Online Appendix

Appendix E Cognitive Hierarchy (CH) Model Predictions

In this section, we develop the CH model and its predictions. We compare these predictions with those from the level-k model to show that (a) the CH model does not predict new behaviors for senders than the level-k model; (b) the CH model does not predict qualitatively new behaviors for receivers than the level-k model, and the difference in predicted behaviors is not empirically distinguishable; (c) the CH model predicts a narrower range of possible behaviors across types than the level-k model.

The CH model assumes that an Lk player believes that other player(s) could be of any type from L0 through L(k-1), with the probability of a particular type following a truncated Poisson distribution over these types and the mean τ of the (non-truncated) Poisson distribution being the same for all k > 0. Since the predictions of the CH model will depend on τ , where necessary, we describe the results for specific values of τ in the range [0.25, 5]. Past empirical applications of the CH model across a wide variety of games show that τ is typically between 1 and 2.

We start by specifying the L0 type behaviors. As in the level-k model, the L0 sender is truthful, reporting $\hat{\xi}_0(\xi) = \xi$, and the L0 receiver is credulous, taking action $a_0(\hat{\xi}) = a_I(\hat{\xi})$. An Lk sender believes that the receiver could be of any type from L0 through L(k-1), following a truncated Poisson distribution over types $t \in \{0, 1 \dots k-1\}$ with non-truncated mean τ . An Lk receiver believes that the sender could be of any type from L0 through Lk, following a truncated Poisson distribution over types $t \in \{0, 1 \dots k-1\}$ with non-truncated mean τ . Let $p_t(\tau) = \frac{e^{-\tau}\tau^t}{t!}$ denote the Poisson distribution probability for outcome $t \in \{0, 1, 2 \dots\}$.

The Lk receiver also updates his belief about the sender's type in a Bayesian manner based on the sender's message, correctly anticipating the strategies of sender types L0 through Lk. Let $f_t(\hat{\xi})$ denote the probability that a type t sender sends the message $\hat{\xi}$ (for some ξ), and $e_t(\hat{\xi})$ denote the expected value of ξ conditional on the message $\hat{\xi}$ from a type t sender. Then, the Lkreceiver's expected value of ξ conditional on the message $\hat{\xi}$ is

$$E^{k}\left[\xi \mid \hat{\xi}\right] = \frac{\sum_{t=0}^{k} e_{t}\left(\hat{\xi}\right) f_{t}\left(\hat{\xi}\right) p_{t}\left(\tau\right)}{\sum_{t=0}^{k} f_{t}\left(\hat{\xi}\right) p_{t}\left(\tau\right)}.$$
(25)

Therefore, the Lk receiver's expected payoff from action a is

$$\Pi_{Rk}\left(a;\hat{\xi}\right) = rE^{k}\left[\xi \mid \hat{\xi}\right]a - \frac{1}{2}ca^{2}.$$
(26)

Therefore, his optimal action

$$a_k\left(\hat{\xi}\right) = \frac{r}{c} E^k\left[\xi \mid \hat{\xi}\right]. \tag{27}$$

Next, consider the Lk sender. She correctly anticipates the response $a_t(\hat{\xi})$ of receiver types $t \in \{0, 1 \dots k-1\}$. Let $E^k\left[a_t(\hat{\xi})\right]$ be the expected receiver action, given by

$$E^{k}\left[a_{t}\left(\hat{\xi}\right)\right] = \frac{\sum_{t=0}^{k} a_{k}\left(\hat{\xi}\right) p_{t}\left(\tau\right)}{\sum_{t=0}^{k} p_{t}\left(\tau\right)}.$$
(28)

Then, the Lk sender's expected payoff from message $\hat{\xi}$ is

$$\Pi_{Sk} = s\xi E^k \left[a_t \left(\hat{\xi} \right) \right].$$
⁽²⁹⁾

Therefore, the sender's optimal message is

$$\hat{\xi}_{k}\left(\xi\right) \in \operatorname*{arg\,max}_{\hat{\xi}} E^{k}\left[a_{t}\left(\hat{\xi}\right)\right].$$

$$(30)$$

We now derive the predicted behaviors for each type iteratively and compare these predictions with those from the level-k model. We start with an L1 sender. The L1 sender believes the receiver is type L0 and hence sends the message $\hat{\xi}_1(\xi) = \bar{\xi} = 80$, which is the same as in the level-k model.

Next, consider an L1 receiver. He believes that the sender could be of type L1 or L0, assigning a probability $\frac{p_0}{p_0+p_1}$ to type L0. Further, the L1 receiver updates her belief based on the sender's message $\hat{\xi}$. Because the L0 sender type truthfully sends message in the range[10, 80], all messages are equally probable, and the probability of receiving a message $\hat{\xi}$ from an L0 sender is $f_0(\hat{\xi}) = \frac{1}{71}$. Furthermore, the expected value of ξ given $\hat{\xi}$ (from an L0 sender) is $e_0(\hat{\xi}) = \hat{\xi}$. Because the L1sender type always sends the message 80, $f_1(\hat{\xi}) = 0$ for $\hat{\xi} \leq 79$ and $f_1(80) = 1$. Further, the expected value of ξ given $\hat{\xi} = 80$ is $e_1(80) = \frac{\xi + \bar{\xi}}{2} = 45$.

Therefore, as in the level-k model, if the L1 receiver receives a message $\hat{\xi} \leq 79$, then he updates his belief that the sender is of type L0 and, therefore, believes the message is truthful. In particular, we have $E^k \left[\xi \mid \hat{\xi} \right] = \hat{\xi}$. If he receives a message $\hat{\xi} = 80$, then the sender could be either L0 and L1, though the types differ in the probability with which they could have sent this message. From Equation (25), we have

$$E^{1}\left[\xi \mid \hat{\xi} = 80\right] = \frac{e_{0}\left(80\right) f_{0}\left(80\right) p_{0}\left(\tau\right) + e_{1}\left(80\right) f_{1}\left(80\right) p_{1}\left(\tau\right)}{f_{0}\left(80\right) p_{0}\left(\tau\right) + f_{1}\left(80\right) p_{1}\left(\tau\right)} = \frac{80 + 3195\tau}{1 + 71\tau}.$$
(31)

From Equation (27), the L1 receiver's optimal action is

$$a_{1}\left(\hat{\xi}\right) = \begin{cases} \hat{\xi}, & \hat{\xi} \le 79; \\ E^{1}\left[\xi \mid \hat{\xi} = 80\right], & \hat{\xi} = 80, \end{cases}$$
(32)

where we have substituted $\frac{r}{c} = 1$ for the cheap talk experiment. Thus, the L1 receiver's behavior is the same as in the level-k model for $\hat{\xi} \leq 79$, believing the message to be truthful. For $\hat{\xi} = 80$, the level-k model predicts that the receiver ignores the message and takes action $a_1(80) = 45$ because the sender is assumed to be type L1. In contrast, the CH model in general predicts a higher action because the sender could still be of type L0 with finite positive probability. While the predicted action is 80 if $\tau = 0$, it is decreasing in τ , and converges quite rapidly to 45: the predicted action is 46.9 for $\tau = 0.25$, 45.5 for $\tau = 1$ and 45.2 for $\tau = 2$, and 45.1 for $\tau = 5$. Thus, the predictions are practically the same for both models for reasonable values of τ , i.e., $\tau \in [1, 2]$. Intuitively, even though the prior probability of the sender being type L0 may not be negligible, the posterior probability that the message $\hat{\xi} = 80$ is from the L0 type is considerably small for reasonable τ .

Next, consider an L2 sender. She believes that the receiver can be of type L0 or L1, assigning a probability $\frac{p_0}{p_0+p_1}$ to type L0. For messages $\hat{\xi} \leq 79$, both receiver types believe the message and take action $\hat{\xi}$. Therefore, the sender must at least inflate the message to 79. For $\hat{\xi} = 80$, the L0 receiver takes action 80, whereas the L1 receiver takes the action $E^1\left[\xi \mid \hat{\xi} = 80\right]$. Hence, the expected receiver action is

$$E^{1}[a_{t}(80)] = \frac{a_{0}(80)p_{0} + a_{1}(80)p_{1}}{p_{0} + p_{1}} = \frac{80 + E^{1}\left[\xi \mid \hat{\xi} = 80\right]\tau}{1 + \tau}$$
$$= \frac{80 + 5750\tau + 3195\tau^{2}}{1 + 72\tau + 71\tau^{2}}.$$
(33)

While the expected receiver action is 80 if $\tau = 0$, it is decreasing in τ reasonably quickly towards 45: it is 73.4 for $\tau = 0.25$, 62.7 for $\tau = 1$, 56.8 for $\tau = 2$ and 50.9 for $\tau = 5$. Therefore, for reasonable values of τ , the L2 sender sends the message $\hat{\xi} = 79$, the same as the L2 sender in the level-k model. We proceed similarly to obtain the predicted behaviors for higher types.

Table 3 provides a comparison of predicted behaviors of sender types under the level-k and CH models. Specifically, each row shows the message that will be sent by the L1 to L6 sender types. For the CH model, the predictions are shown for specific values of τ in the range [0.25, 5]. We observe that an Lk sender in the CH model distorts the message to a particular message level that is the same as that sent by a sender of level Lk or lower in the level-k model. The reason is that the CH model assigns higher probability to the lower receiver types than the level-k model. Moreover, the

predicted behaviors in the CH model change over a narrower range with the player's type than in the level-k model.

Mod		Sender Type								
	au	L1	L2	L3	L4	L5	L6			
Level-k	-	80	79	78	77	76	75			
CH	0.25	80	79	79	79	79	79			
CH	0.5	80	79	78	78	78	78			
CH	1	80	79	78	77	77	77			
CH	1.5	80	79	78	77	76	76			
CH	2	80	79	78	77	76	75			
CH	5	80	79	78	77	76	75			

Table 3: Predictions of Level-k vs. CH model for Senders

For example, Table 3 shows that, depending on τ , an L5 sender in the CH model sends the message 76, 77, 78 or 79, thus resembling the behavior, respectively, of an L2, L3, L4 or L5 sender in the level-k model. Further, for $\tau = 1$, all sender types higher than L3 send same message 77; for $\tau = 2$, it can be shown that all sender types higher than L5 send the same message 75. Intuitively, because the CH model assigns higher probability to lower types, especially for high k and low τ , the behaviors of the higher level senders in the CH model resembles that of lower level senders in the level-k model beyond a threshold level of thinking.

Table 4 provides a comparison of predicted behaviors of receiver types L1 to L6 under the level-k and CH models. Specifically, each table shows the behaviors under the level-k model or the CH model for a particular value of τ in the range [0.25, 5]. Each row in a table shows the response of a receiver of a particular level of thinking to sender messages $\hat{\xi} \in [10, 80]$. We observe that the predictions of the CH model resemble those of level-k model in the following respects. First, a receiver believes all messages up to a threshold message level and then discounts all higher messages. Second, the threshold message level for an Lk receiver in the CH model is the same as that of a receiver of level Lk or lower in the level-k model. Similar to the case of senders, the reason is that the CH model assigns higher probability to the lower sender types than the level-k model. Lastly, the predicted actions for messages higher than the threshold in the CH model is practically the same as that of the corresponding receiver type with the same threshold in the level-k model; in particular, the predicted behaviors differ only for a few messages and are hence practically indistinguishable. Moreover, the predicted behaviors in the CH model change over a narrower range with the player's type than in the level-k model.

For example, an L2 receiver in the CH model believes all messages up to 78 (same as the L2

receiver in the level-k model) and takes practically the same action for higher messages. Further, depending on τ , an L5 receiver believes all messages up to 78, 77, 76 or 75, and the behavior is practically indistinguishable from that of the L2, L3, L4 or L5 receiver, respectively, in the level-k model. Lastly, we note that for $\tau = 1$, all receiver types higher than L3 believe messages up to 76 and discount messages 77 and higher; for $\tau = 2$, it can be shown that all receiver types higher than L5 believe messages up to 74 and discount messages 75 and higher. Thus, the range of predicted behaviors is narrower than in the level-k model.

Table 4: Predictions of Level-k vs. CH model for Receivers

		Level-k Model							CH Model ($\tau = 0.25$)						
Receiver			Sender	• Messa	uge $(\hat{\xi})$			Sender Message $(\hat{\xi})$							
Type	≤ 74	75	76	77	78	79	80	≤ 74	75	76	77	78	79	80	
L1	$\hat{\xi}$	75	76	77	78	79	45	$\hat{\xi}$	75	76	77	78	79	46.9	
L2	$\hat{\xi}$	75	76	77	78	45	45	$\hat{\xi}$	75	76	77	78	55.6	46.9	
L3	$\hat{\xi}$	75	76	77	45	45	45	$\hat{\xi}$	75	76	77	78	55.0	46.9	
L4	$\hat{\xi}$	75	76	45	45	45	45	$\hat{\xi}$	75	76	77	78	55.0	46.9	
L5	$\hat{\xi}$	75	45	45	45	45	45	$\hat{\xi}$	75	76	77	78	55.0	46.9	
L6	$\hat{\xi}$	45	45	45	45	45	45	$\hat{\xi}$	75	76	77	78	55.0	46.9	

CH Model ($\tau = 1$)									CH Model ($\tau = 1.5$)						
Receiver			Sender	r Messa	$\operatorname{age}(\hat{\xi})$			Sender Message $(\hat{\xi})$							
Type	≤ 74	75	76	77	78	79	80	-	≤ 74	75	76	77	78	79	80
L1	$\hat{\xi}$	75	76	77	78	79	45.5		$\hat{\xi}$	75	76	77	78	79	45.3
L2	$\hat{\xi}$	75	76	77	78	45.9	45.5		$\hat{\xi}$	75	76	77	78	45.4	45.3
L3	$\hat{\xi}$	75	76	77	47.6	45.9	45.5		$\hat{\xi}$	75	76	77	45.8	45.4	45.3
L4	$\hat{\xi}$	75	76	53.1	47.6	45.9	45.5		$\hat{\xi}$	75	76	47.0	45.8	45.4	45.3
L5	$\hat{\xi}$	75	76	52.0	47.6	45.9	45.5		$\hat{\xi}$	75	50.6	47.0	45.8	45.4	45.3
L6	$\hat{\xi}$	75	76	51.9	47.6	45.9	45.5		$\hat{\xi}$	75	49.7	47.0	45.8	45.4	45.3

CH Model $(\tau = 2)$										CH M	odel (τ	- = 5)			
Receiver			Sender	• Messa	uge $(\hat{\xi})$				Sender Message $(\hat{\xi})$						
Type	≤ 74	75	76	77	78	79	80		≤ 74	75	76	77	78	79	80
L1	$\hat{\xi}$	75	76	77	78	79	45.2		$\hat{\xi}$	75	76	77	78	79	45.1
L2	$\hat{\xi}$	75	76	77	78	45.2	45.2		$\hat{\xi}$	75	76	77	78	45.0	45.1
L3	$\hat{\xi}$	75	76	77	45.3	45.2	45.2		$\hat{\xi}$	75	76	77	45.0	45.0	45.1
L4	$\hat{\xi}$	75	76	45.7	45.3	45.2	45.2		$\hat{\xi}$	75	76	45.0	45.0	45.0	45.1
L5	$\hat{\xi}$	75	46.6	45.7	45.3	45.2	45.2		$\hat{\xi}$	75	45.0	45.0	45.0	45.0	45.1
L6	$\hat{\xi}$	49.1	46.6	45.7	45.3	45.2	45.2		$\hat{\xi}$	45.0	45.0	45.0	45.0	45.0	45.1

Appendix F Mixture of L0 Players

Theorem 4. An Lk sender's strategy for k > 0 is $\hat{\xi}_k(\xi) = \hat{\xi}_k = \max\left\{\bar{\xi} - (k-1), \frac{\bar{\xi} + \underline{\xi}}{2}\right\}$. An Lk receiver's strategy for k > 0 is

$$a_k\left(\hat{\xi}\right) = \begin{cases} \frac{r}{c}\left(\eta\hat{\xi} + (1-\eta)\frac{(\bar{\xi}+\xi)}{2}\right), & \hat{\xi} \leq \tilde{\xi}_k; \\ a_{NI} = \frac{r}{c}\frac{(\bar{\xi}+\xi)}{2}, & otherwise \end{cases}$$

where $\tilde{\xi}_k = \hat{\xi}_k - 1$.

Proof. The L1 sender's expected payoff is

$$\Pi_{S1}\left(\hat{\xi},\xi\right) = s\mathbf{E}\left[q \mid \xi\right] a_0\left(\hat{\xi}\right) = s\frac{r}{c} \left[\mu\hat{\xi} + (1-\mu)\frac{(\bar{\xi}+\underline{\xi})}{2}\right]\xi,\tag{34}$$

and her best response is $\hat{\xi}_1 = \bar{\xi}$ for any ξ . The L1 receiver believes sender is L1 if the message is $\hat{\xi} = \bar{\xi}$, and the sender is L0 otherwise; if the sender is L0, her message is truthful with probability η and uninformative otherwise. The L1 receiver's expected payoff is

$$\Pi_{R1}\left(a,\hat{\xi}\right) = \begin{cases} r\left[\eta\hat{\xi} + (1-\eta)\frac{(\bar{\xi}+\underline{\xi})}{2}\right]a - \frac{1}{2}ca^2, & \hat{\xi} \le \bar{\xi} - 1; \\ r\frac{(\bar{\xi}+\underline{\xi})}{2}a - \frac{1}{2}ca^2, & \hat{\xi} = \bar{\xi}. \end{cases}$$
(35)

Therefore, his optimal action is

$$a_1\left(\hat{\xi}\right) = \begin{cases} \frac{r}{c} \left[\eta\hat{\xi} + (1-\eta)\frac{(\bar{\xi}+\underline{\xi})}{2}\right], & \hat{\xi} \le \bar{\xi} - 1; \\ \frac{r}{c}\frac{(\bar{\xi}+\underline{\xi})}{2}, & \hat{\xi} = \bar{\xi}. \end{cases}$$
(36)

The L2 sender's expected payoff is

$$\Pi_{S2}\left(\hat{\xi},\xi\right) = s\xi a_1\left(\hat{\xi}\right),\tag{37}$$

and her best response is $\hat{\xi}_2 = \bar{\xi} - 1$ for any ξ . From hereon, the result can be proved by induction as in Theorem 3.

The model estimation results are provided below. We observe that in this level-k model, the behavior of the L1 receiver can be substantially different than the L0 receiver depending on μ . Similarly, the payoff function of the L1 sender can differ from the L2 sender depending on η . Hence, we include a separate L1 sender and a fully-believing L0 receiver. We remark that the belief μ for L1 senders and η for higher level senders are not separately estimable from their λ parameters as both essentially rescale the systematic payoff.

		Send	lers	Receivers		
Model	Classification	L0 truthful	17 (47.22%)	L0 believing	1(2.78%)	
Estimates		L0 random	0 (0%)	$L0 { m random}$	3 (8.33%)	
		L1	6~(16.67%)	$L1 \sim 3$	5(13.89%)	
		$L2 \sim 3$	12 (33.33%)	LH	27 (75.00%)	
		LH	1 (2.78%)			
	Model	$\hat{\xi}_{LH}$	68*	$ ilde{\xi}_{LH}$	46*	
	Parameters	σ_{L0}	6.24*	$\mu_{L1\sim3}$	0.88	
		$\lambda_{L1} \cdot \mu_{L1}$	4.26*	μ_{LH}	1.00*	
		$\lambda_{L2\sim3}\cdot\eta_{L2\sim3}$	2.00*	λ_{L0}	100.00*	
		$\lambda_{LH}\cdot\eta_{LH}$	22.25*	$\lambda_{L1\sim3}$	23.66*	
				λ_{LH}	5.75*	
In-Sample	LL	-710	.91	-773	3.15	
Model Fit	AIC	1439	0.82	1564.29		
	BIC	1469.58		1593	3.88	
Out-of-Sample	MSE	440	.89	260	.00	
Performance	$\hat{\beta}$	0.6	56	0.47		
	R^2	0.3	35	0.3	38	
Experimental	Classification	L0 truthful	7 (29.17%)	L0 believing	4(16.67%)	
Manipulation		L0 random	0 (0%)	$L0 { m random}$	0 (0%)	
		L1	13~(54.17%)	$L1 \sim 3$	2 (8.33%)	
		$L2 \sim 3$	0 (0%)	LH	18 (75.00%)	
		LH	4 (16.67%)			
	Model	$\hat{\xi}_{LH}$	51^{*}	$ ilde{\xi}_{LH}$	50*	
	Parameters	σ_{L0}	9.08*	$\mu_{L1\sim3}$	0.00	
		λ_{L1}	4.58*	μ_{LH}	1.00*	
		$\lambda_{L2\sim3}$	2.58*	λ_{L0}	8.49*	
		λ_{LH}	4.37*	$\lambda_{L1\sim3}$	100.00*	
				λ_{LH}	3.90*	
		-481	42	-519	9.99	
	AIC	980	.84	105'	7.98	
	BIC	1006	5.78	1083	3.92	

Table 5: Level-k Model with Randomizing L0 players

Appendix G Trembling Behavior

Unlike in the original level-k model, the L1 sender's message can be partially informative. Specifically, the L0 receiver is fully believing, and her decision $a_0(\hat{\xi})$ is governed by the random-utility choice process. Her expected action $\mathbf{E}\left[a_0(\hat{\xi})\right]$ is strictly increasing in $\hat{\xi}$. The L1 sender's expected systematic payoff $s\mathbf{E}\left[a_0(\hat{\xi})\right]\xi$, therefore, is strictly increasing in $\hat{\xi}$ and maximum at $\hat{\xi} = \bar{\xi}$; we observe that the loss in this payoff from deviating to a message other than $\bar{\xi}$ is lower if ξ is lower. Consequently, under the influence of the logit shock, the L1 sender is more likely to deviate to $\hat{\xi} < \bar{\xi}$ if ξ is lower. In other words, lower messages are more likely when the actual information is

lower. Hence, $\hat{\xi}_1(\xi)$ is partially informative. Correspondingly, the L1 receiver is influenced by the L1 sender's message, taking lower actions for lower messages.

Figure 3: Predicted Behaviors for $\lambda = 1, 5, 10$

Figure 3 depicts sender and receiver behaviors for $\lambda = 1, 5, 10$. We observe that depending on λ , L1 and L2 sender messages can be informative and the L1 and L2 receivers are influenced by the

messages. The model estimation results are given in Table 6. Since this model predicts probabilistic behaviors, it is not possible to directly compare the predictions with those of the other models, which predict deterministic behaviors. Therefore, Table 6 does not include the out-of-sample performance metrics.

			Senders	Receivers		
Model	Classification	L0	17 (47.22%)	L0	6(16.67%)	
Estimates		L1	14~(38.89%)	L1	28 (77.78%)	
		L2	5~(13.89%)	L2	2 (5.55%)	
	Model	σ_{L0}	6.17^{*}	λ_{L0}	23.40*	
	Parameters	λ_{L1}	3.18^{*}	λ_{L1}	4.77^{*}	
		λ_{L2}	7.01^{*}	λ_{L2}	15.91	
In-Sample	LL		-716.39		-778.54	
Model Fit	AIC	1442.79 1567.08				
	BIC		1459.23		1583.52	
Experimental	Classification	L0	7 (29.17%)	L0	1 (4.17%)	
Manipulation		L1	12~(50.00%)	L1	23~(95.83%)	
		L2	5~(20.83%)	L2	0 (0%)	
	Model	σ_{L0}	9.20*	λ_{L0}	10.60	
	Parameters	λ_{L1}	3.50*	λ_{L1}	5.35^{*}	
		λ_{L2}	13.26*	λ_{L2}	2.00	
	LL		-475.80		-522.38	
	AIC		961.6		1054.75	
	BIC		976.01	1069.16		

Table 6: Level-k Model with Trembling Behavior

Appendix H Trust-embedded Model with Level-k Types

		Se	nders	Re	ceivers	
Model	Classification	High	4 (11.11 %)	High	9~(25.00%)	
Estimates		Medium	12 (33.33%)	Medium	3~(8.33%)	
		Low	19(52.78%)	Low	19~(52.78%)	
		LH	1 (2.78%)	LH	5~(13.89%)	
	Model	$\hat{\xi}_{LH}$	48*	$ ilde{\xi}_{LH}$	69*	
	Parameters	A_H	1.03^{*}	α_{RH}	0.70^{*}	
		A_M	1.07^{*}	α_{RM}	0.13	
		A_L	2.5*	α_{RL}	0.00	
		$\lambda_H\cdot\gamma_H$	807.04*	λ_H	25.59*	
		$\lambda_M\cdot\gamma_M$	23.52*	λ_M	122.09*	
		$\lambda_L\cdot\gamma_L$	0.98*	λ_L	3.73^{*}	
		λ_{LH}	15.29*	λ_{LH}	51.31^{*}	
In-Sample	LL	-6	85.77	-7	35.50	
Model Fit	AIC	13	93.53	14	1493.00	
	BIC	14	29.70	15	29.17	
Out-of-Sample	MSE	28	86.63	10	51.65	
Performance	$\hat{\beta}$	().77	0.61		
	R^2	().49	0.46		
Experimental	Classification	High	1 (4.17 %)	High	4(16.67%)	
Manipulation		Medium	6~(25.00%)	Medium	6~(25.00%)	
		Low	12~(50.00%)	Low	11~(45.83%)	
		LH	5~(20.83%)	LH	3~(12.50%)	
	Model	$\hat{\xi}_{LH}$	45*	$ ilde{\xi}_{LH}$	63*	
	Parameters	A_H	1.03^{*}	α_{RH}	0.62^{*}	
		A_M	1.21*	α_{RM}	0.43	
		A_L	2.90*	α_{RL}	0.00	
		$\lambda_H \cdot \gamma_H$	612.74*	λ_H	77.62*	
		$\lambda_M\cdot\gamma_M$	25.60*	λ_M	6.97^{*}	
		$\lambda_L \cdot \gamma_L$	1.53^{*}	λ_L	3.91^{*}	
		λ_{LH}	2.52*	λ_{LH}	84.03*	
	LL	-4	60.97	-4	493.2	
	AIC	94	14.09	10	08.33	
	BIC	97	75.80	1040.04		

Table 7: Hybrid Trust-embedded model with LH type

Appendix I Level-k Model with Sender Lying Cost

The sender incurs a disutility $\frac{1}{2}\gamma\left(\hat{\xi}-\xi\right)^2$. Similar to the sender in the trust-embedded model, an L1 sender inflates messages depending on her lying cost by a factor $A_{L1} = 1 + \frac{sr}{\gamma c} = 1 + \frac{1}{2\gamma}$. An L1 receiver anticipates this behavior and discounts messages accordingly; importantly, the receiver expects the L1 sender messages to be partially informative and is hence influenced by her messages.

Messages that could not have been from the L1 sender $(\hat{\xi} < A_{L1}\underline{\xi})$ are taken to be from the truthful L0 sender. An L2 sender anticipates that the L1 receiver discounts higher messages, and hence inflating messages is less effective. As a result, the L2 sender inflates messages by a lower extent, $A_{L2} = 1 + \frac{sr}{\gamma_c} < A_{L1}$. An L2 receiver, in turn, is partially influenced by the messages; messages that could not have been from a L2 sender are either taken to be from a L1 sender (if feasible) or from a L0 sender. Thus, unlike the original level-k model, the behaviors of each higher level type are quite distinct. As indicated in the main text, we estimate the model allowing for L0, L1 and L2 player types. The table below provides the model estimation results. The figure depicts the estimated behaviors.

			Senders	Receivers		
Model	Classification	LO	5 (13.89 %)	LO	3 (8.33%)	
Estimates		L1	19(52.78%)	L1	11 (30.56%)	
		L2	12 (33.33%)	L2	22~(61.11%)	
	Model	γ_{L1}	0.15	γ_{L1}	0.25^{*}	
	Parameters	γ_{L2}	6.26*	γ_{L2}	1.43^{*}	
		σ_{L0}	2.62^{*}	λ_{L0}	50.11	
		λ_{L1}	3.17^{*}	λ_{L1}	4.22^{*}	
		λ_{L2}	2.00*	λ_{L2}	7.24^{*}	
In-Sample	LL		-694.35		-756.90	
Model Fit	AIC		1402.70	1527.80		
	BIC		1425.72	1550.82		
Out-of-Sample	MSE		498.86		201.93	
Performance	$\hat{\beta}$		0.69	0.63		
	R^2		0.30		0.40	
Experimental	Classification	LO	1 (4.17 %)	L0	0 (16.67%)	
Manipulation		L1	17 (25.00%)	L1	5~(25.00%)	
		L2	6~(20.83%)	L2	19~(12.50%)	
	Model	γ_{L1}	0.07	γ_{L1}	2.83*	
	Parameters	γ_{L2}	2.96*	γ_{L2}	0.79^{*}	
		σ_{L0}	2.00*	λ_{L0}	50.89	
		λ_{L1}	3.24^{*}	λ_{L1}	30.95^{*}	
		λ_{L2}	6.94^{*}	λ_{L2}	3.79^{*}	
			-467.07		$-51\overline{5.17}$	
	AIC		948.15		1044.33	
	BIC		968.33		1064.51	

Table 8: Hybrid Level-k Model with Sender Lying Cost

