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ABSTRACT
In various fields of data science, researchers often face problems of estimating the ratios of two probability
densities. Particularly in the context of causal inference, the product of marginals for a treatment variable
and covariates to their joint density ratio typically emerges in the process of constructing causal effect
estimators. This article applies the general least square density ratio estimation methodology by Kanamori,
Hido and Sugiyama to the product of marginals to joint density ratio, and demonstrates its usefulness
particularly for causal inference on continuous treatment effects and dose-response curves. The proposed
method is illustrated by a simulation study and an empirical example to investigate the treatment effect of
political advertisements in the U.S. presidential campaign data.
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1. Introduction

In various fields of data science, researchers often face problems
of estimating the ratios of two probability densities (or referred
to as importance). Examples include important sampling, dis-
tribution comparison, outlier detection, mutual information
estimation, covariate shift adaptation, to name a few. One of
the major findings in the machine learning literature on this
topic is that it is possible and advisable to estimate directly the
density ratios rather than estimating separately the denominator
and numerator densities; see, Sugiyama, Suzuki, and Kanamori
(2012a) for an overview. In particular, Sugiyama et al. (2008)
and Kanamori, Hido, and Sugiyama (2009) proposed direct esti-
mation strategies for density ratios by minimizing the Kullback-
Leiber divergence and least square criterions, respectively.

One of the most popular examples of the density ratio is the
joint to (product of) marginals ratio, which emerges in mutual
information estimation and conditional probability estimation
(see, e.g., Sugiyama, Suzuki, and Kanamori, 2012a, chap. 11–
12). On the other hand, its reciprocal (i.e., the marginals to joint
ratio) is less studied in the literature. In this article, however,
we argue that such reciprocals are also useful and empirically
relevant objects especially in the context of causal inference.
It should be noted that the reciprocals of the existing joint to
marginals ratio estimators may perform poorly because it does
not directly estimate the original object of interest.

In this article, we apply the general least square density ratio
estimation methodology by Kanamori, Hido, and Sugiyama
(2009) to the product of marginals to joint density ratio and
demonstrate its usefulness in the context of causal inference. In
particular, we study estimation of causal effects of continuous
treatment effects and dose-response curves based on the density
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ratio estimation method. Our simulation and empirical exam-
ples illustrate usefulness of the proposed method. Compared
to the conventional nonparametric plug-in estimation methods
which involve three separate nonparametric density estimation
problems (i.e., two marginals and joint densities), one major
attractiveness of the direct density ratio estimation method is
that it involves only one nonparametric estimation problem
and tends to provide stable and practical estimates for the final
object of interest; see Vapnik’s (1998) principle: one should avoid
solving more difficult intermediate problems when solving a target
problem.

A major contribution of this article is to propose new appli-
cations of the density estimation methodology in the context of
causal inference. Most existing articles consider modeling and
estimating binary treatment effects under unconfounded treat-
ment assignments, such as inverse propensity score weighting
(e.g., Rosenbaum and Rubin 1983; and Hirano, Imbens, and
Ridder 2003), matching (e.g., Heckman, Ichimura, and Todd
1998; Imbens 2004; and Abadie and Imbens 2006), and regres-
sion adjustment (e.g., Angrist and Pischke 2008). Also efficient
estimation of treatment effects is investigated by Robins, Rot-
nitzky and Zhao (1994), Hahn (1998), Hirano, Imbens, and
Ridder (2003), and Graham, Pinto, and Egel (2012), for example.
Our density ratio-based estimator presented in Section 3.1 may
be applied to binary treatments (see Remark 5). In this case,
our methodology may be interpreted as an inverse propensity
score weighting estimator, such as Hirano, Imbens, and Ridder
(2003), where the reciprocal of the propensity score function
is directly estimated by the density ratio estimator instead of
taking reciprocal after estimating the propensity score function.

The usefulness of our density ratio-based approach becomes
clearer when we consider continuous treatment effect analyses,
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where the density ratio involves three continuous functions
(the joint and two marginal densities for the treatment and
covariates). Section 3 demonstrates this point by applying the
density ratio estimators to continuous treatment effects and
dose-response curves. Several estimation methods are proposed
in the literature of continuous treatment effect analysis, such as
the parametric generalized propensity score approach (Imbens
2004; Imai and van Dyk 2004), control function approach (Flo-
rens et al. 2008), stabilized weighting (Galvao and Wang 2015),
kernel smoothing (Kennedy et al. 2017), propensity score bal-
ancing (Fong, Hazlett, and Imai 2018), and a unified weighting
approach (Yiu and Su 2018). However, these exiting estimation
approaches for continuous treatment effects are either semi-
parametrically inefficient or possibly biased if parameterized
components are misspecified. A general semiparametric effi-
cient estimation framework for continuous (and also discrete)
treatment effects is developed in a recent work by Ai et al.
(2021). By investigating the semiparametric efficiency bound of
the continuous treatment effect, Ai et al. (2021) clarify moment
conditions to be satisfied by the stabilized weights (Robins,
Hernán, and Brumback 2000) to achieve efficiency, estimate
those weights by an entropy maximization method, and pro-
pose a semiparametrically efficient estimator for continuous
treatment effects by using the estimated stabilized weights. Our
density ratio-based estimator for continuous treatment effects
presented in Section 3.1 is asymptotically equivalent to the one
by Ai et al. (2021). Indeed our density ratio estimator may be
interpreted as alternative stabilized weights to achieve semipara-
metric efficiency for estimating causal effects.

The rest of the article is organized as follows. In Section 2,
we introduce the general idea of density ratio estimation (Sec-
tion 2.1), develop the marginals to joint density ratio estimator
(Section 2.2), and study its asymptotic properties (Section 2.3).
Section 3 presents applications of the proposed estimator for
causal effects of continuous treatment effects (Section 3.1) and
dose-response curves (Section 3.2). In Section 4, we conduct a
simulation study, and Section 5 presents a real data example to
study a causal effect of political advertisements on the amount
of donations.

2. Estimation of Density Ratio of Marginals to Joint

2.1. Least Square Density Ratio Estimation

As a basis of our estimation strategy, we first introduce the
general idea of the least square density ratio estimation proposed
by Kanamori, Hido, and Sugiyama (2009). Let {Znu

i }nnu
i=1 and

{Zde
j }nde

j=1 be random samples on R
d generated from the distri-

butions having the Lebesgue densities fnu and fde, respectively.
We are interested in the density ratio

R(z) = fnu(z)
fde(z)

.

Instead of estimating the densities fnu and fde separately,
Kanamori, Hido, and Sugiyama (2009) proposed to estimate
directly the ratio R(z) by approximating R(z) by linear models
and minimizing a least square type criterion function.

More precisely, we approximate R(z) by the linear model

R(z; θ) =
K∑

�=1
θ�ψ�(z) = ψ(z)′θ ,

where ψ = (ψ1, . . . , ψK)′ is a vector of basis functions and
θ = (θ1, . . . , θK)′ is a vector of parameters. To estimate θ ,
we consider the minimization of the squared error weighted
by fde:

1
2

∫
{R(z; θ) − R(z)}2fde(z)dz.

By ignoring the term that does not depend on θ and estimating
the expectations by the empirical averages, the parameter vector
θ can be estimated as a solution of minθ Q̂(θ), where

Q̂(θ) = 1
2nde

nde∑
j=1

R(Zde
j ; θ)2 − 1

nnu

nnu∑
i=1

R(Znu
i ; θ)

= 1
2
θ ′Ĥθ − ĥ′θ ,

with Ĥ = 1
nde

∑nde
j=1 ψ(Zde

j )ψ(Zde
j )′ and ĥ = 1

nnu

∑nnu
i=1 ψ(Znu

i ).
If Ĥ is invertible, this optimization problem can be explicitly

solved as θ̂ = Ĥ−1ĥ and the density ratio R(z) can be estimated
by R(z; θ̂ ) = ψ(z)′θ̂ . Sugiyama, Suzuki, and Kanamori (2012a)
surveyed theoretical properties of this estimator and discussed
its applications in various contexts of statistical data analysis. In
the next section, we apply this general approach for estimation
of the (product of) marginals to joint density ratio. To the best
of our knowledge, such an application of the density estimation
technique seems to be new in the literature.

2.2. Estimation of Marginals to Joint Density Ratio

We now adapt the idea of the least square density ratio estima-
tion to our object of interest, marginals to joint density ratio.
Let {Ti, Xi}n

i=1 be a random sample of (T, X) ∈ T × X .
In our examples on causal inference below, T is a treatment
variable and X is a vector of covariates. This article is concerned
with estimation of the product of marginals to joint density
ratio

r0(t, x) = fT(t)fX(x)

fTX(t, x)
,

where fT and fX are the marginal densities of T and X, respec-
tively, and fTX is the joint density of (T, X). As in the last section,
we approximate the ratio r0(t, x) by the linear model

r(t, x; α) =
K∑

�=1
α�ψ�(t, x) = ψ(t, x)′α, (1)

where ψ = (ψ1, . . . , ψK)′ is a vector of basis functions, α =
(α1, . . . , αK)′ is a vector of parameters, and K is the length of
series approximation. For the asymptotic analysis below, we let
K → ∞ as the sample size n increases.

In this setup, we consider the least square-type population
criterion function for α:
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1
2

E[{ψ(T, X)′α − r0(T, X)}2]

= 1
2

∫
r(t, x; α)2fTX(t, x)dtdx

−
∫

r(t, x; α)fT(t)fX(x)dtdx

+ 1
2

∫
r0(t, x)2fTX(t, x)dtdx. (2)

The least square parameter vector α∗ is defined as the minimizer
of (2), that is,

α∗ = arg min
α

1
2

E[{ψ(T, X)′α − r0(T, X)}2]. (3)

For estimation, we ignore the third term in (2), which does not
depend on α. The first and second terms in (2) can be estimated
by the empirical moments. Thus, the parameter vector α∗ can
be estimated by α̂ = arg minα Q̂(α), where

Q̂(α) = 1
2n

n∑
i=1

r(Ti, Xi; α)2 − 1
n2

n∑
i=1

n∑
j=1

r(Ti, Xj; α)

= 1
2
α′Ĥα − ĥ′α, (4)

with Ĥ = 1
n
∑n

i=1 ψ(Ti, Xi)ψ(Ti, Xi)′ and ĥ = 1
n2∑n

i=1
∑n

j=1 ψ(Ti, Xj). If Ĥ is invertible, our estimator for the
product of marginals to joint density ratio r0(t, x) is explicitly
written as

r̂(t, x) = r(t, x; α̂), where α̂ = Ĥ−1ĥ. (5)

Alternatively, to obtain more stable estimates especially when
Ĥ is nearly singular, we can introduce a quadratic (or ridge-type)
regularizer and minimize

Q̂(α) + λ

2
α′α

with respect to α, where λ is a tuning parameter. In this case, the
estimator for r0(t, x) is obtained as

r̃(t, x) = r(t, x; α̃), where α̃ = (Ĥ + λI)−1ĥ. (6)

Remark 1 (Comparison with joint to marginals density ratio). In
contrast to the estimator in (5), the joint to marginals density
ratio fTX(t,x)

fT(t)fX(x)
(i.e., the reciprocal of r0(t, x)) can be estimated

by r(t, x; α̂joint to marginals), where α̂joint to marginals = Ĥ−1
J ĥJ

with ĤJ = 1
n2
∑n

i=1
∑n

j=1 ψ(Ti, Xj)ψ(Ti, Xj)′ and ĥJ =
1
n
∑n

i=1 ψ(Ti, Xi). Obviously, the reciprocal of
r(t, x; α̂joint to marginals) is different from our direct estima-
tor r(t, x; α̂), and such a reciprocal would be numerically
unstable to estimate r0(t, x) particularly when the estimate
r(t, x; α̂joint to marginals) is close to zero. See Section 4 for some
numerical illustration.

Remark 2 (Selections of series length and tuning parameter by
cross-validation). To implement our ratio estimators, we need
to choose the series length K for (5) and additionally the tuning
parameter λ for (6). One practical way to choose K is based
on the (M-fold) cross-validation to minimize the (dominant

part of) L2-risk in (4). More precisely, divide the sample S =
{Ti, Xi}n

i=1 into M groups (say, M = 5 or 10), and let Sm =
{T(m)

i , X(m)
i }n/M

i=1 be the mth group for m = 1, . . . , M. The cross-
validation criterion for K is written as

CV(K) =
M∑

m=1

(
1
2
α̂′−mĤmα̂−m − ĥ′

mα̂−m

)
, (7)

where α̂−m is α̂ based on the subsample S \ Sm, Ĥm =
1

(n/M)

∑n/M
i=1 ψ(T(m)

i , X(m)
i )ψ(T(m)

i , X(m)
i )′, and ĥm = 1

(n/M)2∑n/M
i=1

∑n/M
j=1 ψ(T(m)

i , X(m)
j ). Then we can choose K as the

minimizer of CV(K). This method is employed in our numerical
illustrations.

Similarly, in order to choose K and λ to implement the
regularized estimator in (6), the cross-validation criterion may
be constructed as

CV(K, λ) =
M∑

m=1

(
1
2
α̃′−mĤmα̃−m − ĥ′

mα̃−m

)
,

where α̃−m is α̃ based on the subsample S \ Sm.

Remark 3 (Imposing nonnegativity on density ratio estimators).
We note that the density ratio estimators r̂(t, x) and r̃(t, x) may
yield negative estimates in finite samples even though such a
feature does not affect their asymptotic properties below. There
are some ways to impose nonnegativity on the density ratio
estimator. For example, Kanamori et al. (2009) proposed to
estimate α in (1) by the constrained optimization:

ᾱ = arg min
α

[
1
2
α′Ĥα − ĥ′α + λα′1K

]
, s.t. α ≥ 0, (8)

where Ĥ and ĥ are constructed by using nonnegative basis
functions ψ = (ψ1, . . . , ψK)′, 1K is the K-dimensional vector
of ones, and λ is a positive regularization parameter. Kanamori
et al. (2009) pointed out that although this optimization
problem is efficiently implemented by using regularization
path tracking, it tends to be numerically unstable especially
when there are many change points in the regularization
path.

An alternative way to impose nonnegativity is to simply
modify r̂(t, x) (or r̃(t, x)) as

r̂+(t, x) = max{0, r̂(t, x)},

see Sugiyama, Suziki, and Kanamori (2012b). We note that the
convergence rates of r̂+(t, x) derived in Section 2.3 are never
worse than those of r̂(t, x) since the density ratio function is
nonnegative by definition. A practical advantage of r̂+(t, x)

compared to the estimator based on (8) is that it does not involve
numerical optimization.

Remark 4 (Estimation based on other divergences). Although
this article focuses on the least square criterion to construct the
marginals to joint density ratio estimators, other criteria may be
employed. For example, as in Sugiyama, Suzuki, and Kanamori
(2012b), we can also consider to choose the parameters α to
minimize the Bregman divergence from r0(t, x) to r(t, x; α)
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associated with a strictly convex differentiable function ϕ, that
is,

BRϕ(r0(·, ·)||r(·, ·; α))

=
∫

fTX(t, x)[ϕ(r0(t, x)) − ϕ(r(t, x; α))

−ϕ′(r(t, x; α)){r0(t, x) − r(t, x; α)}]dtdx,

where ϕ′ is the derivative of ϕ. This formulation covers various
density estimation methods, such as the least squares (ϕ(a) =
(a − 1)2/2), Kullback-Leibler divergence (ϕ(a) = t log t − t),
and Basu et al.’s (1998) power divergence (ϕ(a) = (t1+α − t)/α
for α > 0). Although it is beyond the scope of this article, we
expect that analogous theoretical properties can be established
for this estimation approach.

Remark 5 (Case of discrete T). Although we present our
methodology for the case of continuous T, our estimation
approach can be also adapted to the case where T is discrete.
In this case, we understand fT(t) and fTX(t, x) as the marginal
probability mass function for T and its joint density, respectively,
and construct the ratio estimator in the same manner.

2.3. Theoretical Properties

This section presents the asymptotic properties of our estima-
tors r̂(t, x) = r(t, x; α̂) in (5) and r̃(t, x) = r(t, x; α̃) in (6) for
the marginals to joint density ratio r0(t, x) = fT(t)fX(x)

fTX(t,x)
. Let || · ||

be the Euclidean norm, ||a||P,2 = √
E[||a(T, X)||2], and ξK =

sup(t,x)∈T ×X ||ψ(t, x)||. We impose the following assumptions.

Assumption.

(i) {Ti, Xi}n
i=1 is an iid sample of (T, X) ∼ P with support T ×

X and
0 < inf (t,x)∈T ×X r0(t, x) ≤ sup(t,x)∈T ×X r0(t, x) < ∞.

(ii) K = Kn ∈ N is a sequence depending on the sample size n
such that Kn → ∞. Uniformly over all n, the eigenvalues
of H = E[ψ(T, X)ψ(T, X)′] are bounded above and away
from zero. Furthermore, ξ 2

K log K/n → 0 as n → ∞.
(iii) For each K ∈ N, there exist finite constants cK and �K such

that

||r0 − ψ ′α∗||P,2 ≤ cK ,
sup

(t,x)∈T ×X
|r0(t, x) − ψ(t, x)′α∗| ≤ �KcK .

Assumption (i) is on the data. The iid assumption may be
relaxed to weakly dependent data by replacing the stochastic
bounds in the proof with dependent counterparts. Assumption
(ii) is on the basis functions {ψ�}K

�=1, and Assumption (iii) says
the marginals to joint density ratio r0 is well approximated by the
basis functions. These assumptions are common in the literature
of nonparametric series or sieve estimation and satisfied by pop-
ular basis functions, such as polynomials, splines, and wavelets
(see, e.g., Newey 1997).

Let a �P b mean a = Op(b). Under the above assumptions,
the asymptotic properties of our estimator r̂ = ψ ′α̂ for r0 are
obtained as follows.

Theorem 1 (Convergence rates of estimator). (Suppose that
Assumptions (i)–(iii) hold true. Then

||r̂ − r0||P,2 �P

√
K
n

+ cK , (9)

sup
(t,x)∈T ×X

|r̂(t, x) − r0(t, x)| �P ξK

√
K
n

+ �KcK . (10)

These convergence rates are standard in the literature. The
first terms in the rates are due to the estimation risk for the best
linear approximation ψ ′α∗ by the estimator r̂, and the second
terms in the rates come from the approximation bias for r0 by
ψ ′α∗. Similar to Theorem 1, we can obtain the convergence rates
of the regularized estimator.

Theorem 2 (Convergence rates of regularized estimator). Suppose
that Assumptions (i)–(iii) hold true. Then for λ = o(n−1/2),

||r̃ − r0||P,2 �P

√
K
n

+ cK , (11)

sup
(t,x)∈T ×X

|r̃(t, x) − r0(t, x)| �P ξK

√
K
n

+ �KcK . (12)

Similar comments to Theorem 1 apply. The tuning constants
K and λ may be chosen by the cross-validation method as in
Remark 2.

In the next section, we present applications of the proposed
density estimation methods in the context of causal inference.

3. Applications to Causal Inference

3.1. Causal Effect of Continuous Treatment

In this section, we employ the framework of Ai et al. (2021) for
continuous treatment effect analysis, and propose an alternative
estimation procedure based on our density ratio estimator for
the causal effect.

Let T ∈ T be a continuous treatment variable, Y(t) be
the potential outcome that would have been observed under
treatment level t, and X be a vector of covariates. For each unit
i, we observe Ti, Xi, and the outcome Yi = Y(Ti). Suppose
we specify the random outcome function Y(t) by a parametric
model g(t; β0), where β0 solves

β0 = arg min
β∈B

∫
E[L(Y(t) − g(t; β))]fT(t)dt, (13)

for parameter space B, and L is a user-specified loss function.
The expectation above is taken with respect to Y(t) for fixed t.
Under the ignorability condition (i.e., Y(t) and T are indepen-
dent conditionally on X for each t ∈ T ), the above criterion for
β0 can be written as (see Hirano and Imbens 2004; Imai and van
Dyk 2004)∫

E[L(Y(t) − g(t; β))]fT(t)dt = E[L(Y − g(T; β))r0(T, X)].
By estimating r0(t, x) by r(t, x; α̂) in (5) and evaluating the
expectation with the empirical average, β0 can be estimated by

β̂ = arg min
β∈B

1
n

n∑
i=1

L(Yi − g(Ti; β))r(Ti, Xi; α̂). (14)
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The estimator β̃ using the regularized version α̃ in (6) is defined
analogously. We impose the following assumptions to study
asymptotic properties of β̂ . Let L′(a) = dL(a)

da and Wi(β) =
L′(Yi − g(Ti; β))

∂g(Ti ;β)

∂β
.

Assumption.

(iv) Y(t) and T are independent conditionally on X for each t ∈
T . The parameter space B ⊂ R

p is compact. β0 is a unique
solution of (13) and is in the interior of B. L(Y − g(T; β))

is continuous in β , and E[supβ∈B |L(Y − g(T; β))|] < ∞.
(v) L is twice continuously differentiable almost everywhere.

g(t; β) is twice continuously differentiable in β . G =
E
[

r0(T, X)
∂W(β0)

∂β ′
]

is nonsingular, E
[

supβ∈N
∥∥∥ ∂W(β)

∂β ′
∥∥∥]

< ∞ for a neighborhood N around β0, and
E
[‖W(β0)‖2+δ

]
< ∞ for some δ > 0.

Assumptions (iv)–(v) are simplifications of those in Ai et al.
(2021) by assuming twice differentiability of L. Assumption (iv)
is used to show consistency of β̂, which contains unconfounded-
ness assumption and some regularity conditions on the objective
function. Assumption (v) is imposed to obtain the asymptotic
distribution of β̂ . Twice continuous differentiability of L may be
relaxed by applying an analogous argument as in Ai et al. (2021)
based on Chen, Linton, and Van Keilegom (2003). Based on
these assumptions, the asymptotic properties of β̂ are obtained
as follows.

Proposition 1. In addition to Assumptions (iv)–(v), suppose that
Assumptions (i)–(iii) hold true with �KcK = O(K−η1) for some
η1 > 0, and there exists γ ∗ ∈ R

K such that

sup
(t,x)∈T ×X

|E[∇βg(T; β0)L′(Y − g(T; β0))|T = t, X = x]

−ψ(t, x)′γ ∗| = O(K−η2), (15)

for some η2 > 0. Furthermore,
√

nK−(η1+η2) → 0, K2/n → 0,
and ξ 2

KK/n → 0 as n → ∞. Then β̂
p→ β0 and

√
n(β̂ − β0)

d→ N(0, V), (16)

where V = G−1E[ξ(Y , T, X; β0)ξ(Y , T, X; β0)
′](G−1)′ and

ξ(Y , T, X; β0) = r0(T, X)∇βg(T; β0)L′(Y − g(T; β0))

− r0(T, X)∇βg(T; β0)ε(T, X; β0)

+ E[r0(T, X)∇βg(T; β0)ε(T, X; β0)|T]
+ E[r0(T, X)∇βg(T; β0)ε(T, X; β0)|X].

This theorem says that our estimator β̂ for β0 is consistent
and asymptotically normal, and the asymptotic variance V is
equivalent to the efficiency bound derived in Ai et al. (2021).
This asymptotic variance can be estimated by nonparametric
methods. In our numerical studies below, we estimate V by
series estimation and bootstrap methods.

Remark 6 (Comparison with Ai et al. (2021)). It is interesting to
note that in the setup of this section for continuous treatment
effect analysis, the estimation methods for β0 by Ai et al. (2021)

and this article can be presented in a unified way. To be precise,
consider the following weight estimation problem

min
π1,...,πn

n∑
i=1

ρ(πi) s.t.
1
n

n∑
i=1

πiψ(Ti, Xi)

= 1
n2

n∑
i=1

n∑
j=1

ψ(Ti, Xj), (17)

where ψ contains a constant function so that
∑n

i=1 πi = n.
Then the weight function r(Ti, Xi; α̂) for the objective func-
tion (14) can be obtained as the solution for πi with ρ(π) =
(π − 1)2. On the other hand, the weight function for Ai et al.
(2021) is given by the solution for πi with ρ(π) = π log π

and multiplicative basis functions ψ(T, X) = ψa(T)ψb(X) for
some ψa and ψb. As pointed out by Ai et al. (2021), the above
minimization problem is different from the one for generalized
empirical likelihood (Newey and Smith 2004) due to the right
hand side of the constraint for πi, which is random in the current
context. However, Proposition 1 indicates that such difference
of weight constructions for the objective function in (14) is
asymptotically negligible as far as we are concerned with the
first-order asymptotic properties of the estimator for β0.

One practical advantage of our approach is that our estimated
weights r(Ti, Xi; α̂) in (14) do not require numerical optimiza-
tion while the weights for Ai et al.’s (2021) method need to
numerically solve the dual problem of (17). Indeed Ai et al.
(2021, p. 801) reported some numerical issues associated with
this optimization when the dimension of covariates is large.

3.2. Dose–Response Curve

Based on the setup in Section 3.1, we can also consider to
estimate the dose–response curve:

m0(t) = E[Y(t)] = E[r0(T, X)Y|T = t], for t ∈ T .

Several articles studied different estimation methods for m0(t),
such as Kennedy et al. (2017), Fong, Hazlett, and Imai (2018),
Ai et al. (2021), and Semenova and Chernozhukov (2020).

For example, the estimation approach by Ai et al. (2021) can
be adapted as follows. By estimating r0(t, x) by r(t, x; α̂) and
evaluating the conditional expectation with the series method,
m0(t) can be estimated by m̂(t) = u(t)′δ̂, where

δ̂ = arg min
δ

1
n

n∑
i=1

{r(Ti, Xi; α̂)Yi − u(Ti)
′δ}2,

and u(t) = (u1(t), . . . , uK(t))′ is a vector of basis functions. The
consistency and pointwise asymptotic normality of m̂(t) can be
established by applying the arguments in Ai et al. (2021).

Alternatively, we can construct a double robust version of the
above estimator based on Semenova and Chernozhukov (2020).
Note that the dose–response curve can be written as

m0(t) = E
[

r0(T, X)(Y − E[Y|T, X])

+
∫

E[Y|T, x]fX(x)dx
∣∣∣∣T = t

]
, (18)
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which is conditionally orthogonal to the nuisance functions
r0(t, x) and E[Y|t, x]. Define

Ỹi = r(Ti, Xi; α̂)(Yi − μ̂(Ti, Xi)) + 1
n

n∑
j=1

μ̂(Ti, Xj),

where μ̂(t, x) is a nonparametric estimator of E[Y|t, x]. Based
on (18), m0(t) can be estimated by m̃(t) = u(t)′δ̃, where

δ̃ = arg min
δ

1
n

n∑
i=1

{Ỹi − u(Ti)
′δ}2.

The asymptotic properties of m̃(t) can be obtained by adapting
the results in Semenova and Chernozhukov (2020) to our con-
text.

4. Simulation

4.1. Setting

In this section we illustrate the finite sample performance of
the proposed estimation method by numerical experiments. We
focus on the continuous treatment effect analysis in Section 3.1,
and adopt the simulation designs in Ai et al. (2021). In particu-
lar, we consider the data generating processes (DGPs):

(DGP-L2) T = 1 + 0.2(X1 + X2) + ξ ,

Y = 1 + 1
2
(X1 + X2) + T + ε,

(DGP-N2) T = 0.1(X1 + X2)
2 + ξ ,

Y = 1
2

+ 1
4
(X1 + X2)

2 + T + ε,

where X1, X2, ξ , and ε are mutually independent and follow
N(0, 1). The notation of the DGPs corresponds to the one in
Ai et al. (2021), where “L2” means that T and Y depend linearly
on the two covariates (X1, X2), while “N2” means that T and Y
depend nonlinearly on (X1, X2). We employ the quadratic loss
function L(u) = u2/2 and the linear link function g(T; β) =
β1 + β2T with the true value (β01, β02) = (1, 1).

For the basis functions ψ(T, X) to approximate r0(T, X),
we consider separable functions in T and X. Then the series
approximation can be written as

r(T, X) = uK1(T)′AvK2(X),

where uK1(T) and vK2(X) are vectors of basis functions and A
is a K1 × K2 matrix with the (i, j)th element corresponding to
the coefficient parameter for the product of the ith element of
uK1(T) and the jth element of vK2(X). For uK1(T), we consider

u2(T) = (1, T)′, u3(T) = (1, T, T2)′,
u4(T) = (1, T, T2, T3)′.

For vK2(X), we consider

v3(X) = (1, X1, X2)
′, v6(X) = (1, X1, X2, X2

1, X2
2, X1X2)

′,
v10(X) = (1, X1, X2, X2

1, X2
2, X1X2, X3

1, X3
2, X2

1X2, X1X2
2)

′.

Our estimator β̂ in (14) is computed for the sample sizes n =
100, 500, 1000, and the number of Monte Carlo replications is
1000. For the regularization parameter to implement (6), we
consider λ ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5}.

Table 1. Most frequently chosen pair (K1, K2) by the 5-fold cross-validation.

n = 100 n = 500 n = 1000

DGP-L2 (K1, K2) (2, 3) (2, 3) (3, 3)

λ 0.05 0.01 0.01
DGP-N2 (K1, K2) (2, 3) (2, 6) (3, 6)

λ 0.1 0.05 0.05

4.2. Cross-Validation, Point Estimation, and Interval
Estimation

Table 1 illustrates the result of the cross-validation method
to choose the series lengths (K1, K2) described in Remark 2.
We apply the 5-fold cross-validation for each replicated dataset
and report the most frequently chosen pair (K1, K2) over 1000
datasets. For both DGPs, a basis of higher degree is chosen as
the sample size grows and the appropriate model is chosen with
n = 1000 in the sense of the degree of basis. This result suggests
that the cross-validation works effectively for model selection in
our method.

Tables 2 and 3 summarize the simulation results on point
estimation of the intercept β1 and slope β2 under DGP-L2
and DGP-N2, respectively. For comparison, the simulation
results based on the joint to marginals density ratio described
in Remark 1 and the results from Ai et al. (2021) are also
included in the tables. For our estimator (“Ratio”) and the
joint to marginals estimator (“Ratio JM”), the results of the
regularized estimator chosen by the 5-fold cross-validation are
shown for each sample size. For Ai et al.’s estimator (“ALMZ”),
the results for the 5-fold cross-validation are borrowed from
Tables 5–8 in their supplemental material. In Appendix A.4,
we present additional simulation results for different choices of
the series lengths (K1, K2) and estimator without regularization.
The results are similar to the ones in Tables 2 and 3.

Overall, our estimator performs better than the other esti-
mators. In comparison with the joint to marginals estimator,
our estimator has much smaller standard deviations (SDs) and
root mean squared errors (RMSEs). Table 4 describes the quan-
tiles of the SDs of the estimated density ratio r̂0 by our esti-
mator and the joint to the marginals estimator, r(t, x; α̂) and
1/r(t, x; α̂joint to marginals), over 1000 replicated datasets, where
the sample size is n = 1000 and the basis degree is (K1, K2) =
(2, 6) without regularization. As mentioned in Remark 1, the
reciprocal of the joint to marginals estimator tends to have a
larger SD than our estimator for both DGPs, which leads to the
unstable results of the joint to marginals estimator. These results
show the advantage of the proposed method. In comparison
with Ai et al.’s estimator, the results are similar under DGP-L2
(linear system), whereas our estimator outperforms Ai et al.’s
under DGP-N2 (nonlinear system) in most of the cases, as the
sample size grows.

Note that the results of Ai et al. are obtained based on
“trimmed samples” in the sense that, when calculating the bias,
SD, and RMSE, they discard samples in which the mean of
the estimated ratios is not included in [0.5, 2] to eliminate the
impact of numerical instability. In contrast, the mean of the
estimated ratios in our (nonregularized) estimator is always
one because of its construction. Even though that is not true
for our regularized estimator, we observe that the mean of the
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Table 2. Simulation results on point estimation for DGP-L2.

n = 100 n = 500 n = 1000

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

β1 Ratio −0.028 0.172 0.174 −0.009 0.074 0.075 −0.012 0.054 0.055
Ratio JM −0.025 0.870 0.870 −0.083 2.260 2.262 −0.121 2.255 2.259
ALMZ 0.001 0.174 0.174 −0.003 0.074 0.074 −0.004 0.054 0.054

β2 Ratio 0.023 0.112 0.115 0.010 0.048 0.049 0.007 0.034 0.035
Ratio JM 0.038 0.918 0.919 0.057 1.643 1.644 0.187 4.095 4.099
ALMZ 0.003 0.113 0.113 0.005 0.052 0.052 0.006 0.037 0.038

Table 3. Simulation results on point estimation for DGP-N2.

n = 100 n = 500 n = 1000

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

β1 Ratio −0.041 0.119 0.126 0.004 0.056 0.056 0.008 0.041 0.041
Ratio JM 0.062 3.429 3.430 −0.097 2.033 2.035 0.045 1.570 1.571
ALMZ −0.041 0.130 0.136 −0.027 0.060 0.065 −0.019 0.045 0.049

β2 Ratio 0.165 0.134 0.212 0.020 0.047 0.051 0.025 0.034 0.042
Ratio JM −0.103 4.121 4.122 0.098 2.603 2.605 0.046 1.917 1.917
ALMZ 0.126 0.138 0.187 0.100 0.089 0.134 0.083 0.079 0.115

Table 4. Quantiles of the standard deviations of the estimated density ratio r̂0 over
the replicated datasets.

Quantile

0 25 50 75 100

DGP-L2 Ratio 0.209 0.313 0.342 0.376 0.499
Ratio JM 0.207 0.329 0.413 0.679 289.148

DGP-N2 Ratio 0.187 0.287 0.318 0.351 0.483
Ratio JM 0.161 0.340 0.512 0.995 299.376

Table 6. Simulation results on interval estimation for DGP-N2.

n = 100 n = 500 n = 1000

Estimator CV AL CV AL CV AL

β1 Ratio 0.937 0.469 0.929 0.208 0.920 0.147
ALMZ 0.969 0.537 0.953 0.236 0.967 0.171

β2 Ratio 0.931 0.474 0.960 0.221 0.970 0.166
ALMZ 0.965 0.498 0.937 0.208 0.934 0.153

estimated ratios is included in [0.9, 1.1] for all the Monte Carlo
replications and it does not need such a trimming. In this sense,
our estimators are more tractable than the one by Ai et al. (2021).

Tables 5 and 6 report the simulation results on interval
estimation, where the coverage (“CV”) is the proportion of the
times that the true value is included in the estimated 95% con-
fidence interval and the average length (“AL”) is the mean of the
length of the estimated 95% confidence interval. For simplicity,
the degree of the basis function is fixed as (K1, K2) = (2, 6) for
our estimator and Ai et al.’s and the regularization parameter
λ is set to 0 for our estimator. To estimate several conditional
expectations for the asymptotic variance in (16), we use a series
approximation as in the density ratio estimation. We employ the
same choice of the degree of basis and regularization parameter
as the density ratio estimation, that is, (K1, K2) = (2, 6) and
λ = 0.

For both DGPs, the coverage of our estimator is reasonably
close to 95% even with the small sample of n = 100, which
indicates that the asymptotic approximation works well to per-

Table 5. Simulation results on interval estimation for DGP-L2.

n = 100 n = 500 n = 1000

Estimator CV AL CV AL CV AL

β1 Ratio 0.935 0.662 0.954 0.293 0.960 0.207
ALMZ 0.967 0.722 0.960 0.304 0.959 0.221

β2 Ratio 0.926 0.445 0.938 0.192 0.952 0.136
ALMZ 0.956 0.494 0.945 0.205 0.929 0.149

form hypothesis testing with a finite sample. The average length
becomes smaller as the sample size grows for all the cases. In the
estimation of the slope β2, which is of interest in causal analysis,
the coverage of our estimator increases with a smaller average
length, while with Ai et al.’s estimator the smaller average length
leads to the smaller coverage, as the sample size grows. This
characteristic of our estimator may also be advantageous for
hypothesis testing.

4.3. Sensitivity Analysis

Figures 1 and 2 describe the sensitivity of the RMSE of the esti-
mated slope β̂2 against the choice of the regularization param-
eter λ for each (K1, K2). Note that the horizontal axis of the
graphs is not in a linear scale. For both DGPs, the case with the
small sample (n = 100) and the cases with the medium to large
samples (n = 500, 1000) exhibit similar behaviors, respectively.
For n = 100, a too large model (e.g., (K1, K2) = (3, 10))
with respect to the sample size has a large RMSE. The RMSEs
decrease as λ increases and they are not so sensitive to a large
λ. For n = 500 and 1000, under DGP-L2 (Figure 1), most
of the (K1, K2) pairs exhibit a similar behavior with respect to
the RMSE as λ increases. On the other hand, for n = 500
and 1000 under DGP-N2 (Figure 2), it becomes clear that too
simplified models (e.g., (K1, K2) = (2, 3) and (3, 3)) have large
RMSEs, while sufficiently large models (e.g., (K1, K2) = (3, 6)

and (3, 10)) show a reasonable behavior as in the cases of DGP-
L2. Importantly, for both DGPs, the RMSE is not so sensitive
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Figure 1. Sensitivity analysis for DGP-L2.

Figure 2. Sensitivity analysis for DGP-N2.

around the λ chosen by the cross-validation (see Table 1) with
sufficiently large models.1 This result may add to the reliability
of the results shown above.

5. Empirical Example

We apply the proposed estimation method to the U.S. presiden-
tial campaign data, which is originally analyzed by Urban and
Niebler (2014) and followed by Fong, Hazlett, and Imai (2018)
and Ai et al. (2021). In presidential campaigns, competitive
states usually gather candidates’ attention and most advertising
efforts. However, if political advertisements contribute to more
donations, candidates may also want to distribute their adver-
tising efforts for noncompetitive states. Therefore, the purpose
of the study is to find if there is a causal effect of political
advertisements on the amount of donations. A more detailed
background of the study can be found in Fong, Hazlett and Imai
(2018, sec. 2).

The treatment of interest is the number of political adver-
tisements aired in each zip code (across n = 16, 265 zip codes),
which ranges from 0 to 22,379 and can be considered as a contin-
uous variable. Urban and Niebler (2014) conduct their analysis
by dichotomizing the variable based on whether it is greater
than 1000 or not and conclude that there is a significant effect
of the political advertisements on donations. However, Fong,
Hazlett, and Imai (2018) point out that, due to the dichotomiza-
tion, Urban and Niebler’s (2014) result is difficult to interpret
and there is a large information loss. To mitigate this issue,
Fong, Hazlett and Imai (2018) apply the covariate balancing
generalized propensity score methodology, where they deal with
the treatment variable as a continuous variable. In contrast to

1Note that λ is chosen to minimize the cross-validation criterion (7) so it does
not necessarily minimize the RMSE of β̂2.

Urban and Niebler (2014), their result suggests that there is no
significant effect of the political advertisements on donations. In
addition, Ai et al. (2021) report similar results to Fong, Hazlett
and Imai (2018). Here, we investigate how those results will
change when using the proposed estimation method for the
continuous treatment.

Following the previous studies mentioned above, we include
the eight variables into our analysis as covariates: total popu-
lation, population density, median income, percentage of His-
panic, percentage of black, percentage of over age 65, percentage
of college graduates, and a binary indicator of whether it is
possible to commute to the zip code from a competitive state.
We apply the log-transformation on the outcome (amount of
donations) Y , the treatment (number of advertisements) T, and
the first three variables in the covariates. For the link function,
we consider the quadratic function g(T, β) = β1 +β2T +β3T2.
For the degree of the basis, we consider up to the third order
for T and X, respectively, and choose an optimal combination
by the cross-validation method described in Remark 2 from the
following list:

u2(T) = (1, T), u3(T) = (1, T, T2), u4(T) = (1, T, T2, T3),
v9(X) = (1, X1, . . . , X8),

v44(X) = (1, X1, . . . , X8, X2
1 , X1X2, . . . , X2

7 , X7X8), or

v156(X) = (1, X1, . . . , X8, X2
1 , X1X2, . . . , X2

7 , X7X8, X3
1 , X2

1X2, . . . , X2
7X8).

Note that X8 is a binary variable so the elements including X8
to the second/third powers are dropped, which leads to K1 ∈
{2, 3, 4} and K2 ∈ {9, 44, 156}. Similar to Section 4, we consider
λ ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} for the reg-
ularization parameter. As a result of the 5-fold cross-validation,
(K1, K2) = (4, 44) and λ = 0.005 are chosen. As in Section 4, we
use a series approximation to estimate the asymptotic variance
in (16) with the same degree of basis and the same regularization
parameter, (K1, K2) = (4, 44) and λ = 0.005.



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 9

Table 7. Result of the empirical analysis: the estimated coefficients of the link
function.

Estimate C.I. (Asymptotics) C.I. (Bootstrap)

β1 1.248 (1.207, 1.288) (1.198, 1.299)

β2 0.010 (−0.016, 0.036) (−0.029, 0.041)

β3 −0.001 (−0.004, 0.002) (−0.004, 0.003)

Table 7 reports the point estimates for (β1, β2, β3), 95%
asymptotic confidence intervals (“Asymptotic CI”), and Boot-
strap 95% confidence intervals (“Bootstrap CI”) for our
estimator. The asymptotic confidence interval of each coefficient
is obtained as β̂j ± 1.96

√
V̂jj/n, where V̂jj is the estimates of

(j, j)-element of the asymptotic variance in (16). The number of
bootstrap replications is 1000. In our example, the asymptotic
and bootstrap confidence intervals are reasonably close. The
confidence intervals for β2 and β3 both contain zero, that is, the
treatment (number of advertisements) has no significant impact
on the outcome. This result supports the existing literature that
deals with the treatment of interest as a continuous variable
(Fong, Hazlett, and Imai 2018; Ai et al. 2021), while being
against the original analysis where the treatment variable is
dichotomized (Urban and Niebler 2014).

Appendix A: Mathematical Appendix

A.1. Proof of Theorem 1

We normalize H = I without loss of generality. We first prove (9). Note
that

||r̂−r0||P,2 ≤ ||r̂−ψ ′α∗||P,2+||ψ ′α∗−r0||P,2 ≤ ||ψ ′(α̂−α∗)||P,2+cK ,

where the first inequality follows from the triangle inequality, and the
second inequality follows from Assumption (iii). Under the normaliza-
tion H = I, we have

||ψ ′(α̂ − α∗)||P,2 =
[∫

(α̂ − α∗)′ψ(t, x)ψ(t, x)′(α̂ − α∗)dP(t, x)

]1/2

= ||α̂ − α∗||.
The matrix law of large numbers (see Belloni et al. 2015, Lemma 6.2)
implies

||Ĥ − H|| = op(1) if
ξ2

K log K
n

→ 0. (19)

Hence, with probability approaching one, all eigenvalues of Ĥ are
bounded away from zero, and then

||α̂ − α∗|| = ||Ĥ−1(ĥ − Ĥα∗)|| �P ||ĥ − Ĥα∗||.
Therefore, it is sufficient for the conclusion to show that

||ĥ − Ĥα∗|| �P

√
K
n

. (20)

Now, let ϕ(t) = ∫
ψ(t, x)fX(x)dx. Observe that

E
[
||ĥ − Ĥα∗||2

]

= E

⎡
⎣
∥∥∥∥∥∥
⎧⎨
⎩ 1

n2

n∑
i=1

n∑
j=1

ψ(Ti, Xj) − 1
n

n∑
i=1

ϕ(Ti)

⎫⎬
⎭

−
{

Ĥα∗ − 1
n

n∑
i=1

ϕ(Ti)

}∥∥∥∥∥
2⎤⎦

≤ 2E

⎡
⎢⎣
∥∥∥∥∥∥

1
n

n∑
i=1

⎧⎨
⎩ 1

n

n∑
j=1

{ψ(Ti, Xj) − ϕ(Ti)}
⎫⎬
⎭
∥∥∥∥∥∥

2
⎤
⎥⎦

+ 2E

⎡
⎣
∥∥∥∥∥Ĥα∗ − 1

n

n∑
i=1

ϕ(Ti)

∥∥∥∥∥
2⎤⎦

= 2E

⎡
⎣
∥∥∥∥∥ 1

n

n∑
i=1

{
ψ(Ti, Xi)ψ(Ti, Xi)

′α∗ − ϕ(Ti)
}∥∥∥∥∥

2⎤⎦+ O
(

K
n

)

= 2
n

E
[
||ψ(T, X)ψ(T, X)′α∗ − ϕ(T)||2

]
+ O

(
K
n

)

≤ 4
n

E
[
||ψ(T, X)||2

]
E
[
||ψ(T, X)′α∗||2

]
+ 4

n
E
[
||ϕ(T)||2

]
+ O

(
K
n

)

≤ 4
n

{
E
[
||ψ(T, X)||2

]
(||r0||2P,2 + ||r0 − ψ ′α∗||2P,2)

}
+ 4

n
sup

(t,x)∈T ×X
r0(t, x)E

[
||ψ(T, X)||2

]
+ O

(
K
n

)

= O
(

K
n

)
,

where the first equality follows from the definition of ĥ, the first
inequality follows from ||A − B||2 ≥ 0, the second equality follows
from the definition of Ĥ and Assumption (ii), the third equality
follows from Assumption (i) (implying that {ψ(Ti, Xi)ψ(Ti, Xi)′α∗ −
EX[ψ(Ti, X)]}N

i=1 is an independent zero mean sequence), the second
inequality follows from the Cauchy-Schwarz inequality, the last
inequality follows from the triangle inequality and E[||ϕ(T)||2]
≤ ∫ ∫ ||ψ(t, x)||2fT(t)fX(x)dtdx (by the Cauchy–Schwarz inequality),
and the last equality follows from Assumption (ii)–(iii).
Thus, the Markov inequality yields (20) and the conclusion
follows.

We now prove (10). This theorem follows by

sup
(t,x)∈T ×X

|r̂(t, x) − r0(t, x)|

≤ ξK sup
(t,x)∈T ×X

∣∣∣∣
(

ψ(t, x)

||ψ(t, x)||
)′

(α̂ − α∗)

∣∣∣∣
+ sup

(t,x)∈T ×X
|ψ(t, x)′α∗ − r0(t, x)|

�P ξK

√
K
n

+ �K cK ,

where the first inequality follows from the triangle inequality and
definitions of q(t, x) and ξK , and the second inequality follows from
(20) and Assumption (iii).

A.2. Proof of Theorem 2

We first show (11). Note that

||r̃ − r0||P,2 ≤ ||r̃ − ψ ′α∗||P,2 + ||ψ ′α∗ − r0||P,2
≤ ||ψ ′(α̃ − α∗)||P,2 + cK ,

where the first inequality follows from the triangle inequality, and
the second inequality follows from Assumption (iii). Under the
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Table 8. Simulation results on intercept β1 under DGP-L2 (β∗
1 = 1).

n = 100 n = 500 n = 1000

(K1, K2) Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

(2,3) Ratio 0.010 0.172 0.173 −0.002 0.074 0.074 −0.004 0.054 0.054
Ratio w reg. −0.007 0.172 0.172 −0.002 0.074 0.074 −0.005 0.054 0.054
Ratio JM −0.025 0.870 0.870 −0.083 2.260 2.262 −0.121 2.255 2.259
Ratio JM w reg −0.032 0.417 0.418 −0.053 0.501 0.504 −0.096 0.267 0.283
ALMZ −0.005 0.171 0.171 0.000 0.073 0.073 −0.001 0.053 0.053

(2,6) Ratio 0.011 0.184 0.185 −0.002 0.075 0.075 −0.004 0.054 0.054
Ratio w reg. −0.014 0.180 0.181 −0.002 0.075 0.075 −0.005 0.054 0.054
Ratio JM −0.093 2.139 2.141 −0.013 0.424 0.424 0.006 0.641 0.641
Ratio JM w reg −0.082 0.189 0.206 −0.061 0.096 0.113 −0.097 0.169 0.195
ALMZ −0.013 0.171 0.171 −0.010 0.081 0.082 −0.009 0.055 0.056

(2,10) Ratio 0.009 0.211 0.211 −0.002 0.075 0.075 −0.004 0.054 0.054
Ratio w reg. −0.028 0.185 0.187 −0.002 0.075 0.075 −0.005 0.054 0.054
Ratio JM −0.092 2.153 2.155 0.017 1.063 1.063 −0.005 2.905 2.905
Ratio JM w reg −0.071 0.343 0.350 −0.065 0.229 0.238 −0.032 0.289 0.291
ALMZ −0.039 0.181 0.186 −0.034 0.078 0.085 −0.028 0.056 0.062

(3,3) Ratio 0.008 0.176 0.177 −0.001 0.074 0.074 −0.004 0.054 0.054
Ratio w reg. −0.027 0.171 0.173 −0.001 0.074 0.074 −0.004 0.054 0.054
Ratio JM −0.013 0.541 0.541 0.150 3.496 3.499 0.035 4.520 4.520
Ratio JM w reg −0.079 0.320 0.330 −0.087 0.085 0.122 −0.084 0.132 0.157
ALMZ −0.016 0.169 0.170 −0.002 0.075 0.075 0.000 0.057 0.057

(3,6) Ratio 0.009 0.202 0.202 −0.001 0.075 0.075 −0.004 0.055 0.055
Ratio w reg. −0.044 0.174 0.180 −0.002 0.075 0.075 −0.004 0.055 0.055
Ratio JM −0.063 1.275 1.277 −0.037 0.708 0.709 −0.004 0.626 0.626
Ratio JM w reg −0.049 0.171 0.178 −0.077 0.073 0.106 −0.079 0.051 0.094
ALMZ −0.027 0.195 0.197 −0.024 0.083 0.087 −0.026 0.061 0.066

(3,10) Ratio 0.000 0.276 0.276 −0.003 0.078 0.078 −0.004 0.056 0.056
Ratio w reg. −0.053 0.179 0.187 −0.010 0.075 0.076 −0.008 0.055 0.056
Ratio JM −0.094 1.732 1.734 0.012 0.600 0.600 −0.004 1.185 1.185
Ratio JM w reg −0.060 0.170 0.180 −0.075 0.072 0.104 −0.067 0.054 0.086
ALMZ −0.032 0.202 0.205 −0.034 0.080 0.087 −0.030 0.058 0.065

(4,3) Ratio 0.006 0.186 0.186 −0.001 0.074 0.074 −0.004 0.054 0.054
Ratio w reg. −0.026 0.172 0.173 −0.005 0.073 0.074 −0.005 0.054 0.054
Ratio JM 0.729 22.376 22.387 0.087 2.313 2.314 0.276 8.618 8.622
Ratio JM w reg −0.092 0.317 0.330 −0.077 0.107 0.132 −0.085 0.082 0.118
ALMZ −0.014 0.179 0.180 −0.006 0.079 0.079 −0.008 0.056 0.056

(4,6) Ratio 0.008 0.269 0.269 −0.001 0.078 0.078 −0.004 0.056 0.056
Ratio w reg. −0.039 0.175 0.180 −0.011 0.074 0.075 −0.009 0.055 0.055
Ratio JM −0.050 0.595 0.597 −0.036 0.991 0.991 −0.059 1.498 1.499
Ratio JM w reg −0.063 0.168 0.179 −0.073 0.074 0.104 −0.086 0.056 0.103
ALMZ −0.036 0.207 0.210 −0.029 0.082 0.087 −0.030 0.059 0.066

(4,10) Ratio 0.008 0.500 0.500 −0.002 0.085 0.085 −0.004 0.058 0.058
Ratio w reg. −0.045 0.180 0.185 −0.014 0.074 0.076 −0.011 0.055 0.056
Ratio JM −0.024 0.635 0.636 −0.008 0.452 0.452 0.045 1.847 1.848
Ratio JM w reg −0.058 0.170 0.180 −0.046 0.092 0.103 −0.065 0.059 0.088
ALMZ −0.032 0.211 0.213 −0.030 0.082 0.088 −0.025 0.059 0.064

normalization H = I, we have

||ψ ′(α̃ − α∗)||P,2 =
[∫

(α̃ − α∗)′ψ(t, x)ψ(t, x)′(α̃ − α∗)dP(t, x)

]1/2

= ||α̃ − α∗||.
Also note that

||α̃ − α∗|| = ||(Ĥ + λI)−1{ĥ − (Ĥ + λI)α∗}||
�P ||ĥ − (Ĥ + λI)α∗||

�P ||ĥ − Ĥα∗|| + λ||α∗|| �P

√
K
n

+ λ
√

K, (21)

where the first inequality follows from the fact that all eigenvalues of Ĥ
are bounded away from zero with probability approaching one (by 19),
the second inequality follows from the triangle inequality, and the third
inequality follows from (20) and definition of α∗ in (3). Combining
these results with λ = o(n−1/2), the conclusion follows.

We now show (12). This theorem follows by
sup

(t,x)∈T ×X
|r̃(t, x) − r0(t, x)|

≤ ξK sup
(t,x)∈T ×X

∣∣∣∣
(

ψ(t, x)

||ψ(t, x)||
)′

(α̃ − α∗)

∣∣∣∣
+ sup

(t,x)∈T ×X
|ψ(t, x)′α∗ − r0(t, x)|

�P ξK

√
K
n

+ �K cK ,

where the first inequality follows from the triangle inequality and
definitions of q(t, x) and ξK , and the second inequality follows from
(21) and Assumption (iii).

A.3. Proof of Proposition 1

We first show consistency of β̂ . By the triangle inequality, we have
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Table 9. Simulation results on intercept β2 under DGP-L2 (β∗
2 = 1).

n = 100 n = 500 n = 1000

(K1, K2) Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

(2,3) Ratio −0.007 0.116 0.116 0.004 0.048 0.048 0.002 0.035 0.035
Ratio w reg. 0.007 0.114 0.114 0.004 0.048 0.048 0.002 0.035 0.035
Ratio JM 0.038 0.918 0.919 0.057 1.643 1.644 0.187 4.095 4.099
Ratio JM w reg 0.036 0.332 0.334 0.050 0.388 0.391 0.079 0.211 0.225
ALMZ 0.001 0.108 0.108 0.002 0.047 0.047 0.000 0.035 0.035

(2,6) Ratio −0.007 0.130 0.130 0.004 0.049 0.049 0.002 0.035 0.035
Ratio w reg. 0.013 0.123 0.123 0.004 0.049 0.049 0.002 0.035 0.035
Ratio JM 0.075 1.383 1.385 0.024 0.341 0.342 −0.010 0.783 0.784
Ratio JM w reg 0.074 0.144 0.162 0.056 0.076 0.095 0.082 0.139 0.162
ALMZ 0.033 0.118 0.122 0.023 0.052 0.057 0.025 0.037 0.045

(2,10) Ratio −0.004 0.159 0.159 0.004 0.050 0.050 0.002 0.035 0.035
Ratio w reg. 0.024 0.125 0.127 0.004 0.050 0.050 0.002 0.035 0.035
Ratio JM 0.071 1.326 1.328 −0.026 1.195 1.195 −0.007 2.252 2.252
Ratio JM w reg 0.071 0.279 0.288 0.062 0.167 0.178 0.021 0.275 0.276
ALMZ 0.051 0.128 0.138 0.042 0.052 0.067 0.040 0.038 0.055

(3,3) Ratio −0.005 0.117 0.117 0.004 0.048 0.048 0.002 0.034 0.034
Ratio w reg. 0.020 0.113 0.114 0.004 0.048 0.048 0.002 0.034 0.034
Ratio JM −0.012 1.416 1.416 −0.127 2.543 2.546 −0.130 6.554 6.556
Ratio JM w reg 0.070 0.240 0.250 0.073 0.076 0.106 0.068 0.112 0.131
ALMZ 0.019 0.116 0.117 0.019 0.052 0.056 0.015 0.038 0.041

(3,6) Ratio −0.005 0.137 0.137 0.003 0.049 0.049 0.002 0.035 0.035
Ratio w reg. 0.033 0.117 0.121 0.004 0.049 0.049 0.002 0.035 0.035
Ratio JM 0.154 3.682 3.685 0.037 0.573 0.574 0.005 0.516 0.516
Ratio JM w reg 0.050 0.122 0.132 0.070 0.054 0.088 0.067 0.037 0.077
ALMZ 0.023 0.133 0.135 0.029 0.054 0.062 0.031 0.040 0.050

(3,10) Ratio 0.004 0.193 0.193 0.004 0.051 0.051 0.002 0.035 0.035
Ratio w reg. 0.038 0.119 0.124 0.009 0.049 0.050 0.005 0.035 0.035
Ratio JM 0.078 1.091 1.094 0.001 0.406 0.406 0.010 0.842 0.842
Ratio JM w reg 0.062 0.119 0.135 0.072 0.049 0.087 0.060 0.049 0.077
ALMZ 0.037 0.135 0.140 0.040 0.052 0.065 0.037 0.038 0.053

(4,3) Ratio −0.004 0.131 0.131 0.004 0.048 0.048 0.002 0.034 0.034
Ratio w reg. 0.019 0.115 0.117 0.007 0.048 0.048 0.002 0.034 0.034
Ratio JM −0.551 15.097 15.107 −0.081 1.866 1.868 −0.191 5.424 5.427
Ratio JM w reg 0.080 0.247 0.259 0.064 0.108 0.126 0.074 0.136 0.155
ALMZ 0.024 0.122 0.125 0.021 0.052 0.056 0.023 0.037 0.044

(4,6) Ratio −0.002 0.192 0.192 0.003 0.051 0.052 0.002 0.036 0.036
Ratio w reg. 0.027 0.121 0.124 0.011 0.049 0.050 0.006 0.035 0.036
Ratio JM 0.041 0.432 0.434 0.023 0.518 0.519 0.043 1.146 1.147
Ratio JM w reg 0.063 0.118 0.134 0.067 0.064 0.093 0.070 0.066 0.096
ALMZ 0.028 0.141 0.144 0.035 0.057 0.066 0.039 0.038 0.054

(4,10) Ratio 0.000 0.337 0.337 0.004 0.058 0.058 0.001 0.039 0.039
Ratio w reg. 0.030 0.122 0.126 0.013 0.049 0.051 0.007 0.036 0.036
Ratio JM 0.004 0.754 0.754 0.029 1.317 1.317 0.041 2.085 2.085
Ratio JM w reg 0.062 0.120 0.135 0.046 0.093 0.104 0.060 0.072 0.093
ALMZ 0.030 0.141 0.144 0.029 0.055 0.062 0.029 0.040 0.049

sup
β∈B

∣∣∣∣∣ 1
n

n∑
i=1

L(Yi − g(Ti; β))r(Ti, Xi; α̂) − E[L(Y − g(T; β))r0(T, X)]
∣∣∣∣∣

≤ sup
β∈B

∣∣∣∣∣ 1
n

n∑
i=1

L(Yi − g(Ti; β)){r(Ti, Xi; α̂) − r0(Ti, Xi)}
∣∣∣∣∣

+ sup
β∈B

∣∣∣∣∣ 1
n

n∑
i=1

L(Yi − g(Ti; β))r0(Ti, Xi) − E[L(Y − g(T; β))r0(T, X)]
∣∣∣∣∣

≡ T1 + T2.

For T2, the uniform law of large numbers (Newey and McFadden 1994,
Lemma 2.4) under Assumption (iv) implies T2

p→ 0. For T1, we also
have

T1 ≤ sup
(t,x)∈T ×X

|r(t, x; α̂) − r0(t, x)| sup
β∈B

(
1
n

n∑
i=1

|L(Yi − g(Ti; β))|
)

p→ 0,

where the convergence follows from Theorem 1 and the uni-
form law of large numbers. Therefore, we obtain the consistency
β̂

p→ β0.
We next show the asymptotic distribution of β̂ . Let r̂i = r̂(Ti, Xi),

r0i = r(Ti, Xi), Wi = L′(Yi − g(Ti; β0))
∂g(Ti;β0)

∂β
, and ω(t, x) =

E[W|T = t, X = x]. An expansion of the first-order condition of β̂

yields

0 = 1
n

n∑
i=1

r̂iWi(β̂) = 1
n

n∑
i=1

r̂iWi − 1
n

n∑
i=1

r̂i
∂Wi(β̄)

∂β ′ (β̂ − β0),

where β̄ is a point on the line joining β̂ and β0. Thus, it is sufficient for
the conclusion to show that

Ĝ ≡ 1
n

n∑
i=1

r̂i
∂Wi(β̄)

∂β ′
p→ G, (22)
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Table 10. Simulation results on intercept β1 under DGP-N2 (β∗
1 = 1).

n = 100 n = 500 n = 1000

(K1, K2) Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

(2,3) Ratio −0.043 0.119 0.127 −0.042 0.053 0.068 −0.035 0.038 0.051
Ratio w reg. −0.043 0.119 0.127 −0.042 0.053 0.068 −0.035 0.038 0.051
Ratio JM −0.075 0.961 0.964 −0.038 0.061 0.072 −0.034 0.038 0.051
Ratio JM w reg −0.032 0.136 0.139 −0.038 0.053 0.065 −0.033 0.038 0.050
ALMZ −0.043 0.118 0.126 −0.037 0.053 0.065 −0.038 0.036 0.053

(2,6) Ratio 0.002 0.129 0.129 −0.003 0.056 0.056 0.002 0.040 0.040
Ratio w reg. 0.004 0.126 0.126 −0.002 0.056 0.056 0.002 0.040 0.040
Ratio JM 0.062 3.429 3.430 −0.097 2.033 2.035 −0.009 1.056 1.056
Ratio JM w reg −0.104 0.126 0.164 −0.116 0.060 0.130 −0.097 0.071 0.120
ALMZ −0.010 0.135 0.135 0.004 0.060 0.060 0.004 0.043 0.043

(2,10) Ratio 0.005 0.138 0.138 −0.003 0.057 0.057 0.003 0.040 0.040
Ratio w reg. −0.001 0.129 0.129 −0.003 0.056 0.057 0.003 0.040 0.040
Ratio JM −0.073 0.687 0.691 −0.042 0.302 0.305 −0.009 0.958 0.958
Ratio JM w reg −0.117 0.116 0.165 −0.102 0.083 0.131 −0.114 0.088 0.144
ALMZ −0.030 0.132 0.136 −0.008 0.057 0.058 −0.007 0.043 0.044

(3,3) Ratio −0.050 0.122 0.132 −0.043 0.053 0.068 −0.036 0.038 0.052
Ratio w reg. −0.050 0.122 0.132 −0.043 0.053 0.068 −0.036 0.038 0.052
Ratio JM −0.028 0.224 0.226 −0.040 0.196 0.200 −0.036 0.100 0.106
Ratio JM w reg −0.044 0.122 0.130 −0.048 0.053 0.071 −0.040 0.038 0.055
ALMZ −0.052 0.125 0.136 −0.041 0.053 0.067 −0.037 0.039 0.053

(3,6) Ratio 0.002 0.144 0.144 −0.003 0.058 0.058 0.002 0.041 0.041
Ratio w reg. −0.001 0.129 0.129 −0.003 0.057 0.057 0.002 0.041 0.041
Ratio JM −0.028 0.441 0.442 −0.022 0.725 0.725 0.045 1.570 1.571
Ratio JM w reg −0.096 0.117 0.151 −0.092 0.052 0.106 −0.098 0.037 0.104
ALMZ −0.030 0.137 0.140 −0.007 0.060 0.060 −0.005 0.045 0.045

(3,10) Ratio 0.004 0.196 0.196 −0.004 0.059 0.059 0.002 0.041 0.041
Ratio w reg. −0.007 0.132 0.132 −0.004 0.058 0.058 0.002 0.041 0.041
Ratio JM −0.096 1.506 1.509 −0.031 0.334 0.335 −0.008 0.524 0.524
Ratio JM w reg −0.101 0.117 0.154 −0.094 0.053 0.107 −0.086 0.038 0.094
ALMZ −0.039 0.141 0.147 −0.017 0.060 0.062 −0.011 0.043 0.045

(4,3) Ratio −0.057 0.128 0.140 −0.045 0.053 0.070 −0.036 0.038 0.052
Ratio w reg. −0.051 0.123 0.133 −0.045 0.053 0.070 −0.036 0.038 0.052
Ratio JM −0.059 1.020 1.022 −0.035 0.202 0.205 −0.015 0.602 0.602
Ratio JM w reg −0.042 0.128 0.135 −0.048 0.054 0.072 −0.042 0.039 0.057
ALMZ −0.052 0.128 0.139 −0.038 0.055 0.067 −0.039 0.037 0.054

(4,6) Ratio 0.003 0.173 0.173 −0.004 0.058 0.058 0.002 0.041 0.041
Ratio w reg. −0.002 0.131 0.131 −0.003 0.057 0.057 0.003 0.041 0.041
Ratio JM −0.015 0.603 0.603 0.038 1.875 1.875 −0.034 0.188 0.191
Ratio JM w reg −0.097 0.117 0.152 −0.104 0.052 0.116 −0.085 0.040 0.094
ALMZ −0.035 0.142 0.146 −0.012 0.061 0.062 −0.011 0.043 0.045

(4,10) Ratio 0.005 0.320 0.320 −0.005 0.062 0.062 0.002 0.042 0.042
Ratio w reg. −0.008 0.133 0.133 −0.004 0.058 0.058 0.003 0.042 0.042
Ratio JM −0.051 0.483 0.486 0.176 6.108 6.110 −0.036 0.345 0.347
Ratio JM w reg −0.089 0.119 0.149 −0.105 0.052 0.117 −0.112 0.036 0.118
ALMZ −0.048 0.162 0.169 −0.018 0.061 0.063 −0.015 0.043 0.045

1√
n

n∑
i=1

r̂iWi
d→ N(0, V). (23)

For (22), the triangle inequality yields

|Ĝ − G| ≤ sup
β∈N

∣∣∣∣∣ 1
n

n∑
i=1

r0i
∂Wi(β)

∂β ′ − E
[

r0i
∂Wi(β)

∂β ′
]∣∣∣∣∣

+
∣∣∣∣E
[

r0i
∂Wi(β̄)

∂β ′
]

− G
∣∣∣∣

+ sup |r̂i − r0i| sup
β∈N

1
n

n∑
i=1

∣∣∣∣∂Wi(β)

∂β ′
∣∣∣∣

p→ 0,

where the convergence follows from the uniform law of large numbers
under Assumption (v) and the continuous mapping theorem.

We now show (23). Note that E[r0(T, X)W] = ∫
T
∫
X ω(t, x)fT(t)

fX(x)dtdx = 0. We decompose

1
n

n∑
i=1

r̂iWi = 1
n

n∑
i=1

r̂i{Wi − ω(Ti, Xi)} + 1
n

n∑
i=1

r̂iω(Ti, Xi)

= 1
n

n∑
i=1

r0i{Wi − ω(Ti, Xi)}

+ 1
n

n∑
i=1

{∫
ω(Ti, x)fX(x)dx +

∫
ω(t, Xi)fT(t)dt

}

+ 1
n

n∑
i=1

(r̂i − r0i){Wi − ω(Ti, Xi)}

+
⎛
⎜⎝

1
n
∑n

i=1 r̂i{ω(Ti, Xi) − ψ(Ti, Xi)′γ ∗}
− 1

n
∑n

i=1
{∫

ω(Ti, x)fX(x)dx + ∫
ω(t, Xi)fT(t)dt

}
+ 1

n2
∑n

i=1
∑n

j=1 ψ(Ti, Xj)′γ ∗

⎞
⎟⎠

≡ M1 + M2 + R1 + R2.
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Table 11. Simulation results on intercept β2 under DGP-N2 (β∗
2 = 1).

n = 100 n = 500 n = 1000

(K1, K2) Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

(2,3) Ratio 0.161 0.134 0.210 0.180 0.058 0.189 0.183 0.041 0.187
Ratio w reg. 0.161 0.134 0.210 0.180 0.058 0.189 0.183 0.041 0.187
Ratio JM 0.071 2.139 2.140 0.162 0.759 0.776 0.187 0.051 0.194
Ratio JM w reg 0.174 0.189 0.257 0.177 0.060 0.187 0.178 0.040 0.182
ALMZ 0.172 0.129 0.215 0.185 0.060 0.194 0.184 0.040 0.188

(2,6) Ratio −0.003 0.124 0.124 0.001 0.048 0.048 0.001 0.034 0.034
Ratio w reg. 0.025 0.118 0.121 0.003 0.048 0.048 0.001 0.034 0.034
Ratio JM −0.103 4.121 4.122 0.098 2.603 2.605 0.004 0.962 0.962
Ratio JM w reg 0.064 0.133 0.147 0.070 0.072 0.100 0.063 0.113 0.130
ALMZ 0.031 0.117 0.121 0.026 0.054 0.059 0.026 0.037 0.045

(2,10) Ratio −0.006 0.143 0.143 0.001 0.049 0.049 0.001 0.035 0.035
Ratio w reg. 0.030 0.122 0.126 0.004 0.048 0.049 0.001 0.035 0.035
Ratio JM 0.040 1.046 1.046 0.015 0.510 0.510 0.010 0.839 0.839
Ratio JM w reg 0.065 0.118 0.135 0.061 0.101 0.118 0.075 0.146 0.164
ALMZ 0.047 0.131 0.139 0.041 0.054 0.067 0.039 0.037 0.053

(3,3) Ratio 0.153 0.135 0.204 0.176 0.059 0.186 0.181 0.041 0.185
Ratio w reg. 0.153 0.135 0.204 0.176 0.059 0.186 0.181 0.041 0.185
Ratio JM 0.189 0.563 0.594 0.174 0.795 0.814 0.168 0.517 0.544
Ratio JM w reg 0.165 0.142 0.218 0.171 0.056 0.180 0.175 0.050 0.182
ALMZ 0.163 0.131 0.209 0.180 0.060 0.189 0.181 0.041 0.186

(3,6) Ratio −0.001 0.135 0.135 0.001 0.048 0.048 0.001 0.034 0.034
Ratio w reg. 0.036 0.119 0.125 0.005 0.048 0.048 0.001 0.034 0.034
Ratio JM 0.051 0.667 0.669 0.103 2.862 2.864 0.046 1.917 1.917
Ratio JM w reg 0.063 0.115 0.131 0.060 0.050 0.078 0.067 0.034 0.075
ALMZ 0.027 0.132 0.134 0.031 0.054 0.062 0.031 0.039 0.050

(3,10) Ratio −0.006 0.180 0.180 0.001 0.050 0.050 0.001 0.034 0.034
Ratio w reg. 0.041 0.122 0.128 0.010 0.048 0.049 0.002 0.034 0.034
Ratio JM 0.043 0.497 0.498 0.003 0.348 0.348 0.054 1.404 1.405
Ratio JM w reg 0.063 0.115 0.131 0.062 0.048 0.079 0.060 0.036 0.070
ALMZ 0.044 0.139 0.146 0.036 0.053 0.063 0.036 0.040 0.054

(4,3) Ratio 0.145 0.142 0.203 0.174 0.060 0.184 0.179 0.041 0.184
Ratio w reg. 0.150 0.135 0.202 0.174 0.060 0.184 0.179 0.041 0.184
Ratio JM 0.114 2.488 2.491 0.193 0.877 0.898 0.275 3.054 3.067
Ratio JM w reg 0.171 0.226 0.283 0.171 0.118 0.207 0.171 0.070 0.185
ALMZ 0.162 0.133 0.210 0.175 0.059 0.185 0.180 0.040 0.184

(4,6) Ratio −0.006 0.174 0.174 0.001 0.051 0.051 0.001 0.035 0.035
Ratio w reg. 0.032 0.122 0.126 0.008 0.049 0.050 0.004 0.034 0.035
Ratio JM 0.032 0.547 0.548 −0.094 2.417 2.419 0.019 0.383 0.383
Ratio JM w reg 0.061 0.115 0.130 0.064 0.049 0.081 0.056 0.046 0.072
ALMZ 0.038 0.133 0.138 0.034 0.055 0.064 0.033 0.040 0.052

(4,10) Ratio −0.022 0.296 0.297 0.002 0.056 0.056 0.001 0.036 0.037
Ratio w reg. 0.036 0.124 0.130 0.010 0.050 0.051 0.005 0.035 0.036
Ratio JM 0.059 0.854 0.856 −0.136 4.598 4.600 0.053 0.432 0.435
Ratio JM w reg 0.055 0.118 0.130 0.066 0.050 0.083 0.070 0.035 0.078
ALMZ 0.029 0.149 0.151 0.028 0.054 0.061 0.030 0.037 0.047

By the facts that E[r0iWi|Ti] = ∫
ω(Ti, x)fX(x)dx and E[r0iWi|Xi] =∫

ω(t, Xi)fT(t)dt, M2 is written as M2 = 1
n
∑n

i=1{E[r0iWi|Ti] +
E[r0iWi|Xi]}. Thus, the central limit theorem yields

√
n(M1 + M2)

d→ N(0, V).

It remains to show that R1, R2 = op(n−1/2). For R1,

R1 = 1
n

n∑
i=1

(r̂i − ψ(Ti, Xi)
′α∗){Wi − ω(Ti, Xi)}

+ 1
n

n∑
i=1

(ψ(Ti, Xi)
′α∗ − r0i){Wi − ω(Ti, Xi)}

�P (α̂ − α∗)′ 1
n

n∑
i=1

ψ(Ti, Xi){Wi − ω(Ti, Xi)} + �K cK√
n

�P
K
n

+ �K cK√
n

,

where the first inequality follows from

Var

(
1
n

n∑
i=1

(ψ(Ti, Xi)
′α∗ − r0i){Wi − ω(Ti, Xi)}

)

≤ sup
(t,x)∈T ×X

∣∣ψ(Ti, Xi)
′α∗ − r0i

∣∣2 E

[
1

n2

n∑
i=1

||Wi − ω(Ti, Xi)||2
]

,

combined with Assumption (iii), (v) and the Chebyshev inequal-
ity, and the second inequality follows from

∥∥∥ 1
n
∑n

i=1 ψ(Ti, Xi)

{Wi − ω(Ti, Xi)}‖ �P
√

K/n. Since K/
√

n → 0 and �K cK → 0
under our assumptions, we obtain R1 = op(n−1/2).

For R2, writing �(t, x) = ω(t, x) − ψ(t, x)′γ ∗, we have

R2 = 1
n

n∑
i=1

{
r̂i�(Ti, Xi) −

∫
�(Ti, x)fX(x)dx

}

− 1
n2

n∑
i=1

n∑
j=1

{
�(Ti, Xj) −

∫
�(Ti, x)fX(x)dx

}
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+ 1
n2

n∑
i=1

n∑
j=1

{
ω(Ti, Xj) −

∫
ω(t, Xj)fT(t)dt

−
∫

ω(Ti, x)fX(x)dx
}

= 1
n

n∑
i=1

{
r̂i�(Ti, Xi) −

∫
�(Ti, x)fX(x)dx

}
+ op(n−1/2)

= 1
n

n∑
i=1

(r̂i − r0i)�(Ti, Xi)

+ 1
n

n∑
i=1

{
r0i�(Ti, Xi) −

∫
�(Ti, x)fX(x)dx

}
+ op(n−1/2)

= 1
n

n∑
i=1

{
r̂i − ψ(Ti, Xi)

′α∗ + ψ(Ti, Xi)
′α∗ − r0i

}
× �(Ti, Xi) + op(n−1/2)

= (α̂ − α∗)′ 1
n

n∑
i=1

ψ(Ti, Xi)�(Ti, Xi)

+ O(K−(η1+η2)) + op(n−1/2)

= ||α̂ − α∗|| sup
(t,x)∈T ×X

||ψ(t, x)|| sup
(t,x)∈T ×X

||�(t, x)||

+ O(K−(η1+η2)) + op(n−1/2)

= Op(ξK K1/2−η2/
√

n) + O(K−(η1+η2)) + op(n−1/2),

where the second equality follows from the law of large numbers for
the u-statistics, the fourth equality follows from E[r0(T, X)�(T, X)] =∫

�(t, x)fT(t)fX(x)dtdx, the Cauchy–Schwarz inequality and (15), the
fifth equality follows from Assumption (iii) with �K cK = O(K−η1) and
(15), and the last equality follows from ||α̂ − α∗|| �P

√
K/n (by (20))

and (15).
Combining these results, we obtain (23) and the conclusion

follows.

A.4. Detailed Simulation Results

Tables 8–11 summarize the simulation results for estimation of the
intercept β1 and slope β2 under DGP-L2 (and DGP-N2, respectively).
We only show the one case per pair of a basis degree (K1, K2) and
sample size which minimized the RMSE of β̂2, and omit the regularized
parameters used for the reported results. The simulation results of Ai
et al. (2021) are also included in the tables. The meanings of the abbrevi-
ations used in “Estimator” column are: “Ratio” for the proposed density
ratio-based estimator, “Ratio w reg.” for the proposed estimator with
regularization, “Ratio JM” for the joint to marginals density ratio-based
estimator, “Ratio JM w reg.” for the joint to marginals density ratio-
based estimator with regularization, and “ALMZ” for the estimator
proposed by Ai et al. (2021).
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