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Abstract

In a combinatorial auction with item bidding, agents participate in multiple single-item second-price auctions
at once. As some items might be substitutes, agents need to strategize in order to maximize their utilities.
A number of results indicate that high social welfare can be achieved this way, giving bounds on the welfare
at equilibrium. Recently, however, criticism has been raised that equilibria of this game are hard to compute
and therefore unlikely to be attained.

In this paper, we take a different perspective by studying simple best-response dynamics. Often these
dynamics may take exponentially long before they converge or they may not converge at all. However, as
we show, convergence is not even necessary for good welfare guarantees. Given that agents’ bid updates are
aggressive enough but not too aggressive, the game will reach and remain in states of high welfare after each
agent has updated his bid at least once.

1. Introduction1

In a combinatorial auction, n agents compete for the assignment of m items. The agents have private2

preferences over bundles of items as expressed by a valuation function vi : 2[m] → R≥0. Our goal in this3

work is to find a partition of the items into sets S1, . . . , Sn that maximizes social welfare
∑
i vi(Si), based4

on reported valuations (bids) bi : 2[m] → R≥0 with the freedom to impose payments p1, . . . , pn on the agents.5

Even if valuations are known, finding an allocation that maximizes social welfare is typically NP-hard.6

Furthermore, since valuations are assumed to be private information, some mechanics are needed to extract7

this information. The traditional approach is to incentivize agents to bid truthfully. Insisting on truthful-8

ness has the advantage that for the individual agent it is easy to participate as it is not necessary to act9

strategically. However, truthfulness requires central coordination of the entire allocation and payments.10

An alternative approach to this problem that is arguably seen more often in practice is to let agents11

participate in a simpler, non-truthful mechanism and to accept strategic behavior. To derive theoretical12

performance guarantees, one then seeks to prove bounds on the so-called Price of Anarchy, the worst-case13

ratio between the optimal social welfare and the welfare at equilibrium. The most prominent example of this14

approach in the context of combinatorial auctions is item bidding, where the items are sold through separate15

single-item auctions.16

One can show that for pretty general classes of valuations, such as submodular or the even more general17

classes fractionally subadditive and subadditive, all equilibria from a broad range of equilibrium concepts18

obtain a decent fraction of the optimal social welfare. More recently, however, these results have been19

criticized for ignoring the computational complexity of finding an equilibrium. In fact, by now, there is quite20

a selection of impossibility results showing that finding exact equilibria is often computationally intractable.21

Our approach in this paper is different. We consider simple, best-response dynamics, in which agents are22

activated in a round-robin fashion and agents when activated buy their favorite set of items at the current23

prices, in a myopic way. Christodoulou et al. [1] showed that one instance of such dynamics converges if24

agents’ valuation functions are fractionally subadditive. However, they also showed that it takes exponential25
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time. For subadditive valuations, even convergence cannot be guaranteed because any fixed point would be26

a pure Nash equilibrium, and pure Nash equilibria may not exist (see Appendix A). We show that despite27

possibly long convergence time or no convergence at all, the social welfare reaches a good level very fast.28

1.1. The Setting29

We study combinatorial auctions with n agents N and m items M . Each agent i ∈ N has a valuation30

function vi : 2M → R≥0. Our objective is to find a feasible allocation, i.e., a partition of the items, S1, . . . , Sn,31

that maximizes social welfare
∑
i∈N vi(Si). We assume that an allocation of items to agents is found by32

distributed strategic behavior of the agents using item bidding, and focus on the original proposal where the33

price of an item equals the second highest bid on that item. That is, each agent i ∈ N places a bid bi,j on34

each item j ∈ M . Each item j ∈ M is assigned to the agent i ∈ N with the highest bid bi,j at a price of35

pj = maxi′ 6=i bi′,j . Ties are broken in an arbitrary, but fixed manner.36

We assume that agents choose their bids strategically so as to maximize their quasi-linear utilities. agent37

i’s utility ui as a function of the bids b = (bi′)i′∈N is ui(b) = vi(S) −
∑
j∈S pj , where S is the set of items38

won by agent i.39

We say that a bid bi is a best response to the bids b−i if agent i’s utility is maximized by bi. That40

is, ui(bi, b−i) ≥ ui(b
′
i, b−i) for all b′i. Note that any best response must give agent i a set of items S that41

maximizes ui(b) = vi(S) −
∑
j∈S pj . We call these sets of items demand sets. A (pure) Nash equilibrium42

in this setting is a profile of bids b = (bi′)i′∈N such that for each agent i ∈ N his bid bi is a best response43

against bids b−i.44

We study simple game-playing dynamics in which agents get activated in turn and myopically choose to45

play a best response. More formally, starting from an initial bid vector b0, in each time step t ≥ 1, some46

agent i ∈ N is activated and updates his bid bt−1i from the previous round to a best response to the other47

agents’ bids bt−i = bt−1−i which do not change from the previous to the current round. The fixed points of48

such best-response dynamics are Nash equilibria. However, Nash equilibria do not necessarily exist and even49

if they do, best-response dynamics may not converge.50

We will evaluate best-response dynamics by the social welfare that they achieve. For bid profile b and51

corresponding allocation S1, . . . , Sn we write SW (b) =
∑
i vi(Si) for the social welfare at bid profile b. We52

seek to compare this to the optimal social welfare OPT (v).53

1.2. Variants of Best-Response Dynamics54

Since payments in combinatorial auctions with item bidding are second price, there are typically many55

ways to choose a best response. Clearly, not all best responses will ensure that good states (in terms of social56

welfare) will be reached quickly.57

Example 1.1 (Gross Underbidding). Consider a single-item, second-price auction with n agents. Suppose58

v1 = C and vi = 1 for i ≥ 2, where C � 1. Suppose we start at b = (0, . . . , 0) and the item assigned to59

agent 1. A possible best response sequence has agents update their bids in round-robin fashion, each time60

increasing the winning bid by ε.61

For the first Ω(1/nε) rounds, the social welfare after each round of best responses (and on average) is 1,62

which can be arbitrarily smaller than the optimal social welfare C. After O(1/nε) rounds all agents but the63

first will have dropped out, and a social-welfare maximizing state will be reached.64

Example 1.2 (Gross Overbidding). Consider the same setting as in the previous example. If in the first65

round of updates the last agent bids C + ε this will terminate the dynamics.66

Here, the dynamics converge after a single round of bid updates, but at this point the dynamics are stuck67

in a highly inefficient state.68

These two examples illustrate two extremes of unnatural behavior: In the first example, the first agent69

grossly understates his value and therefore utility. It would have been absolutely fine and, in fact, more70

conducive if the first agent had bid more aggressively early on. In the second example, the last agent grossly71

overstates his value and utility for the item. He turns out to be lucky in this case, but his strategy is rather72

risky. He might end up paying much more than his value for the item.73

We will see that natural dynamics avoid these pitfalls. In these dynamics, like for example the one74

by Christodoulou et al. [1], the declared utility closely matches the actual utility. We will argue that this75
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enables these dynamics to reach states of high social welfare surprisingly fast. Our welfare bounds will76

be parameterized by the extent to which the declared utilities can differ from the actual utilities, which77

also means that they capture a broad range of dynamics, including dynamics in which agents only use78

approximate best responses.79

To formally state our conditions, we need the following definitions. In a combinatorial auction with80

item bidding, the bids bi,j effectively express additive valuations. The allocation S1, . . . , Sn maximizes the81

declared welfare DW (b) =
∑
i

∑
j∈Si

bi,j , which usually differs from the actual welfare SW (b) =
∑
i vi(S).82

The declared utility is given by uDi (b) =
∑
j∈Si

bi,j −
∑
j∈Si

maxk 6=i bk,j , whereas the actual utility is given83

by ui(b) = vi(Si)−
∑
j∈Si

maxk 6=i bk,j .84

Our conditions are:85

Definition 1.3 (α-aggressive). Let α ≥ 0. We call a bid bi by agent i against bids b−i α-aggressive if86

uDi (b) ≥ α ·maxb′i ui(b
′
i, b−i).87

Definition 1.4 (β-safe). Let β ≥ 1. A bidding dynamic is β-safe if it ensures that uDi (b) ≤ β · ui(b) for all88

agents i and reachable bid profiles b.89

Definition 1.3 requires a lower bound on the declared utilities. It prevents effects like that in Example 1.1.90

We will usually apply it when bi is a best response to b−i. In this case, it means that the declared utility has91

to be at least an α fraction of the actual utility. However, it also leaves the freedom to consider approximate92

best responses. Definition 1.4 states an upper bound on the declared utilities. It rules out situations as93

that in Example 1.2. One way to achieve it is to require strong no overbidding (i.e., that agents do not94

overbid on any bundle), but we will also see an example of a safe dynamic that allows overbidding. Note95

that in both cases it is guaranteed that agents will have non-negative actual utilities at all times because96

ui(b
t) ≥ 1

β · u
D
i (bt) ≥ 0 for every agent i and time step t.97

1.3. Our Results98

In this work we consider combinatorial auctions with item bidding, and show welfare guarantees for99

bidding dynamics under natural assumptions on the bidding behavior. Our work identifies factors that allow100

the dynamics to reach states of high social welfare quickly, and factors that prevent the dynamics from101

reaching these states.102

Our first main result is that round-robin best-response dynamics are capable of reaching states with near-103

optimal social welfare strikingly fast, despite the fact that convergence to equilibrium may take exponentially104

long or they may not converge at all. In fact, our result applies to any round-robin bidding dynamic provided105

that agents choose bids that are aggressive enough but not too aggressive. This, in particular, includes106

dynamics in which agents choose to play only approximate best responses. Also, their way of making choices107

does not need to be consistent in any way.108

Main Result 1. In a β-safe round-robin bidding dynamic with α-aggressive bid updates the social welfare109

at any time step t ≥ n satisfies110

SW (bt) ≥ α

(1 + α+ β)β
·OPT (v).

In other words, once every agent had the chance to update his bid, the social welfare, at any time step111

after that, will be within α/(1 + α+ β)β of optimal.112

It is rather straightforward to verify that the best-response dynamic of Christodoulou et al. [1] for113

fractionally subadditive valuations has (α, β) = (1, 1). So a first implication of our first main result is that114

this dynamic, which may take exponentially long to reach an equilibrium, at which point it guarantees at115

least 1/2 of the optimal social welfare, actually reaches 1/3 of the optimal social welfare after a single round116

of bid updates, and at any point after that.117

A second implication of our first main result concerns subadditive valuations, where, as already mentioned,118

pure Nash equilibria may not exist and hence best-response dynamics may not converge. For this class of119

valuations, we show that there is a best-response dynamic with (α, β) = (1/ lnm, 1). In fact, this is a more120

or less immediate consequence of arguments previously used in the Price of Anarchy literature. What’s new121

is that by our first main result this dynamic achieves a Ω(1/ logm) approximation to the optimal social122

welfare that starts to apply after a single round of bid updates.123
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We note that both these dynamics are obtained under standard computational assumptions. The result124

for fractionally subadditive valuations requires access to demand and XOS oracles [2]. XOS oracles—which125

are standard in computer science—are given a valuation function vi and a set of items S and return an126

additive function ai such that ai(S) = vi(S) and ai(T ) ≤ vi(T ) for all T 6= S. The result for subadditive127

valuations requires access to demand oracles and the ability to compute an approximate supporting additive128

valuation for a fixed set [3, 4, 5].129

We also prove a bound on the average social welfare of 1/2(2 + α)β, which improves upon the above130

bound for large β. In particular, for subadditive valuations it is also possible to achieve (α, β) = (1, lnm).131

While the point-wise guarantee of this dynamics is only Ω(1/ log2m), its average social welfare is within132

Ω(1/ logm) of optimal.133

We show that the point-wise welfare guarantee of 1/3 for fractionally subadditive valuations is tight for134

the respective mechanism. Our second main result is that the Ω(1/ logm) bounds for subadditive valuations135

are essentially best possible in a very general sense.136

Main Result 2. For agents with subadditive valuations no best-response dynamics in which agents do not137

overbid on the grand bundle can guarantee a ω(log logm/ logm) fraction of the optimal social welfare at any138

time step.139

For round-robin bidding dynamics, this point-wise impossibility result extends to an impossibility for the140

average social welfare that can be achieved.141

The assumption that agents do not overbid on the grand bundle is quite natural, and is satisfied by all142

dynamics that have been proposed in the literature. It obviously applies to strong no-overbidding dynamics,143

but it also applies to weak no-overbidding dynamics, in which agents do not overbid on the set of items that144

they win and bid zero on all other items.145

Our proof of the lower bound is based on a non-trivial construction exploiting the algebraic properties of146

linearly independent vector spaces. It presents an interesting separation from the Price of Anarchy literature,147

where no such lower bound can be proved.148

Finally, we explore to which extent our positive results depend on round-robin activation. We show that149

our positive results extend to the case where at each step an agent is chosen uniformly at random, while the150

social welfare can be as low as O(1/n) of optimal when the order of activation is chosen adversarially.151

1.4. Related Work152

Best-response dynamics are a central topic in Algorithmic Game Theory. Probably, the best-studied153

application are congestion games, where best-response dynamics always converge but, except in special154

cases, take worst-case exponential time before they do so [6, 7, 8]. On the other hand, a number of results155

show that certain types of best-response dynamics reach states of low social cost quickly [9, 10, 11, 12, 13].156

Some of these results extend to weighted congestion games, where equilibria may not exist and best-response157

sequences may not converge for this reason.158

The study of the Price of Anarchy in combinatorial auctions with item bidding was initiated by Chris-159

todoulou et al. [1], and subsequently refined and improved upon in [4, 14, 15, 16, 17]. These works provide160

welfare guarantees for a broad range of equilibrium concepts ranging from pure Nash equilibria to (coarse)161

correlated equilibria and Bayes-Nash equilibria. Some of these bounds are based on mechanism smoothness,162

others are not. For fractionally subadditive valuations there is a smoothness-based proof that shows that163

the Price of Anarchy for pure Nash equilibria is at most 2 [1, 15]. For subadditive valuations the Price of164

Anarchy for pure Nash equilibria is also at most 2 [4], but the best smoothness-based proof gives a bound of165

O(logm) [4, 15]. In fact, as shown by Roughgarden [18], combinatorial auctions with item bidding achieve166

(near-)optimal Price of Anarchy among a broad class of “simple” mechanisms.167

Christodoulou et al. [1] gave a polynomial-time algorithm for computing a pure Nash equilibrium for168

submodular valuations. They furthermore gave a simple, best-response dynamics for fractionally subadditive169

valuations, that they called Potential Procedure. They showed that this procedure always converges to a170

pure Nash equilibrium, but also that it may take exponentially many steps before it converges.171

Lately, attempts at proving Price of Anarchy bounds for combinatorial auctions with item bidding have172

been criticized for not being constructive, in the sense that the computational complexity of finding an173

equilibrium remained open. Dobzinski et al. [19], for example, showed that for subadditive valuations174

computing a pure Nash equilibrium requires exponential communication. Regarding fractionally subadditive175

4



valuations they concluded that “if there exists an efficient algorithm that finds an equilibrium, it must use176

techniques that are very different from our current ones.” Further negative findings were reported by Cai177

and Papadimitriou [20], who showed that computing a Bayes-Nash equilibrium is PP-hard.178

Most recently, Daskalakis and Syrgkanis [21] considered coarse correlated equilibria. They showed that179

even for unit-demand agents (a strict subclass of submodular) there are no polynomial-time no-regret learning180

algorithms for finding such equilibria, unless RP ⊇ NP, closing the last gap in the equilibrium landscape.181

However, they also proposed a novel solution concept to escape the hardness trap, no-envy learning, and182

gave a polynomial-time no-envy learning algorithm for fractionally subadditive valuations and complemented183

this with a proof showing that for this class of valuations every no-envy outcome recovers at least 1/2 of the184

optimal social welfare. Further relevant work in this context comes from Devanur et al. [22], who proposed185

an alternative to simultaneous second-price auctions, the so-called single-bid auction. This mechanism also186

admits a polynomial-time no-regret learning algorithm and, by a result of Braverman et al. [23], achieves187

optimal Price of Anarchy bounds within a broader class of mechanisms.188

Our work on best-response dynamics in combinatorial auctions is also closely related to iterative com-189

binatorial auction formats. These include the simultaneous multi-round auction (SMRA) (see [24]), which190

is also based on item bidding, and the combinatorial clock auction (CCA) [25], which allows combinatorial191

bids. It is interesting to note that practical implementation of these mechanisms are usually complemented192

with a variety of rules that restrict the allowed bids—such as activity rules, minimum bid increments, and/or193

monotonicity rules—that are designed to achieve fast progress and near-optimal social welfare at termina-194

tion. Welfare guarantees for the SMRA can be found in [26, 27, 28] and welfare guarantees for the CCA can195

be found in [29, 30]. However, to the best of our knowledge, only pseudo-polynomial running time guarantees196

are known for these auctions, and the understanding of the tradeoff between running time and performance197

at termination is rather limited.198

A final point of reference are approximation algorithms for combinatorial auctions. It is known that199

no mechanism can achieve a better than 1/m1/2−ε approximation for submodular valuations with valua-200

tion queries alone [31]. Relying on demand queries, Dobzinski et al. [32] gave a 1/2-approximation using201

techniques, which in the meantime became standard in Price-of-Anarchy analyses. Feige [3] used more sophis-202

ticated techniques to improve the guarantees to 1− 1/e for fractionally subadditive and 1/2 for subadditive203

valuations. These results only give approximation guarantees but no truthful mechanism. For truthfulness,204

Dobzinski [33] recently managed to improve on a long-standing approximation guarantee of Ω(1/ logm) for205

submodular valuations to Ω(1/
√

logm) for XOS valuations. In the meantime, Assadi and Singla [34] further206

improved this bound to Ω(1/(log logm)3).207

2. Achieving Aggressive and Safe Bids208

As already discussed, best responses are generally not unique in our settings. Our positive results require209

that updates are aggressive and safe. In this section we briefly describe how to guarantee these properties for210

fractionally subadditive (a.k.a. XOS) valuations and subadditive valuations. The missing proofs are provided211

in Appendix B.212

A valuation function is fractionally subadditive, or XOS, if there are values v`i,j ≥ 0 such that vi(S) =213

max`
∑
j∈S v

`
i,j . It is subadditive if for all S, T ⊆M , vi(S ∪ T ) ≤ vi(S) + vi(T ).214

In the description of our update procedures, we reference two types of oracles. A demand oracle takes as215

input a vector of item prices (pj)j∈M and returns a demand set, that is, a set that maximizes vi(S)−
∑
j∈S .216

An XOS oracle takes as input a set S and returns v′i,j ≥ 0 such that vi(S) =
∑
j∈S v

′
i,j and vi(S

′) ≥
∑
j∈S v

′
i,j217

for every set S′. Note that this is possible if and only if vi is XOS. The function v′i is called additive supporting218

function or just supporting valuation.219

The dynamics that we consider approach agents in round-robin fashion. When agent i is activated he220

picks a demand set D at the current prices and updates his bid as described below. Note that here we221

assume eager updating. This assumption leads to cleaner proofs, but is not necessary.222

We say that bids bi,j for all i and all j satisfy strong no-overbidding if for every agent i and all sets of223

items S it holds that
∑
j∈S bi,j ≤ vi(S).224
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2.1. Bid Updates for XOS Valuations225

For XOS valuations we can update bids as described by Christodoulou et al. [1]. In this dynamic, agents226

are activated one by one and when its their turn they choose an arbitrary demand set D and bid an additive227

supporting function on that set and zero on all other items. That is, if D is the demand set chosen by228

agent i, let (v`i,j)j∈M be a supporting valuation on this demand set for which
∑
j∈D v

`
i,j = vi(D), and set229

bti,j = v`i,j for j ∈ D and bti,j = 0 otherwise. Note that these update steps can be performed in polynomial230

time using demand and XOS oracles.231

Proposition 2.1. Starting from an initial bid vector b0 satisfying strong no-overbidding, the bid updates232

described above lead to a sequence of bids b0, b1, b2, . . . that is 1-safe and in which each update is a 1-aggressive233

best response.234

2.2. Bid Updates for Subadditive Valuations235

For subadditive functions, it is generally not possible to guarantee α = 1 and β = 1 at the same time.236

We describe two different, reasonable ways of bid updates.237

No-Overbidding Updates. For our first dynamic for subadditive valuations we proceed as follows. We again238

consider agents one by one. When it is agent i’s turn, we let this agent choose an inclusion-minimal demand239

set D. That is, a demand set D such that no strict subset D′ ⊂ D is also a demand set.240

Now, to determine agent i’s bid on D when facing bids bt−i by the agents other than i, we look at241

ũi(S, b
t
−i) = vi(S)−

∑
j∈S maxk 6=i b

t
k,j for all S, i.e., the utility that agent i can derive from buying the set242

S. Observe that ũi( · , bt−i) is subadditive for every bt−i. We can show that ũi(S, b
t
−i) > 0 for all S ⊆ D243

unless D = ∅. Therefore, by [4, 5] there exists an additive approximation ai such that (a)
∑
j∈D ai,j ≥244

1/ lnm · ũi(D, bt−i) and (b)
∑
j∈S ai,j ≤ ũi(S, bt−i) for all S ⊆ D with the property that ai,j > 0 for all j ∈ D.245

We set bids bti,j = ai,j + maxk 6=i b
t
k,j for j ∈ D and bti,j = 0 otherwise.246

Note that if we have access to demand oracles, we can find an inclusion-minimal demand set D with247

polynomially many queries. We first query for an arbitrary demand set D. Then we issue a demand query248

on all subsets of D of size |D| − 1. If none of these queries yields a set D′ with the same utility, then we249

know that D is inclusion minimal. Otherwise, one of the queries will return a set D′ with D′ ⊂ D that yields250

the same utility as D, and we continue the process with D′. Note that since |D′| < |D|, this process will251

terminate after at most m iterations.252

Assuming access to demand oracles, the update steps can therefore be performed in polynomial time if253

it is possible to compute the additive approximation, which corresponds to executing the greedy set-cover254

algorithm on ũi( · , bt−i).255

Proposition 2.2. Starting from an initial bid vector b0 that satisfies strong no-overbidding, the bid updates256

described above lead to a sequence of bids b0, b1, b2, . . . that is 1-safe and in which each update is a (1/ lnm)-257

aggressive best response.258

Aggressive Updates. For our second dynamic for subadditive valuations, the basic construction is the same259

as above except that instead of considering ai we consider ãi such that ãi,j = γ · ai,j for all items j ∈ D,260

where 0 < γ ≤ lnm is such that
∑
j∈D ai,j = 1/γ · ũi(D, bt−i). Note that these bids satisfy: (a)

∑
j∈D ãi,j =261

ũi(D, b
t
−i) and (b)

∑
j∈S ãi,j ≤ γ · ũi(S, bt−i) for all S ⊆ D.262

Proposition 2.3. Starting from an initial bid vector b0 that satisfies strong no-overbidding, the bid updates263

described above lead to a sequence of bids that is lnm-safe and in which each update is a 1-aggressive best264

response.265

3. Welfare Guarantees266

In this section we prove our first main result (Theorem 3.1). The theorem provides a point-wise social267

welfare guarantee, parametrized in α and β, for round-robin bidding dynamics. It shows that the social268

welfare is high already after a single round of updates, and remains high at every single step after that. Our269

theorem does not require agents to play exact best responses, and it also does not require that all agents use270

the same strategy for updating their bids.271
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Theorem 3.1. In a β-safe round-robin bidding dynamic with α-aggressive bid updates the social welfare at272

any time step t ≥ n satisfies SW (bt) ≥ α
(1+α+β)β ·OPT (v).273

As we have argued in Proposition 2.1 and Proposition 2.2 there exist round-robin best-response dynamics274

with (α, β) = (1, 1) for fractionally subadditive valuations and (α, β) = (1/ lnm, 1) for subadditive valuations.275

So two corollaries of our theorem are point-wise welfare guarantees of 1/3 and Ω(1/ logm) for the respective276

mechanisms.277

We remark at this point that, in case of fractionally subadditive valuations and initial bids being b0 = 0,278

the argument for (α, β) = (1, 1) can be simplified and improved to show a guarantee of 1/2.1 However,279

as we show in Appendix C, the point-wise welfare guarantee of 1/3 from any starting bids is tight for the280

respective mechanism.281

We also show a welfare guarantee for the average social welfare, Theorem 3.2 below, that improves upon282

the pointwise guarantee for large β. Note that the term (1− n
T ) is 1− o(1) for T ∈ ω(n) and at least 1/2 for283

T ≥ 2n.284

Theorem 3.2. In a β-safe round-robin bidding dynamic with α-aggressive bid updates the average social285

welfare in the first T steps satisfies 1
T

∑T
t=1 SW (bt) ≥ α

(2α+1)β ·
(
1− n

T

)
·OPT (v).286

This theorem shows that the best-response dynamics described in Proposition 2.3 with (α, β) = (1, lnm),287

whose point-wise welfare guarantee is only Ω(1/ log2m) by Theorem 3.1, guarantees an average social welfare288

of Ω(1/ logm).289

In Section 4 we show that the Ω(1/ logm) bounds are essentially best possible for best-response dynamics290

in a very general sense.291

3.1. Proof of Theorem 3.1292

The core of our proof of the pointwise welfare guarantee are two lemmata. The first (Lemma 3.4) shows293

that the declared social welfare after a single round of updates is high when the initial declared welfare is low294

and the second (Lemma 3.5) shows that the declared welfare after a single round of updates is high when295

the initial declared welfare is high. To prove these lemmata we need the following auxiliary lemma.296

Lemma 3.3. Consider a sequence b0, . . . , bn in which agent i updates his bid in step i. Denote agent i’s297

declared utility in step i by uDi (bi). Then,
∑n
i=1 u

D
i (bi) ≤ DW (bn).298

Proof. Consider an arbitrary agent i. agent i updates his bid in step i. Suppose agent i’s update buys him299

the set of items S′. Then300

uDi (bi) =
∑
j∈S′

(
bii,j −max

k 6=i
bik,j

)
.

For i > 0, let zij = maxk≤i b
i
k,j for all j. That is, zij is the maximum bid on item j that is placed by one301

of the agents 1, . . . , i, z0j = 0 for all j.302

The crucial observation is that
∑
j∈S′(b

i
i,j −maxk 6=i b

i
k,j) ≤

∑
j∈M (zij − z

i−1
j ) . The reason is as follows.303

For j 6∈ S′, we have zij ≥ zi−1j by definition. For j ∈ S′, bii,j = zij and maxk 6=i b
i
k,j ≥ maxk<i b

i
k,j =304

maxk<i b
i−1
k,j = zi−1j .305

Summing over all agents i we obtain306 ∑
i∈N

uDi (bi) ≤
∑
i∈N

∑
j∈M

(zij − zi−1j ) .

The double sum is telescoping and znj = maxk b
n
k,j and z0j = 0 by definition. So,307 ∑

i∈N
uDi (bi) ≤

∑
j∈M

(znj − z0j ) =
∑
j∈M

max
k

bnk,j = DW (bn) ,

which proves the claim.308

1For the Potential Procedure of [1], this already follows from the arguments in [32] in combination with monotonicity of
declared welfare.

7



Our first key lemma shows that if the initial declared welfare is low, we reach a state of high declared309

welfare after a single round of bid updates. We use that bid updates are aggressive, which causes bids to be310

high enough.311

Lemma 3.4. Let S∗1 , . . . , S
∗
n be any feasible allocation, in which agent i receives items S∗i . Consider a312

sequence b0, . . . , bn in which agent i updates his bid in step i using an α-aggressive bid. We have (α + 1) ·313

DW (bn) + α ·DW (b0) ≥ α ·
∑
i∈N vi(S

∗
i ).314

Proof. Consider agent i’s action in time step i. Instead of choosing bid bii, he could have bought the set of315

items S∗i . As bii is α-aggressive, we get316

uDi (bi) ≥ α ·
(
vi(S

∗
i )−

∑
j∈S∗i

max
k 6=i

bik,j

)
.

Define ptj = maxi b
t
i,j for all items j. That is, ptj is the maximum bid that is placed on item j in bid317

profile bt. We claim that for every j ∈ S∗i , maxk 6=i b
i
k,j ≤ pnj + p0j . This is correct because if bik,j attains its318

maximum for k < i then maxk 6=i b
i
k,j ≤ pnj as k’s bid on item j will not change anymore. In the other case,319

if k > i, then maxk 6=i b
i
k,j ≤ p0j because k has not yet changed the bid on item j. Using that both p0j and pnj320

are never negative, the bound follows.321

We thus have322

uDi (bi) + α ·
∑
j∈S∗i

(pnj + p0j ) ≥ α · vi(S∗i ) .

Summing this inequality over all agents i ∈ N yields323

n∑
i=1

uDi (bi) + α ·
n∑
i=1

∑
j∈S∗i

(pnj + p0j ) ≥ α ·
n∑
i=1

vi(S
∗
i ) .

We can upper bound the first sum by DW (bn) using Lemma 3.3. The double sum adds up every j ∈M324

exactly once and we have
∑
j∈M pnj = DW (bn) and

∑
j∈M p0j = DW (b0). We obtain325

(α+ 1) ·DW (bn) + α ·DW (b0) ≥ α ·
n∑
i=1

vi(S
∗
i ) ,

as claimed.326

In our second key lemma, we show that the declared welfare never drops drastically. So, in particular, if327

we start from a state of high declared welfare, we will still be in a state of high declared welfare after each328

bidder updated his bid although the declared welfare is not necessarily monotone. To prove the lemma, we329

use the fact that previous bids were safe—so they are not too high—and new bids are aggressive—so they330

are high enough.331

Lemma 3.5. Consider a β-safe bid sequence b0, . . . , bn in which agent i changes his bid from bi−1 to bi332

using an α-aggressive bid. Then, DW (bn) ≥ α
β ·DW (b0).333

Proof. Consider an arbitrary agent i and his update from bi−1 to bi. Denote the set of items that agent i
won under bids bi−1 by Si−1i , and the set of items that he wins under bids bi by Sii . So

uDi (bi−1) =
∑

j∈Si−1
i

bi−1i,j −
∑

j∈Si−1
i

max
k 6=i

bi−1k,j and, uDi (bi) =
∑
j∈Si

i

bii,j −
∑
j∈Si

i

max
k 6=i

bik,j .

Using that for all k 6= i and all j we have bi−1k,j = bik,j we obtain that the difference in declared welfare
over all agents between steps i− 1 and i is equal to the difference in agent i’s declared utility at these time
steps. Formally,

DW (bi) =
∑

j∈M\Si
i

max
k 6=i

bi−1k,j +
∑
j∈Si

i

bii,j
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=
∑
j∈M

max
k 6=i

bi−1k,j +
∑
j∈Si

i

bii,j −
∑
j∈Si

i

max
k 6=i

bik,j

=
∑
j∈M

max
k 6=i

bi−1k,j + uDi (bi)

=
∑

j∈M\Si−1
i

max
k 6=i

bi−1k,j +
∑

j∈Si−1
i

max
k 6=i

bi−1k,j + uDi (bi)

=
∑

j∈M\Si−1
i

max
k 6=i

bi−1k,j +
∑

j∈Si−1
i

bi−1i,j + uDi (bi)−
∑

j∈Si−1
i

bi−1i,j +
∑

j∈Si−1
i

max
k 6=i

bi−1k,j

= DW (bi−1) + uDi (bi)− uDi (bi−1) .

We now extend this identity to a lower bound on DW (bi). Since bii is α-aggressive, we have uDi (bi) ≥
α · ui(bi−1). Since the bidding sequence is β-safe, uDi (bt) ≤ β · ui(bt) for all t. So,

DW (bi) = DW (bi−1) + uDi (bi)− uDi (bi−1)

≥ DW (bi−1) + uDi (bi)− β · ui(bi−1)

≥ DW (bi−1) + uDi (bi)− β

α
· uDi (bi)

= DW (bi−1)−
(
β

α
− 1

)
· uDi (bi) .

Summing this inequality over all agents i ∈ N and using the telescoping sum
∑
i∈N (DW (bi)−DW (bi−1) =334

DW (bn)−DW (b0) we obtain335

DW (bn) ≥ DW (b0)−
(
β

α
− 1

)∑
i∈N

uDi (bi) .

Since α ≤ 1 and β ≥ 1 the factor (β/α− 1) ≥ 0. We can therefore use Lemma 3.3 to conclude that336

DW (bn) ≥ DW (b0)−
(
β

α
− 1

)
DW (bn) ,

which concludes the proof.337

We will use our key lemmata to show a lower bound on the declared welfare. To relate the declared338

welfare to the social welfare we will use the following lemma. Note that this lemma captures the intuition339

that bidders never overbid drastically when using safe bids.340

Lemma 3.6. In a β-safe sequence of bid profiles b0, b1, b2, . . . for every t ≥ 0, DW (bt) ≤ β · SW (bt).341

Proof. Consider an arbitrary time step t. Since the bid profile bt is β-safe we know that for the allocation
T1, . . . , Tn that corresponds to bt,∑

i

uDi (bt) =
∑
i

∑
j∈Ti

(
bti,j −max

k 6=i
btk,j
)

≤ β ·
∑
i

ui(b) = β ·
∑
i

(
vi(Ti)−

∑
j∈Ti

max
k 6=i

btk,j

)
.

Rearranging this and using that β ≥ 1 we obtain

DW (bt) =
∑
i

∑
j∈Ti

bti,j ≤ β · SW (bt)− (β − 1)
∑
i

∑
j∈Ti

max
k 6=i

btk,j ≤ β · SW (bt) ,

and the claim follows.342
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We are now ready to prove the theorem.343

Proof of Theorem 3.1. To prove the guarantee for time step t ≥ n consider the bid sequence of length n+ 1344

from bt−n to bt. At time steps t− n+ 1 to t each agent updates his bid exactly once. By the virtue of being345

a subsequence of a β-safe bidding sequence the sequence bt−n, . . . , bt is β-safe. Moreover each bid update is346

α-aggressive.347

Applying first Lemma 3.5 and then Lemma 3.4 with bt taking the role of bn, bt−n taking the role of b0,
and setting S∗1 , . . . , S

∗
n to the allocation that maximizes welfare we obtain

(1 + α+ β) ·DW (bt) = (α+ 1) ·DW (bt) + α · β
α
DW (bt)

≥ (α+ 1) ·DW (bt) + α ·DW (bt−n)

≥ α ·OPT (v) .

Now, by Lemma 3.6, DW (bt) ≤ β · SW (bt). Combining this with the previous inequality yields348

(1 + α+ β) · β · SW (bt) ≥ α ·OPT (v) ,

as claimed.349

3.2. Proof of Theorem 3.2350

With the proof of the pointwise welfare guarantee at hand we have already done the bulk of the work351

for proving our guarantee regarding the average welfare. The basic idea is to sum the lower bound on the352

declared welfare at any given time step as provided by Lemma 3.4 over all time steps to obtain a lower353

bound on the average declared welfare, and to turn this into a lower bound on the actual social welfare using354

Lemma 3.6.355

Proof of Theorem 3.2. We first use Lemma 3.4 to relate the declared welfare at time steps t and t−n to the356

optimal social welfare. Namely, for all t ≥ n,357

(α+ 1) ·DW (bt) + α ·DW (bt−n) ≥ α ·OPT (v) .

Next we take the sum over all time steps t and use that DW (bt) ≥ 0 to obtain the following lower bound
on the average declared welfare

1

T
·
T∑
t=1

DW (bt) ≥ 1

T
·

T∑
t=n+1

DW (bt)

≥ α

α+ 1
· 1

T
·

T∑
t=n+1

(
OPT (v)−DW (bt−n)

)

≥ α

α+ 1
· T − n

T
·OPT (v)− α

α+ 1
· 1

T
·
T∑
t=1

DW (bt) .

Solving this inequality for 1
T ·
∑T
t=1DW (bt) and using Lemma 3.6 to lower bound SW (bt) by 1/β ·DW (bt)

we obtain

1

T
·
T∑
t=1

SW (bt) ≥ 1

β
· 1

T
·
T∑
t=1

DW (bt) ≥ α

(2α+ 1)β
· T − n

T
·OPT (v) ,

which proves the claim.358
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4. Impossibility for Subadditive Valuations359

Next we show our second main result (Theorem 4.1), which shows that no best-response dynamics in which360

agents do not overbid on the grand bundle can achieve a point-wise welfare guarantee that is significantly361

better than 1/ logm. The assumption that agents do not overbid on the grand bundle seems quite natural,362

and does allow overbidding on subsets of items. It is satisfied by all dynamics that we have described in363

Section 2 and more generally by all dynamics that have been proposed in the literature.364

Theorem 4.1. For every positive integer k ∈ N>0 there exists an instance with n = 2 agents, m = 2k − 1365

items, and subadditive valuations v = (v1, v2) such that in every best-response dynamics in which agents do366

not overbid on the grand bundle there exist infinitely many time steps t at which367

SW (bt) ≤ 1

Ω
(

logm
log logm

) ·OPT (v).

To prove this theorem we show that whenever the second agent has updated his bid social welfare will368

be low. This does not imply that the average welfare will be low as well. However, if we restrict attention369

to round-robin dynamics, then we can extend the construction by adding additional agents after the second370

agent that play a low-stakes game on separate items forcing the average welfare to be low as well.371

4.1. Proof of Theorem 4.1372

Our proof of the lower bound is built around the following family of hard instances, with n = 2 agents373

and m = 2k − 1 items. The valuations of the first agent are based on an example that demonstrates the374

worst-case integrality gap for set cover linear programs (see, e.g, [35, Example 13.4]), and has been used375

in the context of combinatorial auctions with item bidding before [4]. The crux of our construction is in376

the design of the second agent’s valuation function, and its interplay with the valuation function of the first377

agent.378

Definition 4.2. For every positive integer k ∈ N>0 the hard instance Ik consists of n = 2 agents and379

m = 2k − 1 items and the following subadditive valuations:380

1. First agent: Number the items from 1 to m and let i be a k-bit binary vector representing the integer381

i. Interpret i as a k-dimensional vector over F2. Write i · j as the dot product of the two vectors. Let382

Si = {j | j · i = 1}. Note that each such set contains (m + 1)/2 items, and each item is contained in383

(m+1)/2 such sets. For each set of items T ⊆M let v1(T ) be the minimum number of sets Si required384

to cover the items in T .385

2. Second agent: Set ρ = 4 k
m and d = k − log2 k. Let D denote the set of all d-dimensional subspaces of

Fk2 excluding the zero vector. Then for any set of items T let

v2(T ) = ρ ·max
D∈D

wD(T ) , where

wD(T ) =


0 for |T | = 0
|D|
2 for 0 < |T ∩D| < |D|
|D| else

.

Note that, in the instances just described, the first agent has a valuation of v1(M) ≥ k = log2(m+ 1) for386

the grand bundle, while the second agent has a maximum valuation of maxT v2(T ) = ρ · |D| = ρ · (2d − 1) ≤387

ρ · 2d = 4 for any set of items.388

To prove the theorem we first use linear algebra to derive a symmetry property of D, which together389

with the fact that the first agent does not overbid on the grand bundle implies the existence of a subset390

of items D ∈ D with low prices (Lemma 4.3). Intuitively, this is because the sets of items that the second391

agent is interested in are rather small (of size about m/ log2m), and there are sufficiently many of these392

sets. We then show that every demand set of the second agent under these prices includes some set of items393

D′ ∈ D (Lemma 4.4). In the final step, we show that if the second agent buys any such set D′, then the first394

agent’s valuation for the remaining items M \D′ and hence the overall social welfare is at most O(log logm)395

(Lemma 4.5).396
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Lemma 4.3. Let k ∈ N>0. Consider the hard instance Ik. For every vector of bids b such that the first agent397

does not overbid on the grand bundle there is a d-dimensional subspace D ∈ D such that
∑
j∈D b1,j < ρ · |D|2 .398

Proof. Since the first agent does not overbid on the grand bundle we have
∑
j∈M b1,j ≤ v1(M) = k, so the399

average bids are bounded by 1
m

∑
j∈M b1,j ≤ k

m .400

Observe that the number of d-dimensional subspaces of Fk2 that contain a vector 0 6= x ∈ Fk2 is independent401

of x. Namely, it is given by
(
k−1
d−1
)
2
, where

( ·
·
)
q

refers to the q-binomial coefficient (see, e.g., [36]). Therefore,402

instead of taking the average over all items M , we can take the average over all sets D ∈ D and take the403

average within such a set, i.e., 1
m

∑
j∈M b1,j = 1

|D|
∑
D∈D

1
|D|
∑
j∈D b1,j .404

In conclusion, there has to be a D such that 1
|D|
∑
j∈D b1,j ≤

1
m

∑
j∈M b1,j ≤ k

m . Since k
m < ρ

2 = 2 k
m the405

claim follows.406

Lemma 4.4. Let k ∈ N>0. Consider the hard instance Ik. If the prices p as seen by the second agent are407

such that
∑
j∈D pj < ρ · |D|/2 for some D ∈ D, then each demand set of the second agent under these prices408

includes some D′ ∈ D.409

Proof. By our assumption on the sum of the prices of the items in D, u(D) = v2(D)−
∑
j∈D pj = ρ ·wD(D)−410 ∑

j∈D pj > ρ · |D|2 . Now, let S ⊆ M be a demand set under v2. If |S ∩D′| < |D′| for all D′ ∈ D, then we411

have u(S) = v2(S)−
∑
j∈S pj ≤ v2(S) = ρ ·maxD′∈D wD′(S) ≤ ρ ·maxD′∈D

|D′|
2 < u(D). This means, S can412

only be a demand set if |S ∩D′| = |D′| for some D′ ∈ D.413

Lemma 4.5. Let k ∈ N>0. Consider the hard instance Ik. Then for D′ ∈ D we have v1(M \D′) ≤ k − d.414

Proof. To show the bound on v1, we use that D′ ∪{0} is a subspace of Fk2 of dimension d. That is, any basis415

x1, . . . , xd of D′ ∪ {0} can be extended by xd+1, . . . , xk to a basis of Fk2 . Let X = (x1, . . . , xk). This way,416

X−1 is the matrix that expresses j ∈ Fk2 as a linear combination of x1, . . . , xk. As x1, . . . , xd is a basis of417

D′∪{0}, we know that for every j 6∈ D′∪{0} the vector X−1j cannot be zero in all components d+1, . . . , k.418

This implies that the set M \D′ can be covered by sets Si for i being the rows d+1, . . . , k of X−1. Therefore419

v1(M \D′) ≤ k − d.420

Proof of Theorem 4.1. Any best-response dynamics has to ask every agent infinitely often. We claim that421

the social welfare is O(log logm) right after each update of the second agent. Since the optimal social welfare422

is Ω(logm) this shows the claim.423

Let bt be a bid vector after the second agent has made a move. Using Lemma 4.3, we know that there424

is a set D ∈ D with
∑
j∈D b

t−1
1,j < ρ · |D|2 . By Lemma 4.4, the second agent then buys a superset of425

some D′ ∈ D. Therefore, right after the second agent has updated his bid the first agent is allocated a426

subset of the items M \D′. Lemma 4.5 implies that the social welfare for this allocation is no higher than427

k − d+ ρ2d = O(log logm).428

5. Beyond Round-Robin Activation429

Our positive results make use of the fact that agents are activated to update their bid in round-robin430

fashion. That is, between two activations of an agent, each other agent is activated exactly once. In this431

section, we investigate alternative activation protocols.432

5.1. Randomized Activation433

We first show that our positive results extend to the case where at each step a random agent gets to434

update his bid.435

Theorem 5.1. Consider a β-safe sequence of bids that is generated by choosing at each time step an agent436

uniformly at random and letting this agent update his bid to an α-aggressive bid. Then for any time step437

T ≥ n, E
[
SW (bT )

]
≥ α

2(1+4α)β ·OPT (v).438
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The key difference to the previous positive results is as follows. In the case of round-robin activation, we439

could bound the price that an agent has to pay for an item j at any time by the sum of the maximum bid440

before the first and after the n-th step. As now, in the case of random activation, an agent can potentially441

be activated multiple times during the first n steps, this is not true anymore. Instead, we can show the442

following lemma.443

Lemma 5.2. Consider a sequence of bids that is generated by choosing at each time step an agent uniformly444

at random and letting this agent update his bid. Then, for all items j ∈ M and all lengths of the sequence445

T ≥ 0, we have446

E

[
max
t≤T

max
i
bti,j

]
≤
(

1− 1

n

)−T
E
[
max
i
bTi,j

]
.

The proof can be found in Appendix D. The overall idea is to bound the probability that an agent who447

causes a high bid is activated again. Using this lemma, we can follow a similar pattern as when proving448

Theorem 3.1.449

Proof of Theorem 5.1. Since all of our arguments apply starting from any vector of bids, we can without loss450

of generality assume that T is the final of a sequence of n bid updates, and so T = n. Let N ′ be the set of451

agents that are selected to bid at least once during this sequence of bid updates. Denote by S∗1 , . . . , S
∗
n the452

allocation that maximizes social welfare. By a variant of Lemma 3.4, which does not make use of round-robin453

activation and is given as Lemma D.1 in Appendix D, we have454

DW (bT ) + α
∑
j∈M

max
t≤T

max
i
bti,j ≥ α

∑
i∈N ′

vi(S
∗
i ) .

Note that DW (bT ), maxt≤T maxi b
t
i,j , and N ′ are now random variables. Taking expectations of both sides,455

we get456

E

[
DW (bT ) + α

∑
j∈M

max
t≤T

max
i
bti,j

]
≥ E

[
α
∑
i∈N ′

vi(S
∗
i )

]
.

By linearity of expectation, this implies457

E
[
DW (bT )

]
+ α

∑
j∈M

E

[
max
t≤T

max
i
bti,j

]
≥ α

∑
i∈N

Pr [i ∈ N ′] vi(S∗i ) .

The probability of each agent to be selected at least once is Pr [i ∈ N ′] = 1−
(
1− 1

n

)T
. Lemma 5.2 shows458

that E
[∑

j∈M maxt≤T maxi b
t
i,j

]
≤
(
1− 1

n

)−T
E
[
DW (bT )

]
.459

We obtain460 (
1 + α

(
1− 1

n

)−T )
E
[
DW (bT )

]
≥ α

(
1−

(
1− 1

n

)T )
·
∑
i∈N

vi(S
∗
i ) ,

and therefore461

E
[
DW (bT )

]
≥ α ·

1−
(
1− 1

n

)T
1 + α

(
1− 1

n

)−T ·∑
i∈N

vi(S
∗
i ) .

Finally, we use Lemma 3.6 to relate the declared social welfare to the actual social welfare and the fact462

that T = n ≥ 2 to lower bound 1− (1− 1/n)n ≥ 1/2 and upper bound (1− 1/n)−n ≤ 4. This yields,463

E
[
SW (bT )

]
≥ α

2(1 + 4α)β
·OPT (v) ,

as claimed.464
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5.2. Adversarial Activation465

We conclude by showing that our positive results that show quick convergence to states of high welfare no466

longer apply if an adversary chooses the order in which agents get to update their bids. Our result concerns467

XOS valuations, and 1-safe bidding sequences in which each bid update is to a 1-aggressive best response.468

It applies even if agents update their bids as in the Potential Procedure of [1]. That is, unless the activated469

agent already plays a best response, he chooses an arbitrary demand set and bids his supporting additive470

valuation on the respective set and zero on all other items.471

Theorem 5.3. For every ε > 0, n, and k, there is an instance with n agents with XOS valuations and472

(n− 1) · (k + 1) items, an initial bid vector b0, and an activation sequence such that, even if each activated473

agent updates his bid as in the Potential Procedure, until each agent has been activated Ω(2k) times the474

welfare has never exceeded a 1+ε
n−1 fraction of the optimum.475

At the core of our proof (in Appendix E) is the following proposition that applies even if agents have476

unit-demand valuations, i.e., an agent’s valuation for a set of items is the maximum value for any item in477

the set. It shows the existence of a cyclic activation pattern in which each agent gets to update his bid, but478

the dynamic remains in states of low welfare. The construction assumes that agents also update their bid479

if this does not strictly improve their utility, and that ties among multiple best responses are broken in our480

favor.481

Proposition 5.4. For every ε > 0 and n, there is an instance of n agents with unit-demand valuations for482

n− 1 items, an initial bid vector b0, and a cyclic activation pattern in which every agent is activated at least483

once and bid updates are as in the Potential Procedure except that updates need not be strict improvements484

and ties among multiple best responses are broken in our favor, but the social welfare is always at most a485

1+ε
n−1 fraction of the optimal welfare.486

Proof. There are n agents and n−1 items. agent i’s valuation for a set S ⊆M is given as vi(S) = maxj∈S vi,j .487

For agent 1, we let v1,1 = . . . , v1,n−1 = 1 + ε. For agent i > 1, define vi,i−1 = 1 and vi,j = 0 for j 6= i − 1.488

The social optimum assigns item j to agent j + 1 and has welfare n− 1.489

In the initial bid vector b0 all agents bid zero. The activation scheme is as follows: In every odd step490

agent 1 makes a move, while in even steps agents i > 1 are activated in a round-robin way. That is, the491

activation works repeatedly as 1, 2, 1, 3, 1, 4, . . . , 1, n− 1, 1, n.492

With this activation order, it’s possible that agent 1 bids 1 + ε on item t the t-th time he is activated,493

while agents i > 1, when activated, see a bid of 1 + ε on the item they are interested in, and therefore bid 0494

on all items. This way the social welfare at any time step t ≥ 1 is 1 + ε.495

Our proof in the appendix combines this construction with several copies of the exponential lower-bound496

construction of Theorem 3.4 in [1], and thus ensures that each update is a strict improvement and unique.497

6. Concluding Remarks and Outlook498

In our analysis we focused on fractionally subadditive and subadditive valuations, which do not exhibit499

complements. A natural question is whether similar results can be obtained for classes of valuations that500

exhibit complements. In Appendix F, we discuss an example with MPH-k valuations [37] that highlights501

the difficulties that arise. Another interesting follow-up question is whether there is a general result that502

translates a Price of Anarchy guarantee for a given mechanism that is provable via smoothness into a result503

that shows that best-response sequences reach states of good social welfare quickly. The example with MPH-504

k valuations in Appendix F already limits the potential scope of such a result. It would still be interesting505

to identify natural sufficient conditions. One such condition could be that the mechanism admits some kind506

of potential function (as the procedure for XOS valuations), but our results already show that this condition507

is certainly not necessary.508
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A. Non-Existence of Weak No-Overbidding Pure Nash Equilibria for Subadditive Valuations592

We can also leverage our novel insights regarding hard instances (Definition 4.2) for subadditive valuations593

to show that there need not be a pure Nash equilibrium in weakly no-overbidding strategies, even if agents594

only consider deviations to weakly no-overbidding strategies.595

A bid bi of agent i against bids b−i of the agents other than i that wins him the set of items S satisfies596

weak no-overbidding if
∑
j∈S bi,j ≤ vi(S).597

Theorem A.1. Let k ∈ N>0. Consider the hard instance Ik for subadditive valuations with n = 2 agents598

and m = 2k − 1 items. There is no pure Nash equilibrium in weakly no-overbidding strategies if k ≥ 8. This599

remains true if we define a bid profile to be at equilibrium if no agent has a beneficial deviation to a weakly600

no-overbidding strategy.601

Proof. Assume that b is a weakly no-overbidding pure Nash equilibrium. Suppose the second agent wins the602

set of items W ⊆M in b, then the first agent wins the set of items M \W . By weak no-overbidding, we have603 ∑
j∈M\W

b1,j ≤ v1(M \W ) and
∑
j∈W

b2,j ≤ v2(W ) .

The first agent does not win the items in W , which means that b1,j ≤ b2,j for all items j ∈ W . Conse-
quently, we have ∑

j∈M
b1,j ≤ v1(M \W ) + v2(W )

≤ v1(M) + v2(M)

= k + ρ · 2d

= k + 4 · k
m
· 2k−log2 k

= k + 4 .

By the same argument as in Lemma 4.3, each item j ∈M is included in the same number of sets D ∈ D.604

Therefore,605

1

|D|
∑
D∈D

1

|D|
∑
j∈D

b1,j =
1

m

∑
j∈M

b1,j ≤
k + 4

m
.

This implies that there is a set D ∈ D such that606

1

|D|
∑
j∈D

b1,j ≤
k + 4

m
.

Since k ≥ 8 by assumption, m > 2k + 8, and therefore607 ∑
j∈D

b1,j ≤
k + 4

m
· |D| < |D|

2
.

By Lemma 4.4 and because the second agent plays a best response, we have W ⊇ D′ for some D′ ∈ D.608

In the remainder, we will show that this implies that the first agent has a beneficial weakly no-overbidding609

deviation b′1.610

Let b′1,j = b2,j + 1
m for j ∈W and b′1,j = b1,j for j ∈M \W . Observe that in (b′1, b2) the first agent wins
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all items M . This bid fulfills the weak no-overbidding property because∑
j∈M

b′1,j =
∑
j∈W

(
b2,j +

1

m

)
+

∑
j∈M\W

b1,j

≤ v2(W ) + 1 + v1(M \W )

≤ v2(D′) + 1 + v1(M \D′)
≤ ρ2d + 1 + k − d
= 4 + 1 + log2 k

≤ k
= v1(M) ,

where the first inequality uses that b is weakly no-overbidding, the second inequality exploits the definition611

of v2, the third inequality holds by Lemma 4.5, and the final inequality holds because we have assumed612

k ≥ 8.613

The deviation by the first agent is beneficial because

u1(b′1, b2) = v1(M)−
∑
j∈M

b2,j

= k − d−
∑

j∈M\W

b2,j + d−
∑
j∈W

b2,j

≥ u1(b) + d− v2(W )

≥ u1(b) + d− 4 > u1(b) ,

where the first inequality uses Lemma 4.5, the second inequality uses that v2(W ) ≤ v2(D′) = 4, and the614

final inequality follows from the definition of d = k− log2 k and the assumption that k ≥ 8 and so d > 4.615

B. Proofs Omitted from Section 2616

In this appendix we prove the propositions that establish the existence of aggressive and safe bidding617

dynamics for XOS and subadditive valations.618

B.1. Sufficiency of Strong No-Overbidding619

We first show that in order to have a 1-safe dynamic it suffices that initial bids and the subsequent620

updates fulfill no-overbidding in the strong sense.621

Lemma B.1. If the initial bid vector b0 satisfies strong no-overbidding and at each time step t ≥ 1 some622

agent i gets to update his bid to a best response, which satisfies strong no-overbidding, then the resulting623

best-response dynamic is 1-safe.624

Proof. Since the initial bid vector and each update satisfy strong no-overbidding we have
∑
j∈S b

t
i,j ≤ vi(S)625

for all agents i, time steps t ≥ 0, and sets of items S. Subtracting
∑
j∈S maxk 6=i b

t
k,j from both sides shows626

the claim.627

B.2. Proof of Proposition 2.1628

Consider an arbitrary agent i and his update to bid bti. The bid bti satisfies strong no-overbidding by629

definition. Hence Lemma B.1 shows that the bid sequence is 1-safe. It remains to show that bti is a 1-630

aggressive best response.631
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We first show that the bid bti is a best response to bt−i. Let Si denote the set of items that agent i wins
with bid bti against bids bt−i and let D be the demand set on the basis of which bti is defined. Then,

ui(b
t) = vi(Si)−

∑
j∈Si

max
k 6=i

btk,j

≥
∑
j∈Si

(bti,j −max
k 6=i

btk,j)

≥
∑
j∈D

(bti,j −max
k 6=i

btk,j)

= vi(D)−
∑
j∈D

max
k 6=i

btk,j

≥ max
S

(
vi(S)−

∑
j∈S

max
k 6=i

btk,j

)
,

where the first inequality uses that vi is XOS, the second uses that maxk 6=i b
t
k,j = bti,j for j ∈ D \ Si and632

maxk 6=i b
t
k,j ≤ bti,j for j ∈ Si \D, the following equality exploits the definition of bti, and the final inequality633

uses that D is a demand set.634

To show that bti is 1-aggressive it suffices to show that agent i’s declared and actual utility at time step t
coincide. Since the right-hand side in the preceding chain of inequalities is at least vi(Si)−

∑
j∈Si

maxk 6=i b
t
k,j

all inequalities in the chain of inequalities must be equalities. This implies that

ui(b
t) = vi(Si)−

∑
j∈Si

max
k 6=i

btk,j =
∑
j∈Si

(bti,j −max
k 6=i

btk,j) = uDi (bt) .

B.3. Proof of Proposition 2.2635

Consider an arbitrary agent i and his update to bid bti. We first argue that bti is a best response. We
claim that ũi(S, b

t
−i) > 0 for all S ⊆ D unless D = ∅. To see this assume by contradiction that there exist a

S ⊆ D such that ũi(T, b
t
−i) ≤ 0. Then, by subadditivity of vi,

ũi(D, b−i) ≤
(
vi(D \ T )−

∑
j∈D\T

max
k 6=i

bk,j

)
+

(
vi(T )−

∑
j∈S

max
k 6=i

bk,j

)
≤ ũi(D \ T, bt−i) ,

which contradicts the definition of D. Because of this the additive approximation ai has ai,j > 0 for all636

j ∈ D. It follows that bti,j > maxk 6=i b
t
k,j for all j ∈ D, and so agent i wins all items j ∈ D, and for the items637

j 6∈ D that he wins maxk 6=i b
t
k,j = 0.638

To see that bti is 1/ lnm-aggressive observe the following. Let Si denote the set of items that agent i wins
with bid bti. Then, considering the bid bti defined on the basis of demand set D, we have

uDi (bt) =
∑
j∈Si

(
bti,j −max

k 6=i
btk,j

)

≥
∑
j∈D

(
bti,j −max

k 6=i
btk,j

)
=
∑
j∈D

ai,j ≥
1

lnm
· ũi(D, bt−i) ,

where the first inequality uses that bti,j = maxk 6=i b
t
k,j for j ∈ D \ Si and bti,j ≥ maxk 6=i b

t
k,j for j ∈ Si \D,639

and the second inequality uses property (a) of bid bti.640

That the bid sequence is 1-safe follows from the starting condition and Lemma B.1 by observing that
agent i’s update satisfies strong no-overbidding. Namely, for every S ⊆ D,∑

j∈S
bti,j =

∑
j∈S

(ai,j + max
k 6=i

btk,j) ≤ ũi(S, bt−i) +
∑
j∈S

max
k 6=i

btk,j = vi(S) ,
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where the inequality follows from property (b) of bid bti.641

B.4. Proof of Proposition 2.3642

The argument that the bid bti chosen by agent i is a best response and 1-aggressive is identical to the643

respective argument in the proof of Proposition 2.2, except that this time we collect a factor of 1 instead of644

1/ lnm when we apply property (a) of bid bti.645

To see that the bid sequence is lnm-safe, consider a point in time t′ ≥ t after agent i’s update. In the646

vector bt′ , agent i gets a set S ⊆ M that is possibly different from D. Note that for j ∈ S \D, bt
′

i,j = 0 by647

our definition. Furthermore, for j ∈ S ∩D, maxk 6=i b
t′

k,j ≤ maxk 6=i b
t
k,j because bid updates are only non-zero648

if an item changes its owner. Therefore, because agent i wins item j, all new bids have to be zero.649

In combination, we have

uDi (bt
′
) =

∑
j∈S∩D

(
ãi,j + max

k 6=i
btk,j −max

k 6=i
bt
′

k,j

)
≤ lnm ·

(
ũi(S ∩D, bt−i) +

∑
j∈S∩D

(
max
k 6=i

btk,j −max
k 6=i

bt
′

k,j

))
= lnm · ui(bt

′
) ,

because the sum of ãi,j terms is bounded by lnm · ũi(S ∩D, bt−i) by definition and the sum of the remaining650

terms is non-negative.651

C. Tightness of the Point-Wise Welfare Guarantee for XOS Valuations652

The following proposition shows that the point-wise welfare guarantee of 1/3 for the round-robin best-653

response dynamics for fractionally subadditive valuations described in Section 2 is tight, even if the valuations654

are unit demand.655

Proposition C.1. Consider the dynamics described in Section 2.1. There is an input with n = 3 agents,656

m = 3 items, and unit-demand valuations and an initial bid vector such that when started from this bid657

vector the social welfare obtained by the dynamics after a single round of bid updates is 1/3 ·OPT (v).658

Proof. The valuations of all three agents are unit demand, i.e., for all agents i and sets of items S, vi(S) =659

maxj∈S vi,j . The item valuations vi,j for 1 ≤ i, j ≤ 3 are given by the following table:660

item 1 item 2 item 3
agent 1 1 0 0
agent 2 1 + ε 1 + 2ε 1 + 3ε
agent 3 0 0 1

661

Suppose that the XOS representation of these valuations is that each agent has an additive valuation ai,0662

that is all zero and then one for each item j, ai,j , such that ai,j(k) = vi,j for k = j and ai,j(k) = 0 otherwise.663

Let b0 be the bid profile in which agent 2 bids 1 + ε on item 1, all other bids are 0. That is, b0 =664

(a1,0, a2,1, a3,0). Suppose that the order of updates is first agent 1 gets to update his bid, then agent 2, and665

then agent 3.666

agent 1 is already playing a best response to b0−1, so b1 = b0. Now, to get b2, agent 2 updates his bids to667

a best-response to b1−2, which is a2,3. That is, he bids zero on the first two items and 1 + 3ε on the third. So668

b2 = (a1,0, a2,3, a3,0). With these bids, however, bidding 0 on all items is a best-response of agent 3, therefore669

b3 = b2.670

Observe that SW (b3) = DW (b3) = 1 + 3ε, whereas the optimal social welfare is 3 + 2ε. The claim follows671

by letting ε tend to zero.672

D. Proof of Theorem 5.1673

In this appendix we provide additional details for the proof of Theorem 5.1. We first prove Lemma 5.2.674

Afterwards, we state and prove Lemma D.1.675
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D.1. Proof of Lemma 5.2676

For a fixed T , let yj = maxt≤T maxi b
t
i,j and ptj = maxi b

t
i,j for t ≤ T . We first show that for all x > 0677

Pr [yj ≥ x] ≤
(

1− 1

n

)−T
Pr
[
pTj ≥ x

]
(D.1)

To show (D.1), we use that yj is defined to be maxt′≤T p
t′

j . That is, if yj ≥ x, there has to be a678

t′ ∈ {0, 1, . . . , T} for which p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x. Note that for different t′ these are disjoint events,679

so680

Pr [yj ≥ x] =

T∑
t′=0

Pr
[
p1j < x, . . . , pt

′−1
j < x, pt

′

j ≥ x
]
.

Let us fix t′ and consider the event that p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x. If t′ > 0, in step t′ an agent i has681

been selected that whose bid has set pt
′

j ≥ x; if t′ = 0, the initial bid of some agent i on item j is at least x.682

We have have pTj < x only if this agent i is selected to update his bid in steps t′ + 1, . . . , T . This happens683

with probability 1−
(
1− 1

n

)T−t′ ≤ 1−
(
1− 1

n

)T
. Formally, we have684

Pr
[
pTj < x

∣∣∣ p1j < x, . . . , pt
′−1
j < x, pt

′

j ≥ x
]
≤ 1−

(
1− 1

n

)T
.

This implies685

Pr
[
pTj ≥ x, p1j < x, . . . , pt

′−1
j < x, pt

′

j ≥ x
]
≥
(

1− 1

n

)T
Pr
[
p1j < x, . . . , pt

′−1
j < x, pt

′

j ≥ x
]
.

We thus obtain

Pr [yj ≥ x] =

T∑
t′=0

Pr
[
p1j < x, . . . , pt

′−1
j < x, pt

′

j ≥ x
]

≤
(

1− 1

n

)−T T∑
t′=0

Pr
[
pTj ≥ x, p1j < x, . . . , pt

′−1
j < x, pt

′

j ≥ x
]

=

(
1− 1

n

)−T
Pr
[
pTj ≥ x

]
.

This concludes the proof of (D.1).686

To show the lemma, let ε > 0. We use that the expectation of a non-negative random variable X can
be approximated by

∑∞
k=0 ε ·Pr [X ≥ k · ε] ≤ E [X] ≤

∑∞
k=1 ε ·Pr [X ≥ k · ε]. Applying this approximation

and using (D.1), we get

E
[
pTj
]
≥
∞∑
k=1

εPr
[
pTj ≥ kε

]
≥
∞∑
k=0

(
1− 1

n

)T
εPr [yj ≥ kε]− ε

≥
(

1− 1

n

)T
E [yj ]− ε .

As this holds for all ε > 0, we also have687

E
[
pTj
]
≥
(

1− 1

n

)T
E [yj ] .
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D.2. Lemma D.1 and its Proof688

Next we state and prove Lemma D.1, which we used in the proof of Theorem 5.1.689

Lemma D.1. Let S∗1 , . . . , S
∗
n be any feasible allocation, in which agent i receives items S∗i . Consider a690

sequence b0, . . . , bT in which each agent from N ′ updates his bid at least once using an α-aggressive bid. We691

have (α+ 1) ·DW (bT ) + α ·
∑
j∈M maxt≤T maxi b

t
i,j ≥ α ·

∑
i∈N ′ vi(S

∗
i ).692

To prove this lemma we need the following auxiliary lemma.693

Lemma D.2. Consider a sequence b0, . . . , bT in which agents from N ′ update their bid at least once. For694

i ∈ N ′, let ti denote the time of the last update for agent i. Then,
∑
i∈N ′ u

D
i (bti) ≤ DW (bT ).695

Proof. Without loss of generality, let N ′ = {1, . . . , n′} and t1 < t2 < . . . < tn′ . Consider any i ∈ N ′ and let696

agent i’s update buy him the set of items S′. Then697

uDi (bti) =
∑
j∈S′

(
btii,j −max

k 6=i
btik,j

)
.

For i ∈ N ′, let zij = maxk<i b
ti
k,j for all j, z0j = 0. That is, zij is the highest “final” bid on item j.698

We observe that699 ∑
j∈S′

(btii,j −max
k 6=i

btik,j) ≤
∑
j∈M

(zij − zi−1j ) .

This is for the following fact. For j 6∈ S′, we have zij ≥ zi−1j by definition. For j ∈ S′, btii,j = zij and700

maxk 6=i b
ti
k,j ≥ maxk<i b

ti
k,j = maxk<i b

ti−1

k,j = zi−1j .701

By summing over all agents i ∈ N ′, we obtain702 ∑
i∈N ′

uDi (bti) ≤
∑
i∈N ′

∑
j∈M

(zij − zi−1j ).

The double sum is telescoping and zTj = z
tn′
j = maxk≤n′ b

T
k,j ≤ maxk b

T
k,j and z0j = 0 by definition. So,703 ∑

i∈N ′
uDi (bti) ≤

∑
j∈M

(zTj − z0j ) =
∑
j∈M

max
k

bTk,j = DW (bT ) ,

as claimed.704

We are now ready to prove the lemma.705

Proof of Lemma D.1. For i ∈ N ′, let ti denote the last time agent i updates his bid. Instead of choosing bid706

btii , he could have bought the set of items S∗i . As btii is α-aggressive, we get707

uDi (bti) ≥ α ·
(
vi(S

∗
i )−

∑
j∈S∗i

max
k 6=i

btik,j

)
.

Let yj = maxt maxk b
t
k,j .708

We thus have709

uDi (bti) + α ·
∑
j∈S∗i

yj ≥ α · vi(S∗i ) .

Summing this inequality over all agents i ∈ N ′ yields710 ∑
i∈N ′

uDi (bti) + α ·
∑
i∈N ′

∑
j∈S∗i

yj ≥ α ·
∑
i∈N ′

vi(S
∗
i ) .

The first sum is at most DW (bT ) by Lemma D.2. The double sum covers each j ∈ M at most once,711

therefore it is bounded by
∑
j∈M yj . Consequently,712

DW (bT ) + α ·
∑
j∈M

yj ≥ α ·
∑
i∈N ′

vi(S
∗
i ) ,

as claimed.713
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E. Proof of Theorem 5.3714

Our proof of Theorem 5.3 combines the construction that we used to prove Proposition 5.4 with the715

following exponential lower-bound construction.716

Lemma E.1 (Theorem 3.4 of [1]). For every k there is an instance with two agents, A and B, and k items,717

with fractionally subadditive valuations vA and vB defined by additive functions (atA)t∈N and (atB)t∈N such718

that in the Potential Procedure, started from initial bid vector b0 in which both agents bid zero and with agent719

A making the first move, agent z ∈ {A,B} plays atz the t-th time he gets to update his bid and it takes at720

least Ω(2k) steps before the procedure converges.721

Proof of Theorem 5.3. As in the proof of Proposition 5.4 we use n agents, we start with the initial bid vector722

b0 in which all agents bid zero, and we consider agent 1 being activated in every odd step and the remaining723

agents being activated in round-robin fashion in even steps.724

We use m = (n− 1) · (k+ 1) items. Items 1, . . . , n− 1 are used to mimic the sequence of Proposition 5.4.725

The remaining items are grouped into n−1 sets of size k, namely Ci := {n−1+(i−2)k+1, . . . , n−1+(i−1)k}726

for i > 2, and on each of these sets agent 1 follows the steps of the exponential-length sequence of Lemma E.1727

with one of the other n− 1 agents, with agent 1 taking the role of agent A and agent i > 1 taking the role728

of agent B.729

To define the valuations, for z ∈ {A,B}, i = 2, . . . , n, and t ≥ 1, let atz,i be the additive valuation730

functions defined in Lemma E.1 that are used by agent z ∈ {A,B} after the t-th update, using the items Ci.731

We first define the valuation function vi for agent i > 1. Namely, given some ε > 0, let the valuation732

function vi of agent i > 1 be defined as733

vi(S) = max{1i−1∈S , ε ·max
t
atB,i(S)} .

That is, agent i has a high value to buy item i− 1. He also has a very small value for items Ci according to734

the valuations of agent B in the exponential lower-bound construction using the items Ci.735

For agent 1, we define the valuation function by setting v1(S) = maxt v
t
1(S), where vt1 is the additive736

valuation function that is used when agent 1 updates his bid for the t-th time. It is designed in such a way737

that the t-th update is a best response in the game on Ci with agent i = (t− 1) mod (n− 1) + 1, who has738

just updated his bid, and makes the bid of agent 1 move from item i− 1 to i, which agent i+ 1 is interested739

in, who will be activated next.740

To define vt1 formally, observe that when agent 1 makes his t-th update, some of the other agents have741

performed d t
n−1e updates so far, the others only b t

n−1c. Let the respective sets of agents be denoted by742

N ′(t) and N ′′(t). Based on this, define743

vt1(S) = (1 + ε) · 1(t−1) mod (n−1)+1∈S + ε ·
∑

i∈N ′(t)

a
d t
n−1 e
A,i (S) + ε ·

∑
i∈N ′′(t)

a
b t
n−1 c
A,i (S) .

By these definitions, the bids on items 1, . . . , n−1 change exactly the way as in the proof of Proposition 5.4744

as long as there are still changes on items Ci for i > 1. By Lemma E.1 it takes at least Ω(2k) updates until745

such a set Ci reaches a stable state. Therefore, our constructed best-response sequence has low welfare at746

least until every agent 2, . . . , n has updated his bid at least Ω(2k) times. Moreover, every update is the747

unique best response.748

F. Negative Result for MPH-k Valuations749

The maximum over positive hypergraph-k or MPH-k hierarchy [37] comprises valuation functions with750

different degrees of complementarity, as parametrized by k. A valuation function vi belongs to MPH-k if751

there are values v`i,T ≥ 0 such that vi(S) = max`
∑
T⊆S,|T |≤k v

`
i,T . Any (monotone) valuation function can752

be captured with k = m. Fractionally subadditive valuations are precisely the case k = 1.753

Observe that for a usual valuation function even in MPH-2, the only bids that fulfill strong no-overbidding754

are zero on every item. Therefore, it is not possible that agents bid α-aggressively for α > 0 and satisfy755

no-overbidding in the strong sense at the same time. However, as our dynamics in Section 2.2 demonstrates,756
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strong no-overbidding is not a necessary requirement for good welfare guarantees. Unfortunately, the case757

is different for MPH-k. Below we show a negative result for the valuation class MPH-3. It relies on ties758

regarding identical bids and multiple best responses being broken to the disadvantage of the dynamics.759

Proposition F.1. There are valuation functions for n agents on O(n) items that belong to MPH-3 such760

that round-robin best-response dynamics only reach states that achieve a O( 1
n )-fraction of the optimal social761

welfare.762

Proof. For a given k, we define an instance with k + 4 items and 2k + 4 agents as follows. agent i ∈ [k − 1]763

has a valuation of 3 for the bundles {i, k+ 1, k+ 2} and {i, k+ 3, k+ 4}, with no value for the subsets. agent764

k has a valuation of 3 for the bundles {k, k + 1, k + 3} and {k, k + 2, k + 4}, with no value for the subsets.765

Furthermore, there are k + 4 agents k + 1, . . . , 2k + 4, each of which has a valuation of 1 for exactly one766

(distinct) item j ∈ [k+ 4]. Note that due to agents k+ 1, . . . , 2k+ 4, the optimal social welfare is k+ 4. Our767

best-response sequence will never reach a state with social welfare higher than 3.768

We assume that ties are broken as follows. agent k + 1, . . . , 2k + 4 never get an item if there is an equal769

bid from an agent i ∈ [k]. Among the agents i ∈ [k], on items k + 1 and k + 3, agent k is preferred to k − 1,770

agent k − 1 to k − 2, and so on. On items k + 2 and k + 4, agents i ∈ [k − 1] are preferred to agent k, agent771

k − 1 is preferred to k − 2, agent k − 2 to k − 3, and so on.772

Now consider the round-robin best-response dynamics in which agents get activated in the order they are773

indexed. Throughout the bidding dynamics agents k + 1, . . . , 2k + 4 will bid truthfully on their respective774

items. The other agents bid as follows. In odd rounds agents i = 1, . . . , k − 1 buy items {i, k + 1, k + 2},775

bidding 1 on each of them. Afterwards, agent k buys items {k, k + 1, k + 3}, again bidding 1 on each of776

them. In even rounds, agents i = 1, . . . , k − 1 buy items {i, k + 3, k + 4}, bidding 1 each, making agent k777

buy items {k, k + 2, k + 4}.778

Note that at every point in this sequence, only the agent that has just updated his bid gets a bundle of779

items of any positive value. This value is 3.780
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