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In this article we provide an overview of existing approaches for relating latent class

membership to external variables of interest. We extend on the work of Nylund-Gibson

et al. (Structural Equation Modeling: A Multidisciplinary Journal, 2019, 26, 967), who

summarizemodels with distal outcomes by providing an overview ofmost recommended

modeling options for models with covariates and larger models with multiple latent

variables as well. We exemplify the modeling approaches using data from the General

Social Survey for a model with a distal outcome where underlying model assumptions are

violated, and a model with multiple latent variables. We discuss software availability and

provide example syntax for the real data examples in Latent GOLD.

1. Introduction

Latent class (LC) analysis is a widely used approach in psychology and related fields for

creating a grouping when the groups are unknown, based on a set of observed indicator

variables. Examples include clusters of juvenile offender types (Mulder, Vermunt, Brand,

Bullens, & Van Merle, 2012), students’ strategy choices in solving mathematical
problems (Fagginger Auer, Hickendorff, Van Putten, Bèguin, & Heiser, 2016), types of

learning disabilities (Geary et al., 2009), clusters of tolerance for nonconformity

(McCutcheon, 1985), and partitioning of new political parties in volatile systems

(Mustillo, 2009).

In most applications, establishing such an LC measurement model and describing the

distribution of the respondents across the classes is just the first step of the analysis. The

interest of researchers lies also in relating this clustering to its antecedents and

consequences in more complex, structural models. For example, Mulder et al (2012)
related the juvenile offender profiles tomore than 80 outcomes, such as recidivism. This is

known as LC modelling with distal outcomes. Alternatively, predictors (covariates) of LC

membership can be used to explain the clustering. For example, Mccutcheon (1985)

latent examined the associations of education and age with Americans’ patterns of tole

rance towards nonconformity.
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Until recently there were twomain approaches to relating LCmembership to external

variables, the so-called one-step and (naive) three-step approaches. Both of them can be

problematic, in differentways. The two approaches differ inwhether or not the structural

andmeasurementmodels are estimated simultaneously. In one-stepmodelling they are, in
which case the twomodels can influence each other in wayswhich distorts the estimated

structural model (Nylund-Gibson, Grimm, & Masyn, 2019; Petras & Masyn, 2010;

Vermunt, 2010). The naive three-step method, in contrast, estimates the measurement

model separately, but this too can produce biased estimates of the structural model, now

as a consequence of ignoring the classification error that is introduced in the second

(classification) step of this method.

To overcome these challenges, alternative approaches have been developed in the last

decade. The twomain developments are bias-adjusted three-step approaches and the two-
step approach. All of them are ‘stepwise’ procedures which start by estimating the

measurement model alone, in the same way as in the naive three-step method, but they

then proceed in different ways to avoid its biases.

While many of these new approaches are promising, for applied researchers it is

difficult to choose which one to use, as developments in the field are fast and simple

guidelines are scarce. A recent overview focusing on distal outcome models is given by

Nylund-Gibson et al. (2019), but no clear guidelines are available for other situations, such

as models with covariates, larger structural models which combine covariates and distal
outcomes,modelswithmultiple latent variables, ormodelswhich include direct effects of

covariates on the indicators. In this paper we provide an overview of the existing

approaches for relating LC membership to external variables, and provide practical

guidance on the choice of modelling approach under these different circumstances.

Some of thesemethods have also been extended to still more complexmodels, such as

time-to-event distal outcomes (Lythgoe, Garcia-Fiñana, & Cox, 2019), latent Markov

models, and latent growth models (Di Mari & Bakk, 2018; Fagginger Auer et al., 2016).

Research into these extensions is developing and still scarce, and theywill not be included
in this overview.

In the rest of this paper, we first introduce the basic LC model and the different

methods of estimating structural models, discussing their definition, properties, and

implementation in existing software. We then provide an overview of the advantages and

disadvantages of these different modelling approaches, focusing first on the simple

situation with a single distal outcome or a covariate, and then commenting on more

complex models. We then give some illustrative examples and a concluding discussion.

2. Latent class model with external variables, and methods of estimation

for it

2.1. Definition of the model

Consider the vector of responses Yi ¼ðY i1, . . .,Y iKÞ, where Y ik denotes the response of

individual i on one of K categorical indicator variables, with 1≤k≤K and 1≤ i≤N .

Latent class analysis assumes that respondents belong to one of the T categories (‘latent

classes’) of an underlying categorical latent variable X which affects the responses

(Goodman, 1974; Hagenaars, 1990; McCutcheon, 1987). The model for Y i can then be

written as
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pðYiÞ¼ ∑
T

t¼1

pðX ¼ tÞpðYijX ¼ tÞ, (1)

where pðX ¼ tÞ is the (unconditional) probability of belonging to latent class t, and

pðYijX ¼ tÞ the class-specific probability of a pattern of responses to the indicators

(throughout this paper, pð�Þ and pð�j�Þ denote marginal or conditional probabilities or

density functions of variables). Models for these two kinds of probabilities are known as

the structural model and themeasurement model of the LCmodel, respectively. For the

measurement model, we make the ‘local independence’ assumption that the K indicator
variables are independent within the latent classes, leading to

pðYiÞ¼ ∑
T

t¼1

pðX ¼ tÞ
YK
k¼1

pðY ikjX ¼ tÞ: (2)

We refer to this as the basic LC model. It is represented by Figure 1(left). The number

of classes T is selected by comparing the goodness of fit of models with different values of
T using model selection tools such as the Akaike information criterion and the Bayesian

information criterion, The entropy of the model (see Magidson, 1981), which indicates

howwell the classmembership can be predicted by the observed variables, can be used as

an additional tool to evaluate the LC solution. As this statistic focuses on the estimated

measurement model, it is best used with a model like (2) without external covariates or

outcomes.

The extensions of the basic LC model (2) which concern us here are ones where the

model also includes observed predictors (covariates) of the latent class variable X,
denoted here by the vector Zpi, and/or distal outcomes of it, denoted by Zoi. With them,

the model is of the form

pðYi,ZoijZpiÞ¼ ∑
T

t¼1

pðZoi,X ¼ tjZpiÞ
YK
k¼1

pðY ikjX ¼ tÞ
" #

(3)

where

X

…Y1 Y2 YK

Zp
ZoX

…Y1 Y2 YK

Measurement model One-step approach
Figure 1. The basic latent class model (measurement model) and the one-step model including

covariates Zp and distal outcomes Zo.
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pðZoi,X ¼ tjZpiÞ¼ pðX ¼ tjZpiÞ pðZoijX ¼ t,ZpiÞ: (4)

This is represented by Figure 1(right). In many applications the model of interest

includes only covariates Zpi or only distal outcomes Zoi, so only one of the twomodels on

the right-hand side of (4) is present. On the other hand, the model could also be further
extended in a number ofways. First, the structuralmodel could consist of a longer chain of

such elements, with multiple latent class variables X, multiple outcomes, and/or some

variables which were covariates in some models and outcomes in others. Second, we

could relax the assumption that the indicators Y ik are conditionally independent of

ðZpi,ZoiÞ given X, by letting them depend also on Z pi to allow for non-invariance of the

measurement model (differential item functioning), or (less commonly) letting Zoi

depend directly onY i. These extensions are omitted from (4) and ourmain discussion for

simplicity, but they will also be considered later in the paper. We will also from now on
omit the respondent subscript i,with the understanding that all the expressions beloware

for a single respondent i.

2.2. The one-step approach

‘One-step’ estimationmeans simply that the full model (3) – orwhatever still larger model

is considered – is fitted at once, estimating both its structural and measurement models

together. The estimates and their standard errors are obtained using standard maximum
likelihood (ML) estimation, where (3) is the contribution of respondent i to the full

likelihood. This can be done using mainstream software packages for LC analysis, in

particular Latent GOLD (Vermunt & Magidson, 2005, 2016) and Mplus (Muthén &

Muthén, 2017); these packages can also be used for the various stepwise methods, as

discussed below.

We further mention here one specialized version of one-step estimation. This is the

classify–analyse method of Lanza, Tan, and Bray (2013), here referred to as the LTB

approach. It was specifically developed for distal outcome models with a continuous Zo.
The approach is based on re-expressing the model as

pðY,ZoÞ¼ ∑
T

t¼1

pðZo,X ¼ tÞ
YK
k¼1

pðYkjX ¼ tÞ
" #

:

¼ pðZoÞ∑
T

t¼1

pðX ¼ tjZoÞ
YK
k¼1

pðY ikjX ¼ tÞ
" #

, (5)

where pðZoÞ denotes the marginal distribution of Zo. The rest of the last expression in (5)
is an LCmodelwhereZo is for themoment treated as a covariate rather than an outcomeof

X. This has the advantage that it avoids the need tomake distributional assumptions about

Zo,misspecification ofwhich can bias usualmodel estimates. The conditional distribution

of X given Zo can be specified as a multinomial logistic model. Having fitted the model as

(5), we can then reverse the conditional distributions to estimate the class-specific

conditional means of Zo as
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E ðZojX ¼ tÞ¼
Z

Zo p ðZojX ¼ tÞdZo ¼
Z

Zo p Zoð Þ p ðX ¼ tjZoÞ= p X ¼ tð ÞdZo,

where p ðZoÞ is the empirical distribution of Zo in the sample, so the integral becomes a

sum over the observed values of Zo (see Lanza et al., 2013). This approach is represented

by Figure 2. It can also be used when Zo is categorical, although its robustness advantage
is then less apparent.

While Lanza et al. (2013) did not propose standard error estimators, Asparouhov and

Muthèn (2014a) and Asparouhov and Muthèn (2014b)suggested using the delta method

for categorical distal outcomes and so-called approximate standard errors for continuous

ones (defined as the square root of the within-class variance divided by the class-specific

sample size). This approach is currently implemented inMPlus. In Latent GOLDbootstrap

or robust standard errors can be chosen using the default settings.

2.3. Three-step approaches

In any ‘three-step’ approach, the estimation procedure is broken down into the following

steps:

1. Estimate themeasurementmodel using the basic latent classmodel, without external

variables.

2. Assign respondents to predicted latent classes.

3. Estimate the structural models of interest for the latent classes and external variables,
using the assigned classes in place of the latent classes.

Different three-step methods differ in step 3, where bias-corrected methods allow for

the misclassification error introduced in step 2, but the classical (or ‘naive’) three-step

method does not.

Step 1 consists of fitting the basic LC model (2) with the selected number of latent

classes. The assignment in step 2 is then based on

pðX ¼ tjY¼ yÞ¼ pðX ¼ tÞpðY¼ yjX ¼ tÞ
pðY¼ yÞ ¼ PðX ¼ tÞPðY¼ yjX ¼ tÞ

∑upðX ¼uÞpðY¼ yjX ¼uÞ , (6)

that is, the posterior probabilities that a respondent belongs to each class t given the

respondent’s observed response vectory, derived from themodel estimated in step 1. The

X

…Y1 Y2 YK

ZoXZo

Step 1 Step 2
Figure 2. The LTB approach.
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most common way of using these probabilities is modal assignment, which allocates

each respondent to the class for which they have the highest posterior probability. Let us

denote this assigned class byW .

In step 3, the assigned class membership W is used in the role of X in estimating the
structural model. In the classical method, this is donewithout any further adjustment. For

example, the model (3)–(4) is simply replaced by

pðZo,W jZpÞ¼ pðW jZpÞ pðZojW ,ZpÞ, (7)

where pðW jZpÞ and pðZojWi,ZpÞ are models of the same form as pðXjZpÞ and pðZojX,ZpÞ
respectively, for example amultinomial logisticmodel forW and a linear regressionmodel

for a continuous Zo. This classical three-step approach is depicted in Figure 3.

The problem with this naive approach is thatW is not necessarily equal to the true X.
The assignment in step 2 thus introduces amisclassification error which can severely bias

the step 3 estimates. The overall misclassification probabilities are given by

pðW ¼ sjX ¼ tÞ¼∑ypðY¼ yÞpðX ¼ tjY¼ yÞpðW ¼ sjY¼ yÞ
pðX ¼ tÞ (8)

for all s, t, where each pðW ¼ sjY¼ yÞ is either 0 or 1whenmodal assignment is used. The

sum in (8) is over all the response patterns Y¼ y, but it is often convenient and sufficient

to estimate pðY¼ yÞ by its empirical distribution, in which case the sumwill be only over

those y which appear in the observed data.

Bias-adjusted three step approaches were developed in order to correct for this

classification error (for their details and derivations, see Asparouhov & Muthèn, 2014a,

2014b; Bakk, Tekle, &Vermunt, 2013; Bolck, Croon, &Hagenaars, 2004; Vermunt, 2010).

They are based on the equality

pðZo,W jZpÞ¼∑
t

pðZo,X ¼ tjZpÞpðW jX ¼ tÞ, (9)

where the empirical PðZo,W jZpÞ is used to estimate PðZo,X ¼ tjZpÞ, and pðW jX ¼ tÞ are
known from steps 1 and 2. There are twomainmethods,which do this slightly differently.

The Bolck–Croon–Hagenaars (BCH) approach estimates the model of interest by fitting

pðZo,W jZpÞ, but using estimation weights which are obtained from the inverse of the

matrix of the misclassification probabilities pðW jXÞ (Vermunt, 2010). This approach is

obtained, in effect, by solving (9) for the model of interest pðZo,X ¼ tjZpÞ. Because of this

X

Y W

Y

Z

W

Figure 3. The‘classical’ three-stepapproach.
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weighting procedure some of the weights can be negative. This is a normal consequence

of theweighting, and it is only a problemwhen it also leads to inadmissible estimates of the

model parameters (which can happen especially in situations where the entropy of the

measurement model is low). The approach as originally proposed by Bolck et al. (2004)
did not use a weighted analysis, but rather transformed PðZ,W Þ into PðZ,XÞ using a

matrix manipulation, but that implementation was limited to categorical covariates only.

For the ML approach (Vermunt, 2010), by contrast, step 3 consists of fitting the right-

hand side of (9) as a latent class model, but with pðW jX ¼ tÞ treated as known numbers.

This is very similar in spirit to the two-step estimation discussed below, except that there

pðYjX ¼ tÞ will be used directly, instead of pðW jX ¼ tÞ here.
For both the ML and BCH approaches, correct standard errors of the estimates from

step 3 need to be adjusted also for the uncertainty in the step-two estimates (Bakk,
Oberski, & Vermunt, 2014). This can be done using the general ideas of pseudo-ML

estimation introduced by Gong and Samaniego (1981). This standard error correction

makes only a minor difference inmost instances where themeasurementmodel is strong,

but it can be important when the measurement model is weak. It is not implemented by

default in standard software, so it has to be done manually in R or Python, for example. In

Latent GOLD it is possible to easily obtain the step 1 covariance matrix that is needed for

the calculations; for details readers can consult the Latent GOLD upgrade manual for

Latent GOLD 5.1, section 5.15 (Vermunt & Magidson, 2016). Even more importantly,
when proportional assignment is used, standard errors need to be corrected for the

multiple weighting, for the fact that each observation appears T times in the data for the

step-3 model. This correction can be done in standard software by using complex

sampling weighting (Wedel, ter Hofstede, & Steenkamp, 1998); for details, see Bakk et al.

(2014).

Bias-adjusted three-step methods approach LC modelling with external variables by

framing it as a problem ofmisclassification. A different incomplete-data formulation of the

problemwould be to treat it as one ofmissing data,where the true values of the latent class
variable X are missing. One general method for dealing with such problems is multiple

imputation of missing values. The simplest way of applying it here is to draw multiply

imputed values ofX from their posterior distribution givenY, that is,with theprobabilities

given by (6). This approach is known as ‘multiple pseudo-class draws’. However, it works

no better than single modal assignment of X, and multiple pseudo-draws are indeed best

seen as a variant of naive three-step estimation. The reason for its failure is that, in order to

avoidbiasedestimatesof subsequentmodelsof interest,multiple imputationofanymissing

data should be conditional on all the variables in thosemodels of interest. Here this means
that the probabilities of the draws ofX should be conditional also on the external variables

ðZp,ZoÞ andobtained froma step 1modelwhich includes them (whereZo canbe included

among thecovariates for simplicity). This approachof inclusiveLCanalysiswasproposed

by Bray, Lanza, and Tan (2015), with a focus on models with distal outcomes Zo. They

showed that it canworkwell in this context.However, since thismethod includes all of the

variables in its first step, it is best seen as a variant of one-step estimation, and shares its

weaknesses as well as its strengths. As such, multiple imputation from inclusive LC

modelling is not discussed in more detail here (Figure 4).

2.4. The two-step approach

The ‘two-step’ approach has the same first step as the three-step methods, that of

estimating the measurement model from the basic LC model. Then, instead of calculating
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any assigned latent classes W , in its second and last step it fixes the parameters of the

measurementmodel at their estimated values. In otherwords, in step 1we estimatemodel

(2), and in step 2 we estimate the model of interest using (3)–(4), but with pðY ikjX ¼ tÞ
treated as known numbers rather than estimable parameters, and fixed at their estimates

from step 1. This procedure is represented by Figure 5. It can be implemented with any

software which would also allow one-step estimation of the model.

The two-step approach was first proposed for latent class models by Bandeen-Roche,

Miglioretti, Zeger, and Rathouz (1997) and Xue and Bandeen-Roche (2002), and further
developed and described by Bakk and Kuha (2018). The theory of the method can be

derived from the more general idea of pseudo-ML estimation in Gong and Samaniego

(1981). The simplest way to estimate standard errors of the estimated parameters of the

structural model is to simply use their standard errors from step 2 of the estimation.

However, as was the case also in three-step estimation, this ignores the uncertainty in the

measurement parameters from step 1, which means that the standard errors will be

underestimated to some extent. The step 1 uncertainty can also be accounted for, as

described in Bakk and Kuha (2018). This makes most difference in situations where the

X

W

Zp X Zo

OR:(a) (b)

W

X

Y W

Y

Step 1 Step 2 Step 3 

W

Figure 4. The bias-adjusted three-step approaches.

X

…Y1 Y2 YK

Zp X

…Y1 Y2 YK

Zo

OR:
(b)(a)

Step 2 of the two-step approach

Figure 5. The second step of the two step approaches: the model including a covariate and the

model including a distal outcome.
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entropy of the measurement model is low, that is, when the estimated latent classes are

poorly distinguished from each other and/or the sample size is small.

3. Latent class modelling with external variables: recommended

approaches

In this section we offer comparisons and recommendations between the methods
described above, focusing on the one-step method (including its LTB variant), the two-

step method, and the bias-corrected (BCH and ML) three-step methods (the naive three-

step method has essentially the same properties in almost all situations: it is straightfor-

ward to apply, but suffers from misclassification bias unless the measurement model is

very strong). We consider in particular the flexibility, practicality and robustness of the

methods in different situations. We discuss first models which include only external

covariates or only distal outcomes, and then consider more complex models. A summary

of the main conclusions from the comparisons is given in Table 1.
A summary of the labelling of these methods in Latent GOLD and Mplus is given in

Table 2, and some examples of their use in the Appendix A. The Mplus syntax language

furtherdifferentiatesbetween ‘automatic’ andmanualMLandBCHmethods.Thesearenot

standalonemethods,butdifferentprogrammingchoicesforthem.The‘automated’options

are not recommended, because of their black-box approach and strict assumptions. The

‘manual’ options forMLandBCHare very flexible, and comparable in functionalities to the

modelling possibilities available in the Latent GOLD syntax language.

3.1. Models with covariates

The one-, two- and three-stepmethods can all be usedwhen the structural model involves

only covariates Zp and one latent class variable. When all of the underlying model

assumptions are met (i.e., there are no direct effects between the covariates and the

indicators, and all the association between the indicators is explained by the latent

variable) and the LC measurement model is strong enough (i.e., entropy R2 is above .50),

all of these methods give consistent estimates of the parameters of the structural models.
The one-step estimates are then generally the most efficient (i.e., have the smallest

standard errors), followed by the two-step and three-step estimates, but the differences in

efficiency between all of them tend to be small (for such comparisons, see Bakk & Kuha,

2018, and references cited there).

However, the methods differ crucially in how they select and estimate the

measurement model which defines the latent classes. In the stepwise approaches this is

done in the first step, excluding information about the covariates, and then fixed. In the

one-step approach, in contrast, the measurement model is estimated together with the
structural model, and re-estimated every time the structural model changes. The two

estimated models then affect each other, so that every time a new covariate is added or

removed the measurement model will change, and even the number of the latent classes

suggested by goodness-of-fit statistics can change. To avoid the latter problem, the class

enumeration at least should be done in a stepwise manner, so that the number of latent

classes is selected using only the basic LC model and this number is then fixed when

external variables are introduced (Nylund-Gibson et al., 2019). Even then, the class-

specific measurement probabilities will change when the structural model is changed,
thus in effect altering the definition of the latent classes. If these changes are small this is

Latent class analysis with external variables 9
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not amajor problem. But if the changes in themeasurementmodel are big enough and the

latent classes become so distorted that they cannot be meaningfully compared between

models with different choices of covariates (for an example, see Bakk & Kuha, 2018).

Whether this will happen is only known when we actually fit the models. To avoid these

challenges the use of stepwise approaches instead of the one-step approach is

recommended.

In simulation studies where we know that the structural model is correctly specified,

the situation where the different estimators differ most is one where the measurement
model is weak and the latent classes are poorly separated (the entropy is below .50, say).

Estimates from the stepwise approaches can then be biased andwill have higher variance

than one-step estimates. The reason for this difference is that the one-step approach

benefits from the extra information in the covariates, which contributes to defining a

stronger measurement model (Vermunt, 2010) – the same applies to models where this

extra information comes from a distal outcome Zo. This situation of a weakmeasurement

model (entropy below .50) is one where the one-step approach is most recommended,

but the analyst should be aware that the interpretation of their latent classes is then
particularly strongly driven by the covariates or distal outcomes, and not just the variables

Y which are intended as the indicators of the classes.

Another, smaller contrast between the methods arises when we would want to use a

different set of observations to estimate the measurement model than the structural

model. Thismay be the case if there is missing data in the covariates, or if wewould like to

use a completely separate data set to estimate the measurement model (this was the

original motivation of two-step modelling in Xue & Bandeen-Roche, 2002).

Accommodating this is difficult in one-step estimationwithout something likemultiple
imputation of the missing data, but it is straightforward in stepwise methods. For the

estimated conditional probabilities to be transferable from the data set used for the first

step to theoneused to estimate the structuralmodel the assumptionneeds tobemade that

the samemeasurementmodel holds in both data sets. Furthermore for three-stepmethods

we also assume that the distribution of the latent classes is the same in the two data sets

(since (6) and (8) depend also on PðX ¼ tÞ).

3.2. Models with distal outcomes

All of themethods considered here againworkwell formodelswith a distal outcomeZo, if

the model assumptions are satisfied. If they are not, however, differences between

Table 2. Labeling used in the GUI of mainstream software for the different approaches

Tutorial Mplus ‘manual’ Latent Gold Key references

BCH BCH BCH Vermunt (2010)

ML With equal variances: DE3step ML Vermunt (2010)

With unequal variances: DU3step

Covariate: R3step

LTB Categorical: Dcat Only from syntax Lanza et al. (2013)

Continuous Dcont

Two-step Only from syntax Bakk–Kuha in LG 5.1a Bakk and Kuha (2018)

Note. aIn earlier versions of Latent GOLD manual implementation is possible. In Appendix A we

show the manual version. This can also be implemented in any other software for LC analysis that

allows for fixed effect parameters.
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different methods are larger than they were for models with covariates. Distal outcome

models have received a lot of attention in recent years, with several simulation studies

looking into their properties under different types of violations of underlying model

assumptions (Asparouhov & Muthèn, 2014a, 2014b; Bakk & Vermunt, 2016; Lythgoe
et al., 2019; Shin, No, & Hong, 2019; Zhu, Steele, &Moustaki, 2017). Nylund-Gibson et al.

(2019) give a good summary of the existing literature and recommendations, uponwhich

we expand here.

One-step estimation again suffers from a circularity problem, which is now very

obvious (although the problem is ultimately the same even in models with covariates).

This is because the outcomeZo that the latent class variableX is supposed to predict in the

structural model acts also as another indicator variable in the measurement model, which

contributes to the definition of X. It is difficult or impossible to separate these two
interpretations, andmainly for this reasonwe cannot recommend one-step estimation for

distal outcome models.

When the structural model involves continuous or count distal outcomes, even

stepwise methods can be sensitive to violations of the distributional assumptions about

them. In particular, suppose that Zo given X is taken to be normally distributed with a

constant conditional variance. The one-step, two-step andML three-step estimationmake

full use of this assumption, and they can thus be biasedwhen the assumptions are violated

by non-normality (skewness or kurtosis) and/or heteroscedasticity of variance within the
latent classes (Asparouhov & Muthèn, 2014a, 2014b; Bakk & Kuha, 2018; Bakk &

Vermunt, 2016; Shin et al., 2019). For example, Dziak, Bray, Zhang, Zhang, and Lanza

(2016) foundML performing almost as badly as one-step estimation or point estimation in

thepresence ofmisspecifiednumerical distal outcomes, and evenworse than it in terms of

confidence interval coverage. In essence, the estimation method then has to distort the

estimated probabilities of the latent classes and the regressionmodel for distal outcome in

order to fit thewrongly assumed conditional distribution. An exception to this is the three-

step BCH approach. Because for continuous outcomes its third step involves (weighted)
estimation of a linear regression (ANOVA) model, it avoids (especially when used with

robust standard errors) normality assumptions and is insensitive to heteroscedasticity. So

from a robustness point of view, BCH can be recommended for models with a continuous

distal outcome.

The assumptions about the distribution of a distal outcome are, however, empirically

examinable, even with a preliminary naive three-step method (i.e., by examining models

for Zo given assigned class W ).1 If this suggests problems, they may be reduced by

transforming the outcome or by expanding the model to allow for unequal conditional
variances forZo in different latent classes. This should oftenmake two-step and three-step

ML methods appropriate also in this case. For models with unequal conditional variances

the BCHmethod should be used withmodelling the variances as equal to avoid modelling

negative variances in some latent classes. If the difference in variances is of interest then

the BCH method should be avoided, and ML used instead. Finally, concerns about

distributional assumptions are less relevant for models for categorical outcome variables,

and any of the stepwise methods can be used for them. However, since BCH can lead to

negative frequencies, ML should be preferred.

1 In addition, Mplus offers some ‘safety checks’ for the ML approach: it reports if a large switch in class
probabilities took place, and does not provide the step 3 estimates.

12 Zsuzsa Bakk and Jouni Kuha



As noted above, the LTB variant of the one-step approach (Lanza et al., 2013) was

developed specifically to avoid distributional assumptions about a continuous Zo. It has

also been examined under different conditions by as Asparouhov andMuthèn (2014a) and

Asparouhov and Muthèn (2014b) and Bakk, Oberski, and Vermunt (2016). They
concluded thatwhile themethodworks otherwise, it can still yield biased estimateswhen

the variances of Zo are unequal across the latent classes X. This would translate into

quadratic effects of Zo in the (multinomial) logistic model for X given Zo, and the

estimates can be biased if such terms are not included. The LTB method also has the

property of all one-step methods that the definition of the latent classes is affected by the

outcome variable.

3.3. More complex models

We have so far discussed models which involve a single latent class variable and which

include external variables in the form of either covariates only or a single distal outcome

only. Both of these limitations can be relaxed, to arrive at models which involve multiple

LC variables and/or external variables in multiple roles. The considerations between one-

step and stepwise approaches then remain unchanged, in that one-step estimation

unavoidably leaves the measurement and structural models confused with each other,

while stepwise estimation avoids this.
Among the stepwise approaches, the three-step BCH method becomes unwieldy or

unusable when the models get more complex, so it cannot be recommended for such

situations (Bray & Dziak, 2018). The ML and two-step approaches, on the other hand, can

still be used essentially unchanged. This is because in their last step they both maximize a

log-likelihood which is of the same form as the one which would be used for one-step

estimation, except with a measurement component (for W in ML, for Y in two-step

estimation) fixed at known values. They can thus be used whenever one-step estimation

would also be feasible, in principle. It should be noted, however, that we have so far very
little experience with such more complex models, either in practice or with simulations.

They are also not fully implemented in standard software, so some hand-coding (of the

syntax ofMplus or Latent GOLD)would typically be required (e.g.,modelswith two latent

variables cannot be run from theGUI of Latent GOLD, but can be easily implementedwith

its syntax). Similarly, the fully correct standard errors of the estimators are not yet

implemented, so that the most accessible options are to ignore the uncertainty from the

first step of estimation or to carry out (hand-coded) bootstrap variance estimation. Similar

practical caveats apply also to even more complex models such as multilevel or latent
transitionmodels, even though the two-step andML approaches are generalizable to them

as well (Bray & Dziak, 2018; Di Mari & Bakk, 2018).

Another kind of extension is to models where the measurement model is generalized

to allow for direct associations between external variables and indicators Yk, even

conditional on latent class X. This would be the case, in particular, if we wanted to

consider such direct paths between covariates Zp and the indicators, to examine or allow

for non-invariance of measurement (differential item functioning) with respect to the

covariates. Suchdirect effects can be accommodated,with some additional complexity, in
two-step (Di Mari & Bakk, 2018) and three-step estimation (Vermunt & Magidson, 2020).

Some examinations of this situation have recently been carried out by Di Mari and Bakk

(2018) and Janssen, van Laar, de Rooij, Kuha, and Bakk (2019), but the performance of the

different estimators in different circumstances here is still a question for further research.
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In conclusion, based on the available data for complex LC models the two-step

estimator seems to have the most desirable properties: flexibility of modelling (a quality

lacking from the three step approaches) and good estimation speed (which improves

compared to the one-step approach since the same parameters do not need to be re-
estimated after every modification in the model).

4. Example applications

In the followingwe illustrate the use of the different estimators via two real data examples

using data from the 1976–77 General Social Survey, a cross-sectional survey conducted in
the USA by the National Opinion Research Center (1977). The first example illustrates a

model with a continuous distal outcome predicted by a single LC variable. The second

example includes two LC variables, one as the outcome and the other as one of the

covariates.

4.1. A distal outcome model: predicting income from social status

Here we consider a model which includes a person’s social status, specified as an LC
variable, as a predictor for the person’s income. The indicators for social status are the

respondent’s father’s and mother’s education and the prestige of the father’s

occupation. Education is measured in five categories, ranging from ‘lower than high

school’ to ‘graduate’. The father’s job prestige is measured on a scale from 12 to 82 that

we have recoded into three categories: low (up to 36), medium (37–61) and high (62 or

above). This recoding and the initial LC analysis are described in more detail in Bakk et al.

(2016). The best-fitting measurement model has three latent classes, as shown in

Table 3. We label them ‘low’, ‘medium’ and ‘high’ social class, with estimated
proportions of 69%, 24% and 7% of the respondents, respectively. We then related this

social status variable to the respondent’s real income (measured in thousands of dollars)

as a distal outcome.

Results from different ways of estimating this model are shown in Table 4. The

substantive conclusion using all approaches is that income is highest among the group

with the highest social status at birth, and lowest among the lowest, suggesting

persistence of social position between the respondent’s and their parents’ generations.

The estimated magnitudes of the income differences between the latent classes are,
however, rather different between the different modelling approaches. Knowing that the

BCH approach is the most robust for models with continuous distal outcomes, we can

compare its results with the other estimates. For the one-step estimates this comparison is

not really possible, because the latent classes themselves get distorted from the ones in

Table 3 when the income variable is added to the model (thus these estimates are not

reported here). Among the stepwise methods, all but the LTB estimates show a stronger

association between social status and mean income than is indicated by the BCH

estimates. The reason for this overestimation is most likely that the distribution of income
is skewed and has a variance which increases across the social status classes (see the last

row of Table 4, which shows its class-specific variances). Two-step and ML estimates

which allow for unequal conditional variances are also shown in Table 4, but they do not

fully remove the difference to the BCH estimates. A still closer agreement between the

different estimates could be obtained by considering log-income as the distal outcome, to

reduce its skewness.
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4.2. A model with two latent-class variables: predicting tolerance towards minorities

from social status, education and age

Here we add a second LC variable. It describes the respondent’s level and pattern of

tolerance towards different minorities, based on five questions which refer separately to

tolerance towards communists, militarists, racists, atheists and homosexuals. Latent class

analysis of these itemswas originally carried out byMcCutcheon (1985) and replicated by
Bakk et al. (2014), andmore information on the data and the analysis can be found there.2

Table 3. The latent class model for social class

Social status Low Medium High

Size .69 .24 .07

Father’s job status

Low .47 .31 .05

Medium .53 .67 .46

High .00 .02 .49

Mother’s education

Below high school .83 .14 .15

High school .16 .78 .44

Junior college .00 .03 .01

Bachelor .01 .04 .30

Graduate .00 .01 .10

Father’s education

Below high school .95 .08 .01

High school .05 .86 .12

Junior college .00 .00 .05

Bachelor .00 .05 .38

Graduate .00 .00 .43

Table 4. Predicting income from social class with the different approaches

Method

Conditional

variancesa μ1 (low) μ2 (medium) μ3 (high)

BCH 26.65 (0.60) 37.06 (1.35) 44.70 (3.09)

ML Equal 25.59 (0.50) 33.22 (2.33) 113.21 (23.59)

ML Unequal 20.63 (0.31) 44.94 (1.06) 65.67 (3.84)

LTB 25.37 (0.90) 36.49 (1.16) 44.16 (2.62)

Two-step Equal 26.90 (0.58) 34.86 (1.77) 51.04 (6.48)

Two-step Unequal 24.72 (0.67) 36.54 (1.49) 64.03 (3.78)

One-step LC model distorted

Variances BCH 538.43 (47.68) 713.64 (104.39) 1,209.44 (252.19)

Note. aThe standard errors of BCHestimates are calculated assuming unequal conditional variances.

The one-step estimates are distorted under both equal and unequal conditional variances.

2While the original analysis was performed using listwise deletion, we included all the missing data to be in line
with the previous model and to show the flexibility of the stepwise approaches in this sense. As a consequence
the LC model parameters are somewhat different than in the papers cited.
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A four-class model clusters respondents into the intolerant (57% of the respondents),

those who are tolerant towards all minorities (21%), and two classes which we label

‘intolerant of left’ (11%) and ‘intolerant of right’ (11%), as shown in Table 5.

We regress these tolerance classes on the respondent’s social status, education and

birth cohort. Based on the analysis performed by McCutcheon, education was recoded
into three categories (lower than high school, high school, beyond high school), and birth

cohort was coded into four categories (‘old’, born before 1914; ‘middle’ aged, born in

1915–1933; ‘youngmiddle’ aged, born in 1934–1951; and ‘young’, born after 1951). Social
statuswas included in the form of the LC variable defined in the first example. This second

example thus illustrates a model where an LC variable depends on covariates and where,

further, one of the covariates is itself latent (the fitted model also includes a regression

model for social status given education and birth cohort, to allow for associations among

the covariates).
This type of analysis can only be performed using the one-step, two-step and ML

approaches. The LTB approach is not applicable when the latent class is the outcome

variable, and the BCH approach cannot handlemore than a single latent variable. As in the

first example, here one-step estimation again results in an estimated model where the

definition of the tolerance classes has changed substantially, and we do not report these

results. Table 6 thus reports the estimated coefficients in the structural model for the

tolerance classes, obtained using the three-step ML approach and the two-step approach.

The substantive conclusions are very similar between them. We can see that controlling
for education and cohort, people with low social status have a lower probability of being

tolerant, while people with higher status tend to bemore tolerant. People of higher social

status are also more intolerant of the left than the other groups. Controlling for the other

variables, people with higher education tend to be more tolerant, and less intolerant or

intolerant of the left. Older people tend to be more intolerant and younger people more

tolerant.

5. Discussion

In this paper we have provided an overview of currently existing approaches for relating

latent class membership to external variables, and given practical recommendations for

applied researchers about which of themultitude of approaches is best suited to different

modelling situations. We compared one-step estimation of the LC model with the newly

developed bias-adjusted (ML and BCH) three-step (Vermunt, 2010), two-step (Bakk &
Kuha, 2018), and LTB (Lanza et al., 2013) approaches.

Table 5. The tolerance latent classes

Tolerant Intolerant Intolerant of left Intolerant of right

Size .21 .57 .11 .11

Tolerance for

Racists .90 .08 .78 .02

Communists .94 .04 .25 .62

Militarists .91 .05 .39 .36

Atheists .98 .03 .62 .41

Homosexuals .96 .14 .55 .73

16 Zsuzsa Bakk and Jouni Kuha



The crucial disadvantage of the one-step approach is that the LCmeasurementmodel is
re-evaluated every time the structural model is changed, which can mean that the

definition of the latent classes will also keep changing. The stepwise three-step and two-

step methods eliminate this problem. All of them work roughly equally well for models

with external covariates. For models with distal outcomes, the BCH method is the safest

approach, because it is the most robust approach against misspecifications of the class-

specific distribution of the outcome. However, with due care the other stepwisemethods

can also be used in this situation. This means that one should carefully monitor whether

the underlying assumptions are met, and interpret the results with caution if the key
assumptions are violated.

Our experience with other modelling situations is still limited and evolving. With

more complex structural models (e.g., multilevel LC models or Markov models) the

BCH method soon becomes difficult to adopt, but the ML and two-step methods

extend to them easily. For generalising the measurement model, the stepwise

methods can accommodate models with direct covariate effects to capture differential

item functioning, but more research is needed to better understand their performance

in that situation.

Table 6. Predicting tolerance with the ML and two step approaches

Tolerant Intolerant Intolerant of right Intolerant of left

ML

Social status (latent)

Low −.48 (.11) .33 (.11) −.16 (.18) .31 (.23)

Medium .05 (.12) −.18 (.13) .07 (.19) .06 (.27)

High .43 (.17) −.15 (.18) .09 (.28) −.37 (.41)

Education

Lower −.35 (.11) .36 (.07) −.25 (.15) .24 (.14)

High school −.22 (.08) −.04 (.06) .25 (.11) .01 (.11)

Higher .57 (.08) −.32 (.08) .00 (.14) −.25 (.14)

Cohort

Young .39 (.1017) −.84 (.10) .44 (.14) .01 (.15)

Young-middle .39 (.09) −.23 (.07) −.13 (.13) −.03 (.13)

Middle −.11 (.11) .32 (.07) −.08 (.15) −.13 (.16)

Old −.67 (.17) .75 (.09) −.22 (.23) .15 (.19)

Two step

Social status (latent)

Low −.42 (.16) .29 (.17) −.25 (.22) .38 (.40)

Medium .01 (.15) −.36 (.18) .04 (.21) .31 (.39)

High .41 (.28) .06 (.33) .21 (.39) −.69 (.76)

Education

Lower −.48 (.10) .40 (.06) −.30 (.13) .38 (.11)

High school −.18 (.07) −.02 (.06) .28 (.10) −.08 (.10)

Higher .66 (.07) −.38 (.07) .02 (.11) −.30 (.11)

Cohort

Young .40 (.09) −.81 (.09) .35 (.13) .06 (.14)

Young-middle .33 (.08) −.25 (.06) −.10 (.11) .02 (.11)

Middle −.18 (.10) .31 (.07) −.09 (.13) −.04 (.13)

Old −.54 (.14) .75 (.08) −.16 (.18) −.05 (.16)
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We demonstrated and compared the different methods usingmodels for data from the

US General Social Survey. We first considered models for predicting income from social

status of parents represented by three latent classes. The direction of the substantive

conclusion was the same from all of the methods, but the sizes of the associations varied
widely, andwith the one-stepmethod the definition of the latent classeswas also unstable.

We then demonstrated a model with two LC variables, for predicting tolerance towards

minorities (in four latent classes) from (latent class) social status and observed education.

The Latent GOLD syntax for these examples is included in the Appendix A.

The two real data examples have highlighted the weakness of the one-step approach

that we have discussed above, namely that when the model complexity increases the LC

variable will be re-estimated and may change substantially, and the new classes cannot be

meaningfully compared to the simple measurement model. Furthermore, the overall fit
statistics can also show largemisfits, and it is hard to identify which part of themodel they

are coming from. All these issues do not represent a problem for any of the stepwise

estimators. Furthermore, in the second example we showed the ease with which the ML

and two-step approaches can be extended to models with multiple latent variables, a

strength that does not characterize the BCH approach. Nevertheless, the first example

showed that all methods except the BCH are sensitive to distributional assumptions of the

distal outcome, and while the main conclusions did not change while using the ML and

two-step approaches in this example, the differences in the magnitude of the parameters
were substantial.

While creating this overview, some recommendations for future research arose from

our literature search. There is a gap in the literature on stepwise LC modelling for more

complex models, with multiple latent class variables, multilevel LC models, or for

longitudinal models such as latent Markov or latent growth models. Only a few articles

present stepwise estimators for these situations, and there is no overarching simulation

study that evaluates the different estimators for them. Future research should also

investigate the issue of model selection and class enumeration for complex models.
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Asparouhov, T., & Muthèn, B. (2014a). Auxiliary variables in mixture modeling: Three-step

approaches using mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21,

329–341. https://doi.org/10.1080/10705511.2014.915181
Asparouhov, T., & Muthén, B. (2014b). Auxiliary variables in mixture modeling: Using the bch

method in Mplus to estimate a distal outcome model on an arbitrary secondary model.

Retrieved from http://www.statmodel.com/examples/webnotes/webnote21.pdf

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models between latent classes and external

variables. Psychometrika, 83, 871–892. https://doi.org/10.1007/s11336-017-9592-7

18 Zsuzsa Bakk and Jouni Kuha

http://doi.org/10.3886/ICPSR07573.v1
https://doi.org/10.1080/10705511.2014.915181
http://www.statmodel.com/examples/webnotes/webnote21.pdf
https://doi.org/10.1007/s11336-017-9592-7


Bakk, Z., Oberski, D., & Vermunt, J. (2014). Relating latent class assignments to external variables:

Standard errors for correct inference. Political Analysis, 22, 520–540. https://doi.org/10.
1093/pan/mpu003

Bakk, Z., Oberski, D. L., & Vermunt, J. K. (2016). Relating latent class membership to continuous

distal outcomes: Improving the LTB approach and a modified three-step implementation.

Structural Equation Modeling: A Multidisciplinary Journal, 23, 278–289. https://doi.org/10.
1080/10705511.2015.1049698

Bakk, Z., Tekle, F. T., & Vermunt, J. K. (2013). Estimating the association between latent class

membership and external variables using bias-adjusted three-step approaches. Sociological

Methodology, 43, 272–311. https://doi.org/10.1177/0081175012470644
Bakk, Z., & Vermunt, J. K. (2016). Robustness of stepwise latent class modeling with continuous

distal outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 23, 20–31.
https://doi.org/10.1080/10705511.2014.955104

Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & Rathouz, P. J. (1997). Latent variable regression

for multiple discrete outcomes. Journal of the American Statistical Association, 92,

1375–1386.
Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical

variables: One-step versus three-step estimators. Political Analysis, 12, 3–27.
Bray, B. C., & Dziak, J. J. (2018). Commentary on latent class, latent profile, and latent transition

analysis for characterizing individual differences in learning. Learning and Individual

Differences, 66, 105–110. https://doi.org/10.1016/j.lindif.2018.06.001 (Modelling individual

differences in students’ cognitions and development: Latent variable mixture model

approaches).

Bray, B. C., Lanza, S. T., & Tan, X. (2015). Eliminating Bias in Classify-Analyze Approaches for Latent

Class Analysis. Structural EquationModeling: AMultidisciplinary Journal, 22, 1–11. https://d
oi.org/10.1080/10705511.2014.935265 (PMID: 25614730)

Di Mari, R., & Bakk, Z. (2018). Mostly harmless direct effects: A comparison of different latent

Markovmodeling approaches. Structural EquationModeling: AMultidisciplinary Journal,25,

467–483. https://doi.org/10.1080/10705511.2017.1387860
Dziak, J. J., Bray, B. C., Zhang, J., Zhang, M., & Lanza, S. T. (2016). Comparing the performance of

improved classify-analyze approaches for distal outcomes in latent profile analysis.

Methodology: European Journal of Research Methods for the Behavioral Social Sciences,

12, 107–116. https://doi.org/10.1027/1614-2241/a000114
Fagginger Auer, M. F., Hickendorff, M., Van Putten, C. M., Bèguin, A. A., & Heiser, W. J. (2016).

Multilevel latent class analysis for large-scale educational assessment data: Exploring the relation

between the curriculum and students’ mathematical strategies. Applied Measurement in

Education, 29, 144–159. https://doi.org/10.1080/08957347.2016.1138959
Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade

predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive

Development, 24, 411–429. https://doi.org/10.1016/j.cogdev.2009.10.001 (Atypical

Development of Numerical Cognition).

Gong, G., & Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and

applications. The Annals of Statistics, 9, 861–869. https://doi.org/10.1214/aos/1176345526
Goodman, L. A. (1974). The analysis of systems of qualitative variables when some of the variables

are unobservable. Part I: A modified latent structure approach. American Journal of Sociology,

79–259. https://doi.org/10.1086/225676
Hagenaars, J. A. (1990). Categorical longitudinal data-loglinear analysis of panel, trend and

cohort data. Newbury Park, CA: Sage.

Janssen, J. H.M., van Laar, S., de Rooij, M. J., Kuha, J., & Bakk, Z. (2019). The detection andmodeling

of direct effects in latent class analysis. Structural Equation Modeling: A Multidisciplinary

Journal, 26, 280–290. https://doi.org/10.1080/10705511.2018.1541745

Latent class analysis with external variables 19

https://doi.org/10.1093/pan/mpu003
https://doi.org/10.1093/pan/mpu003
https://doi.org/10.1080/10705511.2015.1049698
https://doi.org/10.1080/10705511.2015.1049698
https://doi.org/10.1177/0081175012470644
https://doi.org/10.1080/10705511.2014.955104
https://doi.org/10.1016/j.lindif.2018.06.001
https://doi.org/10.1080/10705511.2014.935265
https://doi.org/10.1080/10705511.2014.935265
https://doi.org/10.1080/10705511.2017.1387860
https://doi.org/10.1027/1614-2241/a000114
https://doi.org/10.1080/08957347.2016.1138959
https://doi.org/10.1016/j.cogdev.2009.10.001
https://doi.org/10.1214/aos/1176345526
https://doi.org/10.1086/225676
https://doi.org/10.1080/10705511.2018.1541745


Lanza, T. S., Tan, X., & Bray, C. B. (2013). Latent class analysiswith distal outcomes: A flexiblemodel-

based approach. Structural Equation Modeling, 20, 1–26. https://doi.org/10.1080/10705511.
2013.742377
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Appendix A:

Latent GOLD example syntax for the different modelling approaches

Stepwise approaches in Latent GOLD

When using a bias-adjusted step-three approaches (ML and BCH) in Latent GOLD, one first

estimates an LC model and saves the classification information and other variables of
interest to an output file. In the third step, this output file is used as the data set to be

analyzed. The class assignments are related to the distal outcome as follows:

options

step3 modal ml;

output

parameters = effect standarderrors = robust;

variables

dependent inc_1000 continuous;

latent Cluster nominal posterior = (clusterstatus#1 clusterstatus#2 clusterstatus#3);

equations

inc_1000 <- 1 + Cluster;

inc_1000|cluster;

The choice of the type of three-step approach is defined by the command line ‘step3

<<modal/proportional ml/ bch>> simultaneous’. In the definition of the LC variable one

specifies the variables in the data file containing the posterior classification probabilities

from the first step: ‘(Cluster #1 Cluster #2 Cluster #3)’.

Using the LTB approach in Latent GOLD

output

parameters = effect betaopts = wl standarderrors = npbootstrap profile = LTB

classification classification = model estimatedvalues = model;

variables

dependent paprecat nominal, madeg nominal, padeg nominal;

independent inc_1000;

latent

Cluster nominal 3;

equations

Cluster <- 1 + inc_1000;

paprecat <- 1 + Cluster;

madeg <- 1 + Cluster;

padeg <- 1 + Cluster;

The profile = LTB optionwill provide the class-specific means and the corresponding

standard errors. In current syntax the standard error is estimated using nonparametric

bootstrap, the jackknife, and standard options can also be chosen.
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Two-step model predicting income from social status

As of version 6.0 of Latent GOLD, by selecting the Bakk–Kuha method from the GUI one

can run simple two-stepmethods. Formore complexmodels syntax can be used using the

option latent Cluster nominal posterior= ( logdensity#1 logdensity#2 logdensity#3);. The
fixed values can also be read in froma text file.Moreover, the text file can also contain their

covariancematrix. The covariancematrix is then used to correct the standard errors of the

step 2 parameters for uncertainty in the step 1 parameters (a step that we skipped for

simplicity here). We present below the syntax option that can be run also in earlier

versions of Latent GOLD.

output

parameters = effect betaopts = wl standarderrors = robust profile probmeans = posterior

estimatedvalues = model;

variables dependent paprecat nominal, madeg nominal, padeg nominal, inc_1000 continuous;

independent education nominal, cohort_ nominal;

latent

Clusterstatus nominal 3;

equations

clusterstatus <-(a1)1;
paprecat <- (k1)1 + (k2)clusterstatus;

madeg <- (k3)1 + (k4)clusterstatus;

padeg <- (k5)1 + (k6)clusterstatus;

inc_1000 <- 1 + clusterstatus;

inc_1000;

a1 k1 k2 k3 k4 k5 k6 ={<<fixed values>>}

Using the two-step approach the syntax, contains the full measurement and structural
model in the second step, keeping the parameters of the measurement model fixed.

Two step model with two latent variables: predicting tolerance from social status and

education

output

parameters = effect betaopts = wl standarderrors = robust profile probmeans = posterior

estimatedvalues = model;

variables

dependent racist_ nominal, communists_ nominal, militarists_ nominal,

atheists_ nominal, homtest nominal,

paprecat nominal, madeg nominal, padeg nominal;

independent education nominal, cohort_ nominal;

latent

ClusterTol nominal 4, clusterstatus nominal 3;

equations

clusterTol <- 1 + clusterstatus+ education + cohort_;

clusterstatus <-(a1)1 + education;

homtest <- (a)1 + (b)ClusterTol;

Continued
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racist_ <- (c)1 + (d)ClusterTol;

communists_ <- (e)1 + (f)ClusterTol;

militarists_ <- (g)1 + (h)ClusterTol;

atheists_ <- (i)1 + (j)ClusterTol;

paprecat <- (k1)1 + (k2)clusterstatus;

madeg <- (k3)1 + (k4)clusterstatus;

padeg <- (k5)1 + (k6)clusterstatus;

a b c d e f g h i j k1 k2 k3 k4 k5 k6 ={<<fixed values>>}

ML approach with two latent variables: predicting tolerance from social status and
education

options

step3 modal ml;

output parameters = effect standarderrors = robust;

variables

independent education nominal, cohort_ nominal;

latent ClustersocialStatus nominal posterior = ( clustersocialstatus#1 clustersocialstatus#2

clustersocialstatus#3), ClusterTolerance nominal posterior = ( clusterTolerance#1

clusterTolerance#2 clusterTolerance#3 clusterTolerance#4);

equations

clusterTolerance <- 1 + ClustersocialStatus +Education + cohort_; ClustersocialStatus <-
1 + Education;
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