
Auction Algorithms for Market Equilibrium with
Weak Gross Substitute Demands and Their
Applications
Jugal Garg !

University of Illinois at Urbana-Champaign, IL, USA

Edin Husić !

Department of Mathematics, The London School of Economics and Political Science, UK

László A. Végh !

Department of Mathematics, The London School of Economics and Political Science, UK

Abstract
We consider the Arrow–Debreu exchange market model where agents’ demands satisfy the weak
gross substitutes (WGS) property. This is a well-studied property, in particular, it gives a sufficient
condition for the convergence of the classical tâtonnement dynamics. In this paper, we present a
simple auction algorithm that obtains an approximate market equilibrium for WGS demands. Such
auction algorithms have been previously known for restricted classes of WGS demands only. As
an application of our technique, we obtain an efficient algorithm to find an approximate spending-
restricted market equilibrium for WGS demands, a model that has been recently introduced as a
continuous relaxation of the Nash social welfare (NSW) problem. This leads to a polynomial-time
constant factor approximation algorithm for NSW with budget separable piecewise linear utility
functions; only a pseudopolynomial approximation algorithm was known for this setting previously.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Algorithmic game theory and mechanism design

Keywords and phrases auction algorithm, weak gross substitutes, Fisher equilibrium, Gale equilib-
rium, Nash social welfare

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.33

Related Version Full Version: https://arxiv.org/abs/1908.07948

Funding Jugal Garg was supported by the NSF CAREER Award 1942321. Edin Husić and László
A. Végh were supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement ScaleOpt–757481).

Acknowledgements We would like to thank anonymous referees for their comments and suggestions
that have helped to improve the presentation of the paper.

1 Introduction

Market equilibrium is a fundamental and well-established notion to analyze and predict the
outcomes of strategic interaction in large markets. In the classic Arrow-Debreu exchange
model, a set of agents arrive at the market with initial endowments of divisible goods. A
market equilibrium comprises a set of prices and allocations of goods to the agents such
that each agent spends their income from selling their initial endowment on a bundle that
maximizes their utility, and the market clears: demand of each good meets its supply.
This model was first studied by Walras in 1874 [61], who also introduced a natural market
dynamics, called the tâtonnement process. A continuous version of the process was shown
to converge to an equilibrium if the utility functions satisfy the weak gross substitutability
(WGS) property, namely, that if the prices of some goods increase and the others remain

© Jugal Garg, Edin Husić, and László A. Végh;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jugal@illinois.edu
https://orcid.org/0000-0001-6439-7308
mailto:e.husic@lse.ac.uk
https://orcid.org/0000-0002-6708-5112
mailto:l.vegh@lse.ac.uk
https://orcid.org/0000-0003-1152-200X
https://doi.org/10.4230/LIPIcs.STACS.2021.33
https://arxiv.org/abs/1908.07948
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Auction Algorithms with WGS Demands

unchanged, then the demand for the latter goods may not decrease (see Arrow, Block, and
Hurwitz [3], Arrow and Hurwitz [6], and references therein). However, Scarf [59] showed,
using an example of Leontief utilities, that tâtonnement may not always converge to an
equilibrium. We refer the reader to [54, Chapter 17] on the stability of the tâtonnement
process.

The polynomial-time computability of market equilibrium for WGS utilities was first
established by Codenotti, Pemmaraju, and Varadarajan [25]. Later, a simple ascending-price
algorithm using global demand queries was given by Bei, Garg, and Hoefer [9]. Further,
Codenotti, McCune, and Varadarajan [23] have shown that a simple discrete variant of the
tâtonnement algorithm converges to an approximate equilibrium (see also [57, Section 6.3]).
This was followed by a number of papers providing tâtonnement algorithms for various classes
of utility functions and restricted models, some of them substantially weakening the need for
central coordination among agents, see e.g., [7, 19, 20, 27, 37].

However, most of these algorithms still rely on global demand queries, and hence they are
less realistic. In a sense, they require a central authority (responsible for updating prices) to
have some general information about the demands of all agents in the market.

Auction algorithms. In this paper, we focus on an even simpler subclass of tâtonnement-
type algorithms, called auction algorithms. Whereas prices in tâtonnement may increase as
well as decrease, in auctions prices may only go up. Auction algorithms are appealing due to
their simplicity and distributed nature: under simple “ground rules” the agents outbid each
other and in the process converge to an approximate market equilibrium. Unlike the above
mentioned works, these algorithms do not require a central authority and need only minimal
coordination between the agents. Further, these algorithmic frameworks are quite robust
and easily allow for various extensions and generalizations. For exchange market models, the
first such algorithm was established for linear utilities by Garg and Kapoor [44] (see also [57,
Section 5.12]). The algorithm was later improved [45] and generalized to separable concave
gross substitute utility functions [47], to a subclass of non-separable gross-substitutes called
uniformly separable [46], and to a production model with linear production constraints and
linear utilities [50].

There is a long history of auction algorithms both in the optimization and in the economics
literature. Bertsekas [11, 12] introduced auction algorithms for assignment and transportation
problems. Closely related algorithms were introduced for markets with indivisible goods, by
Kelso and Crawford [52], and Demange, Gale, and Sotomayor [30]. We discuss markets with
indivisible goods later in this section.

Our contributions. Our first main contribution is an auction algorithm that computes
an approximate market equilibrium for arbitrary WGS utilities, given via demand oracles,
settling an open question from [46]. This result shows that for WGS utilities, this restricted
class of tâtonnement algorithms already suffices to obtain an equilibrium. The result affirms
the natural intuition that the WGS property is geared for auction algorithms. A main
invariant in auction algorithms is that at every price increase, the agents will still hold on to
the goods they have purchased previously at the lower prices. This property is almost identical
to the definition of the WGS property; nevertheless, making an auction algorithm work
for general WGS utilities requires some careful technical ideas. The previously mentioned
auction algorithms operate with two prices for each good, a lower price pj and a higher price
(1 + ϵ)pj . For linear utilities, [44] maintains that all purchases are maximum bang-per-buck
goods with respect to the lower or higher price. This idea can be extended to separable [45]

J. Garg, E. Husić, and L. A. Végh 33:3

and to uniformly separable utilities [47], but does not work if the utilities are genuinely
non-separable. For this general case, our main technical idea is to maintain subsets of optimal
bundles for each agent with respect to some individual prices. These individual prices can be
different for each agent but fall between the higher and lower prices p and (1 + ϵ)p.

This results in the first “agent-driven” algorithm for the entire range of WGS utilities
that avoids the need of a central authority, where each agent uses only their own black-box
oracle FindNewPrices (Section 3), which depends only on their own preference to outbid
another agent on a particular good. The process of outbidding another agent can also be
implemented in an uncoordinated manner. Overall, this lessens the level of coordination
needed in the market, making it more plausible mechanism in a decentralized environment.

We also study auction algorithms for multiple models of Fisher markets. These are a
special case of exchange markets where every agent arrives with a fixed budget instead
of an endowment of goods. A particular motivation comes from recent study of the Nash
social welfare (NSW) problem: allocating indivisible goods to agents so that the geometric
mean of their utilities is maximized. This problem is NP-hard already for simple classes of
utilities, and there has been a considerable recent literature on approximation algorithms
for the problem and its extensions. Cole and Gkatzelis [28] gave the first constant-factor
approximation for linear utilities, followed by further work with stronger guarantees as well
as extensions for other utility classes [1, 2, 8, 17, 26, 28, 38, 40, 41].

The algorithm in [28] and many others start by studying a continuous relaxation corres-
ponding to a specific market equilibrium problem with spending restrictions: namely, if the
price pi of good i is above 1, then the amount of good i sold is decreased to 1/pi from the
initial total amount of 1. Whereas a market equilibrium with spending restrictions can be
obtained via a convex program for linear utilities [26], it becomes challenging to find for more
general utilities: currently known cases are budget-additive valuations [38] and separable
piecewise-linear concave (SPLC) utility functions [2]. The set of equilibria in the former case
turned out to be not even convex.

In this paper, we show that auction algorithms are particularly well-suited for spending
restricted equilibrium computation: once the price of a good goes above one, we can naturally
decrease the total available amount of these goods within the auction framework. This
enables us to find simple approximation algorithms for spending restricted equilibria for
a broad class of utility functions, including the models above as well as their common
generalization: budget-SPLC. A surprising feature here is that we do not even have to make
the standard non-satiation assumption. Moreover, our algorithm can be used to obtain a
constant-factor approximation for maximizing NSW in polynomial-time when agents have
budget-SPLC utilities and goods come in multiple copies. The previous algorithm for this
setting in [17] runs in pseudopolynomial time. We expect that our algorithm for finding
approximate spending restricted equilibria will find more applications for the NSW and other
related problems.

Markets with indivisible goods. Auction algorithms have been widely studied in the
context of markets with indivisible goods. Equilibria may not always exists in markets with
indivisible goods. The class of (discrete) gross substitute utilities was introduced by Kelso
and Crawford [52]. For this class, an equilibrium is guaranteed to exist, and an approximate
equilibrium can be efficiently found via a simple auction algorithm, extending [29]. It turned
out that the discrete gross substitutes property is essentially a necessary and sufficient
condition for the auction algorithm to work. We refer the reader to the survey by Paes
Leme [53] on the role of gross substitute utilities in markets with indivisible goods, and their
connections to discrete convex analysis.

STACS 2021

33:4 Auction Algorithms with WGS Demands

Whereas the definitions of discrete gross substitutes and continuous WGS utilities are
very similar, there does not appear to be a direct connection between these notions. The
main difference is in the utility concepts: for indivisible markets, the standard model is to
maximize the valuation minus the price of the set at given prices, whereas the standard
divisible market models operate with fiat money: the prices appear via the budget constraints
but not in the utility value. Still, our result can be interpreted as the continuous analogue of
the strong link between auction algorithms and the gross substitutes property for markets
with indivisible goods: we show that auction algorithms are applicable for the entire class of
WGS utilities for markets with divisible goods. We suspect that the converse should also be
true, namely, that the applicability of auction algorithms should be limited to WGS utilities.
In contrast, tâtonnement algorithms have been successfully applied beyond the WGS class,
see e.g. [19, 20, 37].

Let us also comment on the oracle model we use. Typically, (continuous) WGS utilities in
the literature are given in an explicit form such as CES or Cobb-Douglas utilities. This is in
contrast with the discrete WGS setting, where the common model is via a value or demand
oracle [53], since direct preference elicitation, that is, the explicit description of the valuation
function would be exponential. The class of continuous WGS functions also appears to be
very rich and expressive, and hence an oracle approach seems more appropriate to devise
algorithms for this class. In our model, the agent preferences are represented via a demand
oracle (Definition 3).

The auction algorithm relies on the more powerful FindNewPrices subroutine, which
can be seen as a strengthening of the demand oracle, incorporating a mechanism for price
increments. There are various ways to implement such a subroutine: we use a simple iterative
application of the demand oracle for the case of bounded price elasticities; we use a convex
programming approach for Gale demand systems; and we devise a combinatorial algorithm
for budget-additive SPLC utilities.

Further related work. The existence of a market equilibrium is always guaranteed under
some mild assumptions, as shown by Arrow and Debreu [4], using Kakutani’s fixed point
theorem. The computational aspects of finding a market equilibrium have been extensively
studied in the theoretical computer science community over the last two decades, establishing
hardness results as well as polynomial-time algorithms for certain cases. We refer the reader
to [14, 18, 24, 31, 34, 42, 49, 60, 63, 43] for an overview of the literature.

The other famous dynamics to study market equilibrium is proportional response where
in each round agents bid on goods in proportional to the utility they receive from them in
the previous round. The goods are then allocated in proportion of the agents’ bids. It has
been shown that proportional response converges to market equilibrium in a variety of Fisher
markets [13, 21, 22, 64], and some special cases of exchange markets [15, 16, 62].

The rest of the paper is structured as follows. Section 2 defines the exchange market model
and provides examples of WGS demand systems. Section 3 presents the auction algorithm
for exchange markets. Section 4 discusses the applicability of the algorithm to the Fisher
market model, spending restricted equilibrium, Gale demand systems, and the NSW problem.
Several proofs and some significant arguments are deferred to the Appendices, as indicated
at the respective parts. For missing proofs and other details, we refer the reader to the full
version [39].

J. Garg, E. Husić, and L. A. Végh 33:5

2 Models and concepts

Notation [k] denotes {1, 2, . . . , k}, and 1k denotes the k dimensional vector with all entries 1.
We use 1 if the dimension is clear from the context. We consider an exchange market with a
set of agents A = [n] and divisible goods G = [m]. Each agent i ∈ [n] arrives at the market
with an initial endowment of goods e(i) ∈ Rm

+ . Thus, the total amount of good j ∈ [m] is ej

where e =
∑n

i=1 e(i); w.l.o.g. ej > 0. Given a non-negative price vector p ∈ Rm
+ , the budget of

agent i at prices p is defined as bi = bi(p) = p⊤e(i). It follows that p⊤e =
∑

i p⊤e(i) =
∑

i bi.
We now define the market equilibrium using demand systems. A bundle x is a non-negative

vector x ∈ Rm
+ . A demand system is a function D : Rm+1

+ → 2Rm
+ ; D(p, b) denotes the set

of preferred bundles of an agent at prices p and budget b. Bundles in D(p, b) are called
the optimal or demand bundles at prices p and budget b. This corresponds to the standard
concept of a demand function, except that we do not assume the uniqueness of a preferred
bundle. For example, in case of a linear utility function u(x) =

∑
j∈G vjxj , D(p, b) includes

all fractional assignment of goods maximizing vj/pj with a total price b. If |D(p, b)| = 1
for all (p, b) ∈ Rm+1 we say that D is simple, and use D(p, b) to denote the unique bundle.
We include the budget b in the definition of the demand system, even though for exchange
markets the budget of agent i is uniquely defined by the prices as p⊤e(i). This formalism will
be useful for our algorithm where the budgets are defined according to a slightly different set
of prices.

▶ Definition 1 (Market equilibrium). Let Di denote the demand system of agent i ∈ A.
We say that the prices p ∈ Rm

+ and bundles x(i) ∈ Rm
+ form a market equilibrium if (i)

x(i) ∈ Di(p, p⊤e(i)), and (ii)
∑n

i=1 x
(i)
j ≤ ej, with equality whenever pj > 0, for all j ∈ G.

That is, p and optimal bundles x(i) form an equilibrium if no good is overdemanded and
goods at a positive price are fully sold. Note that this implies that every agent fully spends
their budget.

▶ Definition 2. Let (p, b) ∈ Rm+1
+ and x ∈ D(p, b). If for any p′ ≥ p and b′ ≥ b there exists

y ∈ D(p′, b′) such that yj ≥ xj whenever p′
j = pj , we say that the demand system D satisfies

the weak gross substitutes (WGS) property.

We will also say that D(p, b) is a WGS demand system. In the context of the tâtonnement
process, the weak gross substitutes property is usually defined with respect to the aggregate
excess demand function of all agents. We use the stronger requirement of having a WGS
demand system for each individual agent. The previous auction algorithms [46, 47] have also
used WGS on the level of agents as this seems to be the necessary condition that allows
agents to update their bundles individually, as opposed to tâtonnement, where the prices
adjustments react to the aggregate demands.

▶ Definition 3 (Demand oracle). For a WGS demand system D(p, b), a demand oracle
requires two vectors (p, b), (p′, b′) ∈ Rm+1

+ such that (p′, b′) ≥ (p, b), and a vector x ∈ D(p, b).
The output is a vector y ∈ D(p′, b′) such that that yj ≥ xj whenever p′

j = pj.

In other words, the oracle provides the allocations guaranteed by the definitions of WGS
systems. The complex form of the definition is due to the possible non-uniqueness of demand
bundles. For simple demand systems, the input to the oracle is simply a vector (p′, b′) ∈ Rm+1

+ ,
and the output is the unique vector y ∈ D(p′, b′).

For exchange markets, we will make the following assumptions:

▶ Assumption 4 (Scale invariance). For every agent i, Di(p, bi) = Di(αp, αbi) for all α > 0.

STACS 2021

33:6 Auction Algorithms with WGS Demands

▶ Assumption 5 (Non-satiation). For all demand systems, and for every (p, b) ∈ Rm+1
+ , and

every x ∈ D(p, b), we have p⊤x = b.

In scale invariance, we require that the demand is homogeneous of degree 0; informally, the
demand does not depend on the currency. This is a standard assumption in microeconomics
and exchange markets, see e.g. [5, 33, 35, 55].

Non-satiation states that in every optimal bundle the agents must fully spend their
budgets. This is a standard assumption for exchange markets as it is necessary for the
fundamental theorems of welfare economics (see e.g. [54, Chapter 16]). However, we note
that we do not require this assumption for spending restricted Fisher markets.

Approximate equilibria. We define the concept of an ϵ-equilibrium in exchange markets
that our algorithm finds. We require that each agent gets an approximate optimal bundle
and market clears approximately.

▶ Definition 6 (Approximate equilibrium). For an ϵ > 0, the prices p ∈ Rm and bundles
x(i) ∈ Rm

+ form an ϵ-approximate market equilibrium if
(i) x(i) ≤ z(i) for some z(i) ∈ Di(p(i), p⊤e(i)), where p ≤ p(i) ≤ (1 + ϵ)p,
(ii)

∑n
i=1 x

(i)
j ≤ ej, and

(iii)
∑m

j=1 pj

(
ej −

∑n
i=1 x

(i)
j

)
≤ ϵp⊤e.

That is, every agent owns a subset of their optimal bundle at prices that are within a
factor (1 + ϵ) from p, and all goods are nearly sold: the value of the unsold goods is at most
an ϵ fraction of the total value of the goods. The total value of the goods “taken away” from
the near-optimal bundles of the agents is

∑n
i=1 p⊤(z(i) − x(i)). Parts (i) and (iii), together

with the fact that p(i)⊤
z(i) ≤ p⊤e(i) for all i, imply that this amount is ≤ 2ϵp⊤e.

The definition (i) can be seen as a natural extension of the corresponding approximate
optimality conditions in [44, 46, 47]. For linear utilities, [44] requires the approximate
maximum bang-per-buck condition vij/pj ≤ (1 + ϵ)vik/pk for any agent i, goods j and k

such that xik > 0. Thus, one can set approximate prices p ≤ p(i) ≤ (1 + ϵ)p for each agent
for which they purchase maximum bang-per-buck goods.

Condition (iii) corresponds to the definition of approximate equilibrium in [32] and [48].
This notion is weaker than the ones used in [44, 46, 47]. The most important difference is
that the latter papers guarantee that each agent recovers approximately their optimal utility.
Such a property could be achieved by strengthening the bound in (iii) from ϵp⊤e to ϵpminemin,
where pmin is the minimum price and emin is the smallest total fractional amount in the
initial endowment of any agent. However, this would come at the expense of substantially
worse running time guarantees in our algorithmic framework.

2.1 Examples of WGS demand systems
A standard way to implement a demand oracle is via an explicitly given utility function.
Assume the agent is equipped with a concave utility function u : Rm

+ → R+. The set of
demand bundles at prices p and budget b it given as the set of optimal solutions of

max u(x) s.t. p⊤x ≤ b; x ≥ 0 . (1)

Then, D(p, b) := Du(p, b) = arg maxx∈Rm
+
{u(x) : p⊤x ≤ b}. We say that a utility function is

WGS if the corresponding demand system is WGS. Most models studied in the literature
assume strictly concave utilities and thus have a unique optimal solution; a notable exception

J. Garg, E. Husić, and L. A. Végh 33:7

is the case of linear utility functions. If the solution is not unique, we can implement the
demand oracle for inputs (p, b), (p′, b′) and x ∈ D(p, b) by imposing the constraints that
u(y) equals the optimal utility in D(p′, b′), and yi ≥ xi for every i with p′

i = pi. Thus, the
optimal demand system can also be implemented via convex programming (we now ignore
the question of numerical precision).

We now present some classical examples of WGS utilities studied in the literature:
For v ∈ Rm

+ the linear (additive) utility is given by u(x) = v⊤x. Then, Du(p, b) =
arg max{v⊤x : p⊤x ≤ b}.
The constant elasticity of substitution (CES) utility is defined by u(x) =(∑

j β
1
σ
j x

σ−1
σ

j

) σ
σ−1

, where
∑

j βj = 1. Then, D(b, p) = {x} for the unique optimal

bundle x given by xj =
βjp−σ

j b∑
k βkp1−σ

k

. It is well-known that CES demand system satisfies

the WGS property iff σ > 1.
The Cobb-Douglas utility function is given by u(x) =

∏
j x

αj

j where
∑

j αj = 1, α ≥ 0. The
unique optimal bundle is therefore xj = bαj/pj and Du(p, b) = {x}. The Cobb-Douglas
utility function satisfies the WGS property for any parameter choices.
The nested CES utility function is defined recursively (see [49]). Any CES function
is a nested CES function. If g, h1, . . . , ht are nested CES functions, then f(x) =
max g(h1(x1), . . . , ht(xt)) over all x1, . . . , xt such that

∑t
k=1 xk = x, is a nested CES

function. In a well-studied special case (see e.g., [51]), each good j can only be used in at
most one of the hi’s.

Conic combinations of demand systems. Given two WGS utility functions u and u′, the
demand system corresponding to their sum u + u′ may not be WGS. On the other hand,
consider two simple WGS demand systems D and D′ and nonnegative coefficients λ, λ′. Then
it is easy to see that λD + λ′D′ is also a simple WGS demand system. This enables the
construction of some interesting demand systems. For example, [55] has studied hybrids of
CES and Cobb-Douglas demands, where the demand system is given as a conic combination
of the two. 1

xj = b

pj

[
ϵαj + (1 − ϵ)

βjp1−σ
j∑

k
βkp1−σ

k

]
, for some 0 ≤ ϵ ≤ 1 and σ > 1 .

Note that if D = Du and D′ = Du′ for some concave utility functions u and u′, the demand
system λD + λ′D′ in general does not correspond to the utility function λu + λ′u′. In fact, it
is unclear if one can find explicitly utility functions corresponding to such conic combinations.
Our model does not require the demand system to be given in the form D = Du for some
function u.

Price elasticity of demands. One possible implementation of the key subroutine FindNew-
Prices (Section 3) relies on the (price) elasticity of the demands.2 The standard definition
of the elasticity for good j with respect to the price of good k is ej,k = ∂ log xj(p, b)/∂ log pk,
where xj(p, b) is the (unique) demand for good j at prices p and budget b. The WGS

1 We note that this demand function does not seem to correspond to a nested CES utility function.
2 No finite lower bound exists on the elasticity of linear demand systems. If we are buying a positive

amount of good j, then j maximizes vk/pk. If there is another good ℓ with vj/pj = vℓ/pℓ, then if we
increase pj but leave the other prices unchanged, then x′

j = 0 for every optimal bundle x′ w.r.t. the
new prices. Consequently, for this case, we have another way to implement FindNewPrices.

STACS 2021

33:8 Auction Algorithms with WGS Demands

property guarantees that ej,k ≥ 0 if j ̸= k, and consequently, ek,k ≤ 0. The definition below
corresponds to ek,k ≥ −f for all k ∈ [m], for the more general model of non-simple demand
systems.

▶ Definition 7. Consider a WGS demand system D(p, b). For some f > 0, we say that the
elasticity of D(p, b) is at least −f , if for any µ ≥ 0, j ∈ [m], (p, b) ∈ Rm+1

+ and x ∈ D(p, b),
if we define p′ as p′

j = pj(1 + µ) and p′
k = pk for k ∈ [m] \ {j}, then there exists a bundle

x′ ∈ D(p′, b) such that x′
j ≥ 1

(1+µ)f xj.

In can be shown that the CES demand system with parameter σ > 1 has elasticity at
least −σ, and the Cobb-Douglas demand system has elasticity at least −1.

Separable and uniformly separable WGS utility functions. The auction algorithm in [44]
was later extended in [47] to separable WGS utility functions, that is, u =

∑
j∈G uj where

each uj is a WGS utility function depending only on good j. This model was further
generalized in [46] to uniformly separable WGS utility functions, that is, ∂u(x)

∂xj
= fj(xj)g(x),

where each fj is a strictly decreasing function. This class already includes CES and Cobb-
Douglas utilities; however, it does not appear to extend to demand systems obtained as their
conic combinations, where even the explicit form of the utility function is unclear. Further,
the running time bound stated in [46] is unbounded for the CES and Cobb-Douglas cases;
see the full version of the paper for further discussion.

3 Auction algorithm for exchange markets

The algorithm (shown in Algorithm 1) uses the accuracy parameter 0 < ϵ < 0.25, and returns
a 4ϵ-approximate equilibrium. We initialize all prices pj = 1 and the prices will only increase
during the algorithm, in increments by a factor (1 + ϵ). This initialization is enabled by
Assumption 4 that guarantees the existence of market clearing prices where all positive prices
are ≥ 1.3

We maintain a price vector p called the market prices; the budget of agent i ∈ [n] is
bi = p⊤e(i) at the current prices. Further, every agent i ∈ [n] maintains individual prices p(i)

such that p ≤ p(i) ≤ (1 + ϵ)p. At any point of the algorithm, agent i owns a bundle c(i) of
the goods such that c(i) ≤ x(i) for some x(i) ∈ Di(p(i), bi). Some amount of good j is sold at
the lower price pj , and some at the higher price (1 + ϵ)pj . The price agent i has to pay for
good j is the higher price (1 + ϵ)pj if p

(i)
j = (1 + ϵ)pj and the lower price pj otherwise. (Note

that this is in contrast with [44] and the other previous auction algorithms where i may pay
pj for some amount of good j and (1 + ϵ)pj for another amount.)

We consider the agents one-by-one. If an agent i has surplus money, they use the
subroutine FindNewPrices to update their prices p(i) and bundle x(i), by maintaining
x

(i)
j ≥ c

(i)
j – this latter requirement turns out to be the main challenge. They will then try

to purchase x
(i)
j − c

(i)
j amount of good j in the Outbid procedure. They start by purchasing

any unsold amount of good at price pj . If they still need more, then they will outbid other
agents who have been paying the lower price pj for this good, by offering the higher price
(1 + ϵ)pj . Once good j is sold only at the higher price (1 + ϵ)pj , we increase the price of the
good. If no price is increased, we move to the next agent. Otherwise, we announce the new
prices p and repeat. The algorithm terminates once the total surplus of the agents drops
below 3ϵp⊤e. At this point, we can conclude that the current prices and allocations form a
4ϵ-approximate equilibrium.

3 Even though there might be goods priced at 0 in an equilibrium, we can always find an ϵ-approximate
equilibrium where all prices are positive.

J. Garg, E. Husić, and L. A. Végh 33:9

We express the running time of the algorithm in terms of the running time TF of the
subroutine FindNewPrices, as well as the upper bound on the ratio pmax/pmin of the largest
and smallest nonzero prices at any ϵ-equilibrium. Such an upper bound may be obtained for
the specific demand systems. Alternatively, one can follow the approach of the papers [23, 25]
by adding a dummy agent with a Cobb-Douglas demand system and an initial endowment of
a small fraction of all goods. In the presence of such an agent, we can obtain a strong bound
on pmax/pmin, at the expense of obtaining a slightly worse approximation guarantee (see the
full version of the paper).

Note that for (approximate-)equilibrium prices p, αp also gives (approximate-)equilibrium
prices with the same allocation, for any α > 0. In our algorithm, the minimum price will
remain at most 1 + ϵ throughout, see Lemma 10.

▶ Theorem 8. Let TF be an upper bound on the running time of the subroutine
FindNewPrices. Algorithm 1 finds a 4ϵ-approximate market equilibrium in time
O

(
nmTF

ϵ2 · log
(

pmax
pmin

))
.

There are various options for implementing FindNewPrices. A simple price can be imple-
mented increment procedure for the case of bounded elasticities; recall the elasticity bound
f from Definition 7. Using this subroutine and Lemma 13, we obtain the following overall
bound.

▶ Theorem 9. If all agents have elasticity at least −f for some f > 0, then an ϵ-approximate
equilibrium can be computed in time O

(
nm2f ·TD

ϵ2 · log
(

pmax
pmin

))
, where TD is the time needed

for one call to the demand oracle.

As noted earlier, there are demand systems (such as linear) where the flexibility parameter
cannot be bounded. However, in case the demand system is given in the form (1) via a
utility function that is homogeneous of degree one, we can obtain an implementation of
FindNewPrices by solving a convex program. This is in particular applicable for Cobb-
Douglas and CES utilities with σ > 1. One could find further possible ways for implementing
FindNewPrices for particular demand systems; e.g., we give a simple direct procedure for
linear utilities, and for budget-SPLC utilities. For details, see the full version of the paper.

The full version also contains an overview of the running times of previous auction
algorithms.

Invariants. Let us now summarize the invariant properties maintained throughout the
algorithm. We say that a bundle y dominates the bundle x if x ≤ y.
(a) Each good is partitioned into three parts according to the price it is being sold at:

amount wj is the unsold part of the good,
amount lj is sold at the lower price pj , and
amount hj is sold at the higher price (1 + ϵ)pj .

Moreover, wj + lj > 0, i.e., there is always a part of the good that is unsold or owned by
an agent at the lower price.

(b) The unsold amount wj of each good is non-increasing. If wj > 0 then pj = 1.
(c) The budget of agent i is bi = p⊤e(i). Each agent i maintains prices p(i) such that

p ≤ p(i) ≤ (1+ϵ)p, and owns a bundle c(i) that is dominated by a bundle x(i) ∈ Di(p(i), bi).
(d) For the amount c

(i)
j of good j, agent i pays

price pj for goods in Li := {j ∈ [m] : p
(i)
j < (1 + ϵ)pj}, and

the price (1 + ϵ)pj for goods in Hi := {j ∈ [m] : p
(i)
j = (1 + ϵ)pj} = [m] \ Li.

STACS 2021

33:10 Auction Algorithms with WGS Demands

Algorithm 1 Auction algorithm for exchange markets.

Input: Demand systems Di, and the endowment vectors e(i), and ϵ ∈ (0, 0.25).
Output: A 4ϵ-approximate market equilibrium.

1 Initialization: ∀i, j set pj ← 1, p
(i)
j ← 1, c

(i)
j ← 0, wj = ej =

∑
i e

(i)
j , and lj = 0;

NewIt for i ∈ [n] do // recompute the budgets and surpluses
3 bi ← p⊤e(i); si ← bi −

∑
j∈Li

c
(i)
j pj −

∑
j∈Hi

c
(i)
j (1 + ϵ)pj

4 if
∑n

i=1 si ≤ 3ϵp⊤e then return p, {p(i)}i∈[n] and {c(i)}i∈[n];
NewStp for i ∈ [n] with si > 0 do // step for agent i

7 (p̃, y)← FindNewPrices(i, p(i), p, ϵ, c(i), bi);
8 for j = 1 to m do
9 if p

(i)
j < (1 + ϵ)pj and p̃j = (1 + ϵ)pj then // Case 1

10 si ← si − c
(i)
j · ϵpj ; lj ← lj − c

(i)
j ; // i pays (1 + ϵ)pj instead of pj

11 Outbid(i, j, yj − c
(i)
j);

12 else if p
(i)
j = (1 + ϵ)pj and p̃j = (1 + ϵ)pj then // Case 2

13 Outbid(i, j, yj − c
(i)
j);

// Skip the goods with p
(i)
j < (1 + ϵ)pj and p̃j < (1 + ϵ)pj. Case 3

14 p(i) ← p̃; flag ← 0;
15 for j ∈ [m] with wj + lj = 0 do
16 pj ← (1 + ϵ)pj ; lj = ej ; // price increase

17 foreach k ∈ [n] do p
(k)
j ← (1 + ϵ)pj ;

18 flag ← 1;
19 if flag = 1 then go to NewIt;

Procedure Outbid(i, j, t).

// t is the amount of good j agent i wants to outbid.
1 if wj > 0 then // a part of j is unsold
2 τ = min{wj , t};
3 wj ← wj − τ ; c

(i)
j ← c

(i)
j + τ ; t← t− τ ;

4 si ← si − τ · (1 + ϵ)pj ; // here pj = 1 always
5 while t > 0 and lj > 0 do
6 Let k ∈ [n] be such that c

(k)
j > 0 and p

(k)
j = pj . Set τ = min{c(k)

j , t};
7 c

(k)
j ← c

(k)
j − τ ; c

(i)
j ← c

(i)
j + τ ; // i outbids k

8 sk ← sk + τ · pj ; si ← si − τ · (1 + ϵ)pj ; lj ← lj − τ ; t← t− τ ;

In accordance with (d), the surplus of agent i is si := bi −
∑
j∈Li

c
(i)
j pj −

∑
j∈Hi

c
(i)
j (1 + ϵ)pj .

The Outbid subroutine. An important subroutine, described in Procedure Outbid, controls
how the ownership of goods may change. If agent k has paid price pj on a certain amount of
good j, then agent i may take over some of this amount by offering a higher price (1 + ϵ)pj .
Possibly i = k, in which case the agent outbids herself. We also incorporate into the procedure
the case when a certain amount of a good is being purchased for the first time. Note that
pj = 1 at this point due to invariant (b).

J. Garg, E. Husić, and L. A. Végh 33:11

Main iterations. The algorithm is partitioned into iterations. Each iteration finishes when
the price of a good increases from pj to (1 + ϵ)pj . At every such event, the budgets bi of
the agents also increase. Therefore, at the start of an iteration each agent i recomputes
their budget at line NewIt. An iteration is further partitioned into steps, which are single
executions of the main for loop in Algorithm 1. The algorithm terminates as soon as the
total surplus drops below 3ϵp⊤e.

Steps. Suppose we are considering agent i. By invariant (c), the agent is buying a bundle
c(i) ≤ x(i) for some x(i) ∈ Di(p(i), bi). The subroutine FindNewPrices(i, p(i), p, ϵ, c(i), bi)
delivers new prices p̃ and a bundle y such that
(A) y ≥ c(i) for y ∈ Di(p̃, bi), and
(B) p(i) ≤ p̃ ≤ (1 + ϵ)p, and p̃j = (1 + ϵ)pj whenever yj > (1 + ϵ) c

(i)
j .

Condition (A) says that agent i still wants whatever they own even at the increased prices
p̃. Condition (B) is the crucial one for the outbid. It guarantees that p̃ ≥ p(i), and whenever
an agent wants to buy more of some good than they already own at least by a factor 1 + ϵ,
then they are willing to pay the higher price (1 + ϵ)pj for it. (They might already be paying
the increased price to start with if p

(i)
j = (1 + ϵ)pj . In this case p̃j = (1 + ϵ)pj = p

(i)
j .)

The description of this subroutine is given in the full version of the paper. Observe that
FindNewPrices will make progress whenever c(i) is far from x(i) for some agent i. When they
are very close for each agent i, then we have already reached an approximate equilibrium.

The above properties suggest the following update rules for each good j ∈ [m].
Case 1. p

(i)
j < (1 + ϵ)pj and p̃j = (1 + ϵ)pj . The good j was in Li and needs to be moved to

Hi, i.e., agent i used to pay pj but now is willing to pay the higher price for j. Agent i first
outbids themselves for the amount c

(i)
j they already own and starts paying pj(1 + ϵ) for this

amount. Additionally, agent i outbids on good j up to the amount they want and that is
available from the other agents.
Case 2. p

(i)
j = (1 + ϵ)pj and p̃j = (1 + ϵ)pj . The good j was in Hi and stays in Hi, i.e., agent

i continues to pay the higher price. The agent i still keeps the amount c
(i)
j of good j that

they already had and outbids for as much as they can from the other agents.
Case 3. p

(i)
j < (1 + ϵ)pj and p̃j < (1 + ϵ)pj . The good j remains in Li, i.e., agent i continues

to pay the lower price. By (B), we must have c
(i)
j ≤ yj ≤ (1 + ϵ)c(i)

j ; the agent will not seek
to buy more of these goods.

The cases above have covered all possibilities since p
(i)
j ≤ p̃j . Note that in the first two

cases the agent will own min(yj , lj +wj) amount of good j, whereas they will own c
(i)
j amount

in the third case. Once all of the goods have been considered we set p(i) = p̃, x(i) = y, and
update c(i) as the current allocation. If wj + lj = 0 for some j then hj = ej , i.e., the whole j

is sold at the higher price pj(1 + ϵ). For each such good j we increase the market price pj

to (1 + ϵ)pj , and for all agents k we set p
(k)
j = pj for the new increased pj ; finally, we set

lj = ej and hj = 0. The step ends.

3.1 Analysis

The missing proofs are presented in the full version. Here, we analyze the running time.

▶ Lemma 10. The smallest price minj∈G{pj} remains at most (1 + ϵ) throughout the
algorithm.

STACS 2021

33:12 Auction Algorithms with WGS Demands

Next, we give a bound on the number of iterations, using the same basic idea of organizing
the steps into rounds as in [44]. A round consists of going over all agents exactly once in the
main “for” loop and doing a step for each agent; i.e, a round comprises at most n steps.

▶ Lemma 11. The number of rounds in an iteration is at most 2/ϵ.

Proof. Let us fix an iteration and denote with p the market prices at the start of the iteration.
Consider a step of an agent i within the iteration. If from a good j, i buys everything that
is available at the cheaper price pj , then the market price of j increases and the iteration
finishes. So for the rest of the proof we assume that the market price increase does not
happen; consequently, the budget of each agent is unchanged and agent i gets the amount of
each good it desires.

Let φ denote the total amount of money spent at a certain point of this iteration that is

spent by the agents on higher price goods. That is, φ = (1 + ϵ)
n∑

i=1

∑
j∈Hi

c
(i)
j pj .

▷ Claim 12. Let si denote the surplus of agent i at the beginning of their step. Then the
value of φ increases at least by si − 2.25ϵbi in the step of agent i.

Proof. Recall Cases 1-3 in the description of the step. Let Tk be the set of goods that fall
into case k, that is, T1 ∪ T2 ∪ T3 = [m].

If j ∈ T1, then (1 + ϵ)pjyj amount will be added to φ in the Outbid subroutine: In this
case, the agent also outbids itself, moving the good from Li to Hi.
If j ∈ T2, then (1 + ϵ)pj(yj − c

(i)
j) amount will be added to φ in the Outbid subroutine.

If j ∈ T3, then we do not increase φ. Nevertheless, (B) guarantees that p̃j(yj − c
(i)
j) ≤

ϵp̃jc
(i)
j . Consequently,∑

j∈T3

p̃j(yj − c
(i)
j) ≤ ϵp̃⊤c(i). (2)

Also note that p̃j = (1 + ϵ)pj if j ∈ T1 ∪ T2. Assumption 5 on non-satiation guarantees that
p̃⊤y = bi. Let ∆φ denote the increment in φ; this can be lower bounded as

∆φ =
∑
j∈T1

p̃jyj +
∑
j∈T2

p̃j(yj − c
(i)
j) = p̃⊤y −

∑
j∈T3

p̃jyj −
∑
j∈T2

p̃jc
(i)
j

≥ bi −
∑
j∈T3

p̃j(yj − c
(i)
j)− p̃⊤c(i) ≥ bi − (1 + ϵ)p̃⊤c(i) ,

using (2). The money spent by the agent at the beginning of the step is bi − si. Good
j is purchased at price at least pj according to (d), and p̃j ≤ (1 + ϵ)pj . Consequently,
p̃⊤c(i) ≤ (1 + ϵ)(bi − si). With the above inequality and using that ϵ < 0.25, we obtain
∆φ ≥ bi − (1 + ϵ)2(bi − si) ≥ si − 2.25ϵbi . ◁

As long as
∑n

i=1 si > 3ϵp⊤e, the claim guarantees that φ increases in every round by at least
3ϵp⊤e− 2.25ϵ

∑n
i=1 bi > 0.5ϵp⊤e. Since φ ≤ p⊤e, the number of rounds is at most 2/ϵ. ◀

Proof of Theorem 8. In their steps, agents use their surpluses to outbid for the goods. We
bound the number of repeats in the “while” cycles (lines 5–8) in all calls to Outbid in a given
iteration. When Outbid(i, j, t) is called, the “while” loop is repeated until t = 0 or good j is
sold only at the higher price. Moreover, Outbid(i, j, t) possibility sets some c

(k)
j to zero. The

total number of such events within a single iteration is bounded by nm – each agent loses a
good through the outbid at most once before the prices increases and iteration finishes.

J. Garg, E. Husić, and L. A. Végh 33:13

Hence, the number of “while” calls is at most nm plus the total number of calls to Outbid.
This is at most m in each step, and thus nm in each round. According to Lemma 11, the
number of repeats “while” calls in every iteration is 2nm/ϵ; each repeat takes O(1) time.
The same bound holds for the ’if’ calls in lines 1–4 in Outbid.

Every step calls the procedure FindNewPrices exactly once. Therefore, the time taken
by FindNewPrices in an iteration is O(nTF /ϵ). According to Lemma 10, the minimum
price remains at most 1 + ϵ throughout. Hence, the number of iterations is bounded by
O(m log1+ϵ(pmax/pmin)) = O(m

ϵ log(pmax/pmin)). The claimed running time bound follows,
using also TF = Ω(m) since the output needs to return an m-dimensional vector of goods.

It is left to show that the prices p and bundles c(i) form a 4ϵ-approximate market
equilibrium. The first two properties in the definition are clear: c(i) is dominated by an
optimal bundle with respect to the prices p(i), and no good is oversold. At termination,
the total surplus of the agents is bounded by 3ϵp⊤e. However, this surplus is computed
assuming that some goods are sold at price pj and others at price (1 + ϵ)pj . Decreasing the
price of the latter goods to pj releases an additional excess of at most ϵp⊤e. Consequently,∑m

j=1 pj(e−
∑n

i=1 c
(i)
j) ≤ 4ϵp⊤e. ◀

3.2 Implementing FindNewPrices
We now describe the subroutine FindNewPrices(i, p(i), p, ϵ, c(i), bi). Recall that the outputs
are new prices p̃ ≥ p(i) and a bundle y with
(A) y ≥ c(i) for y ∈ Di(p̃, bi), and
(B) p(i) ≤ p̃ ≤ (1 + ϵ)p, and p̃j = (1 + ϵ)pj whenever yj > (1 + ϵ) c

(i)
j .

Let us assume that the demand system Di has elasticity at least −f for some f > 0.
Our Algorithm 2 for this case is a simple price increment procedure. First, we obtain
y ∈ Di(p(i), bi) from the demand oracle with y ≥ c(i). This is possible due to invariant (c),
which guarantees that c(i) ≤ x(i) for some x(i) ≤ Di(p(i), bi). Then, the demand oracle is
able to return a bundle y such that y ≥ x(i) ≥ c(i). Then, we iterate the following step. As
long as (B) is violated for a good j, we increase its price by a factor (1 + ϵ)1/f until it reaches
the upper bound (1 + ϵ)pj .

Algorithm 2 Finding new prices.

Input: i, p(i), p, ϵ, c(i), f, bi.
Output: Prices p̃ and bundle y.

1 Initialization: p̃← p(i) ;
2 Obtain y ∈ Di(p̃, bi) from the demand oracle with y ≥ c(i) ;
3 while ∃j : p̃j < (1 + ϵ)pj and yj > (1 + ϵ)c(i)

j do
4 p̃j ← min{(1 + ϵ)1/f p̃j , (1 + ϵ)pj} ;
5 Obtain y′ ∈ Di(p̃, bi) from the demand oracle such that y′

k ≥ yk for k ̸= j ;
6 y ← y′ ;
7 return (p̃, y) ;

▶ Lemma 13. Assume the demand system Di has elasticity at least −f for some f > 0.
Algorithm 2 terminates with p̃ and y satisfying (A) and (B) in time O(mf · TD), where TD

is the time for a call to the demand oracle.

We will assume that TD = Ω(m), since the demand oracle needs to output an m-dimensional
vector.

STACS 2021

33:14 Auction Algorithms with WGS Demands

Proof. The bound on the number of iterations is clear: since we have p ≤ p̃ ≤ (1 + ϵ)p
throughout, the price of every good can increase at most f times. Condition (A) is satisfied
due to the WGS property and the bound on the demand elasticity. When increasing p̃j , the
demand yk for k ̸= j is non-decreasing as guaranteed by the demand oracle. Further, yj may
decrease only by a factor (1 + ϵ), and since we had yj > (1 + ϵ)c(i)

j before the price update,
we still have yj > c

(i)
j after the price update. Condition (B) is satisfied at termination since

the while loop keeps running as long as it is violated. Checking the while condition each
time requires O(m) time; however, this will be dominated by the time TD according to the
comment on TD ≥ m above. ◀

As explained in Section 3, this is only one of the possible ways of implementing FindNew-
Prices. A convex programming approach for utilities that are homogeneous of degree 1 can
be developed. For example, for CES with parameter σ > 1, the running time of Algorithm 2
depends linearly on σ, whereas the running time of the convex programming is independent
on this parameter. Nevertheless, for small values of σ the simple price increment procedure
may be preferable to solving a convex program.

Further, more direct approaches for implementing FindNewPrices may be possible for
particular demand systems. For Cobb-Douglas demands with parameter vector α(i), it is
easy to devise an O(m) time algorithm implementing the procedure. The algorithm relies on
the fact that the optimal bundle is the bundle that allocates α

(i)
j bi money for good j. Hence,

each price can be set independently of the others. Similarly, there is O(m) procedure for
implementing FindNewPrices for linear utilities; recall from Section 2.1 that the elasticity is
unbounded in this case.

4 Fisher markets and the Nash social welfare problem

Fisher markets are a well-studied special case of exchange markets, where the initial en-
dowment of agent i is δie for δi > 0 and therefore the relative budgets of the agents are
independent of the prices. With appropriate normalization of the prices, we can assume that
agent i arrives with a fixed budget bi and that there is exactly one unit of each good. At
an equilibrium, the agents spend these budgets on their most preferred goods at the given
prices. Let us now assume that the demand systems are given via utility functions as in (1).
Eisenberg and Gale [36] gave a convex programming formulation of the market equilibrium
problem for linear utilities. Eisenberg [35] showed that the optimal solutions to the following
convex program are in one-to-one correspondence with the market equilibria assuming that
the utility functions are homogeneous of degree one, that is, ui(αx) = αui(x) for any α > 0.

max
n∑

i=1
bi log ui(x(i)) subject to

n∑
i=1

x
(i)
j ≤ 1, ∀j = 1, . . . , m. (3)

We note that the equilibrium prices are given by the optimal Lagrange multipliers.

The Nash social welfare problem. In the Nash social welfare (NSW) problem, we need
to allocate m indivisible items to n agents (m ≥ n), with agent i equipped with a utility
function on the subsets of goods. The goal is to find a partition S1 ∪ S2 ∪ . . . Sn = [m] of
the goods in order to maximize the geometric mean of the utilities, (

∏n
i=1 ui(Si))

1/n. This
problem is NP-hard already for additive utilities, that is, if ui(S) =

∑
j∈S vij .

The first constant factor approximation for this problem was given by Cole and Gkatzelis
[28]. Their approach was to first solve a continuous relaxation that corresponds to a divisible
market problem, and round the fractional optimal solution. The natural relaxation is exactly

J. Garg, E. Husić, and L. A. Végh 33:15

the program (3) above with all bi = 1. For linear utilities, we can use the natural continuous
extension ui(x) =

∑
j∈S vijxij of the additive utility function. However, it is easy to see that

this relaxation has an unbounded integrality gap. Cole and Gkatzelis [28] introduced the
notion of spending restricted equilibrium that we now define in a slightly more general form.

▶ Definition 14. Suppose there are n agents with demand systems Di(p, bi) and fixed
budgets b ∈ Rn

+. Further, let us be given bounds t ∈ (0,∞)m. The prices p ∈ Rm and
allocations x(i) ∈ Di(p, bi) form a Spending Restricted (SR) equilibrium with respect to t, if∑

i x
(i)
j = min{1, tj/pj},∀j ∈ [m].

Note that the set of equilibria can be non-convex already for budget-additive utilities as
shown in [38].

At given prices p, we let aj(p) = aj = min{1, tj/pj} denote the available amount of good
j. That is, the amount of money spent on good j is bounded by tj . By setting tj =∞ for
all j, the above reduces to the standard definition of Fisher market equilibrium.

The algorithm in [28] first computes a spending restricted equilibrium for linear Fisher
markets with bounds tj = 1, and show that this can be rounded to an integer solution of cost
at most 2e1/e times the optimal NSW solution. Note that the spending restrictions cannot
be directly added to the formulation (3) since they involve the Lagrange multipliers p. An
SR-equilibrium in [28] was found via an extension of algorithms by Devanur et al. [31] and
Orlin [58] for linear Fisher markets.

Subsequent work by Cole et al. [26] showed that a spending restricted equilibrium for
the linear markets can be obtained as an optimal solution of a convex program (extending a
convex formulation of linear Fisher market equilibrium that is different from (3)), and also
improved the approximation guarantee to 2 (the current best factor is 1.45 [8]). However,
this convex formulation is only known to work for linear utility functions.

Further work has studied the NSW problem for more general utility functions, following
the same strategy of first solving a spending-restricted market equilibrium problem then
rounding. Anari et al. [2] studied NSW with separable, piecewise-linear concave (SPLC)
utilities. The paper [38] studied budget-additive valuations, that correspond to the utility
function ui(x) = min(ci,

∑
j uijxj). Both papers find (exact or approximate) solutions

to the corresponding spending-restricted market equilibrium problem via fairly complex
combinatorial algorithms.

The Gale demand systems. The demand systems of the market models in [2, 38] do
not exactly correspond to (1). In [38] one needs additional conditions on the agents being
“thrifty”; in [2] a “utility market model” is used. In both cases, the total spending of the
agents can be below their budgets. A natural unified way of capturing these equilibrium
concepts is via Gale demand systems, defined as

Gu(p, b) = arg max
x∈Rm

+

b log u(x)− p⊤x . (4)

We call b log u(x)− p⊤x the Gale objective function. It is easy to verify using Lagrangian
duality that if all ui’s are concave functions, and the utility functions correspond to the
Gale demand systems Di(p, b) = Gui(p, b), then the program (3) always finds a market
equilibrium; see [56] for details. Moreover, if the utilities are homogeneous of degree one, then
this equilibrium coincides with the equilibrium for the “standard” demand systems given
by (1). For general concave utility functions, the optimal bundles stay within the budget b

(that is, p⊤x ≤ b), but may not exhaust it. Finding a spending-restricted equilibrium for

STACS 2021

33:16 Auction Algorithms with WGS Demands

Gale demand systems appears to be the right setting for NSW; in fact, the concepts used
by [2] and [38] correspond to the Gale equilibrium in these settings, and moreover, these
Gale demand systems admit the WGS property. On contrary, the demand systems arising
from the previously mentioned utility functions do not satisfy the WGS property in the usual
setting (1).

We refer the reader to the paper by Nesterov and Shikhman [56] on Gale demand systems
as well as the more general concept of Fisher-Gale equilibrium; they also give a tâtonnement
type algorithm for finding such an equilibrium.

Approximate spending-restricted equilibrium. We use an extension of Definition 6 as our
approximate SR-equilibrium notion. The main difference is that we require all goods to be
fully consumed.

▶ Definition 15 (Approximate SR-equilibrium). Let t ∈ [1,∞]m. For an ϵ > 0, the prices
p ∈ Rm and bundles x(i) ∈ Rm

+ form an ϵ-approximate SR-equilibrium w.r.t. t if
(i) x(i) ≤ z(i) for some z(i) ∈ Di(p(i), bi), where p ≤ p(i) ≤ (1 + ϵ)p,
(ii)

∑n
i=1 x

(i)
j = aj := min{1, tj/pj} for all j, and

(iii)
∑m

j=1 pj

(∑n
i=1 z

(i)
j − aj

)
≤ ϵ

∑n
i=1 bi.

We note that whereas an equilibrium will always exist for WGS utilities, the existence
of an SR-equilibrium is a nontrivial question. For example, suppose an agent i has budget
bi and Cobb-Douglas utility function

∏m
j=1(x(i)

j)βj , where
∑

j βj = 1, such that βk > 1
bi

for
some k with tk = 1. Then the agent i would like to spend at least βkbi > 1 on good j for any
prices p, but the total money that can be spent on this good is capped at 1. Hence, there
doesn’t exist any SR-equilibrium in this case.

While we do not have general necessary and sufficient conditions on the existence of an
SR-equilibrium, we show that the objectives previously studied in the context of NSW admit
an SR-equilibrium. In the case of budget-additive utilities, we have all tj = 1, and all bi = 1.
An ϵ/n-approximate SR-equilibrium satisfies the required accuracy in [38]. Whereas [2]
computes an exact SR-equilibrium, an approximate SR-equilibrium is sufficient to obtain a
(slightly worse) approximation guarantee.

We show that our algorithmic framework is applicable to compute an ϵ-equilibrium for
budget-SPLC, the common generalization of the models in [2] and [38]. Using a similar
rounding as in [38], we obtain a constant-factor approximation algorithm for maximizing
NSW in polynomial-time when agents have budget-SPLC utilities and goods come in multiple
copies. The previous algorithm for this setting in [17] runs in pseudopolynomial time. For
the special case of additive utilities, [10] gives such an algorithm.

References
1 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash social welfare, matrix

permanent, and stable polynomials. In Proceedings of the 8th Innovations in Theoretical
Computer Science Conference (ITCS), volume 67, page 36. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017.

2 Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. Nash social welfare for
indivisible items under separable, piecewise-linear concave utilities. In Proceedings of the 29th
annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2274–2290. SIAM,
2018.

3 Kenneth J Arrow, Henry D Block, and Leonid Hurwicz. On the stability of the competitive
equilibrium, II. Econometrica: Journal of the Econometric Society, pages 82–109, 1959.

J. Garg, E. Husić, and L. A. Végh 33:17

4 Kenneth J Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy.
Econometrica: Journal of the Econometric Society, pages 265–290, 1954.

5 Kenneth J Arrow and Leonid Hurwicz. On the stability of the competitive equilibrium, I.
Econometrica: Journal of the Econometric Society, pages 522–552, 1958.

6 Kenneth J Arrow and Leonid Hurwicz. Competitive stability under weak gross substitutability:
The “Euclidean distance” approach. International Economic Review, 1(1):38–49, 1960.

7 Noa Avigdor-Elgrabli, Yuval Rabani, and Gala Yadgar. Convergence of tâtonnement in Fisher
markets. arXiv preprint, 2014. arXiv:1401.6637.

8 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation
(EC), pages 557–574. ACM, 2018.

9 Xiaohui Bei, Jugal Garg, and Martin Hoefer. Ascending-price algorithms for unknown markets.
ACM Transactions on Algorithms (TALG), 15(3):37:1–37:33, 2019.

10 Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Earning and utility limits in
Fisher markets. ACM Trans. Economics and Comput., 7(2):10:1–10:35, 2019.

11 Dimitri P Bertsekas. A new algorithm for the assignment problem. Mathematical Programming,
21(1):152–171, 1981.

12 Dimitri P Bertsekas. The auction algorithm for assignment and other network flow problems:
A tutorial. Interfaces, 20(4):133–149, 1990.

13 Benjamin Birnbaum, Nikhil Devanur, and Lin Xiao. Distributed algorithms via gradient
descent for Fisher markets. In Proceedings of the 12th Conf. Electronic Commerce (EC), pages
127–136, 2011.

14 William C Brainard and Herbert E Scarf. How to compute equilibrium prices in 1891. American
Journal of Economics and Sociology, 64(1):57–83, 2005.

15 Simina Brânzei, Nikhil R. Devanur, and Yuval Rabani. Proportional dynamics in exchange
economies. CoRR, abs/1907.05037, 2019. arXiv:1907.05037.

16 Simina Brânzei, Ruta Mehta, and Noam Nisan. Universal growth in production economies.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
page 1975, 2018.

17 Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and
Kurt Mehlhorn. On fair division for indivisible items. In Proceedings of the 38th IARCS
annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 25:1–25:17. Springer, 2018.

18 Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of Arrow-Debreu
equilibria in markets with additively separable utilities. In Proceedings of the 50th Symposium
Foundations of Computer Science (FOCS), pages 273–282. IEEE, 2009.

19 Yun Kuen Cheung, Richard Cole, and Nikhil R Devanur. Tâtonnement beyond gross substi-
tutes? Gradient descent to the rescue. Games and Economic Behavior, 2019.

20 Yun Kuen Cheung, Richard Cole, and Ashish Rastogi. Tatonnement in ongoing markets of
complementary goods. In Proceedings of the 2012 ACM Conference on Electronic Commerce
(EC), 2012.

21 Yun Kuen Cheung, Richard Cole, and Yixin Tao. Dynamics of distributed updating in Fisher
markets. In Proceedings of the 2018 ACM Conference on Economics and Computation, Ithaca,
NY, USA, June 18-22, 2018, pages 351–368, 2018.

22 Yun Kuen Cheung, Martin Hoefer, and Paresh Nakhe. Tracing equilibrium in dynamic markets
via distributed adaptation. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, pages
1225–1233, 2019.

23 Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market equilibrium via the
excess demand function. In Proceedings of the 37th ACM symposium on Theory of Computing
(STOC), pages 74–83. ACM, 2005.

STACS 2021

http://arxiv.org/abs/1401.6637
http://arxiv.org/abs/1907.05037

33:18 Auction Algorithms with WGS Demands

24 Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. The computation of market
equilibria. Acm Sigact News, 35(4):23–37, 2004.

25 Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. On the polynomial time
computation of equilibria for certain exchange economies. In Proceedings of the 16th annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 72–81. SIAM, 2005.

26 Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani,
and Sadra Yazdanbod. Convex program duality, Fisher markets, and Nash social welfare.
In Proceedings of the 2017 ACM Conference on Economics and Computation (EC), pages
459–460. ACM, 2017.

27 Richard Cole and Lisa Fleischer. Fast-converging tatonnement algorithms for one-time and
ongoing market problems. In Proceedings of the 40th ACM symposium on Theory of Computing
(STOC), pages 315–324. ACM, 2008.

28 Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible
items. SIAM J. Comput., 47(3):1211–1236, 2018.

29 Vincent P Crawford and Elsie Marie Knoer. Job matching with heterogeneous firms and
workers. Econometrica: Journal of the Econometric Society, pages 437–450, 1981.

30 Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. Journal of
Political Economy, 94(4):863–872, 1986.

31 Nikhil Devanur, Christos Papadimitriou, Amin Saberi, and Vijay Vazirani. Market equilibrium
via a primal–dual algorithm for a convex program. Jounal of the ACM, 55(5), 2008.

32 Nikhil R Devanur and Vijay V Vazirani. An improved approximation scheme for computing
Arrow–Debreu prices for the linear case. In Proceedings of the 23rd IARCS annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
149–155. Springer, 2003.

33 Nikhil R Devanur and Vijay V Vazirani. The spending constraint model for market equilibrium:
Algorithmic, existence and uniqueness results. In Proceedings of the 36th ACM Symposium on
Theory of Computing (STOC), volume 36, pages 519–528. ACM, 2004.

34 Ran Duan and Kurt Mehlhorn. A combinatorial polynomial algorithm for the linear Arrow-
Debreu market. Information and Computation, 243:112–132, 2015.

35 Edmund Eisenberg. Aggregation of utility functions. Management Science, 7(4):337–350, 1961.
36 Edmund Eisenberg and David Gale. Consensus of subjective probabilities: The pari-mutuel

method. The Annals of Mathematical Statistics, 30(1):165–168, 1959.
37 Lisa Fleischer, Rahul Garg, Sanjiv Kapoor, Rohit Khandekar, and Amin Saberi. A fast and

simple algorithm for computing market equilibria. In Proceedings of the 4th International
Workshop on Internet and Network Economics (WINE), pages 19–30. Springer, 2008.

38 Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social welfare with
budget-additive valuations. In Proceedings of the 29th annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2326–2340. SIAM, 2018.

39 Jugal Garg, Edin Husic, and László A. Végh. Auction algorithms for market equilibrium with
weak gross substitute demands. CoRR, abs/1908.07948, 2019. arXiv:1908.07948.

40 Jugal Garg, Edin Husić, and László A. Végh. Approximating Nash social welfare under Rado
valuations, 2020. arXiv:2009.14793.

41 Jugal Garg and Peter McGlaughlin. Improving Nash social welfare approximations. In
Proceedings of the 28th International Joint Conferences on Artificial Intelligence (IJCAI),
2019.

42 Jugal Garg, Ruta Mehta, Vijay V Vazirani, and Sadra Yazdanbod. Settling the complexity of
Leontief and PLC exchange markets under exact and approximate equilibria. In Proceedings
of the 49th ACM Symposium on Theory of Computing (STOC), pages 890–901. ACM, 2017.

43 Jugal Garg and László A Végh. A strongly polynomial algorithm for linear exchange markets.
In Proceedings of the 51st Symp. Theory of Computing (STOC), 2019.

44 Rahul Garg and Sanjiv Kapoor. Auction algorithms for market equilibrium. Mathematics of
Operations Research, 31(4):714–729, 2006.

http://arxiv.org/abs/1908.07948
http://arxiv.org/abs/2009.14793

J. Garg, E. Husić, and L. A. Végh 33:19

45 Rahul Garg and Sanjiv Kapoor. Price roll-backs and path auctions: An approximation scheme
for computing the market equilibrium. In Proceedings of the 2nd International Workshop on
Internet and Network Economics (WINE), pages 225–238. Springer, 2006.

46 Rahul Garg and Sanjiv Kapoor. Market equilibrium using auctions for a class of gross-
substitute utilities. In Proceedings of the 3rd International Workshop on Web and Internet
Economics (WINE), pages 356–361. Springer, 2007.

47 Rahul Garg, Sanjiv Kapoor, and Vijay Vazirani. An auction-based market equilibrium
algorithm for the separable gross substitutability case. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 128–138. Springer, 2004.

48 Mehdi Ghiyasvand and James B Orlin. A simple approximation algorithm for computing
Arrow–Debreu prices. Operations Research, 60(5):1245–1248, 2012.

49 K. Jain and K. Varadarajan. Equilibria for economies with production: Constant-returns
technologies and production planning constraints. In Proceedings of the 17th annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 688–697. SIAM, 2006.

50 Sanjiv Kapoor, Aranyak Mehta, and Vijay Vazirani. An auction-based market equilibrium
algorithm for a production model. Theoretical Computer Science, 378(2):153–164, 2007.

51 Wouter J. Keller. A nested CES-type utility function and its demand and price-index functions.
European Economic Review, 7:175–186, 1976.

52 Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

53 Renato Paes Leme. Gross substitutability: An algorithmic survey. Games and Economic
Behavior, 106:294–316, 2017.

54 Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic theory,
volume 1. Oxford university press New York, 1995.

55 Kiminori Matsuyama and Philip Ushchev. Beyond CES: Three alternative cases of flexible
homothetic demand systems. Buffett Institute Global Poverty Research Lab Working Paper
No. 17-109, 2017.

56 Yurii Nesterov and Vladimir Shikhman. Computation of Fisher–Gale equilibrium by auction.
Journal of the Operations Research Society of China, 6(3):349–389, 2018.

57 Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

58 James B Orlin. Improved algorithms for computing Fisher’s market clearing prices: Computing
Fisher’s market clearing prices. In Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC), pages 291–300. ACM, 2010.

59 Herbert Scarf. Some examples of global instability of the competitive equilibrium. International
Economic Review, 1(3):157–172, 1960.

60 Vijay Vazirani and Mihalis Yannakakis. Market equilibrium under separable, piecewise-linear,
concave utilities. Jounal of the ACM, 58(3):10, 2011.

61 Léon Walras. Éléments d’économie politique pure, ou, Théorie de la richesse sociale. F. Rouge,
1896.

62 Fang Wu and Li Zhang. Proportional response dynamics leads to market equilibrium. In
Proceedings of the 39th Symp. Theory of Computing (STOC), pages 354–363, 2007.

63 Yinyu Ye. A path to the Arrow-Debreu competitive market equilibrium. Mathematical
Programming, 111(1-2):315–348, 2008.

64 Li Zhang. Proportional response dynamics in the Fisher market. Theoretical Computer Science,
412(24):2691–2698, 2011.

STACS 2021

	1 Introduction
	2 Models and concepts
	2.1 Examples of WGS demand systems

	3 Auction algorithm for exchange markets
	3.1 Analysis
	3.2 Implementing FindNewPrices

	4 Fisher markets and the Nash social welfare problem

