exact estimates for all coefficients).

Figure 11: Coefficients plot for employment using OLS

allowed to test whether surges in wages occur in extraction related sectors despite the geographical
distance from the sites.
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Each million dollar per capita of new production is associated with the creation of about a

third of a new job for every existing job in the county itself. This estimate is comparable

to that of Feyrer et al. (2017) at 0.4 using OLS. Conversely, fracking activity in the

first five most strongly connected counties raises employment by just under half a new

job for every existing one (panel a), corresponding to spatial dispersion of just over 50

kilometres. This effect, however, decays rapidly after that and is barely significant when

the subsequent bin of social neighbours is considered (at about 100 kilometre distance on

average). This pattern is consistent with the hypothesis of workers commuting over short

distances to benefit from the jobs created by fracking. Indeed, once the role of space

in determining social networks is partialled-out, there are no effects of new production

in socially connected counties on a county’s employment (panel b). Results are largely

confirmed when county fixed effects are introduced, as well as when 2SLS estimates are

considered.23

It would thus appear that most of the dispersion of new job creation can be explained

by geography rather than social networks. Once again this can be confirmed by look-

ing directly at dispersion over nearest geographical neighbours (A.21), where effects are

stronger (about 0.6 jobs) and at comparable average physical distances (about 50 kilome-

tres on average in the first bin). Worthy of mention is that 2SLS estimates uncover some

significant effects on employment of new production in the closest social neighbours even

when distance and migration flows are partialled-out, suggesting dispersion in space up

to 1,200 kilometres on average. These effects, however, are very small in magnitude (less

than 0.1 of a new job for every existing one) and barely distinguishable from zero.

Similarly to what done with wages, we can look at a sector breakdown for employment

creation. I report OLS estimates for the plain measure of social connectedness only,

since there were no clearly discernible effects for the partialled-out measure of networks.24

Consistent with the findings on wage-gains, Figure 12 shows that most job creation occurs

directly in mining and transportation, with some new employment also being generated in

services. Interestingly, it appears that new production of oil and gas in socially connected

counties has small negative effects on manufacturing employment, especially over greater

distances (third to fifth bin of social neighbours, corresponding geographically to about 80

to 130 kilometres). This gives some credit to the resource curse literature, suggesting that

new job opportunities in fracking attract workers away from tradable goods production.

Note that there were no clear effects on manufacturing wages, potentially due to rigidities

in the sector.25

23See Appendix, Figures A.18 and A.20, and Tables B.12 and B.14, respectively.
24A corresponding set of results for geographical distance is available in Appendix (Figure A.25).
25Due to the largely overlapping nature of dispersion over social and geographical neighbours, however,

I refer the reader to the analysis by Feyrer et al. (2017) for a more detailed account of how fracking
affects employment and wages in different industries in spatially contiguous areas and over time. The
results presented herein are intended to briefly show that it is possible to obtain consistent results even
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Figure 12: Coefficients plot for employment by industry using OLS (soc. dist.)

5 Conclusions

This paper has considered how plausibly exogenous shocks to local labour demand linked

to hydraulic fracturing can diffuse in space over social networks. The empirical evidence

supports qualitative predictions obtained from a simple conceptual framework and aligns

with anecdotal findings from the sociological literature on fracking workers.

New production of oil and gas has positive inward effects on wages and employment

in socially connected counties, mostly in mining and transportation industries, and to

some extent in services, with some downward pressure on manufacturing jobs. Most of

the diffusion over social networks is limited in space, but not all of it is simply a result

of geographic proximity. This analysis also detected small effects of social networks

irrespective of geographical considerations. In particular, I presented estimates obtained

using a measure of social connectedness that partials-out any role of physical space in

social interactions. These estimates suggest that a million dollar per capita increase in

oil and gas extraction raises per capita wages by about 2,700 (OLS) and 5,000 (2SLS)

dollars per capita for workers reporting their income in counties located as far as 1,200

kilometres away from the drilling site, but strongly socially connected to it. Evaluating

2SLS wage estimates using observed data on oil and gas production suggests that a county

gains on average 400 dollars per capita each year from a one standard deviation increase

in resource extraction in the top ten counties it interacts with socially.

when a measure based on social rather than physical distance is considered.
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This novel result is consistent with accounts of the fracking industry that discuss the

importance of out-of-state hires and transient workers. It also provides new aggregate

evidence in support of the literature on job information networks. Future work could

examine this finding more closely using micro-data, helping understand the characteristics

of itinerant workers and examining possible ‘push factors’ related to their employment

patterns. It could also consider the dynamic dimension of cross-sectional shock dispersion,

which in the case of hydraulic fracturing might be affected by a subsequent bust of the

resource boom.
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Appendices

A Figures

Figure A.1: Bins of nearest neighbours for top producing counties in 2005-2012
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Figure A.2: US Shale plays, 23 designations and one ‘other’ category

Source: EIA Shapefile “Major Tight Oil and Shale Gas Plays in Lower 48 States”

Figure A.3: Cumulative socially lagged new production (using the partialled-out RSCI)

(a) First bin (b) Up to 5th bin

(c) Up to 10th bin (d) Up to 20th bin
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A.1 Regression Coefficients Plots for wages (BLS)

Figure A.4: Coefficients plot for wages (BLS) using OLS with county FEs

Figure A.5: Coefficients plot for wages (BLS), reduced form of 2SLS
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Figure A.6: Coefficients plot for wages (BLS) using 2SLS

Figure A.7: Coefficients plot for wages (BLS) using OLS with county FEs
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Figure A.8: Coefficients plot for wages (BLS), reduced form of 2SLS

Figure A.9: Coefficients plot for wages (BLS) using 2SLS
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Figure A.10: Coefficient plot for wages (BLS) by industry using OLS (geog. dist.)

A.2 Regression Coefficients Plots for Wages (IRS)

Figure A.11: Coefficients plot for wages (IRS) using OLS with county FEs
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Figure A.12: Coefficients plot for wages (IRS), reduced form of 2SLS

Figure A.13: Coefficients plot for wages (IRS) using 2SLS
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Figure A.14: Coefficients plot for wages (IRS) using OLS

Figure A.15: Coefficients plot for wages (IRS) using OLS with county FEs
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Figure A.16: Coefficients plot for wages (IRS), reduced form of 2SLS

Figure A.17: Coefficients plot for wages (IRS) using 2SLS
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A.3 Regression Coefficients Plots for Employment

Figure A.18: Coefficients plot for employment using OLS with county FEs

Figure A.19: Coefficients plot for employment, reduced form of 2SLS
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Figure A.20: Coefficients plot for employment using 2SLS

Figure A.21: Coefficients plot for employment using OLS
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Figure A.22: Coefficients plot for employment using OLS with county FEs

Figure A.23: Coefficients plot for employment, reduced form of 2SLS
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Figure A.24: Coefficients plot for employment using 2SLS

Figure A.25: Coefficients plot for employment by industry using OLS (geog. dist.)
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B Tables

B.1 Summary Statistics

Table B.1: Top 20 producing states over 2005-2012

State Rank by new prod. New production ∆ Empl. capita ∆ Wages capita
Per capita Total Per capita Total

North Dakota 1 2 0.1189 45,889.67 0.33 29,005.43
Wyoming 2 6 0.0757 20,026.82 0.14 13,542.86
New Mexico 3 7 0.0243 18,860.81 0.04 3,975.75
Oklahoma 4 3 0.0195 28,878.77 0.11 9,490.23
Texas 5 1 0.0148 149,962.50 0.19 14,394.42
Louisiana 6 4 0.0148 27,212.29 0.02 6,302.91
Colorado 7 5 0.0109 24,277.54 0.12 8,490.79
Montana 8 14 0.0090 3,683.46 0.10 7,650.65
Arkansas 9 9 0.0084 9,510.96 0.02 2,616.08
Utah 10 10 0.0079 9,320.16 0.19 10,665.65
West Virginia 11 12 0.0070 4,785.64 0.00 2,735.08
Kansas 12 13 0.0036 4,638.46 0.04 3,381.15
Pennsylvania 13 8 0.0031 16,849.00 0.02 2,552.36
Mississippi 14 16 0.0026 2,796.24 0.00 1,004.55
Alabama 15 17 0.0006 1,090.46 0.01 1,536.05
Ohio 16 15 0.0006 2,858.24 -0.03 -1,408.19
California 17 11 0.0005 7,535.82 0.06 6,212.40
Kentucky 18 20 0.0003 583.81 0.04 2,126.07
Nebraska 19 21 0.0002 201.91 0.07 4,009.81
Virginia 20 19 0.0002 605.41 0.04 4,056.77

Note: The table excludes the smallest 2% of counties in terms of population.

Table B.2: Summary statistics for the main variables in the analysis (2005-2012)

Mean Std. Dev. Min. 25th Pct. Median 75th Pct. Max.
∆ Empl. pc 0.0010 0.0452 -0.5603 -0.0184 0.0017 0.0200 1.6244
∆ Wages pc 249.4034 2,546.7273 -36,281.6250 -717.5019 132.0744 1,031.8842 71,280.0703
∆ IRS wages pc 440.9627 2,552.1993 -114996.1484 -669.6421 266.3925 1,366.8599 107,233.7578
∆ IRS oth. inc. pc 996.4099 6,369.1418 -343888.8438 -540.6148 656.9911 2,148.3064 316,529.9688
∆ IRS AGI pc 1,393.9108 6,894.9531 -244675.6719 -1,294.9114 1,100.8493 3,516.9590 258,477.3594
∆ New prod. pc 0.0022 0.0206 0.0000 0.0000 0.0000 0.0000 0.7588
G1 New prod. pc 0.0019 0.0119 0.0000 0.0000 0.0000 0.0001 0.3926
G1 New prod. pc (res.) 0.0226 0.0489 0.0000 0.0002 0.0040 0.0204 0.6637
G2 New prod. pc 0.0020 0.0116 0.0000 0.0000 0.0000 0.0001 0.3207
G2 New prod. pc (res.) 0.0104 0.0286 0.0000 0.0000 0.0008 0.0066 0.5457
G3 New prod. pc 0.0020 0.0115 0.0000 0.0000 0.0000 0.0002 0.4389
G3 New prod. pc (res.) 0.0073 0.0228 0.0000 0.0000 0.0004 0.0040 0.5376
G4 New prod. pc 0.0019 0.0094 0.0000 0.0000 0.0000 0.0002 0.3516
G4 New prod. pc (res.) 0.0063 0.0203 0.0000 0.0000 0.0003 0.0031 0.3635
G5 New prod. pc 0.0020 0.0103 0.0000 0.0000 0.0000 0.0003 0.4310
G5 New prod. pc (res.) 0.0054 0.0185 0.0000 0.0000 0.0002 0.0024 0.3447

Note: The table excludes the smallest 2% of counties in terms of population.
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B.2 Regression Tables for Wages (BLS)

Table B.3: Regression table for wages (BLS) using OLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 26.44a (6.459) 25.12a (5.898) 24.72a (6.043) 25.01a (5.694)
Social neighbours

1 to 5th 42.59a (9.011) 0.826 (1.047) 1.318 (1.706)
6 to 10th 12.26a (4.668) -1.800 (1.527) -3.005 (2.880)
11 to 15th -0.397 (6.704) 2.629 (1.985) 5.296c (3.043)
16 to 20th 14.67a (5.392) 2.454 (1.873) -3.853 (2.393)
21 to 25th 0.580 (4.901) 3.550b (1.796) 2.800 (3.312)
26 to 30th -3.474 (2.682) 0.0418 (2.522) -2.634 (2.956)
31 to 35th 1.178 (2.546) -0.314 (2.213) 0.392 (2.192)
36 to 40th 11.21b (4.446) 1.988 (2.458) 0.0639 (3.286)
41 to 45th 1.409 (3.451) -0.178 (2.522) -1.843 (2.321)
46 to 50th 0.703 (4.756) 5.851 (4.295) 5.339 (3.444)

Geog. neighbours
1 to 5th 59.31a (14.86) 58.16a (13.39) 59.11a (11.22)
6 to 10th 13.90c (7.870) 12.52 (9.445) 13.99 (10.03)
11 to 15th 7.564c (4.180) 7.038c (3.795) 7.562b (3.772)
16 to 20th 7.012 (8.674) 5.476 (8.462) 6.467 (8.912)
21 to 25th -5.422 (8.988) -6.577 (8.854) -5.457 (8.571)
26 to 30th 3.098 (4.424) 2.129 (4.453) 2.671 (4.933)
31 to 35th -0.507 (5.788) -1.861 (5.377) 0.396 (5.223)
36 to 40th 2.807 (5.106) 1.449 (5.414) 1.818 (5.761)
41 to 45th 11.65c (6.538) 10.72c (6.319) 10.77c (6.424)
46 to 50th 3.647 (4.739) 3.557 (4.474) 4.827 (4.387)

R2 0.18 0.18 0.18 0.18
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.

Table B.4: Regression table for wages (BLS) using OLS with county FEs

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 26.83a (5.526) 24.98a (5.220) 24.62a (5.323) 25.02a (5.162)
Social neighbours

1 to 5th 40.07a (7.978) 2.058b (0.920) 1.471 (1.544)
6 to 10th 12.46b (5.089) -2.445 (1.678) -2.009 (2.742)
11 to 15th -4.208 (8.647) 2.533 (2.164) 7.108b (3.281)
16 to 20th 15.46a (5.717) 1.823 (2.165) -4.630c (2.575)
21 to 25th -0.386 (4.926) 2.177 (1.759) 2.670 (3.944)
26 to 30th -2.471 (2.865) -1.483 (2.789) 2.140 (4.672)
31 to 35th -0.103 (2.576) 0.0364 (2.142) -2.146 (2.639)
36 to 40th 12.74b (5.052) 3.370 (2.544) -3.626 (4.549)
41 to 45th 0.374 (3.779) -0.359 (2.455) -1.485 (2.617)
46 to 50th 0.986 (4.539) 5.254 (5.120) 4.640 (3.566)

Geog. neighbours
1 to 5th 59.49a (12.68) 57.80a (12.15) 58.63a (10.96)
6 to 10th 15.19c (8.832) 13.57 (8.748) 14.60 (10.96)
11 to 15th 4.211 (4.960) 3.789 (4.334) 3.699 (3.976)
16 to 20th 5.708 (10.02) 4.361 (9.534) 5.093 (9.436)
21 to 25th -8.313 (8.758) -9.885 (8.951) -10.40 (9.475)
26 to 30th 1.179 (4.817) -0.102 (5.056) 0.0827 (5.146)
31 to 35th 1.138 (6.046) 0.0416 (5.411) 2.178 (5.385)
36 to 40th -1.652 (5.099) -2.827 (5.565) -2.619 (5.531)
41 to 45th 14.97b (6.977) 13.46b (6.684) 12.79b (6.331)
46 to 50th 7.429 (4.629) 6.560 (4.421) 7.062 (4.323)

R2 0.31 0.32 0.32 0.32
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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Table B.5: Regression table for wages (BLS), reduced form of 2SLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 59.07a (22.86) 63.42a (22.64) 61.26b (24.53) 62.27a (19.31)
Social neighbours

1 to 5th 213.8a (56.03) 4.394 (3.209) 4.519 (4.510)
6 to 10th 51.08a (18.56) 2.665 (6.065) -15.79 (11.97)
11 to 15th -21.74 (23.39) -6.084 (6.716) 11.69 (10.11)
16 to 20th 58.47a (20.07) 26.00b (12.00) -11.57 (10.15)
21 to 25th 1.691 (19.51) -7.995 (8.028) 0.197 (14.43)
26 to 30th 0.854 (16.46) 2.511 (10.27) -16.04 (13.43)
31 to 35th 8.025 (11.92) -8.125 (8.877) -4.547 (9.447)
36 to 40th 15.33 (17.34) 19.20 (15.83) 1.398 (21.65)
41 to 45th 8.040 (11.56) -2.022 (8.590) -6.633 (11.17)
46 to 50th -11.06 (15.17) 3.205 (9.149) 17.95 (16.63)

Geog. neighbours
1 to 5th 171.0b (68.60) 166.7a (62.64) 171.1a (55.03)
6 to 10th 96.03b (45.38) 87.28b (42.18) 93.45b (37.54)
11 to 15th 29.64 (38.88) 29.78 (38.97) 30.35 (37.97)
16 to 20th 47.57 (28.95) 49.19 (39.88) 48.19 (37.30)
21 to 25th -22.87 (39.05) -25.73 (36.75) -18.58 (39.14)
26 to 30th -4.693 (17.35) -9.766 (19.31) -4.202 (18.64)
31 to 35th -7.189 (30.73) -7.886 (29.37) -5.511 (30.34)
36 to 40th 42.86 (29.37) 36.77 (29.46) 39.45 (29.24)
41 to 45th 31.18c (17.46) 32.51 (20.10) 34.28 (22.86)
46 to 50th 4.426 (17.78) 0.870 (18.26) 8.502 (18.56)

R2 0.15 0.14 0.14 0.14
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.

Table B.6: Regression table for wages (BLS) using 2SLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Coef. SE SW F Coef. SE SW F Coef. SE SW F Coef. SE SW F
Own county 33.8a (8.83) [125.7] 30.7a (11.3) [110.8] 30.6a (11.2) [210.6] 31.2a (11.3) [273.2]
Social neighbours

1 to 5th 72.1a (20.1) [226] 3.84c (2.05) [729.9] 10.7 (6.53) [301.6]
6 to 10th 17.5 (10.7) [169.3] -0.53 (3.48) [878] -9.52c (5.77) [436.9]
11 to 15th -10.6 (10.6) [164.9] -1.95 (4.43) [670.5] 1.76 (6.64) [387.5]
16 to 20th 31.5b (15.0) [153.1] 6.94c (4.04) [303.1] -7.00 (5.95) [771.1]
21 to 25th 4.09 (10.7) [460.4] -3.38 (4.18) [700] 1.44 (7.03) [370.8]
26 to 30th -12.1 (7.65) [182.1] -1.04 (5.72) [355.3] -15.6 (9.73) [814.8]
31 to 35th 3.76 (5.44) [422.6] -7.12 (5.45) [133.6] -2.54 (4.47) [639.5]
36 to 40th 5.98 (8.10) [288.5] 5.81 (4.62) [443.3] 4.49 (11.2) [329.8]
41 to 45th 3.22 (7.45) [411.7] -0.45 (4.88) [766.6] -3.71 (5.72) [437.9]
46 to 50th -3.96 (6.09) [777.1] 2.17 (4.02) [640.1] 5.50 (10.4) [285.2]

Geog. neighbours
1 to 5th 71.7a (25.9) [118] 70.4a (27.0) [340.8] 74.2a (25.9) [418.6]
6 to 10th 43.0c (22.7) [92.7] 40.8c (22.6) [236.1] 41.8c (23.3) [169.7]
11 to 15th 2.92 (10.5) [247.2] 5.34 (10.4) [419.1] 3.12 (10.4) [374.7]
16 to 20th 3.44 (18.3) [245.7] 6.31 (18.3) [431.4] 4.29 (18.7) [375.8]
21 to 25th -7.02 (13.6) [145.6] -6.38 (13.0) [315] -3.87 (14.3) [264.5]
26 to 30th 6.02 (13.3) [81.7] 1.43 (12.4) [139.5] 2.54 (14.3) [139.9]
31 to 35th -5.31 (18.1) [127.3] -7.18 (18.1) [227.8] -4.45 (18.6) [329]
36 to 40th 21.9 (19.3) [172.3] 19.4 (19.4) [373.2] 20.0 (20.3) [408.3]
41 to 45th 17.9 (13.9) [212.8] 20.2 (13.4) [464.8] 19.9 (13.9) [342.2]
46 to 50th -3.10 (10.9) [208.3] -0.016 (11.3) [310.4] 0.75 (10.9) [316]

R2 0.11 0.12 0.11 0.11
N 21,308 21,308 21,308 21,308
First stage KP F 1.71 4.87 2.90 1.70

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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B.3 Regression Tables for Wages (IRS)

Table B.7: Regression table for wages (IRS) using OLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 13.66a (2.098) 12.43a (2.083) 11.75a (2.124) 12.13a (2.088)
Social neighbours

1 to 5th 21.49a (3.831) 1.244c (0.736) 5.511a (1.288)
6 to 10th 12.78a (2.835) 4.215a (1.145) 3.002 (2.247)
11 to 15th 5.442 (3.771) 2.126 (1.294) -0.274 (2.122)
16 to 20th 11.97a (3.029) 2.960b (1.464) -1.558 (1.839)
21 to 25th 8.305a (2.607) 3.905a (1.410) 2.793 (2.808)
26 to 30th -2.148 (2.134) 0.641 (1.580) 2.800 (1.864)
31 to 35th 1.910 (1.892) 1.376 (1.814) -3.667b (1.797)
36 to 40th 4.921c (2.848) 2.696 (2.308) -0.176 (2.929)
41 to 45th 2.238 (2.356) 0.0507 (2.386) 6.509a (2.471)
46 to 50th -1.289 (2.567) 0.669 (2.022) 4.109c (2.406)

Geog. neighbours
1 to 5th 27.16a (3.616) 25.43a (3.336) 26.55a (2.962)
6 to 10th 17.69a (4.865) 16.27a (4.995) 17.73a (5.249)
11 to 15th 10.59a (2.627) 9.781a (2.251) 10.70a (2.266)
16 to 20th 3.456 (3.704) 1.771 (3.474) 2.925 (3.448)
21 to 25th 4.840 (4.395) 4.478 (4.137) 3.003 (4.092)
26 to 30th 7.240c (3.741) 6.199c (3.236) 6.376c (3.610)
31 to 35th 2.411 (3.382) 1.285 (3.063) 2.489 (3.201)
36 to 40th 3.448 (3.377) 1.289 (3.974) -0.314 (4.003)
41 to 45th 9.648b (4.682) 9.031b (4.187) 7.960c (4.170)
46 to 50th -0.842 (5.121) -0.755 (5.393) -1.373 (5.414)

R2 0.29 0.29 0.30 0.30
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.

Table B.8: Regression table for wages (IRS) using OLS with county FEs

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 12.63a (1.863) 11.47a (1.908) 11.07a (2.007) 11.39a (1.939)
Social neighbours

1 to 5th 19.97a (3.533) 1.705b (0.755) 5.034a (1.225)
6 to 10th 12.64a (2.995) 3.303a (1.231) 4.838c (2.507)
11 to 15th 5.040 (4.442) 1.131 (1.433) 0.407 (2.209)
16 to 20th 11.69a (3.298) 2.041 (1.455) -2.606 (2.056)
21 to 25th 6.416b (2.602) 2.278c (1.381) 3.573 (3.164)
26 to 30th -0.170 (2.594) 0.200 (1.528) 2.040 (2.124)
31 to 35th 0.688 (1.932) -0.683 (1.868) -4.762b (2.098)
36 to 40th 6.295c (3.282) 1.316 (2.368) 2.749 (3.179)
41 to 45th 0.324 (2.750) -0.706 (2.397) 6.299b (2.803)
46 to 50th -0.511 (3.200) -1.692 (2.096) 1.456 (2.587)

Geog. neighbours
1 to 5th 25.08a (2.124) 23.24a (2.872) 23.90a (3.099)
6 to 10th 18.20a (5.287) 16.89a (4.998) 17.45a (5.269)
11 to 15th 10.72a (2.463) 9.560a (2.316) 10.34a (2.111)
16 to 20th 1.004 (4.087) 0.148 (3.740) 0.520 (3.614)
21 to 25th 4.692 (3.919) 3.214 (4.048) 1.842 (3.946)
26 to 30th 4.087 (2.923) 2.851 (2.615) 3.067 (2.703)
31 to 35th 1.769 (5.787) 1.754 (5.494) 1.745 (5.482)
36 to 40th 0.844 (4.014) 0.126 (4.448) -2.885 (4.624)
41 to 45th 5.617 (4.771) 3.689 (4.749) 2.564 (4.258)
46 to 50th 4.750 (5.677) 3.747 (5.686) 2.097 (5.713)

R2 0.41 0.41 0.41 0.41
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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Table B.9: Regression table for wages (IRS), reduced form of 2SLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 34.69a (9.303) 43.38a (9.173) 38.83a (8.941) 40.01a (8.292)
Social neighbours

1 to 5th 122.7a (18.46) 9.050a (2.821) 20.22a (3.857)
6 to 10th 50.08a (10.06) 16.58a (4.675) 7.001 (9.037)
11 to 15th 54.74b (23.10) -0.791 (4.844) 5.744 (8.459)
16 to 20th 32.73b (14.28) 11.40c (6.497) -14.58b (6.929)
21 to 25th 21.44b (10.35) 18.04b (7.467) 18.42 (12.40)
26 to 30th 2.606 (12.16) 7.538 (6.488) 3.294 (6.162)
31 to 35th 13.49c (7.289) -1.258 (6.240) -13.62b (6.005)
36 to 40th 20.90 (14.57) 18.14c (10.27) 3.781 (12.36)
41 to 45th 17.49b (8.018) 14.78 (11.98) 13.92 (9.101)
46 to 50th -16.56b (8.368) -0.469 (7.433) -2.922 (11.87)

Geog. neighbours
1 to 5th 81.81a (19.22) 76.21a (19.44) 73.14a (19.37)
6 to 10th 68.51a (20.40) 58.60a (19.39) 66.77a (18.35)
11 to 15th 30.59 (23.19) 29.55 (20.01) 31.94c (17.79)
16 to 20th 1.300 (20.28) -1.008 (18.31) 0.657 (17.90)
21 to 25th 11.39 (15.58) 9.575 (14.76) 7.914 (15.72)
26 to 30th 56.01b (22.69) 46.15b (22.42) 47.98b (21.62)
31 to 35th 54.15b (26.75) 48.01c (27.95) 56.20c (29.00)
36 to 40th 52.21b (23.11) 42.68c (21.82) 34.94 (21.37)
41 to 45th 23.10c (12.92) 21.26c (12.68) 24.53c (13.33)
46 to 50th 2.290 (16.35) -6.821 (16.83) 0.824 (16.28)

R2 0.30 0.29 0.30 0.30
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.

Table B.10: Regression table for wages (IRS) using 2SLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Coef. SE SW F Coef. SE SW F Coef. SE SW F Coef. SE SW F
Own county 21.6a (4.32) [125.7] 22.3a (5.05) [110.8] 20.8a (4.68) [210.6] 21.7a (4.99) [273.2]
Social neighbours

1 to 5th 40.6a (8.03) [226] 5.09a (1.70) [729.9] 20.2a (5.64) [301.6]
6 to 10th 16.7b (7.54) [169.3] 5.57b (2.61) [878] 1.28 (5.90) [436.9]
11 to 15th 24.9 (21.1) [164.9] -1.89 (2.93) [670.5] -3.82 (4.98) [387.5]
16 to 20th 14.2 (8.90) [153.1] 1.01 (3.26) [303.1] -10.2b (5.16) [771.1]
21 to 25th 12.2b (5.65) [460.4] 7.66b (3.60) [700] 7.74 (7.54) [370.8]
26 to 30th -6.37 (5.81) [182.1] 2.78 (4.02) [355.3] -4.45 (3.90) [814.8]
31 to 35th 3.99 (4.64) [422.6] -4.64 (3.51) [133.6] -7.70b (3.25) [639.5]
36 to 40th 7.34 (8.31) [288.5] 5.96 (4.50) [443.3] 3.76 (6.19) [329.8]
41 to 45th 7.61 (5.66) [411.7] 5.92 (4.88) [766.6] 6.04 (5.03) [437.9]
46 to 50th -8.80c (5.07) [777.1] -0.21 (4.21) [640.1] -6.15 (5.90) [285.2]

Geog. neighbours
1 to 5th 32.2a (8.24) [118] 31.8a (9.06) [340.8] 33.3a (8.10) [418.6]
6 to 10th 30.7b (12.2) [92.7] 29.6b (11.7) [236.1] 30.0b (12.2) [169.7]
11 to 15th 2.93 (10.4) [247.2] 5.23 (9.93) [419.1] 4.31 (9.83) [374.7]
16 to 20th -10.9 (11.0) [245.7] -9.42 (10.3) [431.4] -9.63 (10.9) [375.8]
21 to 25th 0.22 (9.02) [145.6] 2.64 (8.59) [315] 0.051 (9.03) [264.5]
26 to 30th 40.6 (31.1) [81.7] 34.0 (29.7) [139.5] 29.5 (27.5) [139.9]
31 to 35th 25.0 (19.5) [127.3] 21.0 (19.2) [227.8] 26.3 (19.1) [329]
36 to 40th 32.2b (14.6) [172.3] 29.1b (14.3) [373.2] 21.7 (15.6) [408.3]
41 to 45th 16.0 (12.0) [212.8] 17.8 (11.1) [464.8] 19.7 (12.1) [342.2]
46 to 50th -13.1 (12.6) [208.3] -14.3 (11.9) [310.4] -12.1 (12.3) [316]

R2 0.04 0.04 0.04 0.04
N 21,308 21,308 21,308 21,308
First stage KP F 1.71 4.87 2.90 1.70

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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B.4 Regression Tables for Employment

Table B.11: Regression table for employment using OLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 0.316a (0.0839) 0.304a (0.0779) 0.303a (0.0806) 0.303a (0.0749)
Social neighbours

1 to 5th 0.462a (0.0955) 0.00888 (0.0145) -0.00930 (0.0266)
6 to 10th 0.105c (0.0617) -0.0344 (0.0228) -0.0566 (0.0467)
11 to 15th -0.0669 (0.0809) 0.0335 (0.0300) 0.0281 (0.0527)
16 to 20th 0.0984 (0.0630) 0.00574 (0.0265) -0.0692 (0.0427)
21 to 25th 0.0241 (0.0695) 0.00126 (0.0291) -0.0104 (0.0511)
26 to 30th -0.0987b (0.0447) 0.00397 (0.0347) -0.00443 (0.0447)
31 to 35th -0.0434 (0.0413) 0.0125 (0.0362) -0.00424 (0.0395)
36 to 40th 0.0700 (0.0576) 0.0240 (0.0345) -0.0366 (0.0505)
41 to 45th -0.0923c (0.0483) -0.0184 (0.0414) -0.0591 (0.0439)
46 to 50th -0.0267 (0.0515) 0.0141 (0.0538) 0.0899c (0.0527)

Geog. neighbours
1 to 5th 0.586a (0.163) 0.586a (0.146) 0.593a (0.123)
6 to 10th 0.139 (0.0978) 0.140 (0.128) 0.148 (0.117)
11 to 15th 0.0561 (0.0446) 0.0569 (0.0474) 0.0571 (0.0483)
16 to 20th 0.0794 (0.102) 0.0756 (0.0998) 0.0772 (0.103)
21 to 25th -0.0604 (0.121) -0.0572 (0.123) -0.0499 (0.119)
26 to 30th -0.0679 (0.0626) -0.0669 (0.0599) -0.0647 (0.0598)
31 to 35th -0.120 (0.0845) -0.128c (0.0750) -0.0912 (0.0724)
36 to 40th 0.0654 (0.0810) 0.0586 (0.0840) 0.0766 (0.0891)
41 to 45th 0.0650 (0.0936) 0.0700 (0.0895) 0.0736 (0.0903)
46 to 50th 0.140 (0.0952) 0.152 (0.0937) 0.161c (0.0864)

R2 0.20 0.20 0.20 0.20
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.

Table B.12: Regression table for employment using OLS with county FEs

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 0.330a (0.0741) 0.305a (0.0703) 0.306a (0.0717) 0.306a (0.0708)
Social neighbours

1 to 5th 0.414a (0.0823) 0.0274b (0.0137) -0.00862 (0.0234)
6 to 10th 0.124b (0.0602) -0.0692a (0.0229) -0.0348 (0.0442)
11 to 15th -0.121 (0.0962) 0.0313 (0.0324) 0.0545 (0.0501)
16 to 20th 0.0991 (0.0730) -0.0123 (0.0308) -0.0570 (0.0472)
21 to 25th -0.00377 (0.0688) -0.0119 (0.0313) 0.00739 (0.0555)
26 to 30th -0.0932b (0.0422) -0.00584 (0.0378) 0.0285 (0.0630)
31 to 35th -0.0369 (0.0433) 0.0177 (0.0379) -0.0725c (0.0434)
36 to 40th 0.0914 (0.0628) 0.0238 (0.0359) -0.0782 (0.0651)
41 to 45th -0.120b (0.0499) -0.0167 (0.0380) -0.0486 (0.0490)
46 to 50th -0.00439 (0.0481) 0.00451 (0.0620) 0.0905 (0.0569)

Geog. neighbours
1 to 5th 0.595a (0.137) 0.593a (0.122) 0.596a (0.116)
6 to 10th 0.165c (0.0972) 0.167 (0.106) 0.166 (0.121)
11 to 15th 0.00904 (0.0598) 0.0180 (0.0562) 0.00247 (0.0547)
16 to 20th 0.0758 (0.115) 0.0783 (0.110) 0.0688 (0.107)
21 to 25th -0.150 (0.114) -0.148 (0.120) -0.162 (0.118)
26 to 30th -0.141b (0.0689) -0.144b (0.0733) -0.148b (0.0671)
31 to 35th -0.101 (0.0851) -0.107 (0.0740) -0.0757 (0.0719)
36 to 40th 0.0556 (0.0896) 0.0545 (0.0926) 0.0646 (0.0880)
41 to 45th 0.0766 (0.0969) 0.0781 (0.0985) 0.0698 (0.0989)
46 to 50th 0.189b (0.0873) 0.189b (0.0854) 0.204b (0.0817)

R2 0.34 0.34 0.34 0.34
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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Table B.13: Regression table for employment, reduced form of 2SLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Own county 0.652b (0.281) 0.700b (0.283) 0.686b (0.303) 0.695a (0.226)
Social neighbours

1 to 5th 2.274a (0.624) 0.0902c (0.0477) 0.0720 (0.0645)
6 to 10th 0.276 (0.339) 0.0905 (0.0827) -0.229 (0.169)
11 to 15th -0.322 (0.320) -0.0881 (0.122) 0.0785 (0.184)
16 to 20th 0.524c (0.283) 0.240c (0.146) -0.236 (0.161)
21 to 25th -0.0943 (0.249) -0.339b (0.132) -0.0162 (0.235)
26 to 30th -0.0730 (0.227) -0.00257 (0.122) -0.0966 (0.153)
31 to 35th -0.0724 (0.177) -0.0936 (0.155) -0.0784 (0.169)
36 to 40th 0.102 (0.251) 0.315 (0.203) 0.0772 (0.319)
41 to 45th -0.145 (0.176) -0.0459 (0.146) -0.212 (0.205)
46 to 50th -0.209 (0.206) -0.0335 (0.143) 0.0475 (0.261)

Geog. neighbours
1 to 5th 1.383c (0.728) 1.364b (0.667) 1.410b (0.575)
6 to 10th 1.145b (0.561) 1.077b (0.510) 1.129b (0.450)
11 to 15th 0.475 (0.447) 0.515 (0.482) 0.519 (0.462)
16 to 20th 0.168 (0.419) 0.256 (0.521) 0.197 (0.469)
21 to 25th -0.569 (0.538) -0.550 (0.520) -0.494 (0.534)
26 to 30th -0.0968 (0.248) -0.123 (0.264) -0.0753 (0.261)
31 to 35th -0.338 (0.443) -0.305 (0.416) -0.275 (0.440)
36 to 40th 0.970b (0.439) 0.896b (0.422) 0.948b (0.440)
41 to 45th 0.415c (0.251) 0.476c (0.274) 0.491 (0.304)
46 to 50th 0.215 (0.328) 0.233 (0.309) 0.286 (0.308)

R2 0.18 0.18 0.18 0.18
N 21,308 21,308 21,308 21,308

SEs corrected for spatial clusters (Colella et al., 2019). Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.

Table B.14: Regression table for employment using 2SLS

(1) (2) (3) (4)
Social Dist. Geog. Dist. Res. Social Dist. Alt. Social Dist.

Coef. SE SW F Coef. SE SW F Coef. SE SW F Coef. SE SW F
Own county 0.36a (0.099) [125.7] 0.34a (0.12) [110.8] 0.35a (0.12) [210.6] 0.35a (0.13) [273.2]
Social neighbours

1 to 5th 0.77a (0.19) [226] 0.071b (0.029) [729.9] 0.15 (0.097) [301.6]
6 to 10th 0.074 (0.11) [169.3] 0.042 (0.043) [878] -0.11 (0.074) [436.9]
11 to 15th -0.14 (0.13) [164.9] -0.018 (0.067) [670.5] 0.045 (0.11) [387.5]
16 to 20th 0.30 (0.21) [153.1] 0.044 (0.059) [303.1] -0.12 (0.080) [771.1]
21 to 25th -0.016 (0.10) [460.4] -0.12c (0.064) [700] 0.0067 (0.13) [370.8]
26 to 30th -0.15 (0.10) [182.1] -0.022 (0.070) [355.3] -0.12 (0.093) [814.8]
31 to 35th -0.015 (0.085) [422.6] -0.071 (0.091) [133.6] -0.053 (0.071) [639.5]
36 to 40th 0.055 (0.11) [288.5] 0.087 (0.063) [443.3] 0.11 (0.17) [329.8]
41 to 45th -0.065 (0.094) [411.7] -0.010 (0.087) [766.6] -0.091 (0.095) [437.9]
46 to 50th -0.091 (0.11) [777.1] -0.00022 (0.068) [640.1] -0.011 (0.16) [285.2]

Geog. neighbours
1 to 5th 0.60b (0.25) [118] 0.58b (0.26) [340.8] 0.64a (0.24) [418.6]
6 to 10th 0.50b (0.25) [92.7] 0.50b (0.25) [236.1] 0.49c (0.26) [169.7]
11 to 15th 0.10 (0.14) [247.2] 0.14 (0.14) [419.1] 0.11 (0.14) [374.7]
16 to 20th -0.14 (0.19) [245.7] -0.089 (0.19) [431.4] -0.11 (0.20) [375.8]
21 to 25th -0.19 (0.16) [145.6] -0.17 (0.16) [315] -0.15 (0.17) [264.5]
26 to 30th 0.030 (0.19) [81.7] -0.023 (0.18) [139.5] 0.011 (0.21) [139.9]
31 to 35th -0.17 (0.27) [127.3] -0.18 (0.27) [227.8] -0.15 (0.27) [329]
36 to 40th 0.51c (0.28) [172.3] 0.48c (0.28) [373.2] 0.51 (0.32) [408.3]
41 to 45th 0.26 (0.18) [212.8] 0.29 (0.18) [464.8] 0.30 (0.19) [342.2]
46 to 50th 0.11 (0.16) [208.3] 0.16 (0.17) [310.4] 0.13 (0.16) [316]

R2 0.06 0.06 0.06 0.06
N 21,308 21,308 21,308 21,308
First stage KP F 1.71 4.87 2.90 1.70

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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B.5 Regression Tables, First Stage Regressions for 2SLS

Table B.15: New production per capita in bins of geographical neighbours

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0 5 10 15 20 25 30 35 40 45 50

0 1.921a -0.0102 0.142 -0.0392 -0.106c -0.0222 -0.0654 0.00478 -0.00957 0.00811 -0.00467
(0.405) (0.0851) (0.139) (0.0654) (0.0594) (0.0194) (0.0418) (0.0200) (0.00941) (0.00732) (0.0144)

5 -0.0968 2.399a -0.0390 0.00145 0.102 0.0470 0.105 -0.0755 -0.0303 0.0459c -0.0429
(0.170) (0.434) (0.0984) (0.188) (0.111) (0.0799) (0.163) (0.0503) (0.0348) (0.0271) (0.0272)

10 0.841 -0.123 2.113a 0.152 0.0551 0.0847 0.0616 0.0702 -0.0257 -0.0302 0.0267
(0.610) (0.152) (0.431) (0.455) (0.233) (0.219) (0.173) (0.144) (0.0550) (0.0376) (0.0413)

15 -0.309 0.541b 0.0287 3.732a 0.310 -0.0693 0.294 -0.0842 0.0661 -0.101 -0.0267
(0.368) (0.240) (0.165) (0.379) (0.256) (0.164) (0.201) (0.116) (0.0569) (0.0717) (0.0437)

20 1.022 -0.0760 0.518c -0.314 3.138a 0.129 -0.00670 -0.167 0.214 -0.0513 -0.0681
(0.725) (0.131) (0.304) (0.243) (0.581) (0.149) (0.0916) (0.215) (0.202) (0.0981) (0.0509)

25 -0.324 -0.245b 0.267 -0.276c 0.326 3.008a 0.192 0.505 0.0674 -0.0301 -0.0672
(0.277) (0.123) (0.343) (0.161) (0.400) (0.307) (0.189) (0.374) (0.108) (0.0778) (0.0701)

30 -0.0713 -0.215c 0.00244 0.171 -0.284b -0.0106 1.759a -0.0106 -0.0287 -0.0503 0.0377
(0.0874) (0.124) (0.0657) (0.200) (0.137) (0.0479) (0.422) (0.127) (0.0387) (0.0591) (0.0840)

35 0.0467 0.160 -0.150 0.325 -0.231 0.227 0.106 2.521a -0.193c 0.0899 0.242
(0.132) (0.112) (0.139) (0.287) (0.193) (0.159) (0.203) (0.474) (0.104) (0.0945) (0.215)

40 -0.0877 0.165c -0.247c -0.209b -0.252 -0.312b -0.139c -0.218b 2.144a 0.0875 0.111
(0.173) (0.0912) (0.128) (0.0935) (0.173) (0.147) (0.0755) (0.108) (0.419) (0.0698) (0.118)

45 -0.0637 0.0752 0.0703 -0.0297 -0.00988 0.0376 -0.186c -0.0916 0.0633 1.634a 0.0853
(0.101) (0.0474) (0.118) (0.0812) (0.0974) (0.127) (0.108) (0.0980) (0.0730) (0.266) (0.187)

50 -0.0205 0.0133 0.0601 -0.122 0.0439 -0.0457 0.241c 0.612c 0.150 0.106 2.468a

(0.125) (0.0566) (0.0627) (0.0847) (0.118) (0.102) (0.131) (0.328) (0.159) (0.141) (0.420)

Lagged IVs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geog. IVs No No No No No No No No No No No
R2 0.5833 0.7590 0.6765 0.7162 0.6758 0.6934 0.5618 0.6679 0.6115 0.7119 0.6980
R2 adj. 0.5827 0.7586 0.6761 0.7158 0.6754 0.6929 0.5612 0.6674 0.6110 0.7114 0.6976
F Stat. 78.28 42.34 48.09 34.00 40.16 44.82 42.33 44.19 55.53 73.44 62.13
SW F stat. 110.82 118.00 92.74 247.23 245.65 145.62 81.68 127.30 172.33 212.80 208.31
AP F stat. 327.24 280.36 109.02 384.51 191.78 363.40 57.17 194.44 300.00 195.45 190.35
N 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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Table B.16: New production per capita in bins of social neighbours

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0 5 10 15 20 25 30 35 40 45 50

0 1.849a -0.0694 -0.120b -0.102c -0.0562c -0.0101 -0.0140 -0.00263 -0.0535 -0.0164 -0.0131
(0.437) (0.0754) (0.0564) (0.0585) (0.0300) (0.0371) (0.0402) (0.0240) (0.0544) (0.0344) (0.0226)

5 0.999c 2.919a -0.0356 0.122 0.0713 0.120 -0.0305 -0.153b -0.0277 -0.0542 -0.0899b

(0.515) (0.385) (0.104) (0.0942) (0.114) (0.143) (0.0710) (0.0718) (0.0436) (0.0570) (0.0354)

10 -0.161 0.157 2.673a 0.0934 0.107 0.0576 -0.0151 -0.00604 -0.0544 -0.193a -0.0439
(0.192) (0.122) (0.419) (0.0745) (0.0784) (0.0704) (0.0771) (0.0533) (0.0470) (0.0529) (0.0415)

15 -0.0156 -0.00106 0.320b 2.498a 0.0623 0.317a 0.152 0.252c -0.0829 -0.115 0.0153
(0.152) (0.115) (0.156) (0.426) (0.0513) (0.120) (0.103) (0.146) (0.0520) (0.0888) (0.0654)

20 0.00151 -0.0411 0.180 0.0408 2.363a -0.151b 0.122 -0.104 0.0467 0.0412 -0.0362
(0.0823) (0.112) (0.167) (0.0772) (0.287) (0.0621) (0.0839) (0.0635) (0.0682) (0.0775) (0.0387)

25 -0.214 -0.00662 -0.0267 -0.108 -0.0201 2.699a 0.0173 0.0396 0.0737 -0.0605 -0.00176
(0.165) (0.100) (0.0610) (0.101) (0.0430) (0.292) (0.0498) (0.0589) (0.0915) (0.0505) (0.0595)

30 0.466 0.129 0.00764 0.0419 0.0645 0.0702 2.537a 0.121 -0.0303 0.386b -0.0870
(0.334) (0.0943) (0.0834) (0.0610) (0.0435) (0.0699) (0.295) (0.0987) (0.0540) (0.186) (0.0711)

35 0.0331 0.000340 0.0438 0.0613 0.0202 0.0834 0.0747 3.028a 0.0983 0.00147 0.0457
(0.0649) (0.0399) (0.0553) (0.0579) (0.0612) (0.0759) (0.0902) (0.276) (0.0729) (0.0755) (0.0562)

40 -0.178 -0.0140 -0.0111 0.155 -0.00313 -0.0341 0.131 0.0641 2.913a 0.0187 0.131
(0.130) (0.0353) (0.0553) (0.0977) (0.0408) (0.0366) (0.117) (0.0988) (0.270) (0.0657) (0.0819)

45 -0.0433 -0.0754c -0.0415 -0.0695 0.0244 -0.00190 0.0786 0.373 0.0162 2.781a -0.0254
(0.125) (0.0395) (0.0543) (0.0708) (0.0589) (0.0476) (0.0806) (0.241) (0.0444) (0.283) (0.0809)

50 0.0349 -0.0720c -0.0732b -0.0495 0.0294 0.0339 0.0474 0.0619 0.0895c 0.135 2.919a

(0.0804) (0.0379) (0.0316) (0.0310) (0.0483) (0.0493) (0.0560) (0.110) (0.0493) (0.119) (0.259)

Lagged IVs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geog. IVs No No No No No No No No No No No
R2 0.5835 0.7087 0.7011 0.7066 0.6625 0.6894 0.6719 0.6895 0.7254 0.7023 0.6970
R2 adj. 0.5829 0.7083 0.7007 0.7061 0.6620 0.6890 0.6715 0.6891 0.7251 0.7019 0.6965
F Stat. 52.96 37.58 58.96 52.26 86.17 66.35 59.19 73.12 73.67 54.43 86.91
SW F stat. 125.68 226.02 169.29 164.86 153.11 460.37 182.12 422.59 288.55 411.65 777.09
AP F stat. 208.39 442.00 151.98 301.14 114.69 467.88 159.99 687.42 281.43 324.55 561.81
N 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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Table B.17: New production per capita in bins of social neighbours (res.)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0 5 10 15 20 25 30 35 40 45 50

0 1.916a -0.0197 -0.0521 0.0419 -0.0630 -0.0487 0.00655 -0.00366 -0.127 -0.0440b -0.0173
(0.411) (0.106) (0.0884) (0.0354) (0.129) (0.0338) (0.0543) (0.0307) (0.107) (0.0205) (0.0190)

5 -0.00467 2.091a 0.0700a 0.0106 0.0206 0.0304b 0.0180 0.0226b -0.00605 -0.0145 0.0120
(0.0134) (0.131) (0.0264) (0.0171) (0.0139) (0.0124) (0.0111) (0.0109) (0.0108) (0.00895) (0.00867)

10 0.0193 0.133c 2.829a 0.0509 0.0857b 0.0301 0.0873a 0.0401c 0.00667 0.0235 0.0329c

(0.0343) (0.0783) (0.137) (0.0359) (0.0376) (0.0223) (0.0338) (0.0208) (0.0254) (0.0175) (0.0193)

15 -0.0361 0.245a 0.118c 2.966a 0.0482 0.109b 0.00269 0.0453 -0.00605 -0.00764 -0.0531c

(0.0404) (0.0936) (0.0656) (0.138) (0.0574) (0.0511) (0.0376) (0.0310) (0.0374) (0.0299) (0.0290)

20 0.196 0.168 0.0786 0.0113 3.194a 0.0397 -0.0328 0.0774c 0.184b 0.0438 0.0408
(0.144) (0.128) (0.0920) (0.0713) (0.158) (0.0345) (0.0494) (0.0411) (0.0791) (0.0277) (0.0407)

25 -0.0818 -0.00428 0.0175 0.190c 0.0204 3.427a 0.0679 0.0903c 0.0947 -0.0291 0.0136
(0.0589) (0.125) (0.0921) (0.0971) (0.0463) (0.176) (0.0889) (0.0496) (0.0588) (0.0408) (0.0511)

30 -0.0266 -0.0207 0.105 0.168b 0.0343 -0.0373 2.644a 0.00556 -0.0419 0.0357 0.0228
(0.0579) (0.0903) (0.0862) (0.0819) (0.0699) (0.0682) (0.287) (0.0466) (0.0315) (0.0310) (0.0283)

35 0.0235 0.0918 0.00510 0.0680 0.0407 0.0117 0.00504 3.123a 0.114 0.0524 -0.0482c

(0.0852) (0.147) (0.103) (0.0842) (0.0707) (0.0600) (0.0384) (0.310) (0.0711) (0.0393) (0.0273)

40 0.151 0.295c -0.0650 0.0554 0.00797 0.150 -0.111a 0.0168 3.373a -0.0154 0.0673
(0.159) (0.166) (0.0727) (0.110) (0.0695) (0.0956) (0.0387) (0.0372) (0.213) (0.0561) (0.0510)

45 -0.0128 -0.144 -0.112c -0.0357 -0.0107 0.0487 -0.000547 -0.0713 0.0311 3.222a 0.0914
(0.0407) (0.135) (0.0642) (0.0854) (0.0533) (0.101) (0.0530) (0.0649) (0.0509) (0.174) (0.113)

50 -0.109 -0.148 -0.0486 -0.00119 0.0411 0.0587 0.00858 0.0355 0.000109 0.113 2.852a

(0.0726) (0.106) (0.0823) (0.0757) (0.0694) (0.0754) (0.0508) (0.0499) (0.0716) (0.0965) (0.212)

Lagged IVs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geog. IVs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.5848 0.7365 0.7266 0.6960 0.6959 0.7033 0.6845 0.6949 0.7088 0.6759 0.7052
R2 adj. 0.5838 0.7359 0.7260 0.6953 0.6951 0.7026 0.6837 0.6942 0.7081 0.6751 0.7045
F Stat. 69.83 109.90 97.63 66.58 60.37 84.27 80.39 59.88 79.88 54.92 78.73
SW F stat. 210.60 729.90 878.00 670.50 303.10 700.00 355.30 133.60 443.30 766.60 640.10
AP F stat. 701.00 548.70 954.40 733.60 567.10 931.40 328.30 453.50 924.60 1,178.10 691.50
N 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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Table B.18: New production per capita in bins of social neighbours (>200km)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0 5 10 15 20 25 30 35 40 45 50

0 1.918a -0.00993 0.0146 -0.0320 -0.0171 0.0484 -0.0434 0.00152 -0.0173 -0.0232 -0.0268
(0.408) (0.0338) (0.0156) (0.0445) (0.0237) (0.0424) (0.0313) (0.0159) (0.0192) (0.0143) (0.0222)

5 -0.0107 1.432a 0.0897a 0.0290 -0.0643c 0.0375 -0.00107 -0.00146 -0.0158c -0.0246c -0.0273c

(0.0275) (0.145) (0.0246) (0.0289) (0.0365) (0.0298) (0.0153) (0.0141) (0.00942) (0.0137) (0.0165)

10 -0.0568 0.244 2.513a 0.201c 0.120b 0.0362 -0.0511 -0.0347 0.0242 -0.0512 -0.00932
(0.0437) (0.189) (0.217) (0.107) (0.0576) (0.0604) (0.0414) (0.0464) (0.0276) (0.0459) (0.0510)

15 0.0313 0.173 0.0789 3.145a 0.106 0.0597 0.111c 0.0202 0.0560 0.0861 0.00393
(0.0590) (0.107) (0.0551) (0.279) (0.0698) (0.0506) (0.0610) (0.0567) (0.0419) (0.0558) (0.0307)

20 0.0673 -0.0718 0.242b 0.0211 3.236a 0.0643 0.100b 0.152b -0.0520 0.115 -0.0748
(0.0783) (0.141) (0.0950) (0.107) (0.303) (0.0473) (0.0465) (0.0693) (0.0410) (0.0975) (0.0482)

25 -0.150c -0.0187 0.102 0.0635 -0.0429 2.964a 0.191c -0.145 -0.0226 0.0939 0.105
(0.0886) (0.0977) (0.0941) (0.0622) (0.0692) (0.230) (0.0990) (0.0955) (0.0527) (0.0819) (0.0657)

30 0.136 0.0748 0.0558 0.0747 0.155 0.0778 2.512a -0.0487 0.0902c 0.0284 0.0635
(0.116) (0.0868) (0.0602) (0.0691) (0.107) (0.0542) (0.197) (0.0772) (0.0503) (0.0299) (0.0503)

35 0.00329 0.00556 -0.0290 0.182 -0.00523 0.0183 0.0332 2.837a 0.0937 -0.0454c -0.00829
(0.0225) (0.0493) (0.0334) (0.118) (0.0672) (0.0300) (0.0559) (0.274) (0.0876) (0.0238) (0.0274)

40 -0.0698 -0.0497 -0.0246 0.188c -0.0456 0.0793 0.0937 0.0879 2.974a 0.0553 0.132
(0.0948) (0.0706) (0.0520) (0.103) (0.0514) (0.0616) (0.0743) (0.148) (0.272) (0.0763) (0.105)

45 -0.00367 0.153 -0.0528 -0.0453 0.0288 0.0141 -0.0994b 0.0271 0.0244 2.940a 0.0240
(0.0373) (0.0989) (0.0540) (0.0542) (0.0501) (0.0290) (0.0459) (0.0464) (0.0498) (0.265) (0.0462)

50 0.0206 -0.00656 0.00339 -0.0327 0.0723 0.0125 0.0291 -0.0452 0.0257 0.248 3.074a

(0.0803) (0.0847) (0.0815) (0.0452) (0.0921) (0.0514) (0.0790) (0.0341) (0.0320) (0.181) (0.263)

Lagged IVs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geog. IVs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.5839 0.7765 0.7128 0.6827 0.7065 0.6964 0.7218 0.7029 0.6879 0.6925 0.6789
R2 adj. 0.5829 0.7759 0.7121 0.6819 0.7057 0.6956 0.7211 0.7022 0.6872 0.6917 0.6781
F Stat. 80.97 277.37 129.03 66.56 62.29 65.97 73.76 66.03 38.24 67.10 54.12
SW F stat. 273.20 301.60 436.90 387.50 771.10 370.80 814.80 639.50 329.80 437.90 285.20
AP F stat. 829.60 434.80 842.50 716.70 855.60 471.30 625.00 330.60 387.30 619.30 308.90
N 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308 21,308

SEs clustered by commuting zone. Sig. lev.: ap < 0.01; bp < 0.05; cp < 0.1.

Note: Regressions also control for one-year lags of all variables and for 50-100th neighbours.
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