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Abstract

Innovations inmedicine provide us longer and healthier life, leading lowermortality. Sooner

rather than later, much greater longevity would be possible for us due to artificial intelligence

advances in health care. Similarly, Advanced Driver Assistance Systems (ADAS) in highly

automated vehicles may reduce or even eventually eliminate accidents by perceiving danger-

ous situations, which would minimise the number of accidents and lead to fewer loss claims

for insurance companies. To model the survivor function capturing greater longevity as well

as the number of claims reflecting less accidents in the long run, in this paper, we study a

Cox process whose intensity process is piecewise-constant and decreasing. We derive its ul-

timate distributional properties, such as the Laplace transform of intensity integral process,

the probability generating function of point process, their associated moments and cumulants,

and the probability of no more claims for a given time point. In general, this simple model

may be applicable in many other areas for modelling the evolution of gradually disappearing

events, such as corporate defaults, dividend payments, trade arrivals, employment of a certain

job type (e.g. typists) in the labor market, and release of particles. In particular, we discuss

some potential applications to insurance.
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1 Introduction

Technological advances, such as medical innovations, have delivered significant improvements in

survival and quality of life for us. Many diseases and epidemics were fatal to human being through-

out a long history, and recently become curable. A notable example is Malaria. Dr. Tu Youyou

managed to develop drugs based on artemisinin from Chinese traditional herbal medicines, which

have led to the survival and improved health of millions of people. In 2015, she got the Nobel Prize

in Physiology or Medicine for her discoveries concerning a novel therapy against Malaria. In addi-

tion, the National Cancer Institute recently found sudden reductions in mortality rates for prostate

cancer, which is likely due to effective treatments, screening methods for early diagnosis and public

health programs (Edwards et al., 2005). Moreover, although the recent coronavirus (COVID-19)

pandemic is still ongoing currently, it is possible that the deaths caused by the COVID-19 would

be gradually disappearing in the long run with more effective government interventions, vaccine

development and further enhancement of public health systems.

Motor Vehicle Traffic Fatality Rates, 1921-2018 (NHTSA)
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Figure 1: Motor vehicle traffic fatality rates, 1921-2018 (NHTSA)

Similarly, the Advanced Driver Assistance Systems (ADAS) in highly automated vehicles may

reduce or even ultimately eliminate accidents by perceiving dangerous situations. The develop-
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ment of highly automated vehicles and the ADAS is on-going even though it is a challenge. Highly

automated vehicles will minimise the the number of accidents leading to a much lower number of

claims for insurance companies ultimately. In addition, we can observe that the annual fatality rate

per 100 million miles that motor vehicle traveled in the U.S. provided by the National Highway

Traffic Safety Administration (NHTSA) has declined gradually from 1920 to 1930 as plotted in

Figure 1. The 1920’s average rate is 18.52, and the 2010’s average rate is only 1.13, where we can

see that it declines substantially in a long run. Of course, other positive factors, such as improved

infrastructure developments and safety regulations, may all together contribute to this decline. The

longevity of ourselves has significantly increased in the last decade. It is certain for us to live longer

and healthier on average in the long run due to artificial intelligence (AI) advances in health care.

AI applications in the automotive industry will also change the risk landscape of insurance industry.

They will help avoid accidents and saving lives, and consequently insurers will have fewer claims.

In the actuarial literature, there is a plethora of papers aiming at modelling improvements in life

expectancy due to systematic factors, notably, the Lee–Carter model (Lee and Carter, 1992) and

its extensions which are mortality projection models on time-series mortality. Beside, alternative

continuous-time stochastic models for modelling mortality can be found in e.g. Dahl (2004); Biffis

(2005); Schrager (2006); Luciano and Vigna (2008); Jang and Ramli (2015, 2018). The aim of this

paper is to develop a specific continuous-time model which is based on doubly stochastic Poisson

processes or Cox processes (Cox, 1955). It could be used as a model component for the long-term

survivor function capturing the greater longevity within a general competing-risks framework sim-

ilarly as the literature of survival analysis for a particular failure type of interest, see e.g. Gray

(1988); Fine and Gray (1999) and Kalbfleisch and Prentice (2002, §8). More precisely, it is a

Cox Process with piecewise-constant decreasing intensity, since its underlying intensity process is

piecewise-constant, and it jumps downward with random sizes to lower (but still positive) levels at

random times as illustrated in Figure 2. Apparently, the occurrence timing of each innovation is un-

certain in nature, so, jump times in the underlying intensity process is random in our model, which

is different from a simpler inhomogeneous Poisson process with a piecewise-constant decreasing

intensity function. More generally, our model may be applicable to modelling many events of other

types which are gradually disappearing. Recently, alternative intensity functions for Cox processes

have been specified, see Dassios et al. (2015); Badescu et al. (2016); Jang et al. (2018); Selch and

Scherer (2018); Albrecher et al. (2021) and just to name a few.

We first obtain the Laplace transform of ultimate intensity integral in an analytic form. For

insurance modelling based on a Cox process in general, the integral of claim intensity process is
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Figure 2: Piecewise-constant decreasing intensity process λt

crucial, as it is linked to the probability generating function (PGF) of claim numbers. More broadly,

the integral of an underlying stochastic process has been played an important role to many appli-

cations in both finance and insurance. For example, the integral of interest rate process is used to

price zero-coupon bonds (Vasicek, 1977; Cox et al., 1985; Heath et al., 1992; Jang, 2007), and the

integral of stock price process is also used for pricing Asian-type options (Rogers and Shi, 1995;

Dufresne, 2000; Dassios andNagaradjasarma, 2006; Bayraktar andXing, 2011; Cai andKou, 2012;

Park et al., 2020). The integral of default intensity process is also required to obtain the default

probability in reduced-form credit risk models (Duffie and Singleton, 2003; Lando, 2004). The

integrated hazard rate is required to derive the survivor function (Dassios and Jang, 2003; Jang and

Ramli, 2015) in life insurance. In non-life insurance, Jarrow (2010) proposed pricing formulas for

catastrophe bonds, where the integral of intensity process is used to derive the probability of no

catastrophic event. Under certain assumptions, other key distributional properties, such as the PGF

of point process, their associated moments and cumulants and the probability of no more claims

for a given time point, are derived in analytic forms (with some additional assumptions), which are

all important for model applications. We then apply our results to calculate the survival probability

in life insurance and reinsurance premium in non-life insurance.

This paper is structured as follows. In Section 2, we define our model of the Cox Process with

a piecewise-constant decreasing intensity, and analyse its theoretical distributional properties. In

Section 3, we apply our results to calculate the survival probability for life insurance and stop-loss

reinsurance premium for non-life insurance, respectively. Section 4 makes a brief conclusion.
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2 A Cox Process with Piecewise-Constant Decreasing Intensity

In this section, we explain how to construct a Cox process with a piecewise-constant decreasing

intensity for modelling gradually disappearing events (e.g. insurance claims of a certain type) in

general, and then obtain its key distributional properties.

Let us first start by a brief review for the Cox process (Cox, 1955) in general. If λt is the

intensity process of a Cox point process Nt, it is well known that the PGF of Nt is given by

E
�
θNt | λ0

�
= E

2
4exp

�
−(1− θ)

tZ
0

λsds

�
| λ0

3
5 , θ ∈ [0, 1], (2.1)

which suggests that the problem of finding the distribution of point processNt is equivalent to the

problem of finding the distribution of the integral of intensity λt. By convention, we denote the

intensity integral process by

Λt :=

tZ
0

λsds.

In the large family of Cox processes, we can consider various candidates of non-negative stochastic

processes for λt, which provide us a great flexibility for modelling event arrivals in practice. For

more details about Cox processes, see e.g. Basu and Dassios (2002); Dassios and Jang (2003), and

the books by Grandell (1976, 1991); Cox and Isham (1980); Brémaud (1981, 2020).

To construct a Cox process with piecewise-constant decreasing intensity, we introduce a posi-

tive continuous-time stochastic processXt as a state process for intensity process λt. That is, λt is

a deterministic function for a given state of Xt. We denote this function by h(·), i.e. λt = h(Xt),

and further assume that it is a strictly increasing function of u on the positive real line. For example,

h(u) could be a nonlinear function, such as

h(u) = u1+c, u ∈ R+, c > 0, (2.2)

where the constant c can be considered as a measure of the nonlinear amplification effect of states to

the intensity, e.g., the impact of vaccine advance to the fatality rate of COVID-19. In addition, we

assume that state process Xt is piecewise-constant and stochastically decreasing. More precisely,

Xt is constant until a random downward jump (i.e., random drop) potentially occurs at time point

Ti (for any given i = 1, 2, · · · ): it jumps to a new (lower) level Yi if Yi < XTi−
, or, it just stays (the

same) at XTi−
if Yi > XTi−

, where jump sizes {Yi}i=1,2,... are independent identical distributed

(i.i.d.) with the cumulative distribution function (CDF) G(y) and density function g(y), y ∈ R+.
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The interarrival times of these jumps at {Ti}i=1,2,... are also i.i.d. with the density function p(t),

and they are independent of jump sizes {Yi}i=1,2,.... Through the functional transformation h(·),

the resulting intensity process λt = h(Xt) therefore is still piecewise-constant and decreasing as

visualised in Figure 2. Note that, these arrival times {Ti}i=1,2,... are labeled for the jump times

in the intensity process λt rather than the jump times generated from the point process Nt. The

evolution of technological developments and breakthroughs, such as AI algorithms which have

been developed for health care and automotive industry, could be aggregately modelled by this

state process Xt as a proxy. The impacts of these technological advances to the health-care and

automotive industries are measured by the nonlinear function of h(u). The intensity process λt

remains constant until a breakthrough, represented by a drop to a new level as the result of this

breakthrough.

2.1 Laplace Transform of Ultimate Intensity Integral

For convenience, the Laplace transform of intensity integral at the ultimate time t→∞ conditional

on X0 = x > 0 is denoted by

φ(x) := E
�
e−vΛ∞ | X0 = x

�
, v ≥ 0.

Proposition 2.1. The Laplace transform of ultimate intensity integral Λ∞ conditional on X0 =

x > 0 satisfies

φ(x) = p̂
�
vh(x)

� 24 xZ
0

φ(y)g(y)dy + φ(x)Ḡ(x)

3
5 , (2.3)

where

p̂(v) :=

∞Z
0

e−vup(u)du, Ḡ(u) :=

∞Z
u

g(y)dy.

Proof. By construction, the interarrival times of these jumps at {Ti}i=1,2,... are independent of

jump sizes {Yi}i=1,2,..., therefore, T1 and XT1 are independent, and we have

φ(x) = E

2
4exp

�
−v

T1Z
0

h(Xs)ds

�
× exp

�
−v

∞Z
T1

h(Xs)ds

�
| X0 = x

3
5

= E

2
4e−vh(x)T1 × exp

�
−v

∞Z
T1

h(Xs)ds

�
| X0 = x

3
5

= E

2
4E
2
4e−vh(x)T1 × exp

�
−v

∞Z
T1

h(Xs)ds

�
| X0 = x, T1

3
5
3
5

= E

2
4e−vh(x)T1 × E

2
4exp

�
−v

∞Z
T1

h(Xs)ds

�
| X0 = x, T1

3
5
3
5
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= E
�
e−vh(x)T1 × φ(XT1)

�
= p̂

�
vh(x)

�
× E [φ(XT1)] .

Note that, given the initial state levelX0 = x > 0 and the realisation of the first jump size Y1 = y,

the state process at the first-jump time,XT1 , stays at the same level asXT−1
if y > XT−1

, or moves

down to a new level y if y < XT−1
, so we have

E [φ(XT1)] =

xZ
0

φ(y)g(y)dy +

∞Z
x

φ(x)g(y)dy =

xZ
0

φ(y)g(y)dy + φ(x)Ḡ(x).

Corollary 2.1. If jump sizes follow a uniform distribution on [0, 1], then, the Laplace transform of

Λ∞ conditional on X0 = x ∈ (0, 1) is given by

φ(x) = p̂
�
vh(x)

� 24 xZ
0

φ(y)dy + (1− x)φ(x)

3
5 . (2.4)

Proof. Set g(y) = 1 in (2.3) with the condition X0 = x ∈ (0, 1), the result follows immediately.

Corollary 2.2. If jump sizes follow a uniform distribution on [0, 1] and interarrival times of jumps

follow an exponential distribution with parameter ν > 0, i.e. p(t) = νe−νt, then, the Laplace

transform of Λ∞ conditional on X0 = x ∈ (0, 1) is given by

φ(x) = exp

�
−

xZ
0

vh′(y)

νy + vh(y)
dy

�
. (2.5)

Proof. Set p(t) = νe−νt in (2.4), then we have

φ(x) =
ν

ν + vh(x)

2
4 xZ

0

φ(y)dy + (1− x)φ(x)

3
5 ,

or,

ν

xZ
0

φ(y)dy =
�
νx+ vh(x)

�
φ(x).

Differentiate it with respect to x both sides, then we have

�
νx+ vh(x)

�
φ′(x) + vh′(x)φ(x) = 0,
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or,

φ′(x) = − vh′(x)

νx+ vh(x)
φ(x).

Given the initial condition φ(0) = 1, we can solve this ODE by

lnφ(x)− lnφ(0) = −
xZ

0

vh′(y)

νy + vh(y)
dy,

and the result follows.

By further specifying the functional form for h(x), then, nicely, we can find the exact distribu-

tion of Λ∞.

Corollary 2.3. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps

follow an exponential distribution with parameter ν > 0, i.e. p (t) = νe−νt and h(u) = u1+c, c >

0, then, the Laplace transform of Λ∞ conditional on X0 = x ∈ (0, 1) is given by

φ(x) =

� ν
xc

ν
xc + v

� c+1
c

, (2.6)

which implies

Λ∞ | X0 = x ∼ Gamma
�
c+ 1

c
,
ν

xc

�
. (2.7)

Proof. Set h(u) = u1+c, c > 0, then, we have h′(u) = (c+ 1)uc. Hence, from (2.5), we have

φ(x) = exp

�
−(c+ 1)

xZ
0

vyc

νy + vy1+c
dy

�

= exp

�
−c+ 1

c

xZ
0

cyc−1

ν
v + yc

dy

�

= exp

�
−c+ 1

c

xcZ
0

1
ν
v + u

du

�

= exp

�
−c+ 1

c
ln

� ν
v + xc

ν
v

��

=

� ν
xc

ν
xc + v

� c+1
c

,

which is the Laplace transform of a gamma distribution with the shape parameter c+1
c and rate

parameter ν
xc .

2.2 Probability Generating Function of Event Numbers

Let us find the expression for the PGF of N∞.
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Corollary 2.4. If jump sizes follow a uniform distribution on [0, 1] and interarrival times of jumps

follow an exponential distribution with parameter ν > 0, i.e. p (t) = νe−νt, then, the PGF ofN∞

conditional on X0 = x ∈ (0, 1) is given by

E
�
θN∞ | X0 = x

�
= exp

�
−

xZ
0

(1− θ)h′(y)

νy + (1− θ)h(y)
dy

�
. (2.8)

Proof. Based on the relationship between the PGF of N∞ and the Laplace transform of Λ∞ as

given by in (2.1), we can set v = 1− θ in (2.5) and hence obtain (2.8) immediately.

Corollary 2.5. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps

follow an exponential distribution with parameter ν > 0, i.e. p (t) = νe−νt and h(u) = u1+c, c >

0, then, the PGF of N∞ conditional on X0 = x ∈ (0, 1) is given by

E
�
θN∞ | X0 = x

�
=

 
1− xc

ν+xc

1− xc

ν+xc θ

! c+1
c

, (2.9)

which implies

N∞ | X0 = x ∼ Negative Binomial
�
c+ 1

c
,

xc

ν + xc

�
. (2.10)

Proof. Set v = 1− θ in (2.8), then, we have

E
�
θN∞ | X0 = x

�
=

� ν
xc

ν
xc + 1− θ

� c+1
c

=

 
1− xc

ν+xc

1− xc

ν+xc θ

! c+1
c

,

which is the PGF of a negative binomial distribution with parameters c+1
c and xc

ν+xc .

2.3 Cumulants and Moments of Intensity Integral

Let us find the expressions for the cumulants and the first two moments of Λ∞.

Theorem 2.1. Themth cumulant of Λ∞ conditional on X0 = x ∈ (0, 1) is given by

κm = m!

xZ
0

h′(y)

νy

�
h(y)

νy

�m−1

dy, m = 1, 2, ..., (2.11)

Proof. By taking logarithm for the Laplace transform (2.5), we obtain the cumulant generating

function

lnφ(x) = lnE
�
e−vΛ∞ | X0 = x

�
= −

xZ
0

vh′(y)

νy + vh(y)
dy

9



= −
xZ

0

h′(y)
νy v

1 + h(y)
νy v

dy

= −
xZ

0

h′(y)

νy
v
∞X
k=0

�
−h(y)

νy
v

�k
dy

=
∞X
k=0

2
4 xZ

0

h′(y)

νy
(−1)k+1

�
h(y)

νy

�k
dy

3
5 vk+1 m = k + 1

=
∞X
m=1

2
4 xZ

0

h′(y)

νy
(−1)m

�
h(y)

νy

�m−1

dy

3
5 vm

=
∞X
m=1

(−1)m
κm
m!

vm.

Hence, we have
xZ

0

h′(y)

νy
(−1)m

�
h(y)

νy

�m−1

dy = (−1)m
κm
m!

,

and the cumulants (2.11) for anym = 1, 2, ....

The expression for anymoment ofΛ∞ givenX0 = x can easily be obtained using its cumulants

(2.11). For example, we provide the mean and variance as below.

Corollary 2.6. The mean and variance of Λ∞ conditional on X0 = x ∈ (0, 1) are respectively

given by

E [Λ∞ | X0 = x] =

xZ
0

h′(y)

νy
dy, (2.12)

Var [Λ∞ | X0 = x] = 2

xZ
0

h′(y)h(y)

ν2y2
dy. (2.13)

By specifying the form of h(u), we may obtain the mean and variance explicitly.

Corollary 2.7. If h(u) = u1+c, c > 0, then, the mean and variance of Λ∞ conditional on X0 =

x ∈ (0, 1) are respectively given by

E [Λ∞ | X0 = x] =
1

ν

�
c+ 1

c

�
xc,

Var [Λ∞ | X0 = x] =
1

ν2

�
c+ 1

c

�
x2c.

Proof. The results follow immediately from (2.7) in Corollary 2.3. Alternatively, set h(u) = u1+c

and h′(u) = (c+ 1)uc in (2.12) and (2.13), respectively, then, the results follow.
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2.4 Moments of Event Numbers

Let us find the expressions for the first two moments of N∞.

Corollary 2.8. The mean and variance of N∞ conditional on X0 = x ∈ (0, 1) are respectively

given by

E [N∞ | X0 = x] =

xZ
0

h′(y)

νy
dy,

Var [N∞ | X0 = x] = 2

xZ
0

h′(y)h(y)

ν2y2
dy +

xZ
0

h′(y)

νy
dy.

Proof. Since

E [N∞ | X0 = x] =
d

dθ
E
�
θN∞ | X0 = x

� ����
θ=1

=

xZ
0

h′(y)

νy
dy,

and

E [N∞ (N∞ − 1) | X0 = x] =
d2

dθ2
E
�
θN∞ | X0 = x

� ����
θ=1

=

�
xZ

0

h′(y)

νy
dy

�2

+2

xZ
0

h′(y)h(y)

ν2y2
dy,

the variance of N∞ can be obtained by

Var[N∞ | X0 = x] = E [N∞ (N∞ − 1) | X0 = x] + E [N∞ | X0 = x]− (E [N∞ | X0 = x])2

=

�
xZ

0

h′(y)

νy
dy

�2

+ 2

xZ
0

h′(y)h(y)

ν2y2
dy +

xZ
0

h′(y)

νy
dy −

�
xZ

0

h′(y)

νy
dy

�2

= 2

xZ
0

h′(y)h(y)

ν2y2
dy +

xZ
0

h′(y)

νy
dy.

Corollary 2.9. If h(u) = u1+c, c > 0, then, the mean and variance of N∞ conditional on X0 =

x ∈ (0, 1) are respectively given by

E [N∞ | X0 = x] =
1

ν

�
c+ 1

c

�
xc,

Var [N∞ | X0 = x] =
1

ν2

�
c+ 1

c

�
x2c +

1

ν

�
c+ 1

c

�
xc.

Proof. The results follow immediately from (2.10) in Corollary 2.5.

For example, by setting the initial state x = 0.9 and varying the parameter c for amplification

effect, the conditional means and variances of N∞ for ν = 0.5, 1 are plotted in Figure 3.

11



1 2 3 4 5

Parameter c

0.5

1

1.5

2

2.5

3

3.5

4
Mean of N

=0.5
=1

1 2 3 4 5

Parameter c

1

2

3

4

5

6

7

8

9

10

11
Variance of N

=0.5
=1

Figure 3: Conditional mean and variance of N∞ against the parameter c for amplification effect

2.5 Probability of Last Event

As the intensity process is decreasing and eventually approaching to zero, the resulting points (i.e.,

events) are gradually disappearing, and an interesting problem is the probability of no more event

(e.g. insurance claim of a certain type) beyond a given time point t, i.e.,

Pr {T ∗ < t} = Pr
¦
N[t,∞) = 0

©
= E

2
4exp

�
−
∞Z
t

h(Xs)ds

�3
5 , (2.14)

where T ∗ is the time point at which the last event occurs. In order to find (2.14), let us first derive

the CDF of Xt in Lemma 2.1.

Lemma 2.1. If interarrival times of jumps follow an exponential distribution with parameter ν > 0,

i.e. p (t) = νe−νt, then, the CDF of Xt conditional on X0 = x > 0 is given by

Pr {Xt < ς} = 1− e−νtG(ς)1{ς<x}. (2.11)

Proof. By construction, Xt is piecewise-constant and decreasing, which can be expressed by

Xt = min
¦
x, Y1, Y2, · · · , YMt

©
,

whereMt is a homogeneous Poisson process of constant rate ν. GivenMt = m, the CDF of the
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minimum ofm i.i.d. random variables {Yi}i=1,...,m with the CDFG(ς) is
�
1− (1−G(ς))m

�
, i.e.,

Pr

�
min

¦
Y1, Y2, · · · , YMt

©
< ς |Mt = m

�
= 1−

�
1−G(ς)

�m
.

Then, we have

Pr

�
min

¦
Y1, Y2, · · · , YMt

©
< ς

�
=

∞X
m=0

�
1− (1−G (ς))m

�
e−νt (νt)m

m!

= 1−
∞X
m=0

(1−G (ς))m
e−νt (νt)m

m!
,

where
∞X
m=0

(1−G (ς))m
e−νt (νt)m

m!
= e−νtG(ς).

Note that,

Pr {Xt < ς} = Pr

�
min

�
min

¦
Y1, Y2, · · · , YMt

©
, x

�
< ς

�
= 1− Pr

�
min

�
min

¦
Y1, Y2, · · · , YMt

©
, x

�
> ς

�
= 1− Pr

¦
min

¦
Y1, Y2, · · · , YMt

©
> ς

©
× 1{x>ς}

= 1− e−νtG(ς) × 1{ς<x},

and the result (2.11) follows.

Based on Lemma 2.1, let us now derive the PGF of T ∗ in Theorem 2.2.

Theorem 2.2. If jump sizes follow a uniform distribution on [0, 1] and interarrival times of jumps

follow an exponential distribution with parameter ν > 0, i.e. p (t) = νe−νt, then, the CDF of T ∗

conditional on X0 = x ∈ (0, 1) is given by

Pr {T ∗ < t} = νt

xZ
0

exp

�
−

ςZ
0

h′(y)

νy + h(y)
dy

�
e−νt ςdς. (2.12)

Proof. Set v = 1 in (2.5), then we have

E

2
4exp

�
−
∞Z
t

h(Xs)ds

�
| Xt

3
5 = exp

�
−

XtZ
0

h′(y)

νy + h(y)
dy

�
.

Hence,

Pr {T ∗ < t} = E

2
4exp

�
−
∞Z
t

h(Xs)ds

�3
5 = E

2
4exp

�
−

XtZ
0

h′(y)

νy + h(y)
dy

�3
5 .
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Based on the CDF (2.11) for Xt, we have the density of Xt as

Pr {Xt ∈ dς} = νte−νtG(ς)g(ς)1{ς<x}dς,

and then,

Pr {T ∗ < t} = νt

xZ
0

exp

�
−

ςZ
0

h′(y)

νy + h(y)
dy

�
e−νtG(ς)g(ς)dς.

With a uniform distribution on the interval [0, 1] for jump sizes, (2.12) follows immediately.

Corollary 2.10. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps

follow an exponential distribution with parameter ν > 0, i.e. p (t) = νe−νt and h(u) = u1+c, c >

0, then, the CDF of T ∗ conditional on X0 = x ∈ (0, 1) is given by

Pr {T ∗ < t} = ν2+ 1
c t

xZ
0

1

eνtς (ν + ςc)
c+1
c

dς. (2.15)

Proof. Based on Theorem 2.2 and the additional assumption of h(u) = u1+c, c > 0, we have

Pr {T ∗ < t} = νt

xZ
0

exp

�
−c+ 1

c

ςZ
0

cyc−1

ν + yc
dy

�
e−νtςdς

= νt

xZ
0

exp
�
−c+ 1

c
ln
�
ν + ςc

ν

��
e−νtςdς

= νt

xZ
0

�
ν

ν + ςc

� c+1
c
e−νtςdς

= ν2+ 1
c t

xZ
0

1

eνtς (ν + ςc)
c+1
c

dς.

We can calculate the probability of no event (e.g. insurance claim of a certain type) beyond time

t as given in (2.15) via numerical integration. For example, by setting parameters ν = 2, c = 1.2

with the initial state x = 0.9, the associated probabilities are reported in Table 1 and plotted in

Figure 4. As time t is getting larger, the intensity level is getting smaller and smaller. The intensity

integral increases only marginally and events are still generated, but it will eventually arrive at the

time point of no event anymore. Hence, the larger the time t is, the higher the probability of no

more event beyond time t is.
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Figure 4: Probability of no event beyond time t

Table 1: Probability of no event beyond time t

t ν = 0.5 ν = 1

5 51.74% 79.88%
10 68.83% 89.56%
15 77.12% 93.13%
20 82.05% 94.96%
25 85.32% 96.06%
30 87.65% 96.79%
35 89.38% 97.31%
40 90.71% 97.69%
45 91.77% 97.98%
50 92.63% 98.21%

3 Applications in Insurance

In this section, we discuss some potential applications of our model as a component to calculate the

survival probability in life insurance and reinsurance premium in non-life insurance, respectively.

3.1 Life Insurance

Medical innovation has made us live longer, healthier and more prosperous lives. Additionally due

to artificial intelligence advances in health care, a much greater longevity would be possible in the

long term as t → ∞ or even within a couple of decades. Hence, we may apply our results to

calculate survival probabilities which are the key inputs for life insurance. In general, by setting

v = 1 in (2.3) and solving the equation, we can obtain the ultimate survival probability (or survivor
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function) due to a particular event-type of interest as

Pr {τ∗x =∞} = E
�
e−Λ∞ | X0 = x

�
= p̂

�
h(x)

�
×

2
4 xZ

0

φ(y)g(y)dy + φ(x)Ḡ(x)

3
5 , (3.1)

where τ∗ is the first jump-arrival time in the point process Nt, i.e.,

τ∗x := inf
¦
t > 0 : Nt = 1 | N0 = 0, X0 = x

©
,

which is modelling the first event-arrival time of a particular type. More specifically, if jump sizes

follow a uniform distribution on [0, 1], interarrival times of jumps follow an exponential distribu-

tion with its parameter ν, i.e. p (t) = νe−νt and h(u) = u1+c, c > 0, then, the survival probability

Pr {τ∗x =∞} can be immediately obtained by setting v = 1 in (2.6). For example, by setting the

initial state x = 0.9 and varying the parameter c for amplification effect, the survival probabilities

for ν = 0.5, 1 are plotted in Figure 5, and the associated detailed numerical output is reported in

Table 2.

Note that, τ∗x is considered as a defective (improper) random variable with a point mass at

time t = ∞. The survival probability (3.1) is corresponding to a particular type of gradually

disappearing events (e.g. deaths caused by traffic accidents, or deaths caused by the COVID-19)

rather than overall events. Essentially, it is a marginal probability function, also well known as

the subdistribution for a particular failure type of interest in the literature of survival analysis, see

e.g. Gray (1988); Fine and Gray (1999) and Kalbfleisch and Prentice (2002, §8). The Cox process

with piecewise-constant decreasing intensity as introduced in Section 2 provides us a key model

component for modelling these types of gradually disappearing events rather than for all events

within a general competing-risks framework. Of course, each life is not immortal in the reality,

and we can simply add another model component acting as the force for all rest risks (e.g. the

mortality force is increasing with respect to the age, year or many other factors). This can be done

by introducing another random time τ∗b acting as a competing risk that will eventually produce a

death event at time

τ∗ := min
¦
τ∗x , τ

∗
b

©
,

where τ∗b may be assumed to follow a simple Poisson process ormore generally another Cox process

with time-varying intensity b(t) > 0, and b(t) could depends on years, ages or many other factors.

Therefore, the overall intensity is

λt + b(t),
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Table 2: Survival probability against the parameter c for amplification effect

Parameter c ν = 0.5 ν = 1

1.0 12.76% 27.70%
1.5 19.01% 35.75%
2.0 23.58% 41.07%
2.5 27.16% 45.02%
3.0 30.15% 48.19%
3.5 32.74% 50.87%
4.0 35.07% 53.23%
4.5 37.22% 55.35%
5.0 39.23% 57.30%

where b(t) is the baseline intensity for τ∗, and λt is the type-specific intensity. Trivially, the ultimate

overall survival probability (due to overall events) is zero, i.e., Pr {τ∗ =∞} = 0. Therefore, here

we are mainly interested in the nontrivial result of ultimate (marginal) survival probability (3.1)

caused by events of a particular type, τ∗x , driven by technological advances in a very long run.

In fact, this research motivation is similar as the classical problem of ultimate ruin probability

which are extensively studied in actuarial mathematics. In this paper, we are also dealing with

the ultimate probability but within a different context considering the risk landscape change in

insurance industry.

1 1.5 2 2.5 3 3.5 4 4.5 5
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0.1

0.2

0.3

0.4

0.5

0.6
Survival Proability

=0.5
=1

Figure 5: Survival probability against the parameter c for amplification effect

3.2 Non-life Insurance

TheAdvancedDriver Assistance Systems (ADAS) in highly automated vehiclesmay reduce or even

eventually eliminate accidents by perceiving a dangerous situations. Nearly perfect automated ve-

hicles could be deployed as t → ∞ or even within a couple of decades, which will minimise the

17



the number of accidents leading to fewer and fewer loss claims. Hence, we apply our results to the

stop-loss reinsurance contract for a portfolio purely concentrated on the motor insurance business

in the long run. Standard non-life insurance contracts are typically underwritten in the short term.

However, they are often automatically renewed, and it is worth studying the long-term risk land-

scape in insurance similarly as the classical ruin problem in risk theory.

Let {Zi}i=1,2,··· be the claim amounts, which are assumed to be i.i.d. with the CDFH(z), z >

0. The total loss excess over the retention limitK > 0 up to the time of t→∞ is given by

�
C∞ −K

�+
:= max {C∞ −K, 0} ,

whereC∞ =
N∞X
i=1

Zi, andN∞ is the ultimate number of claims. Therefore, the stop-loss reinsurance

premium is given by

E
�
(C∞ −K)+ | X0 = x

�
,

which is similar to a perpetual call option in finance.

Corollary 3.1. If jump sizes follow a uniform distribution on [0, 1], interarrival times of jumps

follow an exponential distribution with parameter ν, i.e. p(t) = νe−νt and h(u) = u1+c, c > 0,

and the claim sizes follow an Erlang distribution Erlang(ϕ, β), then, the expected ultimate total

loss conditional on X0 = x ∈ (0, 1) is given by

E [C∞ | X0 = x] =
xc

ν

�
c+ 1

c

�
ϕ

β
,

and the stop-loss reinsurance premium with the retention limitK is given by

E
�
(C∞ −K)+ | X0 = x

�
(3.2)

=
�

xc

ν + xc

� c+1
c
∞X
n=1

Γ(n+ c+1
c )

n!Γ(n)

�
ν

ν + xc

�n �nϕ
β

�
1− γ(nϕ+ 1, βK)

(nϕ)!

�
−K

�
1− γ(nϕ, βK)

(nϕ− 1)!

��
,

where γ(·, ·) is the lower incomplete gamma function.

Proof. We assume that the claim sizes follow an Erlang distribution denoted by Erlang(ϕ, β), i.e.,

h(z) =
βϕzϕ−1e−βz

(ϕ− 1)!
, z, β > 0, ϕ ≥ 1,
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where β is the rate parameter and ϕ is the shape parameter. Note that,

N∞X
i=1

Zi | N∞ ∼ Erlang(N∞ϕ, β),

so, C∞ follows an Erlang-mixture distribution with the density function

∞X
n=1

Pr {N∞ = n | X0 = x} × βnϕcnϕ−1e−βc

(nϕ− 1)!
.

Then, we have

E [C∞ | X0 = x] = E [N∞ | X0 = x]× E [Z] =
1

ν

�
c+ 1

c

�
xc × ϕ

β
,

and

E
�
(C∞ −K)+ | X0 = x

�
= E [(C∞ −K) 1{C∞ ≥ K} | X0 = x]

=
∞X
n=1

Pr {N∞ = n | X0 = x} ×

2
4 ∞Z
K

c
βnϕcnϕ−1e−βc

(nϕ− 1)!
dc−K

∞Z
K

βnϕcnϕ−1e−βc

(nϕ− 1)!
dc

3
5

=
∞X
n=1

Pr {N∞ = n | X0 = x} ×

2
4nϕ
β

∞Z
K

βnϕ+1cnϕe−βc

(nϕ)!
dc−K

∞Z
K

βnϕcnϕ−1e−βc

(nϕ− 1)!
dc

3
5

=
∞X
n=1

Pr {N∞ = n | X0 = x} ×
�
nϕ

β

�
1− γ(nϕ+ 1, βK)

(nϕ)!

�
−K

�
1− γ(nϕ, βK)

(nϕ− 1)!

��

=
∞X
n=1

Γ(n+ c+1
c )

n!Γ(n)

�
xc

ν + xc

� c+1
c
�

ν

ν + xc

�n
×
�
nϕ

β

�
1− γ(nϕ+ 1, βK)

(nϕ)!

�
−K

�
1− γ(nϕ, βK)

(nϕ− 1)!

��
,

since ∞Z
x

βϕzϕ−1e−βz

(ϕ− 1)!
dz = 1− γ(ϕ, βx)

(ϕ− 1)!
,

and

N∞ | X0 = x ∼ Negative Binomial
�
c+ 1

c
,

xc

ν + xc

�
,

we have the probability mass function (PMF) of N∞ conditional on X0 = x explicitly as

Pr {N∞ = n | X0 = x} =
Γ(n+ c+1

c )

n!Γ(n)

�
xc

ν + xc

� c+1
c
�

ν

ν + xc

�n
, n = 0, 1, ....

For example, by setting parameters c = 1.2, ϕ = 1, β = 1 with the initial state x = 0.9, we

can calculate the expected total loss and stop-loss reinsurance premiums for ν = 0.5, 1, which are
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Table 3: Stop-loss reinsurance premium

K ν = 0.5 ν = 1

0 0.6739 0.8084
1 0.3379 0.4384
2 0.1642 0.2279
3 0.0779 0.1148
4 0.0363 0.0565
5 0.0166 0.0272
6 0.0075 0.0129
7 0.0034 0.0061
8 0.0015 0.0028
9 0.0007 0.0013
10 0.0003 0.0006

plotted in Figure 6 and Figure 7, respectively. The associated detailed numerical output is reported

in Table 3.
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Figure 6: Expected total loss against the parameter c for amplification effect

4 Conclusion

A Cox process with piecewise-constant decreasing intensity has been introduced in this paper. The

intensity process is a stochastic piecewise-constant decreasing function of time. Subject to the

arrival of a breakthrough event, the intensity process might, or might not, be reduced to a new

minimum level. The long-term properties are of our focus. We derive its ultimate distributional

properties, such as the Laplace transform of intensity integral process, the probability generating

function of point process, their associated moments and cumulants, and the probability of no more

claims for a given time point. Using our model as a component within a general competing-risks

framework, these results may be potentially applied to calculate survival probability for life insur-

ance and reinsurance premium for non-life insurance in a very long run. Similarly, this model may
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Figure 7: Stop-loss reinsurance premium

be applicable in many other areas for modelling the evolution of gradually disappearing events,

such as corporate defaults in credit risk modelling, trade arrivals in market microstructure, divi-

dend payments by a stock, employment of a certain job type (e.g. typists) in labor market, and

release of particles, as long as the underlying intensity process of the associated event arrivals is

piecewise-constant and decreasing. Similarly as the classical ruin problem in insurance, the dis-

tributional properties and associated applications for a given finite-time horizon are much more

difficult to be analytically studied, which are proposed for further research.
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