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Summary

As a generalization of the classical linear factor model, generalized latent factor models are
useful for analysing multivariate data of different types, including binary choices and counts.
This paper proposes an information criterion to determine the number of factors in generalized
latent factor models. The consistency of the proposed information criterion is established under
a high-dimensional setting, where both the sample size and the number of manifest variables
grow to infinity, and data may have many missing values. An error bound is established for
the parameter estimates, which plays an important role in establishing the consistency of the
proposed information criterion. This error bound improves several existing results and may be
of independent theoretical interest. We evaluate the proposed method by a simulation study and
an application to Eysenck’s personality questionnaire.

Some key words: Generalized latent factor model; High-dimensional data; Information criteria; Joint maximum
likelihood estimator; Selection consistency.

1. Introduction

Factor analysis is a popular method in social and behavioural sciences, including psychology,
economics and marketing (Bartholomew et al., 2011). It uses a relatively small number of factors
to model the variation in a large number of observable variables, often known as manifest vari-
ables. For example, in psychological science, manifest variables may correspond to personality
questionnaire items for which factors are often interpreted as personality traits. Multivariate data
in social and behavioural sciences often involve categorical or count variables, for which the
classical linear factor model may not be suitable. Generalized latent factor models (Skrondal
& Rabe-Hesketh, 2004; Chen et al., 2020) provide a flexible framework for more types of data
by combining generalized linear models and factor analysis. Specifically, item response theory
models (Embretson & Reise, 2000; Reckase, 2009), which are widely used in psychological
measurement and educational testing, can be viewed as special cases of generalized latent factor
models. Generalized latent factor models are also closely related to several low-rank models for
count data (Liu et al., 2018; Robin et al., 2019; McRae & Davenport, 2020) and mixed data
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2 Y. Chen and X. Li

(Collins et al., 2002; Robin et al., 2020) that make similar probabilistic assumptions, though
these works do not pursue interpretations from the factor analysis perspective.

Factor analysis is often used in an exploratory manner for generating scientific hypotheses.
In this case, known as exploratory factor analysis, the number of factors and the corresponding
loading structure are unknown and need to be learned from data. Several methods have been
proposed for determining the number of factors in linear factor models, including eigenvalue-
based criteria (Kaiser, 1960; Cattell, 1966; Onatski, 2010; Ahn & Horenstein, 2013), information
criteria (Bai & Ng, 2002; Bai et al., 2018; Choi & Jeong, 2019), cross-validation (Owen & Wang,
2016), and parallel analysis (Horn, 1965; Buja & Eyuboglu, 1992; Dobriban & Owen, 2019).
However, fewer methods are available for determining the number of factors in generalized latent
factor models, and statistical theory remains to be developed, especially under a high-dimensional
setting when the sample size and the number of manifest variables are large.

Traditionally, statistical inference of generalized latent factor models is typically carried out
based on a marginal likelihood function (Bock & Aitkin, 1981; Skrondal & Rabe-Hesketh, 2004),
in which latent factors are treated as random variables and are integrated out from the likelihood
function. However, for high-dimensional data involving large numbers of observations, manifest
variables and factors, marginal-likelihood-based inference tends to suffer from a high computa-
tional burden and thus may not always be feasible. In that case, a joint likelihood function that
treats factors as fixed model parameters may be a good alternative (Zhu et al., 2016; Chen et al.,
2019, 2020). Specifically, a joint maximum likelihood estimator is proposed in Chen et al. (2019,
2020) that is easy to compute, and also statistically optimal in the minimax sense when both
the sample size and the number of manifest variables grow to infinity. With a diverging number
of parameters in the joint likelihood function, classical information criteria such as the Akaike
information criterion (Akaike, 1974) and the Bayesian information criterion (Schwarz, 1978)
may no longer be suitable.

This paper proposes a joint-likelihood-based information criterion for determining the number
of factors in generalized latent factor models. The proposed criterion is suitable for high-
dimensional data with large numbers of observations and manifest variables, and can be used
even when data contain many missing values. Under a very general setting, we prove the con-
sistency of the proposed information criterion when both the numbers of samples and manifest
variables grow to infinity. Specifically, the missing entries are allowed to be nonuniformly dis-
tributed in the data matrix, and their proportion is allowed to grow to one, i.e., the proportion
of observable entries is allowed to decay to zero. An error bound for the joint maximum likeli-
hood estimator is established under a general setting, where the data entries can be nonuniformly
missing and the number of factors can grow to infinity. This error bound substantially extends
the existing results on the estimation of generalized latent factor models and related models,
including Cai & Zhou (2013), Davenport et al. (2014), Bhaskar & Javanmard (2015), Ni & Gu
(2016) and Chen et al. (2020). Simulation shows that the proposed information criterion has good
finite-sample performance under different settings, and an application to the revised Eysenck’s
personality questionnaire (Eysenck et al., 1985) finds three factors, which confirms the design of
this personality survey.

2. Joint-likelihood-based information criterion

2.1. Generalized latent factor models

We consider multivariate data involving N individuals and J manifest variables. Let yij be
a random variable that denotes the ith individual’s value on the jth manifest variable. Factor
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Number of factors in high-dimensional models 3

models assume that each individual is associated with K latent factors, denoted by a vector
Fi = (fi1, . . . , fiK )T. We assume that the distribution of yij given Fi follows an exponential
family distribution with natural parameter dj + AT

j Fi, and possibly a scale parameter φ that is
also known as a dispersion parameter, where dj and Aj = (aj1, . . . , ajK )T are manifest-variable-
specific parameters. Specifically, dj can be viewed as an intercept parameter, and ajk is known as
a loading parameter. More precisely, the probability density/mass function for yij takes the form

g(y | Aj, dj, Fi, φ) = exp

{
y(dj + AT

j Fi) − b(dj + AT
j Fi)

φ
+ c(y, φ)

}
, (1)

where b and c are prespecified functions that depend on the exponential family distribution. Given
all the person- and manifest-variable-specific parameters, the data yij, i = 1, . . . , N , j = 1, . . . , J ,
are assumed to be independent. In particular, linear factor models for continuous data, logistic
factor models for binary data, and Poisson factor models for counts are special cases of model
(1). We present the logistic and Poisson models as two examples, while pointing out that (1) also
includes linear factor models as a special case when the exponential family distribution is chosen
to be a Gaussian distribution.

Example 1. When the data are binary, (1) leads to a logistic model. That is, by letting b(dj +
AT

j Fi) = log{1 + exp(dj + AT
j Fi)}, φ = 1 and c(y, φ) = 0, (1) implies that yij follows a Bernoulli

distribution with success probability exp(dj + AT
j Fi)/{1 + exp(dj + AT

j Fi)}. This model is known
as the multi-dimensional two-parameter logistic model (Reckase, 2009) that is widely used in
educational testing and psychological measurement.

Example 2. For count data, (1) leads to a Poisson model by letting b(dj + AT
j Fi) = exp(dj +

AT
j Fi), φ = 1 and c(y, φ) = − log(y!). Then yij follows a Poisson distribution with intensity

exp(dj + AT
j Fi). This model is known as the Poisson factor model for count data (Wedel et al.,

2003).

We further take missing data into account under an ignorable missingness assumption. Let
ωij be a binary random variable, indicating the missingness of yij. Specifically, ωij = 1 means
that yij is observed, and ωij = 0 if yij is missing. It is assumed that, given all the person- and
manifest-variable-specific parameters, the missing indicators ωij, i = 1, . . . , N , j = 1, . . . , J , are
independent of each other, and are also independent of the data yij. The same missing data setting
is adopted in Cai & Zhou (2013) for a one-bit matrix completion problem, and in Zhu et al. (2016)
for collaborative filtering. For nonignorable missing data, one may need to model the distribution
of ωij given yij, Fi, Aj and dj. See Little & Rubin (2019) for more discussions on nonignorable
missingness. For ease of explanation, in what follows we assume the dispersion parameter φ > 0
is known and does not change with N and J . Our theoretical development below can be extended
to the case when φ is unknown; see Remark 6 for a discussion.

2.2. Proposed information criterion

Under the above setting for generalized latent factor models, the loglikelihood function for
observed data takes the form

lK (F1, . . . , FN , A1, d1, . . . , AJ , dJ ) =
∑
ωij=1

log g(yij | Aj, dj, Fi, φ). (2)
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4 Y. Chen and X. Li

A subscript K is added to the likelihood function to emphasize the number of factors in the current
model.

For exploratory factor analysis, we consider the following constrained joint maximum
likelihood estimator as proposed in Chen et al. (2019, 2020):

(F̂1, . . . , F̂N , Â1, d̂1, . . . , ÂJ , d̂J ) ∈ arg max lK (F1, . . . , FN , A1, d1, . . . , AJ , dJ ),

(‖Fi‖2 + 1)
1
2 � C (i = 1, . . . , N ),

(d2
j + ‖Aj‖2)

1
2 � C (j = 1, . . . , J ),

(3)

where lK is defined in equation (2) and ‖ · ‖ denotes the standard Euclidian norm. Here, C is a
reasonably large constant to ensure that a finite solution to (3) exists and satisfies certain regularity
conditions.

As there is no further constraint imposed under the exploratory factor analysis setting, the
solution to (3) is not unique. This indeterminacy of the solution will not be an issue when
determining the number of factors, since the proposed joint-likelihood-based information criterion
only depends on the loglikelihood function value rather than the value of the specific parameters.
The computation of (3) can be done by an alternating maximization algorithm which has good
convergence properties according to numerical experiments (Chen et al., 2019, 2020), even though
(3) is a nonconvex optimization problem. See the Supplementary Material for further discussions
on the computation of (3) and the choice of the constraint constant C.

Let n be the number of observed data entries, i.e., n = ∑N
i=1

∑J
j=1 ωij. The proposed joint-

likelihood-based information criterion takes the form

jic(K) = −2l̂K + v(n, N , J , K),

where l̂K = lK (F̂1, . . . , F̂N , Â1, d̂1, . . . , ÂJ , d̂J ) with F̂i, Âj and d̂j given by (3), and v(n, N , J , K)

is a penalty term depending on n, N , J and K . We choose K̂ that minimizes jic(K).
As will be shown in § 3, the consistency of K̂ can be guaranteed under a wide range of choices

of v(n, N , J , K). In practice, we suggest using

v(n, N , J , K) = K(N ∨ J ) log{n/(N ∨ J )}, (4)

where N ∨ J denotes the maximum of N and J . When there is no missing data, i.e., n = NJ ,
then (4) becomes v(n, N , J , K) = K(N ∨ J ) log(N ∧ J ), where N ∧ J denotes the minimum of
N and J . The advantage of this choice will be explained in § 3.

3. Theoretical results

We start with the definition of several useful quantities. Let pij = Pr(ωij = 1) be the sampling
weight for yij and pmin = min1�i�N ,1�j�J pij be their minimum. Also let n∗ = ∑N

i=1
∑J

j=1 pij,

n∗
i· = ∑J

j=1 pij and n∗·j = ∑N
i=1 pij be the expected number of observations in the entire

data matrix, each row and each column, respectively. Let pmax = (J −1 max1�i�N n∗
i·) ∨

(N−1 max1�j�J n∗·j) be the maximum average sampling weights for different columns and rows.
Let m∗

ij = d∗
j + (A∗

j )
TF∗

i be the true natural parameter for yij, and let M ∗ = (m∗
ij)1�i�N ,1�j�J . We

also denote M̂ = (d̂j + ÂT
j F̂i)N×J to be the corresponding estimator of M obtained from (3). To
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Number of factors in high-dimensional models 5

emphasize the dependence on the number of factors, we use M̂ (K) to denote the estimator when
assuming K factors in the model. Let Kmax denote the maximum number of factors considered
in the model selection process, and let K∗ be the true number of factors.

The following two assumptions are made throughout the paper.

Assumption 1. For all x ∈ [−2C2, 2C2], b(x) < ∞.

Assumption 2. The true model parameters F∗
i , A∗

j and d∗
j satisfy the constraint in (3). That is,

(‖F∗
i ‖2 + 1)

1
2 � C and {(d∗

j )2 + ‖A∗
j ‖2} 1

2 � C, for all i and j.

In the rest of this section we will first present error bounds for the joint maximum likelihood
estimator, and then present conditions on v(n, N , J , K) that guarantee consistent model selection.

Theorem 1. Assume that n∗/(log n∗)2 � (N ∧ J ) log(N + J ) and that the true number of
factors satisfies 1 � K∗ � Kmax. Then, there is a finite constant κ depending on pmax/pmin, C,
φ and the function b, and independent of Kmax, N , J and n∗, such that with probability at least
1 − (n∗)−1 − 2(N + J )−1,

max
K∗�K�Kmax

{
(NJ )−1/2

∥∥M̂ (K) − M ∗∥∥
F

}
� κ

{
Kmax(N ∨ J )

n∗

}1/2

. (5)

In particular, if K∗ is known, then we have (NJ )−1/2‖M̂ (K∗) − M ∗‖F � κ
{
K∗(N ∨ J )/n∗}1/2.

The upper bound established in Theorem 1 is sharp, in the sense that the following lower bound
holds under mild conditions.

Proposition 1 (Lower bound). Assume (K∗)2(J + N ) � n∗. Then, there are constants
κ , N0, J0 > 0, such that, for any N � N0, J � J0 and any estimator M̄ ,

sup
M∗∈G

Pr
[
(NJ )−1/2

∥∥M̄ − M ∗∥∥
F � κ−1{K∗(N ∨ J )/n∗}1/2

]
� 1

2
, (6)

where G = {M ∗ = (m∗
ij) : F∗

i , A∗
j ∈ RK∗

, (‖F∗
i ‖2 + 1)

1
2 � C, {(d∗

j )2 +‖A∗
j ‖2} 1

2 � C for all i, j}
denotes the parameter space. Here, κ is a constant that depends on pmax/pmin, C, φ and the
function b, and is independent of K∗. It is possibly different from the κ in Theorem 1.

We make a few remarks on Theorem 1.

Remark 1. It is well known that in exploratory factor analysis the factors F1, . . . , FN are not
identifiable due to rotational indeterminacy, while the mij are identifiable. Thus, we establish
error bounds for estimating the matrix M as in (5) and (6) rather than those of the Fi and Aj. If
additional design information is available and a confirmatory generalized latent factor model is
used, then the methods described in § 2.2 and the theoretical results in Theorem 1 can be extended
to establish error bounds for the Fi following a similar strategy to Chen et al. (2020).

The key assumption for Theorem 1 to hold is that both M ∗ and M̂ are low-rank matrices. It
can be easily generalized to other low-rank models beyond the current generalized latent factor
model, including the low-rank interaction model proposed in Robin et al. (2019). For example,
one may parameterize mij = dj + AT

j Fi + d†
i , where d†

i is a person-specific intercept term.
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6 Y. Chen and X. Li

Remark 2. The error bound (5) improves several recent results on low-rank matrix esti-
mation and completion. For example, when n∗ = o{(N ∧ J )2} it improves the error rate
Op

[{(N ∨ J )(n∗)−1 +NJ (n∗)−3/2}1/2
]

in Chen et al. (2020), where a fixed K∗ and uniform sam-
pling, i.e., pmax = pmin, are assumed. Other examples include Ni & Gu (2016) and Bhaskar &
Javanmard (2015), where the error rates are shown to be Op[{K∗(N ∨ J ) log(N + J )(n∗)−1}1/2]
and Op{K∗(N ∨ J )1/2(n∗)−1/2 + (N ∨ J )3(N ∧ J )1/2(K∗)3/2(n∗)−2}, respectively, assuming
binary data. The error estimate (5) is also smaller than the optimal rate {K∗(N ∨ J )(n∗)−1}1/4

for approximate low-rank matrix completion (Cai & Zhou, 2013; Davenport et al., 2014), which
is expected as the parameter space in these works, which consists of nuclear-norm constrained
matrices, is larger than that of our setting. Several technical tools are used to obtain the improved
error bound, including a sharp bound on the spectral norm of random matrices that extends a recent
result in Bandeira & Van Handel (2016), and an upper bound of singular values of Hadamard
products of low-rank matrices based on a result established in Horn (1995).

The constant κ in Theorem 1 depends on pmax/pmin. Thus, it is most useful when pmax/pmin
is bounded by a finite constant that is independent of N and J . In this case, the asymptotic error
rate is similar between uniform sampling and weighted sampling. In the case where the sampling
scheme is far from uniform sampling, the next theorem provides a finite-sample error bound.

Theorem 2. Let κ2C2 = sup|x|�2C2 b′′(x), δC2 = 1
2 inf |x|�C2 b′′(x), κ1,b,C,φ = 8δ−1

C2 (φκ2C2)1/2

+16C2 and κ2,b,C,φ = (φ/C2) ∨ (φκ2C2)1/2. Then, there exists a universal constant c such that,
with probability at least 1 − 2(N + J )−1 − (n∗)−1,

max
K∗�K�Kmax

∥∥M̂ (K) − M ∗∥∥
F

� p−1
minK1/2

max{κ1,b,C,φ(max
i

n∗
i·)1/2 ∨ (max

j
n∗·j)1/2 + c(κ2,b,C,φ log n∗ + 2C2) log1/2(N + J )}

(7)

for all N � 1, J � 1, n∗ � 6 and Kmax � K∗ � 1.

Remark 3. Theorem 2 provides a finite-sample error bound (7) for the joint maximum like-
lihood estimator when the number of factors is known to be no greater than Kmax. It extends
Theorem 1 in several aspects. First, the constants κ2C2 , δC2 , κ1,b,C,φ and κ2,bC,φ are made explicit
in Theorem 2. In addition, it allows the missingness pattern to be far from uniform sampling. To
see this, consider the case where J = Nα , pmin = N−β and pmax/pmin � N γ , with α ∈ (0, 1],
β ∈ [0, α), γ ∈ [0, β] and C fixed. Roughly, a larger γ suggests a more imbalanced sampling
scheme. Then, Theorem 2 implies (NJ )−1/2‖M̂ (K∗) − M ∗‖F = Op{N (β+γ−α)/2(K∗)1/2}. Thus,
if γ < α −β and K∗ = o(Nα−β−γ ), the estimator M̂ (K∗) is consistent in the sense that the scaled
Frobenius norm (NJ )−1/2‖M̂ (K∗) − M ∗‖F decays to zero.

Let u(n, N , J , K) = v(n, N , J , K) − v(n, N , J , K − 1), and let σ1(M ∗) � σ2(M ∗) � · · · �
σK∗+1(M ∗) be the nonzero singular values of M ∗. Due to the inclusion of the intercept term
dj, a nondegenerate M ∗ is of rank K∗ + 1. The next theorem provides sufficient conditions on
u(n, N , J , K) for consistent model selection.

Theorem 3. Consider the following asymptotic regime as N , J → ∞,

C = O(1), p−1
min = O(1), K∗ = O(1). (8)
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Number of factors in high-dimensional models 7

If the function u satisfies

u(n, N , J , K) = o
{
σ 2

K∗+1(M
∗)

}
and N ∨ J = o

{
u(n, N , J , K)

}
uniformly in K as N , J → ∞,

(9)
then limN ,J→∞ Pr(K̂ = K∗) = 1.

Remark 4. We elaborate on the asymptotic regime (8) and the conditions on u(n, N , J , K) in
(9). First, C = O(1) and K∗ = O(1) require that C and the number of factors are bounded as
N and J grow. Second, p−1

min = O(1) suggests that the missingness pattern is similar to uniform
sampling with n∗ growing at the order of NJ . Third, u(n, N , J , K) = o{σ 2

K∗+1(M
∗)} requires

that u(n, N , J , K) is smaller than the gap between nonzero singular values and zero singular
values of M ∗. Under this requirement, the probability of underselecting the number of factors is
small. Fourth, N ∨ J = o{u(n, N , J , K)} requires that u(n, N , J , K) grows at a faster speed than
N ∨ J . This requirement guarantees that with high probability we do not overselect the number
of factors. Fifth, n is random when there are missing data, and thus u(n, N , J , K) may also be
random. In this theorem we do not allow u(n, N , J , K) to be random as implicitly required by
condition (9). A general result allowing a random u(n, N , J , K) is given in Theorem 4.

Remark 5. We provide further explanations on the requirements of u(n, N , J , K) =
o{σ 2

K∗+1(M
∗)} and N ∨ J = o

{
u(n, N , J , K)

}
. First, σ 2

K∗+1(M
∗) is the smallest nonzero singu-

lar value of M ∗ that measures the strength of the factors. Under the conditions of Theorem 3,
σ 2

K∗+1(M
∗)/2(l̂K − l̂K−1) = Op(1) when K � K∗. By letting u(n, N , J , K) = o{σ 2

K∗+1(M
∗)},

it is guaranteed that, when K � K∗, jic(K) − jic(K − 1) = −2(l̂K − l̂K−1) + u(n, N , J , K) < 0
with probability tending to 1. It thus avoids underselection. Second, under the conditions of
Theorem 3, 2(l̂K − l̂K−1) = Op(N ∨ J ) for each fixed K � K∗ + 1, i.e., when both models are
correctly specified. When N ∨ J = o

{
u(n, N , J , K)

}
and K � K∗ + 1, jic(K) − jic(K − 1) =

−2(l̂K − l̂K−1) + u(n, N , J , K) > 0 with probability tending to 1. This avoids overselection.
Finally, the two requirements also imply that selection consistency can only be guaranteed when
N ∨ J = o{σ 2

K∗+1(M
∗)}. That is, the factor strength has to be stronger than the noise level.

In practice, the factor strength σ 2
K∗+1(M

∗) is unknown, while N ∨ J is observable. Therefore,
we recommend choosing u(n, N , J , K) = (N ∨ J )h(n, N , J ) for some slowly diverging factor
h(n, N , J ), so that overselection is avoided. We require h(n, N , J ) to diverge slowly, so that
underselection is also avoided for a wide range of factor strength levels. More specifically, we
suggest using h(n, N , J ) = log{n/(N ∨ J )}, which becomes log(N ∧ J ) when there is no missing
data. Its consistency is established in Corollaries 1 and 2.

Corollary 1. Assume that the asymptotic regime (8) holds. Consider v(n, N , J , K) =
K(N ∨ J )h(N , J ) for some function h. If limN ,J→∞ h(N , J ) = ∞and limN ,J→∞{h(N , J )}−1(N∨
J )−1σ 2

K∗+1(M
∗) = ∞, then limN ,J→∞ Pr(K̂ = K∗) = 1. Specifically, suppose that pmin = 1.

If (N ∨ J ) log(N ∧ J ) = o{σ 2
K∗+1(M

∗)} and we choose v(n, N , J , K) = K(N ∨ J ) log(N ∧ J ),

then limN , J→∞ Pr(K̂ = K∗) = 1.

The next theorem extends Theorem 3 to a more general asymptotic setting.

Theorem 4. Consider the following asymptotic regime as N , J → ∞,

C = O(1), (N ∧ J ) log(N + J ) = O{n∗/(log n∗)2}. (10)
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8 Y. Chen and X. Li

Also, assume p−2
minpmaxK∗(N ∨ J ) = o{σ 2

K∗+1(M
∗)}. Suppose that there exists a possibly random

sequence {ξN , J } such that ξN , J → ∞ in probability as N , J → ∞, and that, with probability
converging to 1 as N , J → ∞, the following inequalities hold:

u(n, N , J , K)

⎧⎪⎨
⎪⎩

� ξ−1
N , J pminσ

2
K+1(M

∗) if 1 � K � K∗,

� ξN , J (K∗ + 1)(pmax/pmin)(N ∨ J ) if K = K∗ + 1,

� ξN , J (pmax/pmin)(N ∨ J ) if K∗ + 2 � K � Kmax,

(11)

where Kmax � K∗ denotes the largest number of factors considered in model selection and we
allow Kmax = ∞. Then, limN , J→∞ Pr(K̂ = K∗) = 1.

Theorem 4 relaxes the assumptions of Theorem 3 in several aspects. First, it is established
under a more general asymptotic regime (10) by allowing K∗ to diverge and pmin to decay to
zero as N and J grow. It also allows the missingness pattern to be very different from uniform
sampling by allowing pmax/pmin to grow. Second, u(n, N , J , K) is allowed to be random as long
as (11) holds with high probability. In particular, the model selection consistency of the suggested
penalty (4) is established in Corollary 2 as an implication of Theorem 4. Third, (11) provides a
more specific requirement on u(n, N , J , K). The second and third lines of (11) depend on the true
number of factors K∗. In practice, we need to choose u(n, N , J , K) in a way that does not depend
on K∗. For example, we may choose u(n, N , J , K) = (K ∧ Kmax)(pmax/pmin)(N ∨ J )h(n, N , J )

for some sequence h(n, N , J ) that tends to infinity in probability as N and J diverge, so that the
second and third lines of (11) are satisfied.

Corollary 2. Assume the asymptotic regime (8) holds, and N ∨J = o{σ 2
K∗+1(M

∗)}. Consider
v(n, N , J , K) = K(N ∨ J )h(n, N , J ). If h(n, N , J ) → ∞ in probability as N , J → ∞ and
{h(n, N , J )}−1(N ∨J )−1σ 2

K∗+1(M
∗) → ∞ in probability as N , J → ∞, then limN ,J→∞ Pr(K̂ =

K∗) = 1. In particular, if we choose v(n, N , J , K) = K(N ∨ J ) log{n/(N ∨ J )} as suggested in
(4) and assume (N ∨ J ) log(N ∧ J ) = o{σ 2

K∗+1(M
∗)}, then limN ,J→∞ Pr(K̂ = K∗) = 1.

Remark 6. In Theorems 3 and 4, the dispersion parameter φ is assumed to be known. When
φ is unknown, we may first fit the largest model with Kmax factors to obtain an estimate φ̂, and
then select the number of factors using the joint-likelihood-based information criterion with φ

replaced by φ̂. Similar model selection consistency results would still hold. The use of the plug-in
estimator for the dispersion parameter is common in constructing information criteria for linear
models and linear factor models (Bai & Ng, 2002).

Remark 7. Several information criteria have been proposed for linear factor models under
high-dimensional regimes. In particular, Bai & Ng (2002) consider a setting where the observed
data matrix can be decomposed as the sum of a low-rank matrix and a mean-zero error matrix, and
propose information criteria to select the rank of the low-rank matrix. Their setting is very similar
to the case when the exponential family distribution in (1) is chosen to be a Gaussian distribution
and there is no missing data, except that Bai & Ng (2002) do not require the Gaussian assumption.
In fact, under the Gaussian linear factor model and when the dispersion parameter φ = 1,
our proposed information criterion with penalty term v(n, N , J , K) = K(N ∨ J ) log(N ∧ J ) is
asymptotically equivalent to the PCp1 through PCp3 criteria proposed in Bai & Ng (2002), and
in particular takes the same form as the PCp3 criterion. Bai et al. (2018) consider the spike
covariance structure model (Johnstone, 2001) and develop information criteria for choosing the
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Number of factors in high-dimensional models 9

number of dominant eigenvalues, which corresponds to the number of factors when regarding
the spike covariance structure model as a linear factor model. By random matrix theory, they
establish consistency results when the sample size and the number of manifest variables grow to
infinity at the same speed and there is no missing data.

As mentioned in § 1, nonlinear factor models are more suitable for multivariate data that
involve categorical or count variables. Specifically, under model (1), the expected data matrix is
{b′(mij)}N×J . Although M = (mij)N×J is a low-rank matrix, {b′(mij)}N×J is no longer a low-
rank matrix when b′ is a nonlinear transformation. Consequently, methods developed for the
linear factor model do not work well when data follow a nonlinear factor model. The presence
of massive missing data further complicates the problem.

Finally, we point out that the theoretical results established above may also be useful for
developing information criteria based on the marginal likelihood. The marginal likelihood, which
is widely used for estimating latent variable models, treats the latent factors as random variables
and integrates them out. When both N and J are large, by applying the Laplace approximation
(Huber et al., 2004) the marginal likelihood can be approximated by a joint likelihood plus some
remainder terms. The development above can be used to analyse this joint likelihood term. Further
discussions are given in the Supplementary Material.

4. Numerical experiments

4.1. Simulation

We use a simulation study to evaluate the model estimation and the selection of fac-
tors with the proposed joint-likelihood-based information criterion with v(n, N , J , K) =
K(N ∨ J ) log{n/(N ∨ J )}. Due to space constraints, we only present some of the results under
the logistic factor model for binary data. Additional results from this study and results from other
simulation studies can be found in the Supplementary Material.

In particular, we consider eight combinations of N and J , given by J = 100, 200, 300, 400,
N = J and N = 5J . We consider three settings for missing data, including (M1) no missing data,
(M2) uniformly missing, with missingness probability pij = 0.5 for all i and j, and (M3) nonuni-
formly missing, with missingness probability pij = exp(f ∗

i1)/{1 + exp(f ∗
i1)} that depends on the

value of the first factor. The true number of factors is set to K∗ = 3. The model parameters are
generated as follows. First, the true parameters d∗

j , a∗
j1, …, a∗

j3 are generated by sampling inde-
pendently from the uniform distribution over the interval [−2, 2]. Second, the true factor values
are generated under two settings. Under the first setting (S1), all three factors f ∗

i1, …, f ∗
i3 are

generated by sampling independently from the uniform distribution over the interval [−2, 2], so
that all the factors have essentially the same strength. Under the second setting (S2), the first two
factors f ∗

i1 and f ∗
i2 are generated in the same way as under S1, while the last factor f ∗

i3 is sampled
from the uniform distribution over the interval [−0.8, 0.8]. Under S2, the last factor tends to be
weaker than the rest and thus is more difficult to detect. We use the proposed jic to select K from
the candidate set {1, 2, 3, 4, 5}, and the constraint constant C in (3) is set to be 5. The true model
parameters satisfy this constraint. All the combinations of the above settings lead to 48 different
simulation settings. For each setting, we run 100 independent replications. The computation is
done using the R package mirtjml (Zhang et al., 2020; R Development Core Team, 2021).

We first examine the results on parameter estimation. The loss max3�K�5{(NJ )−1/2‖M̂ (K) −
M ∗‖F} under different settings is shown in Fig. 1. As we can see, under each setting for factor
strength and missing data, the loss decays towards zero as both N and J grow. Given the same
N and J , the estimation tends to be more accurate when there is no missing data. In addition,
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Fig. 1. The loss max3�K�5{(NJ )−1/2‖M̂ (K) − M ∗‖F} for the recovery of the low-rank matrix M ∗, where each point
is the mean loss calculated by averaging over 100 independent replications. Panels (a) and (b) show the results under

the two different factor strength settings, S1 and S2, respectively.

the estimation tends to be more accurate under setting M2, where the data entries are uniformly
missing, than under M3, where the missingness depends on the latent factors. We further examine
the selection of factors. Table 1 presents the frequency that the number of factors is underselected
and overselected among the 100 independent replications for all 48 settings. As we can see,
the proposed information criterion becomes more accurate as N and J grow. Under the settings
when N = J no underselection is observed, but the proposed information criterion is likely
to overselect when J is relatively small. Under the settings when N = 5J no overselection is
observed, but underselection is observed when one factor is relatively weaker than the others
and J is relatively small. We point out that determining the number of factors is a challenging
task under our settings when J is relatively small. To illustrate, Fig. 2 shows box plots of 2(l̂3 −
l̂2) and 2(l̂4 − l̂3) under settings when J = 100. For most of these settings, 2(l̂3 − l̂2) is not
substantially larger than 2(l̂4−l̂3), while our asymptotic theory requires the former to be of a higher
order.

From the results in Table 1, we see that for relatively small values of N and J the proposed
information criterion tends to overpenalize when N = 5J and underpenalize when N = J . We
explain this phenomenon. Our choice of v(n, N , J , K) is derived from the error bound (5) in
Theorem 1. Although this error bound is rate optimal as implied by Proposition 1, it does not
take into account the relationship between N and J . For example, consider two settings that
both have no missing data and the same J , but one with N = J and the other with N = 5J .
By Theorem 1, the two settings have exactly the same upper bound κ(Kmax/J )1/2. However, as
we can see from Fig. 1, the error tends to be larger under the setting when N = J than when
N = 5J . Consequently, with the joint-likelihood-based information criterion derived from the
same upper bound, it is more likely to overselect when N = J and to underselect when N = 5J .
To improve the current information criterion a refined error bound is needed, according to which
we can choose a v(n, N , J , K) that better adapts to the relationship between N and J . This is a
challenging problem and we leave it for future investigation.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab044/6356503 by guest on 05 January 2022



Number of factors in high-dimensional models 11

Table 1. The number of times that the true number of factors is underselected or
overselected among 100 independent replications under each of the 48 simulation settings

N = J N = 5J
S1 S2 S1 S2

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

Underselection
J = 100 0 0 0 0 0 0 0 0 0 10 98 97
J = 200 0 0 0 0 0 0 0 0 0 0 3 4
J = 300 0 0 0 0 0 0 0 0 0 0 0 0
J = 400 0 0 0 0 0 0 0 0 0 0 0 0

Overselection
J = 100 47 100 100 53 100 100 0 0 0 0 0 0
J = 200 0 94 90 0 100 95 0 0 0 0 0 0
J = 300 0 0 0 0 0 0 0 0 0 0 0 0
J = 400 0 0 0 0 0 0 0 0 0 0 0 0

2(l3−l2) 2(l4−l3)

400

600

800

J = 100, N = 100, M1, S2

2(l3−l2) 2(l4−l3)

450

550

J = 100, N = 100, M2, S2

2(l3−l2) 2(l4−l3)

450

550

J = 100, N = 100, M3, S2

2(l3−l2) 2(l4−l3)

1500

2500

J = 100, N = 500, M1, S2

2(l3−l2) 2(l4−l3)

1200

1600

2000

J = 100, N = 500, M2, S2

2(l3−l2) 2(l4−l3)

1200

1800

J = 100, N = 500, M3, S2

Fig. 2. Box plots of 2(l̂3 − l̂2) and 2(l̂4 − l̂3) when J = 100 and the factor strength setting is S2.

4.2. Application to Eysenck’s personality questionnaire

We apply our proposed information criterion to a dataset based on the revised Eysenck personal-
ity questionnaire (Eysenck et al., 1985), a personality inventory that has been widely used in clinics
and research. This questionnaire is designed to measure three personality traits: extraversion, neu-
roticism and psychoticism. We refer the reader to Eysenck et al. (1985) for the characteristics of
these personality traits. The factor structure of this personality inventory remains of interest in
psychology, due to its importance in the literature of human personality and wide use in several
studies worldwide (Barrett et al., 1998; Chapman et al., 2013; Heym et al., 2013). In particular,
it has been found that the dependence between items measuring the psychoticism trait tends
to be lower than between items measuring the other two traits. Based on this observation, some
researchers suggested that psychoticism may consist of multiple dimensions (Caruso et al., 2001).
We use our proposed information criterion to investigate the factor structure of the inventory.

Specifically, we analyse all the items from the questionnaire, except for the lie scale items that
are used to guard against various concerns about response style. There are 79 items in total, each
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Table 2. The rows show the values of −2l̂K , v(n, N , J , K) and jic,
respectively, for models with different values of K

K 1 2 3 4 5

Deviance 63263 57683 53883 51225 48812
Penalty 3600 7201 10801 14402 18002

jic 66864 64884 64684 65627 66814

Table 3. Kendall’s tau rank correlation between participants’
estimated factor scores under the oblimin rotation and the

total scores for the three personality traits
F1 F2 F3

P score 0.08 0.78 −0.05
E score 0.86 0.00 −0.12
N score −0.08 0.08 0.88

with ‘Yes’ and ‘No’ response options. An example item is ‘Do you often need understanding
friends to cheer you up?’. Among the 79 items, 32, 23 and 24 are designed to measure psy-
choticism, extraversion and neuroticism, respectively. For each participant, a total score can be
computed based on each of the three item sets. This total score is often used to measure the cor-
responding personality trait. Here, we analyse a female UK normative sample dataset (Eysenck
et al., 1985), for which the sample size is 824 and there are no missing values. The dataset
was analysed in Chen et al. (2019) using the same model given in Example 1. Using a cross-
validation approach, Chen et al. (2019) find three factors. We now explore the dimensionality
of the data using our proposed information criterion. Specifically, we consider possible choices
of K = 1, 2, 3, 4, and 5. Following the previous discussion, the penalty term in our information
criterion is set to K(N ∨ J ) log{n/(N ∨ J )}, where n = NJ , N = 824 and J = 79.

The results are given in Tables 2 and 3. Specifically, the minimum jic value, indicated by
the value in italics in Table 2, is achieved by the three-factor model suggesting a three-factor
structure for the inventory. To obtain a relatively simple loading structure, we investigate the
three-factor model using the oblimin method, one of the most popular oblique rotation methods
(Browne, 2001). Table 3 shows Kendall’s tau rank correlation between participants’ estimated
factor scores under the oblimin rotation and the total scores for the three personality traits given
by the design. The highest Kendall’s tau rank correlation in each row is in italics and is close to
one, and the rest are close to zero which suggests that the extracted factors tend to correspond
to the extraversion, psychoticism and neuroticism traits, respectively. Additional results can be
found in the Supplementary Material, including the estimated parameters for the fitted models
and a comparison with marginal-likelihood-based inference.

5. Further discussion

As shown in § 3, there is a wide range of penalties for guaranteeing the selection consistency
of jic. Among these choices, v(n, N , J , K) = K(N ∨ J ) log{n/(N ∨ J )} is close to the lower
bound. This penalty is suggested when the signal strength of factors is unknown, to detect factors
of a wide range of strengths. The performance and applicability of this information criterion are
demonstrated by simulation studies and real data analysis. If one is only interested in detecting
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strong factors, then a larger penalty may be chosen based on prior information about the signal
strength of the factors.

When our model (1) takes the form of a Gaussian density and there is no missing data, then
our proposed information criterion and its theory are consistent with the results of Bai & Ng
(2002) for high-dimensional linear factor models. In this sense, the current work substantially
extends the work of Bai & Ng (2002) by considering nonlinear factor models and allowing a
general setting for missing values. Although we focus on generalized latent factor models with
an exponential-family link function, our proposed information criterion is applicable to other
models, for example, a probit factor model for binary data that replaces the logistic link by a
probit link in Example 1. The consistency results are likely to hold under similar conditions, for
a wider range of models. This extension is left for future investigation.
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