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Abstract
We analyze the consequences of portfolio compression
for systemic risk. Portfolio compression is a post-trade
netting mechanism that reduces gross positions while
keeping net positions unchanged and it is part of the
financial legislation in the United States (Dodd–Frank
Act) and in Europe (European Market Infrastructure
Regulation). We derive necessary structural conditions
for portfolio compression to be harmful and discuss
policy implications. We show that any potential harm-
fulness of portfolio compression arises from contagion
effects. We show how portfolio compression affects sys-
temic risk depends on the resilience of nodes taking
part in compression, on the proportion of debt that they
can repay, and on the recovery rates in case of default.
In particular, the potential danger of portfolio compres-
sion comes from defaults of firms that conduct portfo-
lio compression. If no defaults occur among the firms
that engage in compression, then portfolio compression
always reduces systemic risk.
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2 VERAART

1 INTRODUCTION

Portfolio compression is a mechanism in which multiple offsetting contracts are replaced by
fewer contracts to reduce the gross exposure of each institution while keeping its net exposure
unchanged. Reducing gross exposure is beneficial for a wide range of reasons including comply-
ing with regulatory requirements such as theminimum leverage ratio introduced under the Basel
III regulation andmargin requirements (Duffie, 2017). The new contracts that replace the old con-
tracts, however, lead to a new network structure of exposures between the market participants. It
is not clear, a priori, what the consequences for systemic risk are—this is what we analyze here.
Themain contribution of this paper is to derive general theoretical results on the consequences

of portfolio compression for systemic risk. To the best of our knowledge, these considerations have
been absent from the literature so far. TheEuropean Securities andMarketsAuthority (ESMA)has
published a consultation paper in 2020, see European Securities andMarket Authority (2020), on
post-trade risk reduction services (PTRR) of which portfolio compression is an important exam-
ple. They ask: “Would you agree with the description of the benefits (i.e., reduced risks) derived
from PTRR services? Are there any missing? Could PTRR services instead increase any of those
risks? Are there any other risks you see involved in using PTRR services?” Hence, there remains
uncertainty about the risks of PTRR services such as portfolio compression.
In this paper, we derive structural conditions for portfolio compression to be harmful or to

reduce systemic risk in a sense that we will formally define in Definition 3.11. First, we show
that portfolio compression cannot cause new fundamental defaults (Proposition 4.6). Hence,
any potential harmfulness of portfolio compression arises from contagion effects. Theorem 4.7
contains the main results. It establishes a relationship between systemic risk and the financial
resilience of those nodes taking part in compression, the proportion of debt that they can repay
and recovery rates in case of default. In particular, it states that as long as only nodes that would
not default in the non-compressed system conduct portfolio compression, portfolio compression
always reduce systemic risk. Furthermore, if every node that defaults in the compressed network,
can still repay at least the same proportion of its debt in the compressed network as in the non-
compressed network, then portfolio compression reduces systemic risk. Furthermore, under zero
recovery rates portfolio compression always reduces systemic risk. We derive and discuss more
fine-tuned results as well. We also show both theoretically and in numerical case studies that
there are situations under which portfolio compression can indeed be harmful.
We will proceed as follows. In Section 2, we introduce the theoretical model for the financial

market and formally define what we refer to as portfolio compression (Definitions 2.1 and 2.3)
building onD’Errico and Roukny (2021).We only consider portfolio compression that (potentially
repeatedly) removes one cycle from a network and also consider an optimization framework for
portfolio compression in this context. In Section 3, we explain how we measure systemic risk.
We use the framework by Veraart (2020), which generalizes the approaches by Eisenberg and
Noe (2001) and Rogers and Veraart (2013). We assess how different types of payments obligations
associated with derivative positions arise and might lead to loss cascades if a node fails to satisfy
their payment obligations. Our analysis includes variationmargins becoming due building on the
models by Paddrik et al. (2020) and Ghamami et al. (2021). Section 4 contains all results on the
consequences of portfolio compression for systemic risk. Theorem4.7 is themain result, providing
structural conditions that are necessary for portfolio compression to be harmful. We discuss these
conditions in detail, derive some additional results that contribute to our understanding of the
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consequences of portfolio compression and use them to discuss policy implications. In Section 4.6,
we illustrate the results using some example networks. Section 5 concludes.

1.1 Policy framework and related literature

Understanding the consequences of portfolio compression for systemic risk is of fundamental
importance since it is used both in Europe under the European Market Infrastructure Regulation
on derivatives, central counterparties and trade repositories (EMIR), and in the United States
under the Dodd–Frank Wall Street Reform and Consumer Protection Act (Dodd–Frank Act).
Under EMIR, portfolio compression is one of the risk mitigation mechanisms for non-centrally
cleared OTC derivative contracts (European Union, 2012). In the United States, portfolio com-
pression is used as a risk management tool in the swap market (Commodities Futures Trading
Commission, 2012).
Portfolio compression plays an important role in today’s financial markets. It is performed by

private providers—a well-known one is the company TriOptima. It states that “OTC derivative
market participants have eliminated more than $973 trillion in notional principal through April
2017” (TriOptima, 2017). Portfolio compression is currently available for “cleared and uncleared
interest rate swaps in 28 currencies, cross currency swaps, credit default swaps (CDS), FX for-
wards, and commodity swaps,” (TriOptima, 2017). Its compression service triReduce is currently
used by over 260 institutions worldwide.
Regulatory reforms such as the Basel III minimum leverage ratio provide strong incentives

for market participants to engage in compression activities, see, for example, Duffie (2017). The
Basel III leverage ratio is defined as tier 1 capital divided by the total exposure. Since compression
reduces the exposure, compression increases the leverage ratiomaking it easier to satisfy the lower
bound, see also Haynes and McPhail (2021) for further discussions and Remark A.1.
The introduction of margin requirements (also for non-centrally cleared derivatives, see BCBS

IOSCO (2015, 2020)) provides incentives for market participants to engage in portfolio compres-
sion since lower total exposures are associated with both lower initial margin and also lower
variation margin requirements (Duffie, 2017). Despite margin requirements, risk of contagion in
derivative markets remains as demonstrated empirically in Paddrik et al. (2020) and Bardoscia
et al. (2019).
The literature on regulatory reforms and their consequences for systemic risk in the derivatives

markets hasmainly focused on the role of central counterparties, see, for example, Duffie and Zhu
(2011); Cont and Kokholm (2014). Amini et al. (2016b) analyzed different netting mechanisms but
not in the context of portfolio compression in centrally cleared markets.
The literature on portfolio compression is still in its infancy. In particular, it mainly focuses on

the actual algorithms to perform the portfolio compression rather than the potential consequences
of portfolio compression. O’ Kane (2017) proposes and analyzes differentmultilateral netting algo-
rithms.He shows that an algorithmbased on the 𝐿1-norm is particularly beneficial for eliminating
a high fraction of bilateral connections and for retaining the greatest common divisor of existing
positions.
D’Errico and Roukny (2021) introduce different types of portfolio compression mechanisms to

show theoretically how the size of over-the-counter markets can be reduced without affecting the
net positions of the market participants. In addition, they show empirically the large potential for
compression to reduce exposure size using a transaction-level data set for CDS derivatives. They
do not use any risk measures to study the effect of compression on systemic risk.
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Schuldenzucker et al. (2018) provide one example that shows that portfolio compression can be
harmful for the system but they do not provide any general results.
Duffie (2018) used ideas from portfolio compression in his new auction mechanism (compres-

sion auctions) that convert centrally cleared contracts on the London Interbank Offer Rate to con-
tracts on the Secured Overnight Financing Rate.
Building on the work presented here, Amini and Feinstein (2021) recently introduced an opti-

mization problem for portfolio compression that uses a systemic risk measure in the objective
function. They analyzed the related computational complexity and showed that such an opti-
mization problem is generically NP-hard.

2 PORTFOLIO COMPRESSION

2.1 The network of liabilities

We consider a financial network consisting of 𝑁 financial institutions with indices in  =

{1, 2, … ,𝑁} representing the nodes. We denote by 𝑋𝑖𝑗 the nominal liability of financial institu-
tion 𝑖 to financial institution 𝑗 and write 𝑋 = (𝑋𝑖𝑗) ∈ [0,∞)𝑁×𝑁 for the corresponding liabilities
matrix. Furthermore, we assume that𝑋𝑖𝑖 = 0 for all 𝑖 ∈  , that is, nodes do not have liabilities to
themselves. The set of edges is given by  = {(𝑖, 𝑗) ∈  2 ∣ 𝑋𝑖𝑗 > 0}.
The liabilities can arise due to entering into derivative contracts such as interest rate swaps

or CDS, see, for example, Schuldenzucker et al. (2018) 1. We assume that all these positions are
fungible. Our framework would also apply to other types of liabilities such as interbank lending.
We assume that all contracts are established at time 𝑡 = 0 and have the same maturity date

𝑡 = 𝑇 > 0. A generalization to the situation with multiple maturities in the spirit of Kusnetsov
and Veraart (2019) would also be possible.
We denote by 𝐿̄

(𝑋)
𝑖

=
∑𝑁

𝑗=1
𝑋𝑖𝑗 the total nominal liabilities of node 𝑖 and write 𝐿̄(𝑋) ∈ [0,∞)𝑁

for the vector of total liabilities arising within the network. Similarly, we write 𝐴̄
(𝑋)
𝑖

=
∑𝑁

𝑗=1
𝑋𝑗𝑖

for the total assets of financial institution 𝑖 from within the network and write 𝐴̄(𝑋) ∈ [0,∞)𝑁 for
the vector of these total assets. Then we refer to 𝐴̄(𝑋) + 𝐿̄(𝑋) as gross positions in the network and
to 𝜂 = 𝐴̄(𝑋) − 𝐿̄(𝑋) ∈ ℝ𝑁 as net positions in the network.

2.2 Defining portfolio compression

Portfolio compression is a mechanisms that nets trades between two or more counterparties such
that the net positions stay the same for all nodes but the gross positions decrease for all market
participants. We only consider a method of compression that would be referred to as conservative
portfolio compression in D’Errico and Roukny (2021). Intuitively, conservative compression is a
mechanism that eliminates cycles in networks.
Figure 1 provides an example of a network consisting of four nodes in which three perform

multilateral portfolio compression by reducing their exposures along a cycle.

Definition 2.1 (Portfolio compression). Consider a liabilities matrix 𝑋 ∈ [0,∞)𝑁×𝑁 with corre-
sponding nodes = {1, … ,𝑁} and edges  = {(𝑖, 𝑗) ∈  2 ∣ 𝑋𝑖𝑗 > 0}.
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F IGURE 1 Example of compressing a
cycle in a network: the cycle in red with solid
lines is replaced by the cycle in blue with
dashed lines where 𝜇 ∈ (0, 2] [Color figure can
be viewed at wileyonlinelibrary.com]

1. A cycle is a sequence of distinct vertices nodes = {𝑖1, … , 𝑖𝑛} ⊆  with 𝑛 ≤ 𝑁 with (𝑖𝜈, 𝑖𝜈+1) ∈ 

for all 𝜈 ∈ {1, … , 𝑛 − 1} and (𝑖𝑛, 𝑖1) ∈  . We denote the corresponding set of edges by edges =
{(𝑖1, 𝑖2), … , (𝑖𝑛−1, 𝑖𝑛), (𝑖𝑛, 𝑖1)} and write  = (nodes,edges).

2. Let nodes be a cycle and let edges be the corresponding set of edges such that

𝜇max = min
(𝑖,𝑗)∈edges

𝑋𝑖𝑗 > 0. (1)

We then refer to  = (nodes,edges, 𝜇
max) as a conservative compression network cycle of𝑋 with

maximal capacity 𝜇max .
3. Let  = (nodes,edges, 𝜇

max) be a conservative compression network cycle of 𝑋 with maximal
capacity 𝜇max . For any 0 < 𝜇 ≤ 𝜇max , we refer to the matrix 𝑋,𝜇 with

𝑋
,𝜇

𝑖𝑗
=

{
𝑋𝑖𝑗 − 𝜇 if (𝑖, 𝑗) ∈ edges,

𝑋𝑖𝑗 otherwise, (2)

as the 𝜇-compressed liabilities matrix (using cycle ). We refer to 𝐿̄
(𝑋),,𝜇

𝑖
=
∑

𝑗∈
𝑋
,𝜇

𝑖𝑗
as the

total 𝜇-compressed nominal obligations of node 𝑖 (using cycle ).

Conservative compression network cycles may or may not exist for a given liability matrix.
Throughout this paper, we assume that for any liabilities matrix that we analyze, there exists at
least one conservative compression network cycle.
We show in Lemma B.1 in the Appendix that conservative compression does indeed reduce

gross positions while keeping net positions fixed. Portfolio compression reduces the size of the
balance sheet of a participating node by reducing its total assets and its total liabilities by 𝜇. The
resulting net worth, that is, the difference between total assets and total liabilities, remains the
same.

Remark 2.2 (Compression tolerances). In practice firms provide so-called compression tolerances
to the compression provider (D’Errico and Roukny, 2021). These are restrictions on the changes
that can bemade to the original positions. Mathematically, they can be characterized by requiring
that any new position 𝑋

,𝜇

𝑖𝑗
that might replace the original position 𝑋𝑖𝑗 needs to satisfy

𝑎𝑖𝑗 ≤ 𝑋
,𝜇

𝑖𝑗
≤ 𝑏𝑖𝑗, (3)
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for some 0 ≤ 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 , see (D’Errico and Roukny, 2021, Definition 3). For example, if a firm does
not want to change a particular position it could set 𝑎𝑖𝑗 = 𝑏𝑖𝑗 = 𝑋𝑖𝑗 . In such a case, we could just
set the corresponding 𝜇max = 0.
Sincewe only consider conservative compression in this paper, wewill assume that 𝑏𝑖𝑗 = 𝑋𝑖𝑗 for

all 𝑖, 𝑗 ∈  . This in particular implies that no new edges can be created as part of a compression
exercise (since if 𝑋𝑖𝑗 = 0 then under this assumption 𝑋𝑖𝑗 = 𝑏𝑖𝑗 = 0). It might be the case that a
node does not want to remove an edge completely but only wants to reduce the weight of an edge,
that is, this would correspond to setting 𝑎𝑖𝑗 > 0 as lower bound for the weight of this particular
edge. It is clear from the definition of 𝜇max that if one sets 𝜇 = 𝜇max in a compression exercise
then at least one edge (and possibly more) would be removed. To avoid this, one could change the
definition of 𝜇max by setting 𝜇max = min(𝑖,𝑗)∈edges(𝑋𝑖𝑗 − 𝑎𝑖𝑗) > 0. Obviously, 𝜇max ≤ 𝜇max . Since
all our results will hold for all choices of 𝜇 ∈ (0, 𝜇max] they in particular hold for all 𝜇 ∈ (0, 𝜇max].
Therefore, there is no need for us to explicitly add such constraints in our analysis.
These compression tolerances are not considered to be functions of any other parameters of the

network and are restrictions on the individual positions. Neither D’Errico and Roukny (2021) nor
O’ Kane (2017) indicate any global constraints when considering the actual compression mecha-
nism. We will come back to this when we discuss systemic risk in compressed networks.

2.3 Portfolio compression as an optimization problem

Next, we consider conservative portfolio compression as an optimization problem as described
in D’Errico and Roukny (2021). Its objective is to minimize the total gross exposures of all nodes
participating in the compression exercise while satisfying some constraints.

Definition 2.3 (Conservative compression optimization problem). Let 𝑋 ∈ [0,∞)𝑁×𝑁 be a lia-
bility matrix. We refer to the following optimization problem as the conservative compression opti-
mization problem. It is given by

min
𝑋̃𝑖𝑗 ,𝑖,𝑗∈

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑋̃𝑖𝑗, (4)

subject to

𝑁∑
𝑗=1

(𝑋̃𝑗𝑖 − 𝑋̃𝑖𝑗) =

𝑁∑
𝑗=1

(𝑋𝑗𝑖 − 𝑋𝑖𝑗) ∀𝑖 ∈  , (5)

0 ≤𝑋̃𝑖𝑗 ≤ 𝑋𝑖𝑗 ∀𝑖, 𝑗 ∈  . (6)

This is a linear programming problem and can be solved using standard methods. Since 𝑋̃ = 𝑋

satisfies both constraints ((5) and (6)), a feasible solution to these constraints exists. Furthermore,
since the constraint set is bounded, it is clear that a solution exists.
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Constraint (5) says that the net exposures of the nodes are not allowed to change by compres-
sion. Constraint (6) ensures that the compression is indeed conservative. Since in the new net-
work, the value of any edge is between 0 and its original value, this means that this type of com-
pression can only reduce liabilities along existing edges but cannot create new edges. As pointed
out in D’Errico and Roukny (2021), the resulting network is therefore a subnetwork of the origi-
nal one.
One could replace the condition (6) by a condition representing the compression tolerance of

the market participants by, for example, requiring that

𝑎𝑖𝑗 ≤𝑋̃𝑖𝑗 ≤ 𝑏𝑖𝑗 ∀𝑖, 𝑗 ∈  , for 0 ≤ 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗. (7)

Setting, for example 𝑎𝑖𝑗 = 0 and 𝑏𝑖𝑗 = +∞ would correspond to nonconservative compression,
see D’Errico and Roukny (2021), which would in principle allow for the underlying network to
be rewired. Therefore new trading relationships could be established, which is not possible under
conservative compression. As argued in D’Errico and Roukny (2021, Section 3.1.2), setting 𝑎𝑖𝑗 = 0

and 𝑏𝑖𝑗 = 𝑋𝑖𝑗 for all 𝑖, 𝑗 ∈  , is “arguably close to the way most compression cycles take place in
derivatives markets. The authors thank Per Sjöberg, founder and former CEO of TriOptima, for
fruitful discussion on these particular points.” We will therefore focus on this setting.

Remark 2.4 (Relationship of solution to optimization problem and compressing one cycle). As
shown in D’Errico and Roukny (2021, Proposition 7), a solution to the optimization problem in
Definition 2.3 is a directed acyclic graph, that is a graph that does not contain any cycles. In partic-
ular, one can obtain a solution by repeatedly compressing along one compression network cycle,
see D’Errico and Roukny (2021, EC.5., e-companion). As discussed there it will matter in which
order this is done, since it is possible that some edges are part of several cycles. An algorithm for
choosing the ordering is given in D’Errico and Roukny (2021, Algorithm 2, e-companion). They
always choose 𝜇 = 𝜇max in each compression step.

3 MEASURING SYSTEMIC RISK

We consider different types of payment obligations that arise from the network of liabilities𝑋 and
describe how we measure the systemic risk associated with them.

3.1 Payment obligations, margins, and liquidity buffer

We assume that all payment obligations that arise from the original liabilities matrix 𝑋 can be
expressed by using a suitable function 𝑓𝑉 that maps the original liabilities matrix𝑋 into payment
obligations 𝐿 = 𝑓𝑉(𝑋).

Definition 3.1 (Payment function and payment obligationmatrix). Let𝑋 ∈ [0,∞)𝑁×𝑁 be a liabil-
itiesmatrix. Consider a function𝑓𝑉 ∶ [0,∞)𝑁×𝑁 → [0,∞)𝑁×𝑁 where𝑓𝑉(𝑥) = 𝑉𝑥 for𝑉 ∈ [0,∞),
𝑥 ∈ [0,∞)𝑁×𝑁 . We refer to 𝑓𝑉 as payment function.
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We define a matrix 𝐿 = (𝐿𝑖𝑗) ∈ [0,∞)𝑁×𝑁 where each element 𝐿𝑖𝑗 = 𝑓𝑉
𝑖𝑗
(𝑋) = 𝑉𝑋𝑖𝑗 represents

the payments that are due from 𝑖 to 𝑗, 𝑖, 𝑗 ∈  at a given point in time. We refer to 𝐿 as payment
obligation matrix. We refer to 𝐿̄ ∈ [0,∞)𝑁 , where 𝐿̄𝑖 =

∑𝑁

𝑗=1
𝐿𝑖𝑗 , as the total payment obligations.

Payment obligations can in principle arise throughout the lifetime of the contract. We restrict
our analysis to only one point in time at which payments are due. In principle, our analysis could
be extended to allow for multiple points in times at which payments are due.
If we set𝑉 = 1 in the definition of 𝑓𝑉 , then 𝐿 = 𝑋 and hence the payments due are the original

liabilities.2 In practice, this does not need to be the case. Payment obligations can for example
arise from variation margins becoming due (BCBS IOSCO, 2015; Paddrik et al., 2020). One distin-
guishes between variation and initial margins. Variation margins reflect current exposures and
are settled regularly, initial margins reflect potential future exposures and are usually required
at the outset of a derivatives transaction. By choosing an appropriate payment function 𝑓𝑉 , our
payment obligation matrix can represent variation margins that are due on a given day.
Consider, for example, a situation in which the original network 𝑋 represents CDS contracts.

In particular, 𝑋𝑖𝑗 represents the amount of protection sold from 𝑖 to 𝑗 in case of a credit event
occurring to the underlying reference entity over a given time period. If there is shock to this ref-
erence entity that increases its probability of default, for example, variation margins will be due
from the seller of the CDS protection to the buyer of the protection since the value of the CDS
contracts becomes more valuable to the protection buyer and increases the liabilities of the pro-
tection seller. This change is reflected in the variation margin that is then due from the protection
seller to the protection buyer, see Paddrik et al. (2020) who discussed such a situation in detail.
As in their model, we will also allow for the existence of initial margins.

Definition 3.2 (Initialmargins). Let𝑋 be a liabilitiesmatrix and let 𝐽 ∈ [0,∞). The initialmargin
that node 𝑖 sets aside to protect its liabilities to node 𝑗 is given by 𝐽𝑋𝑖𝑗 , where 𝑖, 𝑗 ∈  .

Setting 𝐽 = 0, would imply that there are no initial margins available, and for 𝐽 > 0 initial mar-
gins are available, which are proportional to the notional size of the contract. This proportionality
assumption is referred to as the standard schedule and was introduced in BCBS IOSCO (2015).
There have been alternative proposals since then, see, for example, Cont (2018) who highlighted
that the standard schedule typically overestimatesmargin requirements. For tractability purposes,
we will still consider the proportional case.3
To complete our modeling framework, we assume that at the time when payment obligations

become due each node is equipped with external assets, that is, assets from outside the network,
only a part of which, the liquidity buffer, is available to satisfy any payment obligations.

Definition 3.3 (External assets and liquidity buffer). We denote by 𝐴(𝑒) ∈ [0,∞)𝑁 the vector of
external assets and by 𝑏 ∈ [0, 𝐴(𝑒)] the liquidity buffer.

We analyze how portfolio compression affects payment obligations and liquidity buffers.

Definition 3.4 (Payment obligations, initial margins, liquidity buffer under compression). Let
𝑋 be a liabilities matrix for which there exists a conservative compression network cycle  =

(nodes,edges) of 𝑋 with maximal capacity 𝜇max . Let 0 < 𝜇 ≤ 𝜇max and let 𝑋,𝜇 be the 𝜇-
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compressed liabilities matrix. Let 𝐿 = 𝑓𝑉(𝑋) = 𝑉𝑋 be the payment obligation matrix, where
𝑉 ∈ [0,∞).

1. We refer to the matrix 𝐿,𝜇 with

𝐿
,𝜇

𝑖𝑗
= 𝑓𝑉

𝑖𝑗
(𝑋,𝜇) =

{
𝑉𝑋𝑖𝑗 − 𝑉𝜇 if (𝑖, 𝑗) ∈ edges,

𝑉𝑋𝑖𝑗 otherwise, =

{
𝐿𝑖𝑗 − 𝑉𝜇 if (𝑖, 𝑗) ∈ edges,

𝐿𝑖𝑗 otherwise, (8)

as the 𝜇-compressed payment obligation matrix (using cycle ). We refer to 𝐿̄
,𝜇

𝑖
=∑

𝑗∈
𝑓𝑉
𝑖𝑗
(𝑋,𝜇) = 𝑉

∑
𝑗∈

𝑋
,𝜇

𝑖𝑗
as the total 𝜇-compressed payment obligations of node 𝑖 ∈ 

(using cycle ).
2. The 𝜇-compressed initial margins are given by 𝐽𝑋,𝜇, where

𝐽𝑋
,𝜇

𝑖𝑗
=

{
𝐽𝑋𝑖𝑗 − 𝐽𝜇 if (𝑖, 𝑗) ∈ edges,

𝐽𝑋𝑖𝑗 otherwise. (9)

3. The 𝜇-compressed liquidity buffer 𝑏,𝜇,𝛾 ∈ [0,∞)𝑁 , where 𝛾 ∈ [0, 1], is given by

𝑏
,𝜇,𝛾

𝑖
=

{
𝑏𝑖 + 𝛾𝐽𝜇 if 𝑖 ∈ nodes,

𝑏𝑖, if 𝑖 ∈  ⧵ nodes.
(10)

Hence, we see that portfolio compression reduces the payment obligations, and therefore vari-
ation margins, since the payment function 𝑓𝑉 is nondecreasing. Furthermore, portfolio compres-
sion also reduces the initial margins. Therefore there are strong incentives formarket participants
to engage in portfolio compression. This is particularly relevant for initial margins, which can
never be netted.
Regarding the liquidity buffer we allow for different effects of compression. If 𝛾 = 0, then the

liquidity buffer is not affected by portfolio compression, which can be interpreted as the corre-
sponding assets that are no longer tied up in initial margins are considered as illiquid assets. If
𝛾 = 1, thenwe assume that the liquidity buffer of those nodes taking part in portfolio compression
increases by exactly the amount that is no longer required as initial margins since the positionwas
reduced. For 𝛾 ∈ (0, 1), we have some increase of the liquidity buffer for those nodes taking part
in portfolio compression but this is less than the corresponding reduction in initial margins. In
particular, the 𝜇-compressed liquidity buffer is monotonically nondecreasing in 𝛾.
We now formally define a payment system in which we will analyze systemic risk.4

Definition 3.5 (Payment system). Let 𝑋 be a liabilities matrix for which there exists a conserva-
tive compression network cycle  = (nodes,edges) of𝑋 withmaximal capacity 𝜇max . Let 0 < 𝜇 ≤

𝜇max and let 𝑋,𝜇 be the 𝜇-compressed liabilities matrix. Let 𝑉 ∈ [0,∞) and let 𝐿 = 𝑓𝑉(𝑋) = 𝑉𝑋

be the corresponding payment obligation matrix and 𝑏 the liquidity buffer. We will refer to (𝐿, 𝑏)

as payment system and to (𝐿,𝜇, 𝑏,𝜇,𝛾) as 𝜇-compressed payment system, where 𝐿,𝜇 and 𝑏,𝜇,𝛾 are
defined in Equations (8) and (10), respectively, and 𝜇 ∈ [0, 𝜇max].
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3.2 Clearing the payment obligations

Tomeasure systemic risk, we consider a suitable extension of the Eisenberg andNoe (2001) frame-
work for clearing payments in financial networks. In particular, we incorporate ideas developed
by Paddrik et al. (2020) and Ghamami et al. (2021) for clearing with collateral (i.e., initial margins)
into the the framework developed by Veraart (2020) to measure systemic risk.
In the following, we define the notion of equity revaluation, which is a slightlymodified version

of Veraart (2020, Definition 2.4), which is related to the approach developed in Barucca et al.
(2020).

Definition 3.6 (Re-evaluated equity). Consider a payment system (𝐿, 𝑏) and let (𝐿,𝜇, 𝑏,𝜇,𝛾) be
the corresponding 𝜇-compressed payment system where 𝜇 ∈ (0, 𝜇max].

1. A valuation function is a function 𝕍 ∶ ℝ → [0, 1], given by

𝕍(𝑦) =

{
1, if 𝑦 ≥ 1 + 𝑘,

𝑟(𝑦), if 𝑦 < 1 + 𝑘,
(11)

where 𝑘 ≥ 0 and 𝑟 ∶ (−∞, 1 + 𝑘) → [0, 1] is a nondecreasing and right-continuous function.
2. Consider a valuation function 𝕍. We define a function Φ = Φ(⋅; 𝕍) ∶  →  where

Φ𝑖(𝐸) = Φ𝑖(𝐸; 𝕍) = 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸𝑗 + 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖, (12)

 = {𝑖 ∈  ∣ 𝐿̄𝑖 > 0},  = [𝑏 − 𝐿̄, 𝑏 + 𝐴̄ − 𝐿̄], 𝐴̄𝑖 =
∑𝑁

𝑗=1
𝐿𝑗𝑖 , 𝐿̄𝑖 =

∑𝑁

𝑗=1
𝐿𝑖𝑗 ∀𝑖 ∈  . The re-

evaluated equity in the non-compressed network is a vector 𝐸 ∈  satisfying

𝐸 = Φ(𝐸). (13)

3. Consider a valuation function 𝕍. We define a function Φ,𝜇,𝛾 = Φ(⋅; 𝕍) ∶  →  where

Φ
,𝜇,𝛾

𝑖
(𝐸) = Φ

,𝜇,𝛾

𝑖
(𝐸; 𝕍) = 𝑏

,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸𝑗 + 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
, (14)

 = {𝑖 ∈  ∣ 𝐿̄
,𝜇

𝑖
> 0},  = [𝑏,𝜇,𝛾 − 𝐿̄,𝜇, 𝑏,𝜇,𝛾 + 𝐴̄ − 𝐿̄,𝜇], 𝐴̄

𝑖
=
∑𝑁

𝑗=1
𝐿
,𝜇

𝑗𝑖
, 𝐿̄

,𝜇

𝑖
=∑𝑁

𝑗=1
𝐿
,𝜇

𝑖𝑗
∀𝑖 ∈  . The re-evaluated equity in the compressed network is a vector 𝐸 ∈  sat-

isfying

𝐸 = Φ,𝜇,𝛾(𝐸). (15)

Since 𝑟 is nondecreasing and right-continuous, 𝕍 is also nondecreasing and right-continuous.
Therefore, Veraart (2020, Theorem 2.5) guarantees the existence of the re-evaluated equities in
Equations (13) and (15) as fixed points of Φ and Φ,𝜇,𝛾, respectively.
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Similar toVeraart (2020), for a given node 𝑖 ∈  , the functionΦ𝑖 models the difference between
the liquid assets 𝑏𝑖 +

∑
𝑗∈

𝐿𝑗𝑖𝕍(
𝐸𝑗+𝐿̄𝑗

𝐿̄𝑗

) and the total payment obligations 𝐿̄𝑖 . The liquid assets

consist of the liquidity buffer 𝑏𝑖 and the payments received from the other financial institutions
given by

∑
𝑗∈

𝐿𝑗𝑖𝕍(
𝐸𝑗+𝐿̄𝑗

𝐿̄𝑗

). If the function value of 𝕍 is strictly less than 1, this implies that not

the full amount of payment obligations is paid by 𝑗 to 𝑖, which reduces the liquid assets that 𝑖 has.
The interpretation for the terms appearing in Φ,𝜇,𝛾 is the same as for Φ with the only exceptions
that the compressed network is considered.
If 𝐿 = 𝑋 and𝐴(𝑒) = 𝑏, then the positive part of the re-evaluated equity would correspond to the

equity of the node, as in Eisenberg and Noe (2001).
In this re-evaluation approach, all payment obligations are treated equally. In particular, no net-

ting takes place prior to clearing. Any type of netting (such as bilateral netting, compression, etc.)
would effectively introduce a seniority structure, where liabilities that are netted have implicitly
a higher seniority than those that are not netted, see Elsinger (2009) for a clearing approach with
different seniorities of debt.
As described earlier, we refer to a tuple (𝐿, 𝑏) as a payment system, where 𝐿 is a payment obli-

gationmatrix and 𝑏 is a vector of liquidity buffers. If we use such a system tomake any statements
about its associated systemic risk based on a valuation function𝕍, we write (𝐿, 𝑏; 𝕍) and also refer
to it as a payment system.
We consider special choices of valuation functions next to give some intuition on what they

can represent. All results we derive, however, will hold for general valuation functions defined in
Equation (11).

Remark 3.7 (Special choices for 𝕍 from the literature).

1. The Eisenberg and Noe (2001) model can be recovered5 by setting 𝑘 = 0 and

𝕍EN(𝑦) = min{1, 𝑦+}. (16)

2. The special case of the model by Rogers and Veraart (2013) with bankruptcy costs parameters
𝛼 = 𝛽 ∈ [0, 1] can be recovered by setting 𝑘 = 0 and

𝕍RV(𝑦) =

{
1 if 𝑦 ≥ 1,

𝛽𝑦+ if 𝑦 < 1.
(17)

3. In Veraart (2020)and Glasserman and Young (2015), it was argued that contagion can be trig-
gered prior to the pointwhere the equity of an institution is zero and itwas proposed to consider
.

4. The zero recovery rate valuation function is defined by

𝕍zero(𝑦) = 𝕀{𝑦≥1+𝑘}, where 𝑘 ≥ 0. (18)

All special choices of valuation functions mentioned so far do not account for initial margins.
In the following, we define valuation functions that incorporate initial margins.
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First, we consider a valuation function that extends the zero recovery rate valuation function
to a situation with initial margins, by setting

𝕍zero;𝐽(𝑦) = 𝕀{𝑦≥1+𝑘} + 𝐽𝕀{𝑦<1+𝑘} where 𝑘 ≥ 0, 𝐽 ∈ [0, 1]. (19)

Hence, this function captures the effects that a proportion 𝐽 ∈ [0, 1] of the position will always
be guaranteed by initial margins. Note that 𝕍zero;0 = 𝕍zero. Throughout this paper, we will also
refer to 𝕍zero;𝐽 as zero recovery rate valuation function even though the function returns 𝐽 and not
necessarily 0 in the case of default. The reason for this is that the parameter 𝐽 captures the effect
that some payments are guaranteed because initial margins were posted and not because they
were recovered from any payments from other nodes in the system.
Second, we consider the situation where we can have both initial margins and non-negative

recovery rates. To do so, we generalize the definition of 𝕍RV to include initial margins.

Definition 3.8 (Valuation function accounting for initial margins). Let 𝐽 ∈ [0,∞) and 𝛽 ∈ [0, 1].
We define the initial margin valuation function by 𝕍InitialMargin ∶ ℝ → [0, 1], where ∀𝑦 ∈ ℝ

𝕍InitialMargin(𝑦) =

{
1, if 𝑦 ≥ 1,

min{1, 𝐽 + 𝛽𝑦+}, if 𝑦 < 1.
(20)

One can easily check that 𝕍InitialMargin is a valuation function. If we set the bankruptcy costs
parameter to 𝛽 = 0 in 𝕍InitialMargin, then this captures exactly the situation of zero recovery rates
and 𝕍InitialMargin = 𝕍zero;𝐽 for 𝑘 = 0. Using Veraart (2020, Theorem 2.11), we conclude that higher
values of initial margins lead to a better outcome for the system in the following sense: let 0 ≤

𝐽1 ≤ 𝐽2 be two possible parameters for 𝐽 in Equation (20), then the greatest re-evaluated equity
corresponding to parameter 𝐽2 would be greater or equal than the greatest re-evaluated equity
corresponding to 𝐽1. In particular, a systemwith initial margins has better outcomes than a system
without initial margins.
The choice of 𝕍InitialMargin is motivated by the approaches developed in Paddrik et al. (2020)

and Ghamami et al. (2021) for clearing in collateralised networks. We are essentially using these
ideas but rewrite them to fit a slightly different mathematical framework that is more tractable
for the purpose of our analysis. The first difference between Paddrik et al. (2020) and Ghamami
et al. (2021) and our formulation here is that we express the clearing problem in terms of the re-
evaluated equity, that is, within the framework of Veraart (2020), and not in terms of the clearing
payments, since this makes the analysis in the compression context more tractable.6 The sec-
ond difference is that we include bankruptcy costs modeled in terms of the parameter 𝛽 ∈ [0, 1],
whereas the other approaches mainly focus on 𝛽 = 0 and 𝛽 = 1.
We provide some intuition for the choice of 𝕍InitialMargin next. If we set 𝐽 = 0, 𝕍InitialMargin

reduces to𝕍RV.We therefore consider for now. Let𝐸∗ be a fixed point ofΦ. Suppose 𝑦 =
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

< 1

for a 𝑗 ∈  . Then, the payment that node 𝑗 makes to node 𝑖 is given by

𝐿𝑗𝑖𝕍
InitialMargin

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
= min

⎧⎪⎨⎪⎩𝐿𝑗𝑖, 𝐽𝐿𝑗𝑖 + 𝛽𝐿𝑗𝑖

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)+⎫⎪⎬⎪⎭ =∶ (⋆). (21)
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Now if 𝐽 ≤ 1, then (⋆) ≥ 𝐽𝐿𝑗𝑖 implying that node 𝑗will always at least pay the amount correspond-

ing to the initial margin to 𝑖 but possibly even more if 𝛽𝐿𝑗𝑖(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

)+ > 0. Under no circumstances

can 𝑖 receive more than 𝐿𝑗𝑖 from 𝑗. If 𝐽 ≥ 1, then the initial margins guarantee full payment of 𝐿𝑗𝑖 .
Note that initial margins are only available in the case of default. Recall that 𝐽𝑋𝑗𝑖 is the initial

margin that 𝑗 posted to protect its liabilities to 𝑖. But node 𝑖 cannot use 𝐽𝑋𝑗𝑖 to make any payments
if 𝑗 does not default. If node 𝑗 does default, however, then 𝑖 can seize (parts of) the initial margin
𝐽𝑋𝑗𝑖 . This effect is captured by the parameter 𝐽 appearing in the default branch of the valuation
function 𝕍InitialMargin. If we set 𝐽 = 𝐽∕𝑉 in 𝕍InitialMargin (assuming that 𝑉 > 0 otherwise there are
no payment obligations), then 𝐽𝐿𝑗𝑖 = 𝐽𝑉𝑋𝑗𝑖 = 𝐽𝑋𝑗𝑖 is exactly the payment obligation from 𝑗 to 𝑖

that is guaranteed by the initial margins.

3.3 Definition of default, reduction of systemic risk, and harmfulness
of portfolio compression

In the following, we will compute the greatest re-evaluated equity both in the original network
and in the compressed network, that is, we will always consider the greatest fixed point of Φ and
Φ,𝜇,𝛾 in Equations (13) and (15), respectively. They correspond to the best possible outcome for the
economy. Based on these quantities, we can then infer which nodes are in default in the network
with compression and in the network without compression. Hence, we take an ex post point of
view.We ask what would happen if no compression takes place and we then evaluate the network
at a point in timewhenpayments are due. Thenwe consider the casewhere compressionhas taken
place and we then evaluate the network when payments are due and compare the outcome to the
situation without compression. We summarize the mathematical setting as follows.

Assumption 3.9 (Market setting).

∙ Let 𝑋 be a liabilities matrix for which there exists a conservative compression network cycle
 = (nodes,edges, 𝜇

max) with maximal capacity 𝜇max > 0.
∙ Let 𝕍 be a valuation function and 𝑘 ≥ 0.
∙ Let (𝐿, 𝑏; 𝕍) be the corresponding payment system with total payment obligations 𝐿̄.
∙ Let 0 < 𝜇 ≤ 𝜇max . Let 𝐿,𝜇 be the 𝜇-compressed payment obligationmatrix. Let 𝐿̄,𝜇 be the total

𝜇-compressed payment obligations.
∙ Let 𝐸∗ be the greatest re-evaluated equity in the non-compressed network.
∙ Let 𝐸,𝜇;𝛾;∗ be the greatest re-evaluated equity in the compressed network with 𝛾 ∈ [0, 1].

We can now define what it means for an institution to be in default.

Definition 3.10 (Definition of default). Consider the market setting of Assumption 3.9. Then,
the set of defaulting financial institutions in the non-compressed system is

(𝐿, 𝑏; 𝕍) = {𝑖 ∈  ∣ 𝐸∗
𝑖
< 𝑘𝐿̄𝑖} (22)

and the set of defaulting financial institutions in the compressed system is

(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) = {𝑖 ∈  ∣ 𝐸
,𝜇;𝛾;∗

𝑖
< 𝑘𝐿̄

,𝜇

𝑖
}. (23)
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The definition above defines default (in the non-compressed system) as the point when the

quantity (
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

) < 1 + 𝑘. For 𝑘 = 0, this is equivalent to saying that the available liquid assets are

strictly smaller than the payment obligations, which is equivalent to 𝐸∗
𝑗
< 0. This is the situation

we have in mind when considering variation margin payments, that is, for 𝕍 = 𝕍InitialMargin, as in
Paddrik et al. (2020) and Ghamami et al. (2021).
If 𝑘 > 0, then the default condition is equivalent to saying that the available liquid assets

are strictly less than the required payment obligations plus an additionally required buffer. In
Remark A.1, we show that to be able to account for certain capital requirements, it is sometimes
beneficial to allow for an earlier start point of default, that is, 𝑘 > 0.

Recall that the payments from 𝑗 to 𝑖 are 𝐿𝑗𝑖𝕍(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

). If 𝑗 is in default, then we are in the default

branch of the valuation function7, that is, 𝕍(𝑦) = 𝑟(𝑦) and this value can be strictly less than 1
implying that payment obligations from 𝑗 to 𝑖 are no longer satisfied completely. In the case of
initial margins, that is, if 𝕍 = 𝕍InitialMargin, then it is possible (but this will depend on the magni-

tude of the initial margins) that 𝐿𝑗𝑖𝕍(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

) = 𝐿𝑗𝑖 even though 𝑗 defaults.

We are now in a position to formally define what we mean by saying that a particular com-
pression reduces systemic risk or is harmful. We do this by comparing the defaults in the non-
compressed network to the defaults in the compressed network (see Definition 3.10).

Definition 3.11 ((Strong) reduction of systemic risk and harmfulness). Consider the market
setting of Assumption 3.9. We say that the compression network cycle  reduces systemic risk if
(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⊆ (𝐿, 𝑏; 𝕍). We say that the compression network cycle  strongly reduces sys-
temic risk if(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⊊ (𝐿, 𝑏; 𝕍). We say that the compression network cycle  is harm-
ful if(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⧵(𝐿, 𝑏; 𝕍) ≠ ∅.

Based on this definition, we say that compression reduces systemic risk if every node that
defaults in the compressed network also defaults in the non-compressed network. In the same
spirit, we classify compression as harmful if there exists at least one node in the network that
defaults in the compressed network that does not default in the non-compressed network.
These definitions can be interpreted in a Pareto sense as follows. Our notion of portfolio com-

pression to strongly reduce systemic risk can be interpreted as a Pareto improvement: if portfolio
compression strongly reduces systemic risk, this means that at least one institution is strictly bet-
ter off under compression (since it no longer defaults) than without compression. At the same
time, no other institution is harmed, since there are no new defaults caused by compression.
The same spirit applies to our definition of harmfulness. In particular, we do not allow for a

trade-off between some institutions being better off and some being worse off (measured in terms
of defaults). As soon as there exist one node that is worse off by compression in the sense that
it defaults only in the compressed but not in the non-compressed network, then we say that this
compression is harmful.
We use the set of defaulting institutions to characterize systemic risk here. The advantage of this

measure is that it allows for a direct comparison between a compressed and a non-compressed
system. Since portfolio compression reduces the gross positions, we need a normalized measure
for comparing outcomes in a compressed and a non-compressed financial network and cannot
just consider, for example, losses directly. We will later see that the proportion of debt that a node
repays either in the non-compressed or in the compressed network, plays an important role when
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characterizing potential harmfulness of portfolio compression. These repayment proportions are
therefore another normalized quantity that we consider in this context.

4 CONSEQUENCES OF PORTFOLIO COMPRESSION FOR
SYSTEMIC RISK

We now analyze the consequences of portfolio compression for systemic risk. One might think
that portfolio compression reduces systemic risk since it reduces gross exposures while not chang-
ing the net exposures. Indeed we will show that in many realistic scenarios portfolio compression
reduces or even strongly reduces systemic risk.
There are circumstances, however, in which compression can be harmful. Portfolio optimiza-

tion is an optimization problem that aims to reduce gross exposures subject to some constraints
such as keeping net exposures unchanged (O’ Kane, 2017; D’Errico and Roukny, 2021). As long as
these constraints do not explicitly account for systemic risk, there is no reason why a solution to
such an optimization problem should automatically reduce systemic risk.

4.1 Who can be affected by portfolio compression?

We identify those nodes that can in principle be affected by portfolio compression by defining a
compression risk orbit8.

Definition 4.1 (Compression risk orbit). Consider the market setting of Assumption 3.9. The
compression risk orbit of  is

 = nodes ∪ {𝑗 ∈  ∣ ∃𝑖 ∈ nodes and ∃ a directed path from 𝑖 to 𝑗 in 𝐺̂}, (24)

where 𝐺̂ is the graph with nodes and edges ̂ = {(𝑖, 𝑗) ∈  2 ∣ 𝐿𝑖𝑗 > 0}.

The compression risk orbit contains all nodes on the compression network cycle and all nodes
that can be reached from nodes on the compression network cycle; compression could in prin-
ciple affect their outcome (both positively or negatively). All nodes in ⧵  cannot be affected
(positively or negatively) by compression, that is, the greatest re-evaluated equity with or without
compression coincides for those nodes.

Proposition 4.2. Consider themarket setting of Assumption 3.9. Then,𝐸∗
𝑖
= 𝐸

,𝜇;𝛾;∗

𝑖
∀𝑖 ∈  ⧵ ,

where  is given in Equation (24).

The proof of this proposition and proofs of all following results are provided in Appendix B.

4.2 Fundamental versus contagious defaults

We will distinguish between two types of default: fundamental default and contagious default.
Fundamental defaults are defaults that occur even if all nodes pay their payment obligations in
full.9 Contagious defaults are all defaults that are not fundamental defaults. In order to formally
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define these two types of default, we consider the difference between nominal liquid assets and
total payment obligations and refer to it as initial equity (even though the assets and liabilities
considered here might not reflect the full balance sheet).

Definition 4.3 (Initial equity). Consider the market setting of Assumption 3.9. For all 𝑖 ∈ 

define the initial equity in the non-compressed and in the compressed network (for parameter
𝛾 = 0 𝛾 ∈ [0, 1]) by

𝐸
(0)
𝑖

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖, 𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− 𝐿̄

𝑖
. (25)

Hence, the initial equity corresponds to the best possible situation, namely all nodes repaying
their payment obligations in full. Recall, that for 𝛾 = 0, it holds that 𝑏,𝜇,𝛾

𝑖
= 𝑏.

Definition 4.4 (Fundamental and contagious defaults). Consider the market setting of Assump-
tion 3.9. Let 𝐸(0)and 𝐸(0);𝛾 be the initial equity defined in Equation (25). We refer to  = {𝑖 ∈

 ∣ 𝐸
(0)
𝑖

< 𝑘𝐿̄𝑖} and (𝐿, 𝑏; 𝕍) ⧵  as the fundamental defaults and contagious defaults in the
non-compressed network, respectively. Similarly, we refer to  = {𝑖 ∈  ∣ 𝐸(0);𝛾 < 𝑘𝐿̄

,𝜇

𝑖
} and

(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⧵  as the fundamental defaults and contagious defaults in the compressed
network (where 𝛾 ∈ [0, 1]), respectively.

We will show in Lemma B.4 that  ⊆ (𝐿, 𝑏; 𝕍) and  ⊆ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍). We show how
portfolio compression affects fundamental defaults using properties of the initial equity.

Lemma 4.5. Consider themarket setting of Assumption 3.9. The initial equities𝐸(0)
𝑖
,𝐸(0);𝛾

𝑖
, 𝑖 ∈  ,

are as in Equation (25). Then, 𝐸(0)
𝑖

= 𝐸
(0);0
𝑖

≤ 𝐸
(0);𝛾
𝑖

∀𝑖 ∈  , ∀𝛾 ∈ [0, 1].

Proposition 4.6 (Fundamental defaults and compression). Consider the market setting of
Assumption 3.9. Then,  ⊆  . If  ⧵  ≠ ∅, then 𝑘𝑉 + 𝛾𝐽 > 0 and  ⧵  ⊆ nodes.

Hence, this proposition shows, that compression can only improve fundamental defaults, in
the sense that every node that is in fundamental default in the compressed network is also in fun-
damental default in the non-compressed network. Furthermore, it states that any strict shrinkage
of the set of fundamental defaults under compression, is due to the fact that portfolio compression
has avoided some fundamental defaults among nodes that took part in compression, that is, are
in nodes. For this to happen, some parameter constraints are required. They capture two types of
effects: first, portfolio compression can increase the available liquidity buffer. In particular, if we
set 𝛾 > 0 and assume positive initial margins by setting 𝐽 > 0, then 𝛾𝐽 > 0 and nodes on the 𝜇-
compression network cycle then have a strictly larger liquidity buffer for 𝜇 > 0 in the compressed
than in the non-compressed network, which can potentially avoid fundamental defaults. Second,
portfolio compression could move a node further away from the default boundary if 𝑘 > 0, in
which case portfolio compression could also potentially avoid a fundamental default.
For compression to be harmful, we need at least one firm that defaults in the compressed net-

work that does not default in the non-compressed network. Since according to Proposition 4.6,
portfolio compression cannot cause any fundamental defaults, such an additional default would
have to be a contagious default.
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4.3 Structural conditions for the consequences of portfolio
compression

The following theorem contains the main theoretical results of this paper. It identifies three key
structural conditions that are necessary for portfolio compression to be harmful.

Theorem 4.7 (Necessary conditions for compression to be harmful). Consider the market setting
of Assumption 3.9. Suppose that compressing cycle  is harmful. Then,

1.

(𝐿, 𝑏; 𝕍) ∩ nodes ≠ ∅; (26)

2. there exists an 𝑖 ∈ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ∩ nodes such that

𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
< 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
; (27)

3. the valuation function satisfies

𝕍 ≠ 𝕍zero;𝐽 . (28)

In the following, we discuss the three structural conditions (26)–(28) in more detail.

4.3.1 Defaults on the compression network cycle in the non-compressed
network

Condition (26) tells us, that for portfolio compression to be potentially harmful, one needs at least
one default on the compression network cycle in the non-compressed network. Compressing such
a cycle can be harmful. The following proposition is used to prove part 1. of Theorem 4.7 and iden-
tifies the relationship between the re-evaluated equity in the compressed and non-compressed
network.

Proposition 4.8. Consider the market setting of Assumption 3.9 and let (𝐿, 𝑏; 𝕍) ∩ nodes = ∅.
Then, 𝐸∗

𝑖
= 𝐸

,𝜇;0;∗

𝑖
≤ 𝐸

,𝜇;𝛾;∗

𝑖
∀𝑖 ∈  and(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⊆ (𝐿,𝜇, 𝑏,𝜇,0; 𝕍) = (𝐿, 𝑏; 𝕍).

Hence, compression can only increase the re-evaluated equity if there are no defaults on the
compression network cycle in the non-compressed system. Under this assumption, if additionally
𝛾 = 0, implying that compression does not increase the liquidity buffer, then the re-evaluated
equities with and without compression coincide. In both cases, systemic risk is reduced.
We do an ex post analysis here. In practice, firms would conduct portfolio compression prior

to payment obligations becoming due. Hence, at the time compression is done, Equation (26) is a
condition on the future state of the network. In this spirit, we conclude that if the probability that
condition (26) is satisfied in the future is low,meaning that it is unlikely for firms who took part in
compression to default in the future, then it is likely that this compression reduces systemic risk.
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4.3.2 Repayment proportions

The condition (27) in Theorem 26, is a statement about repayment proportions of nodes on the
compression network cycle that default in the compressed network. The total payments that node
𝑖 makes to the other nodes in the non-compressed network are

∑
𝑗∈

𝐿𝑖𝑗𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
= 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
𝐿̄𝑖 , (29)

and hence it repays the proportion𝕍(
𝐸∗
𝑖
+𝐿̄𝑖

𝐿̄𝑖

)𝐿̄𝑖∕𝐿̄𝑖 = 𝕍(
𝐸∗
𝑖
+𝐿̄𝑖

𝐿̄𝑖

) of its total payment obligations if no
compression is used. Similarly, the repayment proportion of node 𝑖 in the compressed network

is 𝕍(
𝐸
,𝜇;𝛾;∗
𝑖

+𝐿̄
,𝜇
𝑖

𝐿̄
,𝜇
𝑖

). Condition (27), therefore, says that there exists a node 𝑖 ∈ nodes that repays

a smaller proportion of its total payment obligations in the compressed network compared to
the non-compressed network. Any node 𝑖 ∈  satisfying Equation (27) is in (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍),

since from Equation (27), 𝕍(
𝐸
,𝜇;𝛾;∗
𝑖

+𝐿̄
,𝜇
𝑖

𝐿̄
,𝜇
𝑖

) < 𝕍(
𝐸∗
𝑖
+𝐿̄𝑖

𝐿̄𝑖

) ≤ 1 and hence
𝐸
,𝜇;𝛾;∗
𝑖

+𝐿̄
,𝜇
𝑖

𝐿̄
,𝜇
𝑖

< 1 + 𝑘 by Equa-

tion (11).
Hence condition (27) says, that for portfolio compression to be potentially harmful, one needs

at least one node on the compression network cycle that repays a strictly smaller proportion of its
total payment obligations in the compressed network than in the non-compressed network.
Consider such an 𝑖 ∈ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ∩ nodes satisfyingEquation (27). Since 𝑖 repays a smaller

proportion of its debt after compression, it can transmit larger losses to other nodes in the network.
The payment that node 𝑖 makes to any node 𝑗 ∈  without compression is 𝐿𝑖𝑗𝕍(

𝐸∗
𝑖
+𝐿̄𝑖

𝐿̄𝑖

) and with

compression it is 𝐿,𝜇

𝑖𝑗
𝕍(

𝐸
,𝜇;𝛾;∗
𝑖

+𝐿̄
,𝜇
𝑖

𝐿̄
,𝜇
𝑖

). Then, for all 𝑗 ∈  with 𝐿
,𝜇

𝑖𝑗
> 0, it holds that 𝐿𝑖𝑗 > 0 and

hence

𝐿
,𝜇

𝑖𝑗
𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
≤ 𝐿𝑖𝑗𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
< 𝐿𝑖𝑗𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
. (30)

Hence, node 𝑗 receives less from 𝑖 in the compressed network than in the non-compressed net-
work.
Therefore, as long as all nodes on the compression network cycle repay a greater or equal pro-

portion of their debt in the compressed network compared to the non-compressed network (as
stated in Equation (31)), then compression reduces systemic risk. We formulate several related
results, which are of interest for interpreting the results.

Proposition 4.9. Consider the market setting of Assumption 3.9. Suppose that at least one of the
following three conditions is satisfied:

1.

𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
≥ 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
∀𝑖 ∈ nodes; (31)
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2.

𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
= 1 ∀𝑖 ∈ nodes; (32)

3.

(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ∩ nodes = ∅. (33)

Then, 𝐸∗
𝑖
≤ 𝐸

,𝜇;𝛾;∗

𝑖
for all 𝑖 ∈  and(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⊆ (𝐿, 𝑏; 𝕍).

Note that condition (33) implies condition (32), which implies condition (31).
Condition (33) says that for compression to be potentially harmful, one needs to have a default

on the compression network cycle not just in the non-compressed network (condition (26)) but
also in the compressed network. Hence, there cannot be a situation inwhich financial institutions
engage in conservative compression such that none of them defaults in the compressed network
but a financial institution outside the compression network cycle is worse off (in the sense that
it defaults only in the compressed network). Hence, if compression is harmful for a node out-
side the compression network cycle, then there must exist a defaulting node on the compression
network cycle.
Now consider the situation where at least one node on the compression network cycle defaults

in the compressed network. Then condition (32) implies that as long as all nodes on the compres-
sion network cycle repay their debt in full—this could happen due to sufficient initial margins—
then compression cannot be harmful.
A direct consequence of Proposition 4.9 is that if we consider the valuation function𝕍InitialMargin

with 𝐽 ≥ 1 (which reduces to𝕍InitialMargin(𝑦) = 1 ∀𝑦 ∈ ℝ for 𝐽 ≥ 1) or any other constant valuation
function, then compression reduces systemic risk.

Corollary 4.10. Consider the market setting of Assumption 3.9. Consider a valuation function
𝕍(𝑦) = 𝐴, ∀𝑦 ∈ ℝ, for some 𝐴 ∈ [0, 1]. Then, 𝐸∗

𝑖
≤ 𝐸

,𝜇;𝛾;∗

𝑖
for all 𝑖 ∈  and (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⊆

(𝐿, 𝑏; 𝕍).

Next we provide an intuitive explanation how portfolio compression can change the distribu-
tion of losses in the network. In several approaches in the literature such as Eisenberg and Noe
(2001), Rogers and Veraart (2013), and Veraart (2020), the valuation function 𝕍 is a capped piece-
wise linear function. Also, our newly introduced function𝕍InitialMargin falls in this class. A key idea
of the Eisenberg and Noe (2001) clearing approach (which also applies to more general capped
piecewise linear functions) is that all defaulting nodes repay their debt according to the propor-
tions according to which their nominal payment obligations are distributed. These proportions
are specified in terms of a relative liabilities matrix.
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Proposition 4.11. Consider the market setting of Assumption 3.9. Consider the relative payment
obligation matricesΠ,Π,𝜇 ∈ ℝ𝑁×𝑁 , where

Π𝑖𝑗 =

{𝐿𝑖𝑗

𝐿̄𝑖

, if 𝐿̄𝑖 > 0,

0, if 𝐿̄𝑖 = 0,
Π

,𝜇

𝑖𝑗
=

⎧⎪⎨⎪⎩
𝐿
,𝜇
𝑖𝑗

𝐿̄
,𝜇
𝑖

, if 𝐿̄,𝜇

𝑖
> 0,

0, if 𝐿̄,𝜇

𝑖
= 0.

(34)

For 𝑖 ∈ nodes, we denote by suc(𝑖) (successor) the node in nodes that satisfies (𝑖, suc(𝑖)) ∈ edges.
Then, for all 𝑖 ∈ nodes

Π
,𝜇

𝑖suc(𝑖) ≤ Π𝑖suc(𝑖), (35)

Π
,𝜇

𝑖𝑗
≥ Π𝑖𝑗 ∀𝑗 ∈  ⧵ {suc(𝑖)}; (36)

and for all 𝑖 ∈  ⧵ nodes and for all 𝑗 ∈ Π
,𝜇

𝑖𝑗
= Π𝑖𝑗 .

We see that for nodes that are not on the compression network cycle, the proportions according
to which they distribute their payments to the other nodes in the system do not change. For the
nodes on the compression network cycle, these proportions do change: smaller (or equal) pro-
portions are paid to the immediate successor of a node on the compression network cycle. To all
other nodes, larger (or equal) proportions are used to allocate the payments.
Note that if proportions increase, this can also imply that a larger proportion of losses hits

neighboring nodes and this is where the danger is coming from.As long as there are no defaults on
the compression network cycle, the fact that the proportions change for nodes on the compression
network cycle is irrelevant because they still satisfy the required payment obligations. As soon as
that is no longer the case, and the proportions determine how losses are spread, the change in
these proportions starts to matter.

4.3.3 Recovery rates

According to part 3. of Theorem 4.7 one needs nonzero recovery rates for portfolio compression
to be potentially harmful.

Proposition 4.12. Consider the market setting of Assumption 3.9 and assume that 𝕍 = 𝕍zero;𝐽 .
Then, 𝐸∗

𝑖
≤ 𝐸

,𝜇;𝛾;∗

𝑖
for all 𝑖 ∈  and(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍zero;𝐽) ⊆ (𝐿, 𝑏; 𝕍zero;𝐽).

Hence, under zero recovery rates portfolio compression leads to a greater re-evaluated equity. In
practice, the recovery rates will depend on the time-horizon considered. Assuming a zero recovery
rate is reasonable when considering short-term consequences of default, see, for example, Amini
et al. (2016a) and the references therein for a discussion. For mid- to long-term consequences of
default, it is important to consider models that allow for positive recovery rates.
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If recovery rates are positive, we can have a worse default of a node on the compression cycle
meaning that it defaults both in the non-compressed and in the compressed network but it repays
a strictly smaller proportion of its debt in the compressed network (satisfying Equation (27)). If
recovery rates are zero, we cannot have such a worse default.

4.4 Compressing multiple cycles

All results so far (Theorem 4.7, Propositions 4.8, 4.9, Proposition 4.12) are statements about com-
pressing a single cycle. In practice, multiple cycles would/could be compressed. The results, nev-
ertheless, carry over to the multiple cycle case in the following sense. Suppose there are multi-
ple cycles 1, … ,𝑚 such that conservative compression could be carried out along those cycles
sequentially starting from 1 and finishing at 𝑚. This in particular implies that 𝑖 , 𝑖 ∈ {1, … ,𝑚}

is still a possible compression network cycle after the cycles 𝑗 , 𝑗 = 1,… , 𝑖 − 1 have been com-
pressed. If 𝕍 = 𝕍zero;𝐽 , then we know from Proposition 4.12 that compressing one cycle after the
other cannot be harmful. Suppose now that 𝕍 ≠ 𝕍zero;𝐽 . Then according to Theorem 4.7 (parts 1.
and 2.), we need to check properties of the nodes on the compression cycle. Suppose that at least
one of the conditions in parts 1. and 2. is not satisfied for compression cycle 1, then compressing
this cycle cannot be harmful. Next one would need to check the conditions for the nodes on the
compression network cycle 2 after 1 has been compressed. Again, if at least one of the condi-
tions in parts 1. and 2. is not satisfied, then compressing 2 cannot be harmful and so forth. This
can be formalized as follows.

Proposition 4.13 (Compressing multiple cycles). Let 𝑋 be a liabilities matrix. Suppose there exist
𝑚 ∈ ℕ compression network cycles (1), … ,(𝑚) such that conservative compression can be carried
out along those cycles sequentially starting from 1 and finishing at 𝑚. This in particular implies
that (𝑖), 𝑖 ∈ {1, … ,𝑚} is still a possible compression network cycle after the cycles (𝑗), 𝑗 = 1,… , 𝑖 − 1

have been compressed. We assume that each compression network cycle 𝑖 ∈ {1, … ,𝑚} is compressed
by a quantity 𝜇𝑖 ∈ (0, 𝜇max

𝑖
] where 𝜇max

𝑖
is the maximal compression capacity on cycle 𝑖 after the

cycles1, … , 𝑖−1 have been compressed. Letallnodes = 
(1)

nodes ∪ … ∪ 
(𝑚)

nodes. Let (𝐿, 𝑏; 𝕍) denote the cor-
responding payment system (without compression) and denote by 𝐸∗ the greatest re-evaluated equity
in the non-compressed system. We denote by 𝐸1,…,𝑖 ,⋆ the greatest re-evaluated equity that corre-
sponds to the payment system in which the cycles 1, … , 𝑖 , 𝑖 ∈ {1, … ,𝑚} have been compressed. The
total payment obligation of node 𝑖 in this system is denoted by 𝐿̄

1,…,𝑖

𝑖
. Suppose at least one of the

following three conditions is satisfied:

1.

(𝐿, 𝑏; 𝕍) ∩ allnodes = ∅; (37)
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2.

𝕍
⎛⎜⎜⎝
𝐸
(1),⋆
𝑖

+ 𝐿̄(1)

𝑖

𝐿̄(1)

𝑖

⎞⎟⎟⎠ ≥ 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
∀𝑖 ∈ 

(1)

nodes;

∀𝑛 ∈ {2, … ,𝑚} it holds that

𝕍
⎛⎜⎜⎝
𝐸
(1),…,(𝑛)⋆
𝑖

+ 𝐿̄
(1),…,(𝑛)

𝑖

𝐿̄
(1),…,(𝑛)

𝑖

⎞⎟⎟⎠ ≥ 𝕍
⎛⎜⎜⎝
𝐸
(1),…,(𝑛−1)⋆
𝑖

+ 𝐿̄
(1),…,(𝑛−1)

𝑖

𝐿̄
(1),…,(𝑛−1)

𝑖

⎞⎟⎟⎠ ∀𝑖 ∈ 
(𝑛)

nodes.

(38)

3. 𝕍 = 𝕍zero;𝐽 .

Then, compressing sequentially (1), … ,(𝑚) reduces systemic risk.

By combining the results from Proposition 4.13 above with the results derived in D’Errico and
Roukny (2021, EC.5., e-companion) for the characterization of 𝑋̃, we immediately obtain the
following corollary (of which statement 1 can be found in D’Errico and Roukny (2021, EC.5.,
e-companion).

Corollary 4.14 (Compression as optimization problem). Let𝑋 be a liabilities matrix and let 𝑋̃ be a
solution to the conservative compression optimization problem defined in Definition 2.3. Let (𝐿, 𝑏; 𝕍)

and (𝐿̃, 𝑏̃; 𝕍) be the payment systems corresponding to 𝑋 and 𝑋̃, respectively.

1. There exists a finite sequence of conservative compression network cycles (1), … ,(𝑚), 𝑚 ∈ ℕ,
such that conservative compression can be carried out along those cycles sequentially starting from
1 and finishing at 𝑚, such that 𝑋̃ is obtained by sequentially compressing (1), … ,(𝑚) starting
from the liabilities matrix 𝑋.

2. Consider the𝑚 conservative compression network cycles from part 1. of this Corollary in Proposi-
tion 4.13. If at least one of the three conditions in Proposition 4.13 is satisfied, then the systemic risk
in the payment system (𝐿̃, 𝑏̃; 𝕍) is reduced compared to the systemic risk in the payment system
(𝐿, 𝑏; 𝕍).

3. Part 2. of this Corollary remains valid if condition (6) in the Definition 2.3 of 𝑋̃ is replaced by
𝑎𝑖𝑗 ≤ 𝑋̃𝑖𝑗 ≤ 𝑋𝑖𝑗 ∀𝑖, 𝑗 ∈  , where 𝑎𝑖𝑗 ∈ [0, 𝑋𝑖𝑗] ∀𝑖, 𝑗 ∈  .

4.5 Policy implications

We have provided necessary conditions for portfolio compression to be harmful. Since we have
shown that portfolio compression cannot cause fundamental defaults, these are necessary con-
ditions for portfolio compression to cause contagious defaults. This implies that policy measures
that reduce the likelihood and severity of financial contagion automatically mitigate potentially
negative effects of portfolio compression.
Key mitigation mechanism for financial contagion is, for example, sufficient liquidity buffers

and sufficient collateral in form of initial margins. Higher levels of liquidity buffers and initial
margins wouldmake it less likely that condition (31) would be satisfied in practice, decreasing the
probability of portfolio compression having negative consequences.
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F IGURE 2 Illustration of possible compression network cycles [Color figure can be viewed at
wileyonlinelibrary.com]

Could one address possible negative consequences from portfolio compression more directly?
We have shown that for portfolio compression to be potentially harmful, we need to have at least
one node defaulting in the non-compressed network that takes part in compression (see condi-
tions (26) and (37)). A possible conclusion from this result would be to exclude firms with high
default risk from compression activities. While there is currently no regulatory framework to do
this, it might not even be desirable. This would severely restrict the possible reduction in gross
exposure that can be achieved, which would lead to other disadvantages such as operational risks
and so forth. We will show that allowing high risk firms to participate in portfolio compression
can sometimes even strongly reduce systemic risk.
So a more nuanced approached might be more promising. As discussed in Remark 2.2, institu-

tions participating in compression provide compression tolerances tomanage their risk associated
with portfolio compression. Currently, these tolerances are specified on the individual contract
level as in Equation (3), and hence do not account for network spillover effects. To mitigate sys-
temic risk, it would be beneficial to take a network perspective when deciding on compression
tolerances and setting constraints in portfolio compression exercises. This is something that usu-
ally cannot be done by the individual institution requesting portfolio compression.
We will show in our case study that portfolio compression can be harmful for nodes not taking

part in portfolio compression. These nodes would never provide any information or compression
tolerances to the compression provider, which shows that there is a need for a financial regu-
lator to oversee such an exercise or to provide a suitable framework for it. This could involve,
for example, stress testing exercises, checking the validity of conditions like Equations (31) and
(38). Alternatively, one could add conditions of this nature to the portfolio compression optimiza-
tion problem.

4.6 Illustration of the theoretical results

We illustrate our theoretical results by considering a network that allows for different conservative
compressions. Figure 2 highlights the nine different cycles. The liabilities matrix 𝑋 is defined as

𝑋 =

⎛⎜⎜⎜⎜⎜⎝

0 1 1 1 0

1 0 1 0 0

1 1 0 0 0

0 0 0 0 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
. (39)
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TABLE 1 Results for 𝕍 = 𝕍EN. Comments: (sr) = strong reduction of systemic risk, (h) = harmful. No
comment means that there is no difference between compression and no compression in terms of defaults
(reduction of systemic risk). 𝜈 ∈ {1, 2, 3} represents three different liquidity buffers 𝑏 = 𝐴(𝜈): 𝐴(1) = (1, 0, 0, 0, 0)⊤,
𝐴(2) = (0, 0.25, 0.25, 0.5, 0)⊤, 𝐴(3) = (0.25, 0.25, 0.25, 0.25, 0)⊤

𝝂 Defaulting financial institutions when the following cycles are removed
None Red Blue r & b Green Yellow Pink g & y g & p y & p

1
2 1,2,3 1,3 (sr) 1,2 (sr) 1,4 (h) 1,3,4 (h) 1,2,3 1,2,4 (h) 1,3,4 (h) 1,4 (h) 1,2,4 (h)
3 1 1,3,4 (h) 1,2,4 (h) 1,4 (h) 1,3,4 (h) 1 1,2,4 (h) 1,3,4 (h) 1,4 (h) 1,2,4 (h)

TABLE 2 Results for 𝕍 = 𝕍zero;𝐽 with 𝑘 = 0 and 𝐽 = 0. Comments as in Table 1

𝝂 Defaulting financial institutions when the following cycles are removed
None Red Blue r & b Green Yellow Pink g & y g & p y & p

1
2 1,2,3,4 1,2,3,4 1,2,3,4 1,4 (sr) 1,2,3,4 1,2,3,4 1,2,3,4 1,3,4 (sr) 1,4 (sr) 1,2,4 (sr)
3 1,2,3,4 1,2,3,4 1,2,3,4 1,4 (sr) 1,2,3,4 1,2,3,4 1,2,3,4 1,3,4 (sr) 1,4 (sr) 1,2,4 (sr)

The only node that will never default is node 5 since it does not have any liabilities.Whether any
of the nodes 1, … , 4 default will depend on the liquidity buffer 𝑏, the actual payment obligations
arising from 𝑋 and the choice of compression network cycles. In the following, we will assume
that the corresponding payment obligations are given by 𝐿 = 𝑋 (i.e., 𝑉 = 1 in the definition of
𝑓𝑉). For this liabilities matrix, the total net positions are 𝐴̄(𝑋) − 𝐿̄(𝑋) = (−1, 0, 0, 0, 1)⊤. Hence,
any compressed network will have the same net positions. In particular, we see, that there are
nine different ways of how conservative compression could be applied to this particular liabilities
matrix. Formally, these compression network cycles are given by:

∙ Red cycle (red solid line in Figure 2(a)): nodes = {1, 2, 3}, edges = {(1, 2), (2, 3), (3, 1)};
∙ Blue cycle (blue dashed line in Figure 2(a)): nodes = {1, 2, 3}, edges = {(1, 3), (3, 2), (2, 1)};
∙ Green cycle (green dashed line in Figure 2(b)): nodes = {1, 2}, edges = {(1, 2), (2, 1)};
∙ Yellow cycle (yellow solid line in Figure 2(b)): nodes = {2, 3}, edges = {(2, 3), (3, 2)};
∙ Pink cycle (pink dotted line in Figure 2(b)): nodes = {1, 3}, edges = {(1, 3), (3, 1)}.

We can compress one or more of these cycles. We only consider compression with the maximal
capacity, which is𝜇 = 𝜇max = 1 for all cycles.We can see that node 1 has fewer internetwork assets
than liabilities. Hence, in the absence of any liquidity buffer for node 1, it will default.
We will now show that compression can have very different consequences depending on the

liquidity buffer and depending on the recovery rates. Hence, an optimal compression in the sense
of reducing the number of defaults will not just depend on the network structure but also on
quantities outside the network, for example, the liquidity buffer. We will highlight the effects of
the different structural conditions identified in the previous section.
We will assume that the liquidity buffer corresponds to the external assets in the compressed

and non-compressed network, that is, 𝑏 = 𝑏,𝜇,𝛾 = 𝐴(𝑒) (where 𝛾 = 0).
Tables 1 and 2 show which financial institutions default for different liquidity buffers 𝑏 (cor-

responding to the rows in the tables) and different choices of compression network cycles (cor-
responding to the different columns in the table). Furthermore, Table 1 reports the results for
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the Eisenberg and Noe (2001) contagion mechanism, that is, 𝕍 = 𝕍EN, whereas Table 2 reports
the results for the Rogers and Veraart (2013) contagion mechanism with 𝛼 = 𝛽 = 0, that is, zero
recovery rate in case of default (𝕍 = 𝕍zero;𝐽 with 𝑘 = 0 and 𝐽 = 0). Hence, these two tables allow
us to compare the effect of the third structural condition—the role of the recovery rate.
The first two structural conditions are concerned with nodes on the compression cycle. We

underline all nodes that are on a compression network cycle and default both with and without
compression, for example, 1,2,3 indicates that nodes 1 and 2 are on the compression cycle and
default with and without compression. Node 3 is either not on the compression network cycle or
does not default without compression.
All cells that correspond to compressed networks with no comment indicate that exactly the

same financial institutions default for the compressed network as for the uncompressed network.
Cells with the comment (sr) indicate that the corresponding compression mechanism strongly
reduces systemic risk. Cells with the comment (h) indicate situations under which compression
is harmful.
We consider three different vectors of liquidity buffers and assume that the total liquidity buffer

aggregated over all nodes remains the same, that is,
∑

𝑖∈
𝐴

(𝜈)
𝑖

= 1 for all 𝜈 ∈ {1, 2, 3}.
Only in the first row corresponding to 𝑏 = 𝐴(1) the liquidity buffer is distributed such that no

default occurs (for any choice of compression or no compression). In all other cases, node 1 will
always default. Since node 5 does not have any liabilities, it will never default. For nodes 2, 3, 4, it
depends on the distribution of the liquidity buffer, the recovery rates and the choice of compres-
sion whether they default or not. For nodes 1, 2, 3, there exist cycles that can be used to compress
their portfolios whereas for nodes 4, 5, no such cycles exist.
We observe the following consequences of compression in line with our theoretical results:

Reduction of systemic risk for zero recovery rates: Table 2 contains the results for 𝕍 =

𝕍zero;𝐽 with 𝑘 = 0 and 𝐽 = 0. In line with Proposition 4.12, we see a reduction in systemic risk
throughout and many examples of a strong reduction in systemic risk indicated by (sr).
Reduction of systemic risk without defaults on compression network cycle in non-
compressed financial system: consistent with Proposition 4.8, for 𝕍 = 𝕍EN, 𝑏 = 𝐴(3) com-
pressing the yellow cycle (consisting of nodes 2 and 3, which both do not default) makes no
difference to the set of defaults and hence reduces systemic risk.
Compression can be harmful for nodes outside the compression network cycle: let 𝕍 =

𝕍EN and 𝐴(𝑒) = 𝐴(2). Then, nodes 1,2,3 default without compression. When both the red and
the blue cycles are compressed, nodes 1 and 4 default. This observation and the example is very
similar to the example considered in Schuldenzucker et al. (2018).
Compression can be harmful for nodes on the compression network cycle: when 𝕍 =

𝕍EN, 𝐴(𝑒) = 𝐴(3), only node 1 defaults without compression, but node 3 on the compression
network cycle defaults if the red cycle is compressed and node 4 outside the cycle defaults too.
Different choices of compression network cycles can lead to different outcomes: let
𝕍 = 𝕍EN and 𝐴(𝑒) = 𝐴(2). Then some compression cycles strongly reduce systemic risk (e.g.,
compressing only the blue or only the red cycle) whereas other compression cycles are harmful
(e.g., compressing both the red and the blue cycle or compressing the green cycle) or make no
difference in terms of defaults (e.g., compressing the yellow cycle).
Different distribution of liquidity buffer can lead to different outcomes: let𝕍 = 𝕍EN and
consider compressing the red cycle. For some liquidity buffers (e.g., 𝜈 = 2), we observe a strong
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reduction of systemic risk whereas for others (e.g., 𝜈 = 3) this compression is harmful. There
are other cases (e.g., 𝜈 = 1) where compression makes no difference in terms of defaults.
Consequences of compression depends on recovery rates: let 𝑏 = 𝐴(2). By comparing
Tables 1 and 2, we find that compressing both the blue and the red cycle is harmful under pos-
itive recovery rates, but strongly reduces systemic risk under zero recovery rates. Furthermore
compressing only the red or only the blue cycle strongly reduces systemic risk under positive
recovery rates (where as it makes no difference under zero recovery rates).
Strong reduction of systemic risk: Let𝕍 = 𝕍EN and 𝑏 = 𝐴(2). Compressing only the red cycle
strongly reduces systemic risk since node 2 no longer defaults.

In the following, we illustrate the effects of different valuation functions in more detail.

Example 4.15. We set 𝑏 = 𝐴(2) and compress sequentially first the red cycle referred to as (1) and
then the blue cycle referred to as(2).We assume that 𝛾 = 0, that is, compression does not increase
the liquidity buffer. We consider three different valuation functions 𝕍EN, 𝕍RV, and 𝕍InitialMargin.
First, let 𝕍 = 𝕍EN, that is, we consider the Eisenberg and Noe (2001) model. Table 1 shows that

(𝐿, 𝑏; 𝕍EN) = {1, 2, 3}. Compressing the red cycle yields(𝐿(1)
, 𝑏; 𝕍EN) = {1, 3}, hence, a strong

reduction in systemic risk. The repayment proportions for 𝑖 ∈ nodes satisfy

𝕍

(
𝐸∗
1
+ 𝐿̄1

𝐿̄1

)
= 0.5 = 𝕍

⎛⎜⎜⎝
𝐸(1)⋆
1

+ 𝐿̄(1)

1

𝐿̄(1)

1

⎞⎟⎟⎠, (40)

𝕍

(
𝐸∗
2
+ 𝐿̄2

𝐿̄2

)
= 0.75 < 1 = 𝕍

⎛⎜⎜⎝
𝐸(1)⋆
2

+ 𝐿̄(1)

2

𝐿̄(1)

2

⎞⎟⎟⎠, (41)

𝕍

(
𝐸∗
3
+ 𝐿̄3

𝐿̄3

)
= 0.75 = 𝕍

⎛⎜⎜⎝
𝐸(1)⋆
3

+ 𝐿̄(1)

3

𝐿̄(1)

3

⎞⎟⎟⎠. (42)

Hence, from Proposition 4.9, we know that this compression reduces systemic risk and here it
even strongly reduces systemic risk. Even though nodes 1 and 3 default both in the compressed
and the non-compressed network they repay the same relative proportion of their debt in both
situations (0.5 and 0.75, respectively) and that is why compression cannot be harmful. Without
compression, node 1 has a shortfall of (1 − 𝕍(

𝐸∗
1
+𝐿̄1

𝐿̄1

))𝐿̄1 = 1.5 and losses of 1.5/3= 0.5 hit the three
creditors of node 1 (nodes 2, 3, 4). With compression node 1 has a shortfall of 1 and losses of 1/2
hit its two creditors (nodes 3 and 4), that is, even though the repayment proportions change (see
Proposition 4.11), the absolute losses transmitted to nodes 3 and 4 remain the same in this example.
Suppose that after compressing the red cycle, we compress the blue cycle. Then,
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(𝐿(1),(2)
, 𝑏; 𝕍EN) = {1, 4}, hence node 4 is a new default, which is not on any of the compres-

sion cycles. Furthermore,

𝕍
⎛⎜⎜⎝
𝐸(1)(2)⋆
1

+ 𝐿̄(1)(2)

1

𝐿̄(1)(2)

1

⎞⎟⎟⎠ = 0 < 0.5 = 𝕍
⎛⎜⎜⎝
𝐸(1)⋆
1

+ 𝐿̄(1)

1

𝐿̄(1)

1

⎞⎟⎟⎠, (43)

𝕍
⎛⎜⎜⎝
𝐸(1)(2)⋆
4

+ 𝐿̄(1)(2)

4

𝐿̄(1)(2)

4

⎞⎟⎟⎠ = 0.5 < 1 = 𝕍
⎛⎜⎜⎝
𝐸(1)⋆
4

+ 𝐿̄(1)

4

𝐿̄(1)

4

⎞⎟⎟⎠. (44)

Hence, node 1 always defaults. It repays a strictly smaller proportion of its debt when (1) and (2)

(the red and blue cycle) are compressed than when only (1) (the red cycle) is compressed. Since
𝕍 ≠ 𝕍zero;𝐽 all three necessary conditions for compression to be harmful are satisfied. Node 1 pays
0 to node 4 if both the red and the blue cycles are compressed since it has no longer any income.
Node 4 cannot cope with this and defaults. When only the red cycle was compressed node, 1 was
still able to pay 0.5 to node 4, which was just enough for it not to default.
Second, let 𝕍 = 𝕍RV with 𝛽 = 0.99, which is the Rogers and Veraart (2013) model. We find

that (𝐿, 𝑏; 𝕍RV) = {1, 2, 3, 4}. Even the small bankruptcy costs modeled by 𝛽 = 0.99 < 1 cause
the total collapse of the non-compressed financial system. Compressing the red cycle yields
(𝐿(1)

, 𝑏; 𝕍RV) = {1, 2, 3, 4}, that is, the same default set.
If both the blue and the red cycles are compressed, then (𝐿(1),(2)

, 𝑏; 𝕍RV) = {1, 4}. Nodes 2
and 3 can no longer default because they do not have any liabilities anymore. Hence, compressing
these two cycles strongly reduces systemic risk.
Third, we repeat the analysis with𝕍 = 𝕍InitialMargin where the parameter for the initial margins

is 𝐽 = 0.1. We consider 𝛽 = 1.0 (no bankruptcy costs) and 𝛽 = 0.99 (small bankruptcy costs). For
both choices of 𝛽, the default sets coincide. They are given by

(𝐿, 𝑏; 𝕍InitialMargin) = {1}, (45)

(𝐿(1)
, 𝑏; 𝕍InitialMargin) = {1, 3}, (46)

(𝐿(1),(2)
, 𝑏; 𝕍InitialMargin) = {1, 4}. (47)

In line with the ordering results in Veraart (2020), we see that adding initial margins to the Eisen-
berg and Noe (2001) and the Rogers and Veraart (2013) models yields a better outcome for the
system. But even when initial margins are available, that is, 𝐽 > 0, we find that compressing first
the red cycle is harmful since node 3 is a new default and then compressing the blue cycle is also
harmful since node 4 is a new default. By increasing 𝐽, we could avoid all contagious defaults, but
node 1 remains in default since it is a fundamental default.
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Remark 4.16 (An optimization perspective on the numerical example). The optimal solution to
the conservative compression optimization problem (Definition 2.3) for the given example corre-
sponds to the network inwhich both the red and the blue cycles are removed. There exists liquidity
buffers, for example, 𝑏 = 𝐴(2) or 𝑏 = 𝐴(3) for which this compression is harmful, since node 4 is
a new default under compression in the optimally compressed network.
If we consider the non-conservative compression optimization in this example, that is, the opti-

mization problem that has the same objective as the conservative compression optimization prob-
lem and also constraint (5) but does not have constraint (6), then the optimal solution is a network
that consists of exactly one edge, the edge from node 1 to node 5, with weight 1. Node 1 remains
in default (for all choices of 𝑏 considered in the example), hence it pays less than 1 to node 5.
But node 5 cannot default since its payment obligations are zero, so technically this compression
is not harmful. As discussed in D’Errico and Roukny (2021), the non-conservative compression
optimization problem is solved by a bipartite graph, that is, the nodes can be split into two sets
where nodes in one set have only outgoing edges and nodes in the other set have only incoming
edges. (It is possible to have nodes that do not have any in- or outgoing edges in which case they
can be assigned to any of the two groups.) This is exactly what we get here. Hence, losses can
spread from node 1 to node 5, but node 5 cannot transmit them further.

5 CONCLUSION

When does portfolio compression reduce systemic risk? We have identified three structural con-
ditions that imply a reduction in systemic risk: no defaults on a compression network cycle in the
non-compressed financial system, all nodes on the compression network cycle repay a larger pro-
portion of their total payment obligations in the compressed system than in the non-compressed
system and zero recovery rates.
Even though there are many situations under which portfolio compression reduces systemic

risk, we have shown that there are circumstances under which compression can be harmful. Ulti-
mately the danger from portfolio compression comes from firms at risk of default engaging in
portfolio compression. If they then default, losses are spread in a network that now has a differ-
ent structure compared to the original non-compressed network. In particular, since compression
has implicitly changed the seniority structure of the debt, all those debts that were compressed
prior to payment obligations becoming due have effectively been paid in full, which is obviously
not the case for still outstanding debt. For nodes that do not default this change in seniority struc-
ture does not matter, since they continue to be able to satisfy all their payment obligations. For
nodes that do default (and who have not posted sufficient initial margins to cover the payment
shortfall) compression can imply that they spread losses now differently and some counterparties
might be hit by larger losses in the compressed network.
We have shown that portfolio compression cannot cause any fundamental defaults. Portfo-

lio compression might even potentially avoid some fundamental defaults. For compression to be
harmful, we need at least one firm that defaults in the compressed network that would not have
defaulted in the non-compressed network. Hence, such a default would have to be a contagious
default. These findings imply that any mechanisms that reduce the likelihood of contagion in
financial markets also reduce the likelihood of portfolio compression having a negative outcome.
Requiring collateral (initial margins) is an obvious mechanism, which reduces the probability of
contagion. Nevertheless, a residual risk remains for all not fully collateralised trades and in such
a situation portfolio compression can change the outcome for the system. Another mechanism
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would be to require larger liquidity buffers as they fundamentally determine the likelihood of
contagion, see Glasserman and Young (2015) and Paddrik et al. (2020).
Our analysis shows that classical compression tolerances that are meant to provide a safety net

for compression to not increase risk, cannot fully achieve this as long as they do not account for
network effects. The paths that can transmit losses from a compression network cycle to other
nodes in the system are not directly observable for the participants making it difficult for them to
assess potential risks from portfolio compression themselves and including them in ameaningful
way as part of their compression tolerances.
In general, we find that if only firmswith low default risk engage in compression activities, then

this does not give cause for concern.Whether one should restrict portfolio compression services to
low-risk firms is a different question. Any restrictions on who can participate would significantly
limit the reduction in gross exposure that can be achieved and the associated benefits that come
with it, such as operational benefits. In practice, portfolio compression is done for a wide range
of reasons, and we have only considered it from a systemic risk point of view. Even then, we have
found situations under which allowing high risk firms to compress their portfolio can sometimes
strongly reduce systemic risk.
Ultimately, one would need to conduct a cost–benefit analysis of portfolio compression to

decidewhether onemightwant to use such a technology on a large scale or not. Using our analysis
within such a cost–benefit analysis would be an interesting avenue for future research.
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ENDNOTES
1 Note that in the context of CDS exposures, we exclude the situation in which nodes write CDSs on each other
as in Schuldenzucker et al. (2018). We refer to Schuldenzucker et al. (2020) for more details on clearing in a
network with CDSs if this situation is not excluded.

2 Such a setting would correspond to the classical setting of Eisenberg and Noe (2001).
3 When modeling initial and variation margins, we should keep in mind that for the purpose of this analyses, we
consider fungible derivative positions,meaning portfolio compression can actually be done since these contracts
are completely comparable. Hence, assuming that margin requirements are proportional to exposure size is
reasonable. Initial margins are often set as 99% loss quantile for a 10-day period and hence represent a value-at-
risk, see, for example, Cont (2018); BCBS IOSCO (2020), which is known to be positive homogeneous, that is,
scales with position size. (This would also apply if other riskmeasures were used such as the expected shortfall.)

4 The payment system characterizes all payments due and hence serves as the basis for analyzing systemic risk. It
is related to the original liabilities 𝑋 via the payment function 𝑓𝑉 . We assumed that 𝐿𝑖𝑗 = 𝑓𝑉(𝑋) = 𝑉𝑋𝑖𝑗 for all
𝑖, 𝑗 ∈  and 𝑉 ∈ [0,∞). The analysis on systemic risk does not rely on this proportionality assumption, since
it is conducted on the payment system directly. Therefore, one could consider more general functions 𝑓𝑉 as
long as they are meaningful from an economic perspective. Since we assume that the liabilities 𝑋 are fungible,
the proportionality assumption makes sense and is consistent with approaches used to derive initial margins as
outlined before.

5 In Veraart (2020), it was shown how the corresponding clearing vector considered in Eisenberg and Noe
(2001) and Rogers and Veraart (2013) can be derived from the re-evaluated equity and how the re-evaluated
equity can be derived from the clearing vector. In particular, if 𝐸∗ is the greatest re-evaluated equity, then
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𝐿∗
𝑖
= 𝕍(

𝐸∗
𝑖
+𝐿̄𝑖

𝐿̄𝑖

)𝐿̄𝑖 ∀𝑖 ∈  and 𝐿∗
𝑖
= 0 for all 𝑖 ∈  ⧵ denotes the corresponding clearing payments, that is,

these are the total payments that node 𝑖 makes, which ideally would be its total nominal obligations 𝐿̄𝑖 but it
could be less than that.

6 When initial margins are used, it is possible that a defaulting node satisfies its payment obligations in full by
covering a potential shortfall with the initial margins, see also Ghamami et al. (2021). Therefore, one cannot
infer who defaults from the payments made. In the classical Eisenberg and Noe (2001) framework, this is indeed
possible: there, a node defaults if and only if it does not pay its liabilities in full. By analyzing the re-evaluated
equity, we can distinguish between defaulting and non-defaulting nodes and the corresponding payments follow
from there.

7 Veraart (2020) distinguishes between default and distress, but we do not make this distinction here.
8 A risk orbit for an individual node has been considered in Eisenberg and Noe (2001).
9 The fundamental defaults correspond to the so-called “first-order” defaults as defined by the fictitious default
algorithm of Eisenberg and Noe (2001).

10 When “regulatory capital charges are aligned with the counterparty exposure risk, the capital charge should not
change. However, if cruder approaches are being used that do not accurately capture offsetting risks, such as the
current exposuremethod (CEM) or leverage ratio approach, compression will tend to reduce the capital charge”
(O’ Kane, 2017).
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APPENDIX A: COMPRESSION AND CAPITAL REQUIREMENTS
RemarkA.1 (Compression and capital requirements). We show that portfolio compression can be
beneficial for complying with the minimum leverage ratio under Basel III10 and this effect can be
captured within or model. Under Basel III, the leverage ratio is defined as (tier 1 capital)/(balance
sheet and off-balance sheet exposures) and is required to be larger than 3% in Europe (slightly
higher in the United States). Since the leverage ratio uses gross exposures, compression reduces
the denominator of the leverage ratio and hence increases it.
We assume for now that 𝐿 = 𝑋 and 𝑏 = 𝐴(𝑒). Let (𝐿, 𝑏; 𝕍) be the corresponding payment system

and let 𝐸∗ be the greatest re-evaluated equity that corresponds to using the valuation function 𝕍.
By using 𝐸∗ as approximation of the tier 1 capital and 𝐸∗ + 𝐿̄ as approximation of the exposures,
and requiring that the corresponding leverage ratio is larger than 3%, we obtain

𝐸∗
𝑖

𝐸∗
𝑖
+𝐿̄𝑖

≥ 0.03 ⇔

𝐸∗
𝑖
≥

0.03

0.97
𝐿̄𝑖 ≈ 0.031𝐿̄𝑖 . Any breach of this inequality could cause default. Within our model, recall

that 𝑖 ∈ (𝐿, 𝑏; 𝕍) ⇔ 𝐸∗
𝑖
< 𝑘𝐿̄𝑖 , and therefore, we can set 𝑘 =

3

97
as threshold in Equation (11)

to define such a default event demonstrating the benefit of allowing for 𝑘 > 0. Note, that in the
compressed network, the corresponding default thresholdwould satisfy 𝑘𝐿̄,𝜇

𝑖
≤ 𝑘𝐿̄𝑖 for all 𝑖 ∈ 

and would therefore be lower (and hence better) than in the non-compressed network. In models

https://doi.org/10.1287/mnsc.2020.3938
https://doi.org/10.1287/mnsc.2020.3938
https://ssrn.com/abstract=3135960
https://www.trioptima.com/media/filer_public/31/f1/31f14682-5137-4ef1-80af-e8bb09835dce/trireduce_general_factsheet.pdf
https://www.trioptima.com/media/filer_public/31/f1/31f14682-5137-4ef1-80af-e8bb09835dce/trireduce_general_factsheet.pdf
https://doi.org/10.1111/mafi.12346
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with 𝑘 = 0, compression does not affect the default threshold and one can, therefore, not capture
the advantage of portfolio compression for capital requirements.

APPENDIX B: PROOFS

B.1 Additional notation
Let  = (nodes,edges, 𝜇

max) be a compression network cycle with maximal capacity 𝜇max . We
will use the notation pred(𝑖) for the node in nodes that is the predecessor of 𝑖 on the cycle nodes,
that is, pred(𝑖) is the node that satisfies (pred(𝑖), 𝑖) ∈ edges. Similarly, suc(𝑖) is the successor of 𝑖
on the cycle, that is, it is the node in nodes that satisfies (𝑖, suc(𝑖)) ∈ edges.

B.2 Proofs of the results in Section 2
The following result formalizes the claim made that conservative compression keeps net expo-
sures fixed while reducing gross exposures and is, therefore, in line with the corresponding defi-
nition in D’Errico and Roukny (2021).
Lemma B.1. Let 𝑋 be a liabilities matrix for which there exists a conservative compression network
cycle  with maximal capacity 𝜇max > 0. Let 0 < 𝜇 ≤ 𝜇max and let 𝑋,𝜇 be the 𝜇-compressed liabil-
ities matrix using cycle . Then,

1. 𝑋,𝜇 is a liabilities matrix, that is, 𝑋,𝜇

𝑖𝑗
≥ 0 ∀𝑖, 𝑗 ∈  and 𝑋

,𝜇

𝑖𝑖
= 0 ∀𝑖 ∈  ;

2. 𝑋
,𝜇

𝑖𝑗
≤ 𝑋𝑖𝑗 for all 𝑖, 𝑗 ∈  ;

3.

𝐿̄
(𝑋),,𝜇

𝑖
=

{
𝐿̄
(𝑋)
𝑖

, if 𝑖 ∉ nodes,

𝐿̄
(𝑋)
𝑖

− 𝜇, if 𝑖 ∈ nodes;
(B.1)

4. the net positions in the compressed network 𝑋,𝜇 coincide with the net positions in the original
network 𝑋, that is, 𝜂,𝜇

𝑖
=
∑

𝑗∈
𝑋
,𝜇

ji − 𝐿̄
(𝑋),,𝜇

𝑖
=
∑

𝑗∈
𝑋ji − 𝐿̄

(𝑋)
𝑖

= 𝜂𝑖 ∀𝑖 ∈  ;
5. the gross positions in the compressed network 𝑋,𝜇 are less than or equal to the gross positions in

the original network 𝑋, that is,
∑

𝑗∈
𝑋
,𝜇

ji + 𝐿̄
(𝑋),,𝜇

𝑖
≤
∑

𝑗∈
𝑋ji + 𝐿̄

(𝑋)
𝑖

∀𝑖 ∈  ;

6. compression strictly reduces gross positions of all 𝑖 ∈ nodes, that is,
∑

𝑗∈
𝑋
,𝜇

𝑗𝑖
+ 𝐿̄

(𝑋),,𝜇

𝑖
<∑

𝑗∈
𝑋𝑗𝑖 + 𝐿̄

(𝑋)
𝑖
.

Proof of Lemma B.1.

1. By definition if (𝑖, 𝑗) ∉ edges then 𝑋
,𝜇

𝑖𝑗
= 𝑋𝑖𝑗 ≥ 0 and if (𝑖, 𝑗) ∈ edges then 𝑋

,𝜇

𝑖𝑗
= 𝑋𝑖𝑗 − 𝜇 ≥

𝑋𝑖𝑗 − min(𝜈,𝜇)∈edges 𝑋𝜈𝜇 ≥ 0. Since 𝑋𝑖𝑖 = 0 for all 𝑖 ∈  also 𝑋
,𝜇

𝑖𝑖
= 0 for all 𝑖 ∈  .

2. This is obvious from the definition of 𝑋,𝜇.
3. It follows immediately from the definition that if 𝑖 ∉ nodes, then 𝐿̄

(𝑋),,𝜇

𝑖
= 𝐿̄

(𝑋)
𝑖
. Now let 𝑖 ∈

nodes. Then,

𝐿̄
(𝑋),,𝜇

𝑖
=

∑
𝑗∈

𝑋
,𝜇

𝑖𝑗
= 𝑋

,𝜇

𝑖suc(𝑖)
⏟⏟⏟

=𝑋𝑖,suc(𝑖)−𝜇

+
∑

𝑗∈⧵{suc(𝑖)}
𝑋
,𝜇

𝑖𝑗
⏟⏟⏟
=𝑋𝑖𝑗

=
∑
𝑗∈

𝑋𝑖𝑗 − 𝜇 = 𝐿̄
(𝑋)
𝑖

− 𝜇. (B.2)
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4. It is obvious that for 𝑖 ∉ nodes that the net position for the non-compressed network and the
compressed network coincides. For 𝑖 ∈ nodes, this also holds since

𝜂
,𝜇

𝑖
=

∑
𝑗∈

𝑋
,𝜇

𝑗𝑖
− 𝐿̄

(𝑋),,𝜇

𝑖
= 𝑋

,𝜇

pred(𝑖)𝑖
⏟ ⏟ ⏟
𝑋pred(𝑖)𝑖−𝜇

+
∑

𝑗∈⧵{pred(𝑖)}
𝑋
,𝜇

𝑗𝑖
⏟⏟⏟
=𝑋𝑗𝑖

− 𝐿̄
(𝑋),,𝜇

𝑖
⏟ ⏟ ⏟

𝐿̄
(𝑋)
𝑖

−𝜇

=
∑
𝑗∈

𝑋𝑗𝑖 − 𝐿̄
(𝑋)
𝑖

= 𝜂𝑖.

(B.3)

5. From parts 2. and 3., we immediately get that for all 𝑖 ∈ ∑
𝑗∈

𝑋
,𝜇

𝑗𝑖
⏟⏟⏟
≤𝑋𝑗𝑖

+ 𝐿̄
(𝑋),,𝜇

𝑖
⏟ ⏟ ⏟

≤𝐿̄
(𝑋)
𝑖

≤
∑
𝑗∈

𝑋𝑗𝑖 + 𝐿̄
(𝑋)
𝑖

. (B.4)

6. Let 𝑖 ∈ nodes. Since 𝜇 > 0, we get∑
𝑗∈

𝑋
,𝜇

𝑗𝑖
+ 𝐿̄

(𝑋),,𝜇

𝑖
⏟ ⏟ ⏟

=𝐿̄
(𝑋)
𝑖

−𝜇

= 𝑋
,𝜇

pred(𝑖)𝑖
⏟ ⏟ ⏟

=𝑋pred(𝑖)𝑖−𝜇

+
∑

𝑗∈⧵{pred(𝑖)}
𝑋
,𝜇

𝑗𝑖
⏟⏟⏟
=𝑋𝑗𝑖

+𝐿̄
(𝑋)
𝑖

− 𝜇 =
∑
𝑗∈

𝑋𝑗𝑖 + 𝐿̄
(𝑋)
𝑖

− 2𝜇

<
∑
𝑗∈

𝑋𝑗𝑖 + 𝐿̄
(𝑋)
𝑖

. (B.5)

□

B.3 Proofs of the results in Section 4
The following lemma will be used in several proofs below.
Lemma B.2. Let 𝑋 be a liabilities matrix for which there exists a conservative compression network
cycle of 𝑋 with maximal capacity 𝜇max . Let (𝐿, 𝑏; 𝕍) be the corresponding payment system, let 0 <

𝜇 ≤ 𝜇max and let 𝐿,𝜇 be the 𝜇-compressed liabilities matrix. Set

 = {𝑖 ∈  ∣ 𝐿̄𝑖 > 0},  = {𝑖 ∈  ∣ 𝐿̄
𝑖
> 0}. (B.6)

Let 𝑗 ∈  ⧵ . Then the following holds. First, 𝑗 ∈ nodes and 𝐿̄𝑗 = 𝜇𝑉. Second,

𝐿𝑗𝑖 =

{
𝜇𝑉, if 𝑖 = suc(𝑗),
0, otherwise. (B.7)

Proof of Lemma B.2. First, let 𝑗 ∈  ⧵ . Then by the definition of the sets, it holds that 𝐿̄𝑗 > 0

and 𝐿̄
,𝜇

𝑗
= 0. Hence 𝐿̄𝑗 ≠ 𝐿̄

,𝜇

𝑗
, which implies that 𝑗 ∈ nodes. Since then 𝐿̄

,𝜇

𝑗
= 𝐿̄𝑗 − 𝜇𝑉 = 0, we

immediately get that 𝐿̄𝑗 = 𝜇𝑉.
Second, from part 1. of this lemma, we know that 𝑗 ∈ nodes and 𝐿̄𝑗 = 𝜇𝑉. For fixed 𝑗 ∈  ⧵

 , we have by definition

𝐿
,𝜇

𝑗𝑖
=

{
𝐿𝑗𝑖 − 𝜇𝑉, if 𝑖 = suc(𝑗),

𝐿𝑗𝑖, if 𝑖 ∈  ⧵ {suc(𝑗)}. (B.8)
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Since 𝐿,𝜇

𝑗𝑖
≥ 0 for all 𝑖 ∈  , it holds that in particular 𝐿𝑗suc(𝑗) − 𝜇𝑉 ≥ 0, and hence 𝐿𝑗suc(𝑗) ≥ 𝜇𝑉.

Since,

0 = 𝐿̄
,𝜇

𝑗
=

∑
𝑖∈

𝐿𝑗𝑖 − 𝜇𝑉 = 𝐿𝑗suc(𝑗)
⏟ ⏟ ⏟
≥𝜇𝑉

+
∑

𝑖∈⧵{suc(𝑗)}
𝐿𝑗𝑖 − 𝜇𝑉 ≥ 𝜇𝑉 +

∑
𝑖∈⧵{suc(𝑗)}

𝐿𝑗𝑖 − 𝜇𝑉

=
∑

𝑖∈⧵{suc(𝑗)}
𝐿𝑗𝑖, (B.9)

we see that since 𝐿𝑗𝑖 ≥ 0 for all 𝑖 ∈  ⧵ {suc(𝑗)}, it holds that 𝐿𝑗𝑖 = 0 for all 𝑖 ∈  ⧵ {suc(𝑗)}.
Furthermore, since 𝐿̄𝑗 = 𝜇𝑉, we must have that 𝐿𝑗suc(𝑗) = 𝜇𝑉. □

Proof of Proposition 4.2. Recall from the definition of 𝐸∗ that

𝐸∗
𝑖
= Φ𝑖(𝐸

∗) = 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖, (B.10)

for all 𝑖 ∈  . We denote by Φ,𝜇,𝛾 the function that corresponds to the compressed network, that
is, 𝐸,𝜇;𝛾;∗ is the greatest fixed point of Φ,𝜇,𝛾, that is,

𝐸
,𝜇;𝛾;∗

𝑖
= Φ

,𝜇,𝛾

𝑖
(𝐸,𝜇;𝛾;∗) = 𝑏

,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
(B.11)

for all 𝑖 ∈  . In the following, we show that 𝐸∗
𝑖
= 𝐸

,𝜇;𝛾;∗

𝑖
for all 𝑖 ∈  ⧵ .

Let 𝑖 ∈  ⧵ . From (B.12),

𝐸∗
𝑖
= Φ𝑖(𝐸

∗) = 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
+

∑
𝑗∈∩

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

(⋆)
= 0

−𝐿̄𝑖

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖 =∶ 𝑓𝑖(𝐸

∗
⧵

),

(B.12)

where (⋆) holds because by assumption 𝑖 ∈  ⧵  hence there cannot be a 𝑗 ∈  ∩ with 𝐿𝑗𝑖 >

0 otherwise this would imply that 𝑖 ∈ .
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Similarly, from Equation (B.13),

𝐸
,𝜇;𝛾;∗

𝑖
= Φ

,𝜇,𝛾

𝑖
(𝐸,𝜇;𝛾;∗) = 𝑏

,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖

= 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ +
∑

𝑗∈∩

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

(⋆)
= 0

−𝐿̄𝑖

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖

(⋆⋆)
= 𝑏𝑖 +

∑
𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 = 𝑓𝑖(𝐸
,𝜇;𝛾;∗

⧵
),

(B.13)

where the justification for (⋆) is as before and the justification for (⋆⋆) is that ( ⧵) ⧵  = ∅

by Lemma B.2.
Let 𝑖 ∈ . From Equation (B.12) and using ideas from Equation (B.14),

𝐸∗
𝑖
= Φ𝑖(𝐸

∗) = 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖 (B.14)

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=𝑓𝑖(𝐸

∗
⧵

)

+
∑

𝑗∈∩

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝑔𝑖(𝐸
∗
∩

)

= 𝑓𝑖(𝐸
∗
⧵

) + 𝑔𝑖(𝐸
∗
∩

). (B.15)

Similarly, from Equation (B.13) and using ideas from Equation (B.15),

𝐸
,𝜇;𝛾;∗

𝑖
= Φ

,𝜇,𝛾

𝑖
(𝐸,𝜇;𝛾;∗) = 𝑏

,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
(B.16)

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖+ (B.17)
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+
∑

𝑗∈∩

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ + 𝜇(𝛾𝐽 + 𝑉)𝕀{𝑖∈nodes}

⏟ ⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=∶𝑔

𝑖
(𝐸

,𝜇;𝛾;∗

∩
)

(B.18)

= 𝑏𝑖 +
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝑔
𝑖
(𝐸

,𝜇;𝛾;∗

∩
) = 𝑓𝑖(𝐸

,𝜇;𝛾;∗

⧵
) + 𝑔

𝑖
(𝐸

,𝜇;𝛾;∗

∩
). (B.19)

The function 𝑓⧵ ∶ ⧵ → ⧵ is nondecreasing and its greatest fixed point exists by
Tarksi’s fixed point theorem. In particular, it coincides with 𝐸∗

⧵
and 𝐸

,𝜇;𝛾;∗

⧵
, since we have

seen that the fixed points 𝐸∗ and 𝐸,𝜇;𝛾;∗ can be decomposed into a component characterized by
𝑓 and a component characterized by 𝑔 or 𝑔 with nonoverlapping arguments. □

The following lemma is a reformulated version of Veraart (2020, Theorem 2.6) for the situation
with compression. We will use the sequences defined in there in several proofs about the main
results (i.e., in the proofs of Propositions 4.8, 4.9, 4.12).

Lemma B.3. Consider the market setting of Assumption 3.9. Define, the initial equity as in Defini-
tion 4.3, that is, for all 𝑖 ∈ 

𝐸
(0)
𝑖

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− 𝐿̄

𝑖
. (B.20)

We define recursively the (𝑁-dimensional) sequences

𝐸(𝑛) = Φ(𝐸(𝑛−1)), 𝐸(𝑛);𝛾 = Φ,𝜇,𝛾(𝐸(𝑛−1);𝛾), (B.21)

where 𝑛 ∈ ℕ. The functions Φ and Φ,𝜇,𝛾 are defined in Equations (12) and (14), respectively.
Then,

1. The sequences (𝐸(𝑛)) and (𝐸(𝑛);𝛾) are nonincreasing, that is, for all 𝑖 ∈  and for all 𝑛 ∈ ℕ0, it
holds that

𝐸
(𝑛)
𝑖

≥ 𝐸
(𝑛+1)
𝑖

, 𝐸
(𝑛);𝛾
𝑖

≥ 𝐸
(𝑛+1);𝛾
𝑖

. (B.22)

2. The sequences defined in Equation (B.23) converge to the corresponding greatest re-evaluated
equities, that is, for all 𝑖 ∈ 

lim
𝑛→∞

𝐸
(𝑛)
𝑖

= 𝐸∗
𝑖
, lim

𝑛→∞
𝐸
(𝑛);𝛾
𝑖

= 𝐸
;𝛾;∗
𝑖

. (B.23)
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Proof of Lemma B.3. First note that Φ and Φ,𝜇,𝛾 are nondecreasing, see Veraart (2020, Lemma
A.1). The statements follow directly from Veraart (2020, Theorem 2.6). □

Lemma B.4. Consider the market setting of Assumption 3.9. Let  be the fundamental defaults in
the non-compressed network and let  be the fundamental defaults in the compressed network (see
Definition 4.4). Then,  ⊆ (𝐿, 𝑏; 𝕍) and  ⊆ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍).

Proof of Lemma B.4. Recall, that  = {𝑖 ∈  ∣ 𝐸
(0)
𝑖

< 𝑘𝐿̄𝑖} and  = {𝑖 ∈  ∣ 𝐸(0);𝛾 < 𝑘𝐿̄
,𝜇

𝑖
}.

We consider the sequences (𝐸(𝑛)) and (𝐸(𝑛);𝛾) defined in Equation (B.23). Let 𝑖 ∈  . Then, by
Lemma B.3, ∀𝑚 ∈ ℕ: 𝑘𝐿̄𝑖 > 𝐸

(0)
𝑖

≥ 𝐸
(𝑚)
𝑖

≥ lim𝑛→∞ 𝐸
(𝑛)
𝑖

= 𝐸∗
𝑖
and hence 𝑖 ∈ (𝐿, 𝑏; 𝕍). Similarly,

let 𝑖 ∈  . Then, by Lemma B.3, ∀𝑚 ∈ ℕ: 𝑘𝐿̄,𝜇

𝑖
> 𝐸

(0);𝛾
𝑖

≥ 𝐸
(𝑚);𝛾
𝑖

≥ lim𝑛→∞ 𝐸
(𝑛);𝛾
𝑖

= 𝐸
,𝜇;𝛾;∗

𝑖
and hence 𝑖 ∈ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍). □

Proof of Lemma 4.5. Recall that 𝑏,𝜇,0
𝑖

= 𝑏𝑖 for all 𝑖 ∈  and from the definition of 𝑏,𝜇,𝛾, it fol-
lows immediately that 𝑏,𝜇,0

𝑖
≤ 𝑏

,𝜇,𝛾

𝑖
for all 𝑖 ∈  and for all 𝛾 ∈ [0, 1]. If 𝑖 ∉ nodes, then one

immediately sees that 𝐸(0)
𝑖

= 𝐸
(0);0
𝑖

≤ 𝐸
(0);𝛾
𝑖

. If 𝑖 ∈ nodes, then

𝐸
(0);0
𝑖

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− 𝐿̄

,𝜇

𝑖
= 𝑏

,𝜇,0

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− (𝐿̄𝑖 − 𝜇𝑉) (B.24)

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈⧵{pred(𝑖)}

𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
=𝐿𝑗𝑖

+ 𝐿
,𝜇

pred(𝑖)𝑖
⏟ ⏟ ⏟

=𝐿pred(𝑖)𝑖−𝜇𝑉

−𝐿̄𝑖 + 𝜇𝑉 (B.25)

= 𝑏
,𝜇,0

𝑖
⏟⏟⏟
=𝑏𝑖

+
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 = 𝐸
(0)
𝑖

. (B.26)

Now let 𝛾 ∈ [0, 1], then

𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− 𝐿̄

,𝜇

𝑖
≥ 𝑏

,𝜇,0

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− 𝐿̄

,𝜇

𝑖
= 𝐸

(0);0
𝑖

. (B.27)

□

Proof of Proposition 4.6. To prove the first statement, let 𝑖 ∈  ⧵ nodes. Then,

𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
⏟⏟⏟
=𝑏𝑖

+
∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
=𝐿𝑖𝑗

− 𝐿̄
,𝜇

𝑖
⏟⏟⏟
=𝐿̄𝑖

< 𝑘 𝐿̄
,𝜇

𝑖
⏟⏟⏟
=𝐿̄𝑖

⟺ 𝐸
(0)
𝑖

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 < 𝑘𝐿̄𝑖, (B.28)



38 VERAART

and hence 𝑖 ∈  . Let 𝑖 ∈  ∩ nodes. Then,

𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
⏟⏟⏟
=𝑏𝑖+𝛾𝜇𝐽

+
∑
𝑗∈

𝐿
,𝜇

𝑗𝑖

⏟⎴⏟⎴⏟
=
∑

𝑗∈ 𝐿𝑗𝑖−𝜇𝑉

− 𝐿̄
,𝜇

𝑖
⏟⏟⏟

=𝐿̄𝑖−𝜇𝑉

< 𝑘 𝐿̄
,𝜇

𝑖
⏟⏟⏟

=𝐿̄𝑖−𝜇𝑉

(B.29)

⟺𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 < 𝑘𝐿̄𝑖 −𝑘𝜇𝑉 − 𝛾𝜇𝐽
⏟⎴⎴⎴⏟⎴⎴⎴⏟
=−𝜇(𝑘𝑉+𝛾𝐽)

(B.30)

⟺𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 < 𝑘𝐿̄𝑖 −𝜇(𝑘𝑉 + 𝛾𝐽)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

≤0

≤ 𝑘𝐿̄𝑖, (B.31)

and hence 𝑖 ∈  .
To prove the second statement, let 𝑖 ∈  ⧵  . From the arguments used in part 1., it is clear

that 𝑖 ∈ nodes. Furthermore, since 𝑖 ∉ 

𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
⏟⏟⏟
=𝑏𝑖+𝛾𝜇𝐽

+
∑
𝑗∈

𝐿
,𝜇

𝑗𝑖

⏟⎴⏟⎴⏟
=
∑

𝑗∈ 𝐿𝑗𝑖−𝜇𝑉

− 𝐿̄
,𝜇

𝑖
⏟⏟⏟

=𝐿̄𝑖−𝜇𝑉

≥ 𝑘 𝐿̄
,𝜇

𝑖
⏟⏟⏟

=𝐿̄𝑖−𝜇𝑉

(B.32)

⟺𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 ≥ 𝑘𝐿̄𝑖 −𝑘𝜇𝑉 − 𝛾𝜇𝐽
⏟⎴⎴⎴⏟⎴⎴⎴⏟
=−𝜇(𝑘𝑉+𝛾𝐽)

(B.33)

⟺𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖 ≥ 𝑘𝐿̄𝑖 −𝜇(𝑘𝑉 + 𝛾𝐽)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

≤0

. (B.34)

Since 𝑖 ∈  , it holds that 𝐸(0)
𝑖

= 𝑏𝑖 +
∑

𝑗∈
𝐿𝑗𝑖 − 𝐿̄𝑖 < 𝑘𝐿̄𝑖 . Combining these two inequalities

gives 𝑘𝐿̄𝑖 > 𝑏𝑖 +
∑

𝑗∈
𝐿𝑗𝑖 − 𝐿̄𝑖 ≥ 𝑘𝐿̄𝑖 − 𝜇(𝑘𝑉 + 𝛾𝐽). For this to hold, we need (𝑘𝑉 + 𝛾𝐽) > 0. □

Proof of Theorem 4.7.

1. Assume that (𝐿, 𝑏; 𝕍) ∩ nodes = ∅. Then by Proposition 4.8, this compression reduces sys-
temic risk, which is a contradiction to it being harmful.

2. Suppose compression is harmful. This means that there exists a node 𝜈 ∈  such that
𝜈 ∈ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) and 𝜈 ∈  ⧵(𝐿, 𝑏; 𝕍), that is, node 𝜈 defaults if compression is done
but does not default without compression. This in particular implies that 𝜈 ∈  = {𝑖 ∈

 ∣ 𝐿̄
,𝜇

𝑖
> 0} and that 𝐸,𝜇;𝛾;∗

𝜈 < 𝑘𝐿̄
,𝜇
𝜈 ≤ 𝑘𝐿̄𝜈 ≤ 𝐸∗

𝜈 . Therefore 𝐸
,𝜇;𝛾;∗
𝜈 < 𝐸∗

𝜈 . Then by Propo-
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sition 4.9 part 1., this implies that there exists an 𝑖 ∈ nodes satisfying

𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
< 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
. (B.35)

Hence, there exists an 𝑖 ∈ nodes satisfying

𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
< 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
≤ 1, (B.36)

which implies that 𝕍(
𝐸
,𝜇;𝛾;∗
𝑖

+𝐿̄
,𝜇
𝑖

𝐿̄
,𝜇
𝑖

) < 1, which implies that 𝑖 ∈ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍).

3. Assume that 𝕍 = 𝕍zero;𝐽 . By Proposition 4.12, we know that this compression reduces systemic
risk, which is a contradiction to the assumption that it is harmful.

□

Proof of Proposition 4.8. To prove this statement, we consider a fixed point iteration as in Veraart
(2020). We consider the sequences (𝐸(𝑛)) and (𝐸(𝑛);𝛾) defined in Equation (B.23). By Lemma 4.5,
we know that𝐸(0);𝛾

𝑖
≥ 𝐸

(0);0
𝑖

= 𝐸
(0)
𝑖
for all 𝑖 ∈  and for all 𝛾 ∈ [0, 1].Wewill prove by induction

that if {𝑖 ∈ nodes ∣ 𝐸
∗
𝑖
< 𝑘𝐿̄𝑖} = ∅ then

𝐸
(𝑛);𝛾
𝑖

≥ 𝐸
(𝑛);0
𝑖

= 𝐸
(𝑛)
𝑖

for all 𝑖 ∈  , (B.37)

holds for all 𝑛 ∈ ℕ0. Once this has been shown it follows that

𝐸
;𝛾;∗
𝑖

= lim
𝑛→∞

𝐸
(𝑛);𝛾
𝑖

≥ 𝐸
;0;∗
𝑖

= lim
𝑛→∞

𝐸
(𝑛);0
𝑖

= lim
𝑛→∞

𝐸
(𝑛)
𝑖

= 𝐸∗
𝑖
, (B.38)

for all 𝑖 ∈  , which is the statement of the theorem.
By Lemma B.3, (𝐸(𝑛)) and (𝐸(𝑛);𝛾) are nonincreasing and converge to the greatest re-evaluated

equity in the non-compressed and in the compressed network, respectively. This implies that in
particular, 𝐸(𝑛)

𝑖
≥ lim𝑚→∞ 𝐸

(𝑚)
𝑖

= 𝐸∗
𝑖
for all 𝑖 ∈  and for all 𝑛 ∈ ℕ0 and hence for all 𝑛 ∈ ℕ0, it

holds that 𝐸(𝑛)
𝑖

≥ 𝐸∗
𝑖
≥ 𝑘𝐿̄𝑖 ∀𝑖 ∈ nodes and hence

{𝑖 ∈ nodes ∣ 𝐸
(𝑛)
𝑖

< 𝑘𝐿̄𝑖} = ∅. (B.39)

We now start our proof of Equation (B.39) by induction. Let 𝑛 = 0. Since

𝐸
(0)
𝑖

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖 − 𝐿̄𝑖, 𝐸
(0);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
− 𝐿̄

𝑖
, (B.40)

we are in exactly the same situation as in Lemma 4.5 in which it was shown that indeed 𝐸
(0);𝛾
𝑖

≥

𝐸
(0);0
𝑖

= 𝐸
(0)
𝑖

for all 𝑖 ∈  .
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Suppose Equation (B.39) holds for a fixed 𝑛 ∈ ℕ0. We show that it also holds for 𝑛 + 1. Then,
by the definition of the sequences

𝐸
(𝑛+1)
𝑖

= Φ𝑖(𝐸
(𝑛)) = 𝑏𝑖 +

∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖, (B.41)

𝐸
(𝑛+1);𝛾
𝑖

= Φ
;𝛾
𝑖

(𝐸(𝑛);𝛾) = 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
. (B.42)

First note that by the monotonicity of 𝕍, the definition of 𝑏,𝜇,𝛾, and the induction hypothesis
that 𝐸(𝑛);𝛾

𝑖
≥ 𝐸

(𝑛);0
𝑖

for all 𝑖 ∈  , we immediately see that

𝐸
(𝑛+1);𝛾
𝑖

= Φ
;𝛾
𝑖

(𝐸(𝑛);𝛾) = 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
(B.43)

≥ 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
= Φ

;0
𝑖

(𝐸(𝑛);0) (B.44)

= 𝐸
(𝑛+1);0
𝑖

, (B.45)

holds for all 𝑖 ∈  . Hence, it remains to show that 𝐸(𝑛+1);0
𝑖

= 𝐸
(𝑛+1)
𝑖

for all 𝑖 ∈  .
Let 𝑖 ∈ nodes. Then,

𝐸
(𝑛+1);0
𝑖

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
⏟⏟⏟

=𝐿̄𝑖−𝜇𝑉

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈ ,(𝑗,𝑖)∈edges

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
+

∑
𝑗∈ ,(𝑗,𝑖)∉edges

𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
=𝐿𝑗𝑖

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝜇𝑉.

(B.46)

Note that there exists at most one 𝑗 ∈  with (𝑗, 𝑖) ∈ edges. As before we write pred(𝑖) for
the predecessor of 𝑖 on the cycle edges, that is, pred(𝑖) is the index of the node that satisfies
(pred(𝑖), 𝑖) ∈ edges.
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We distinguish between two cases. First, suppose that pred(𝑖) ∈  . Then,

∑
𝑗∈ ,(𝑗,𝑖)∈edges

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ = (𝐿pred(𝑖),𝑖 − 𝜇𝑉)𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0

pred(𝑖) + 𝐿̄
,𝜇

pred(𝑖)

𝐿̄
,𝜇

pred(𝑖)

⎞⎟⎟⎠. (B.47)

By the induction hypothesis 𝐸
(𝑛);0

pred(𝑖) = 𝐸
(𝑛)

pred(𝑖) and by Equation (B.41), it holds that 𝐸
(𝑛)

pred(𝑖) ≥

𝑘𝐿̄pred(𝑖) since pred(𝑖) ∈ nodes. By the definition of 𝕍 this implies that

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0

pred(𝑖) + 𝐿̄
,𝜇

pred(𝑖)

𝐿̄
,𝜇

pred(𝑖)

⎞⎟⎟⎠ = 1 = 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)

pred(𝑖) + 𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

⎞⎟⎟⎠. (B.48)

Hence,

∑
𝑗∈ ,(𝑗,𝑖)∈edges

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ = (𝐿pred(𝑖)𝑖 − 𝜇𝑉)

= 𝐿pred(𝑖)𝑖𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0

pred(𝑖) + 𝐿̄
,𝜇

pred(𝑖)

𝐿̄
,𝜇

pred(𝑖)

⎞⎟⎟⎠ − 𝜇𝑉.

(B.49)

Furthermore, since pred(𝑖) ∈  , we obtain by Lemma B.2 part 2. that 𝐿𝑗𝑖 = 0 for all 𝑗 ∈  ⧵

 and hence

∑
𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ = 0. (B.50)

By plugging Equation (B.51) into (B.48), we immediately obtain that

𝐸
(𝑛+1);0
𝑖

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝜇𝑉 − 𝜇𝑉

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 (by induction hypothesis) (B.51)

= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈ ,𝐸

(𝑛)
𝑗

≥𝑘𝐿̄𝑗

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=1=𝕍
⎛⎜⎜⎝
𝐸
(𝑛)
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

+
∑

𝑗∈ ,𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

(⋆)
= 𝕍

⎛⎜⎜⎝
𝐸
(𝑛)
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

−𝐿̄𝑖 (B.52)
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= 𝑏
,𝜇,0

𝑖
+

∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 (B.53)

= 𝑏
,𝜇,0

𝑖
⏟⏟⏟
=𝑏𝑖

+
∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ −
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=0 by (B.52)

−𝐿̄𝑖 = 𝐸
(𝑛+1)
𝑖

, (B.54)

where (⋆) holds because if for an 𝑗 ∈  it holds that 𝐸(𝑛)
𝑗

< 𝑘𝐿̄𝑗 then 𝑗 ∈  ⧵ nodes since by

assumption no defaults occur on the compression cycle. Hence, 𝐿̄,𝜇

𝑗
= 𝐿̄𝑗 .

Second, suppose that pred(𝑖) ∈  ⧵ . Then, by Lemma B.2 part 2.

∑
𝑗∈ ,(𝑗,𝑖)∈edges

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ = 0. (B.55)

Furthermore, again from Lemma B.2 part 2. and using the assumption that no node on the com-
pression network cycle defaults we get

∑
𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ = 𝐿pred(𝑖)𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)

pred(𝑖) + 𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

=1

= 𝐿pred(𝑖)𝑖 = 𝜇𝑉,

(B.56)

where we used the fact that pred(𝑖) ∈  ⧵ .
By plugging Equation (B.59) into (B.48), we obtain

𝐸
(𝑛+1);0
𝑖

= 𝑏
,𝜇,0

𝑖
⏟⏟⏟
=𝑏𝑖

+
∑

𝑗∈ ,(𝑗,𝑖)∈edges

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=0

(B.57)

+
∑

𝑗∈ ,(𝑗,𝑖)∉edges

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝜇𝑉 (B.58)
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= 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝜇𝑉 (since pred(𝑖) ∈  ⧵) (B.59)

= 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝜇𝑉 (by induction hypothesis) (B.60)

= 𝑏𝑖 +
∑

𝑗∈ ,𝐸
(𝑛)
𝑗

≥𝑘𝐿̄𝑗

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=1=𝕍
⎛⎜⎜⎝
𝐸
(𝑛)
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

(B.61)

+
∑

𝑗∈ ,𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=

(⋆)𝕍
⎛⎜⎜⎝
𝐸
(𝑛)
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

−𝐿̄𝑖 + 𝜇𝑉 (B.62)

= 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 + 𝜇𝑉 (B.63)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ −
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=𝜇𝑉 by (𝐵.60)

−𝐿̄𝑖 + 𝜇𝑉 (B.64)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 = Φ𝑖(𝐸
(𝑛)) = 𝐸

(𝑛+1)
𝑖

, (B.65)

where the same argument was used in (⋆) as before, namely that nodes with 𝐸
(𝑛)
𝑗

< 𝑘𝐿̄𝑗 cannot
be on the compression network cycle.
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Let 𝑖 ∉ nodes. Then, using the induction hypothesis in the second line we get

𝐸
(𝑛+1);0
𝑖

= 𝑏
,𝜇,0

𝑖
⏟⏟⏟
=𝑏𝑖

+
∑

𝑗∈

𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
=𝐿𝑗𝑖

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);0
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
⏟⏟⏟
=𝐿̄𝑖

(B.66)

= 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 (B.67)

= 𝑏𝑖 +
∑

𝑗∈ ,𝐸
(𝑛)
𝑗

≥𝑘𝐿̄𝑗

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=1=𝕍
⎛⎜⎜⎝
𝐸
(𝑛)
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

(B.68)

+
∑

𝑗∈ ,𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

=

(⋆)𝕍
⎛⎜⎜⎝
𝐸
(𝑛)
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

−𝐿̄𝑖 (B.69)

= 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 (B.70)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ −
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍
⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=0(by Lemma B.2 part 2.)

−𝐿̄𝑖 = Φ𝑖(𝐸
(𝑛)) = 𝐸

(𝑛+1)
𝑖

, (B.71)

using again the fact in (⋆) that nodeswith𝐸
(𝑛)
𝑗

< 𝑘𝐿̄𝑗 cannot be on the compression network cycle.

Hence, we have shown that indeed for all 𝑛 ∈ ℕ0 and for all 𝑖 ∈ 𝐸
(𝑛+1);𝛾
𝑖

≥ 𝐸
(𝑛+1);0
𝑖

=

𝐸
(𝑛+1)
𝑖

, which completes the induction. Hence, for all 𝑖 ∈ 

𝐸
;𝛾;∗
𝑖

= lim
𝑛→∞

𝐸
(𝑛);𝛾
𝑖

≥ 𝐸
;0;∗
𝑖

= lim
𝑛→∞

𝐸
(𝑛);0
𝑖

= lim
𝑛→∞

𝐸
(𝑛)
𝑖

= 𝐸∗
𝑖
. (B.72)
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From this, it follows immediately that(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍) ⊆ (𝐿,𝜇, 𝑏,𝜇,0; 𝕍) = (𝐿, 𝑏; 𝕍). □

Proof of Proposition 4.9. We will prove part 1. first and will show that parts 2. and 3. are essentially
corollaries of part 1.

1. Suppose that condition (31) is satisfied. We will prove now that compression can only increase
the re-evaluated equity. This proof uses similar arguments as in the proof of Proposition 4.8.
Again we consider the sequences (𝐸(𝑛)) and (𝐸(𝑛);𝛾) defined in Equation (B.23).
Using the same argument as in the proof of Proposition 4.8, we know from Lemma B.3 that
lim𝑛→∞ 𝐸

(𝑛)
𝑗

= 𝐸∗
𝑗
and lim𝑛→∞ 𝐸

(𝑛);𝛾
𝑗

= 𝐸
,𝜇;𝛾;∗

𝑗
exist for all 𝑗 ∈  . Furthermore, (𝐸(𝑛)) and

(𝐸(𝑛);𝛾) are decreasing sequences, that is, they converge to their limits from above. In particu-
lar, 𝐸(𝑛)

𝑗
≥ 𝐸∗

𝑗
and 𝐸

(𝑛);𝛾
𝑗

≥ 𝐸
,𝜇;𝛾;∗

𝑗
for all 𝑗 ∈  and for all 𝑛 ∈ ℕ0 and since 𝕍 is nondecreas-

ing this implies that

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ ≥ 𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ ∀𝑗 ∈  . (B.73)

Combining this with Equation (31), we obtain that for all 𝑛 ∈ ℕ0

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ ≥ 𝕍
⎛⎜⎜⎝
𝐸
,𝜇;𝛾;∗

𝑗
+ 𝐿̄

,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ ≥ 𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
∀𝑗 ∈ nodes. (B.74)

We will prove by induction that for all 𝑛 ∈ ℕ0

𝐸
(𝑛);𝛾
𝑖

≥ 𝐸∗
𝑖

∀𝑖 ∈  . (B.75)

Once this has been shown, it follows that 𝐸,𝜇;𝛾;∗

𝑖
= lim𝑛→∞ 𝐸

(𝑛);𝛾
𝑖

≥ 𝐸∗
𝑖

∀𝑖 ∈  , which is
the statement of the proposition.
For the start of the induction, we consider 𝑛 = 0. By Lemma 4.5, we know that 𝐸(0);𝛾

𝑖
≥ 𝐸

(0)
𝑖

for all 𝑖 ∈  and for all 𝛾 ∈ [0, 1]. Since (𝐸(𝑛)) is converging to 𝐸∗ from above this implies that
𝐸
(0);𝛾
𝑖

≥ 𝐸
(0)
𝑖

≥ 𝐸∗
𝑖
for all 𝑖 ∈  .

Next assume that the statement (B.79) holds for an 𝑛 ∈ ℕ0. Wewill show that it holds for 𝑛 + 1.
We distinguish between two cases:
Let 𝑖 ∈  ⧵ nodes. Then,

𝐸
(𝑛+1);𝛾
𝑖

= Φ
𝑖
(𝐸(𝑛);𝛾) = 𝑏

,𝜇,𝛾

𝑖
⏟⏟⏟
=𝑏𝑖

+
∑

𝑗∈

𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
=𝐿𝑗𝑖

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
⏟⏟⏟
=𝐿̄𝑖

(B.76)
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= 𝑏𝑖 +
∑

𝑗∈∩nodes

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

≥𝕍

(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

)
by (B.78)

+
∑

𝑗∈⧵nodes

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠

−𝐿̄𝑖 (B.77)

≥ 𝑏𝑖 +
∑

𝑗∈∩nodes

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
+

∑
𝑗∈⧵nodes

𝐿𝑗𝑖 𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

≥𝕍

(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

)
by ind. hyp. &𝕍monotone

−𝐿̄𝑖 (B.78)

≥ 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖 (B.79)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=Φ𝑖(𝐸∗)=𝐸∗

𝑖

−
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
(B.80)

= 𝐸∗
𝑖
−

∑
𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=0

= 𝐸∗
𝑖
. (B.81)

Note that
∑

𝑗∈⧵ 𝐿𝑗𝑖𝕍(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

) = 0, since 𝑖 ∈  ⧵ nodes and by Lemma B.2 𝐿𝑗𝑖 = 0 for all

𝑗 ∈  ⧵ .
Let 𝑖 ∈ nodes. Then,

𝐸
(𝑛+1);𝛾
𝑖

= Φ
𝑖
(𝐸(𝑛);𝛾) = 𝑏

,𝜇,𝛾

𝑖
⏟⏟⏟
≥𝑏𝑖

+
∑

𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
⏟⏟⏟

=𝐿̄𝑖−𝜇𝑉

(B.82)
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≥ 𝑏𝑖 +
∑

𝑗∈∩nodes

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

≥𝕍

(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

)
by (B.78)

(B.83)

+
∑

𝑗∈⧵nodes

𝐿
,𝜇

𝑗𝑖
𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ since 𝑗∉nodes

−𝐿̄𝑖 + 𝜇𝑉 (B.84)

≥ 𝑏𝑖 +
∑

𝑗∈∩nodes

𝐿
,𝜇

𝑗𝑖
𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
(B.85)

+
∑

𝑗∈⧵nodes

𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
=𝐿𝑗𝑖

𝕍
⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

≥𝕍

(
𝐸∗
𝑗
+𝐿̄𝑗

𝐿̄𝑗

)
by ind. hyp. and𝕍 nondecreasing

−𝐿̄𝑖 + 𝜇𝑉 (B.86)

≥ 𝑏𝑖 +
∑

𝑗∈∩nodes⧵{pred(𝑖)}
𝐿
,𝜇

𝑗𝑖
⏟⏟⏟
𝐿𝑗𝑖

𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
(B.87)

+ (𝐿pred(𝑖)𝑖 − 𝜇𝑉)𝕍

(
𝐸∗
pred(𝑖) + 𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

)
𝕀{pred(𝑖)∈ } (B.88)

+
∑

𝑗∈⧵nodes

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖 + 𝜇𝑉 (B.89)

=∶ (⋆⋆). (B.90)
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Let pred(𝑖) ∈  . Then,

(⋆⋆) = 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖 + 𝜇𝑉

(
1 − 𝕍

(
𝐸∗
pred(𝑖) + 𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

))
(B.91)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=Φ𝑖(𝐸∗)=𝐸∗

𝑖

+ 𝜇𝑉

(
1 − 𝕍

(
𝐸∗
pred(𝑖) + 𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

))
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

≥0

(B.92)

−
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=0 since pred(𝑖)∈

≥ 𝐸∗
𝑖
. (B.93)

Let pred(𝑖) ∈  ⧵ . Then,

(⋆⋆) = 𝑏𝑖 +
∑

𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖 + 𝜇𝑉 (B.94)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
− 𝐿̄𝑖

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=Φ𝑖(𝐸∗)=𝐸∗

𝑖

−
∑

𝑗∈⧵

𝐿𝑗𝑖𝕍

(
𝐸∗
𝑗
+ 𝐿̄𝑗

𝐿̄𝑗

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=𝜇𝑉𝕍

(
𝐸∗
pred(𝑖)+𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

)
+𝜇𝑉 (B.95)

= 𝐸∗
𝑖
+ 𝜇𝑉

(
1 − 𝕍

(
𝐸∗
pred(𝑖) + 𝐿̄pred(𝑖)

𝐿̄pred(𝑖)

))
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

≥0

≥ 𝐸∗
𝑖
. (B.96)

Hence, this completes the induction and the result follows.
2. Suppose that Equation (32) holds. Then by the definition of 𝕍, we immediately get that

1 = 𝕍

(
𝐸
,𝜇;𝛾;∗

𝑖
+ 𝐿̄

,𝜇

𝑖

𝐿̄
,𝜇

𝑖

)
≥ 𝕍

(
𝐸∗
𝑖
+ 𝐿̄𝑖

𝐿̄𝑖

)
∀𝑖 ∈ nodes. (B.97)

Hence, the result follows with part 1. of this Proposition.

3. Suppose that Equation (33) holds, then 𝕍(
𝐸
,𝜇;𝛾;∗
𝑖

+𝐿̄
,𝜇
𝑖

𝐿̄
,𝜇
𝑖

) = 1 ∀𝑖 ∈ nodes and hence the state-

ment follows directly from part 2. of this Proposition since condition (32) is satisfied.
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□

Proof of Proposition 4.11. Let 𝑖 ∈ nodes. Hence, 𝐿̄𝑖 > 0 and 𝐿̄
,𝜇

𝑖
= 𝐿̄𝑖 − 𝜇. Let 𝑗 = suc(𝑖) ∈  and

first suppose that 𝐿̄,𝜇

𝑖
> 0. Then,

Π
,𝜇

ij = Π
,𝜇

𝑖suc(𝑖)
=

𝐿
,𝜇

𝑖suc(𝑖)

𝐿̄
,𝜇

𝑖

=
𝐿𝑖suc(𝑖) − 𝜇

𝐿̄𝑖 − 𝜇
≤

𝐿𝑖suc(𝑖)

𝐿̄𝑖

= Π𝑖suc(𝑖), (B.98)

since

𝐿𝑖suc(𝑖) − 𝜇

𝐿̄𝑖 − 𝜇
≤

𝐿𝑖suc(𝑖)

𝐿̄𝑖

⇔𝐿𝑖suc(𝑖)𝐿̄𝑖 − 𝜇𝐿̄𝑖 ≤ 𝐿𝑖suc(𝑖)𝐿̄𝑖 − 𝐿𝑖suc(𝑖)𝜇 ⇔ 0 ≤ 𝜇(𝐿̄𝑖 − 𝐿𝑖suc(𝑖)),

(B.99)

is always satisfied. Second, suppose that 𝐿̄,𝜇

𝑖
= 0. Then, Π,𝜇

𝑖suc(𝑖) = 0 ≤
𝐿𝑖suc(𝑖)

𝐿̄𝑖

= Π𝑖suc(𝑖). Now let

𝑗 ∈  ⧵ {suc(𝑖)}. Then, Π,𝜇

𝑖𝑗
=

𝐿
,𝜇
𝑖𝑗

𝐿̄
,𝜇
𝑖

=
𝐿𝑖𝑗

𝐿̄𝑖

= Π𝑖𝑗 .

Let 𝑖 ∈  ⧵ nodes and 𝑗 ∈  . Then, 𝐿̄,𝜇

𝑖
= 𝐿̄𝑖 . If 𝐿̄𝑖 > 0, then 𝐿̄

,𝜇

𝑖
= 𝐿̄𝑖 > 0 andΠ

,𝜇

𝑖𝑗
=

𝐿
,𝜇
𝑖𝑗

𝐿̄
,𝜇
𝑖

=

𝐿𝑖𝑗

𝐿̄𝑖

= Π𝑖𝑗; and if 𝐿̄𝑖 = 0, then 𝐿̄
,𝜇

𝑖
= 𝐿̄𝑖 = 0 and Π

,𝜇

𝑖𝑗
= 0 = Π𝑖𝑗 . □

We will use the following Lemma to prove Theorem 4.12.

Lemma B.5. Let 𝐸(𝑛);𝛾
𝑖

, 𝐸
(𝑛)
𝑖

, 𝐿̄
,𝜇

𝑖
, 𝐿̄𝑖 ∈ ℝ, 𝐸(𝑛);𝛾

𝑖
≥ 𝐸

(𝑛)
𝑖
, 𝐿̄,𝜇

𝑖
≤ 𝐿̄𝑖 , 𝐽 ∈ [0, 1] and 𝑘 ≥ 0. Then,

𝕀
{𝐸

(𝑛);𝛾
𝑖

≥𝑘𝐿̄
,𝜇
𝑖

}
+ 𝐽𝕀

{𝐸
(𝑛);𝛾
𝑖

<𝑘𝐿̄
,𝜇
𝑖

}
≥ 𝕀

{𝐸
(𝑛)
𝑖

≥𝑘𝐿̄𝑖}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑖

<𝑘𝐿̄𝑖}
. (B.100)

Proof of Lemma B.5. For 𝐽 = 1, the result follows directly. Let 𝐽 ∈ [0, 1).
First, consider the case that 𝕀

{𝐸
(𝑛);𝛾
𝑖

≥𝑘𝐿̄
,𝜇
𝑖

}
+ 𝐽𝕀

{𝐸
(𝑛);𝛾
𝑖

<𝑘𝐿̄
,𝜇
𝑖

}
= 1. Then, 1 ≥ 𝕀

{𝐸
(𝑛)
𝑖

≥𝑘𝐿̄𝑖}
+

𝐽𝕀
{𝐸

(𝑛)
𝑖

<𝑘𝐿̄𝑖}
by the definition of the indicator function.

Second, suppose that 𝕀
{𝐸

(𝑛);𝛾
𝑖

≥𝑘𝐿̄
,𝜇
𝑖

}
+ 𝐽𝕀

{𝐸
(𝑛);𝛾
𝑖

<𝑘𝐿̄
,𝜇
𝑖

}
= 𝐽. Then, 𝐸

(𝑛);𝛾
𝑖

< 𝑘𝐿̄
,𝜇

𝑖
and since

𝑘𝐿̄𝑖 ≥ 𝑘𝐿̄
,𝜇

𝑖
, we obtain that 𝐸

(𝑛)
𝑖

≤ 𝐸
(𝑛);𝛾
𝑖

< 𝑘𝐿̄
,𝜇

𝑖
≤ 𝑘𝐿̄𝑖 . Hence, 𝕀

{𝐸
(𝑛)
𝑖

≥𝑘𝐿̄𝑖}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑖

<𝑘𝐿̄𝑖}
= 𝐽 =

𝕀
{𝐸

(𝑛);𝛾
𝑖

≥𝑘𝐿̄
,𝜇
𝑖

}
+ 𝐽𝕀

{𝐸
(𝑛);𝛾
𝑖

<𝑘𝐿̄
,𝜇
𝑖

}
. □

Proof of Proposition 4.12. We proceed similarly as in the proof of Proposition 4.8. We consider two
sequences (𝐸(𝑛)) and (𝐸(𝑛);𝛾) defined in Equation (B.23) but now assume that 𝕍 = 𝕍zero;𝐽 .
We will prove by induction that

𝐸
(𝑛);𝛾
𝑖

≥ 𝐸
(𝑛)
𝑖

for all 𝑖 ∈  , (B.101)

holds for all 𝑛 ∈ ℕ0. Once this has been shown, it follows that 𝐸
,𝜇;𝛾;∗

𝑖
= lim𝑛→∞ 𝐸

(𝑛);𝛾
𝑖

≥

lim𝑛→∞ 𝐸
(𝑛)
𝑖

= 𝐸∗
𝑖
for all 𝑖 ∈  , which is the statement of the theorem.



50 VERAART

Let 𝑛 = 0. Then the result follows directly from Lemma 4.5.
We now assume that Equation (B.105) holds true for an 𝑛 ∈ ℕ. We show that Equation (B.105)

is true for 𝑛 + 1. Consider

𝐸
(𝑛+1)
𝑖

= Φ𝑖(𝐸
(𝑛)) = 𝑏𝑖 +

∑
𝑗∈

𝐿𝑗𝑖𝕍
zero;𝐽

⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖, (B.102)

𝐸
(𝑛+1);𝛾
𝑖

= Φ
;𝛾
𝑖

(𝐸(𝑛);𝛾) = 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍zero;𝐽

⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
. (B.103)

By the induction hypothesis (B.105) 𝐸(𝑛);𝛾
𝑖

≥ 𝐸
(𝑛)
𝑖

for all 𝑖 ∈  and hence by Lemma (B.5)

𝕀
{𝐸

(𝑛);𝛾
𝑗

≥𝑘𝐿̄
,𝜇
𝑗

}
+ 𝐽𝕀

{𝐸
(𝑛);𝛾
𝑗

<𝑘𝐿̄
,𝜇
𝑗

}
≥ 𝕀

{𝐸
(𝑛)
𝑗

≥𝑘𝐿̄𝑗}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗}
. (B.104)

Hence,

𝐸
(𝑛+1);𝛾
𝑖

= 𝑏
,𝜇,𝛾

𝑖
+

∑
𝑗∈

𝐿
,𝜇

𝑗𝑖
𝕍zero;𝐽

⎛⎜⎜⎝
𝐸
(𝑛);𝛾
𝑗

+ 𝐿̄
,𝜇

𝑗

𝐿̄
,𝜇

𝑗

⎞⎟⎟⎠ − 𝐿̄
,𝜇

𝑖
(B.105)

= 𝑏
,𝜇,𝛾

𝑖
⏟⏟⏟
≥𝑏𝑖

+
∑
𝑗∈

𝐿
,𝜇

𝑗𝑖

(
𝕀
{𝐸

(𝑛);𝛾
𝑗

≥𝑘𝐿̄
,𝜇
𝑗

}
+ 𝐽𝕀

{𝐸
(𝑛);𝛾
𝑗

<𝑘𝐿̄
,𝜇
𝑗

}

)
− 𝐿̄

,𝜇

𝑖
(B.106)

≥ 𝑏𝑖 +
∑
𝑗∈

𝐿
,𝜇

𝑗𝑖

(
𝕀
{𝐸

(𝑛)
𝑗

≥𝑘𝐿̄𝑗}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗}

)
− 𝐿̄

,𝜇

𝑖
= (∗), (B.107)

where we used Equation (B.104) to derive the inequality. If 𝑖 ∉ nodes, then

(∗) = 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖

(
𝕀
{𝐸

(𝑛)
𝑗

≥𝑘𝐿̄𝑗}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗}

)
− 𝐿̄𝑖 (B.108)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍
zero;𝐽

⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 (B.109)

= 𝐸
(𝑛+1)
𝑖

. (B.110)
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If 𝑖 ∈ nodes, then

(∗) = 𝑏𝑖 +
∑

𝑗∈⧵{pred(𝑖)}
𝐿𝑗𝑖

(
𝕀
{𝐸

(𝑛)
𝑗

≥𝑘𝐿̄𝑗}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗}

)
(B.111)

+ (𝐿pred(𝑖)𝑖 − 𝜇𝑉)

(
𝕀
{𝐸

(𝑛)

pred(𝑖)≥𝑘𝐿̄pred(𝑖)}
+ 𝐽𝕀

{𝐸
(𝑛)

pred(𝑖)<𝑘𝐿̄pred(𝑖)}

)
− (𝐿̄𝑖 − 𝜇𝑉) (B.112)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖

(
𝕀
{𝐸

(𝑛)
𝑗

≥𝑘𝐿̄𝑗}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗}

)
− 𝐿̄𝑖 (B.113)

+ 𝜇𝑉

(
1 −

(
𝕀
{𝐸

(𝑛)

pred(𝑖)≥𝑘𝐿̄pred(𝑖)}
+ 𝐽𝕀

{𝐸
(𝑛)

pred(𝑖)<𝑘𝐿̄pred(𝑖)}

))
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

≥0 since 𝐽∈[0,1]

(B.114)

≥ 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖

(
𝕀
{𝐸

(𝑛)
𝑗

≥𝑘𝐿̄𝑗}
+ 𝐽𝕀

{𝐸
(𝑛)
𝑗

<𝑘𝐿̄𝑗}

)
− 𝐿̄𝑖 (B.115)

= 𝑏𝑖 +
∑
𝑗∈

𝐿𝑗𝑖𝕍
zero;𝐽

⎛⎜⎜⎝
𝐸

(𝑛)
𝑗

+ 𝐿̄𝑗

𝐿̄𝑗

⎞⎟⎟⎠ − 𝐿̄𝑖 = 𝐸
(𝑛+1)
𝑖

. (B.116)

Hence, 𝐸(𝑛+1)
𝑖

≥ 𝐸
(𝑛+1)
𝑖

for all 𝑖 ∈  , which completes the induction.
To see that indeed systemic risk is reduced by compression here, we use the results of the first

part, namely 𝐸
,𝜇;𝛾;∗

𝑖
≥ 𝐸∗

𝑖
for all 𝑖 ∈  . Suppose (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍zero;𝐽) ≠ ∅, otherwise there is

nothing to show. Let 𝑖 ∈ (𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍zero;𝐽). Then, 𝐸,𝜇;𝛾;∗

𝑖
< 𝑘𝐿̄

,𝜇

𝑖
and hence 𝐸∗

𝑖
≤ 𝐸

,𝜇;𝛾;∗

𝑖
<

𝑘𝐿̄
,𝜇

𝑖
≤ 𝑘𝐿̄𝑖 . This implies that 𝑖 ∈ (𝐿, 𝑏; 𝕍zero;𝐽). Hence,

(𝐿,𝜇, 𝑏,𝜇,𝛾; 𝕍zero;𝐽) = {𝑖 ∈  ∣ 𝐸
,𝜇;𝛾;∗

𝑖
< 𝑘𝐿̄

,𝜇

𝑖
} ⊆ {𝑖 ∈  ∣ 𝐸∗

𝑖
< 𝑘𝐿̄𝑖} (B.117)

= (𝐿, 𝑏; 𝕍zero;𝐽). (B.118)

□

Proof of Proposition 4.13. Suppose, condition 1., that is, formula (37), is satisfied, that is,
(𝐿, 𝑏; 𝕍) ∩ allnodes = ∅. Then, in particular, (𝐿, 𝑏; 𝕍) ∩ 

(1)

nodes = ∅. Then, by Proposition 4.8,
compressing (1) reduces systemic risk. In particular, (𝐿(1)

, 𝑏
(1)
; 𝕍) ⊆ (𝐿, 𝑏; 𝕍). Combining
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this results with Equation (37) implies that(𝐿(1)
, 𝑏

(1)
; 𝕍) ∩ 

(2)

nodes = ∅. Then, applying Proposi-
tion 4.8 to the system (𝐿(1)

, 𝑏
(1)
; 𝕍) by compressing cycle (2) yields (𝐿(1),(2)

, 𝑏
(1),(2)

; 𝕍) ⊆

(𝐿(1)
, 𝑏

(1)
; 𝕍). By repeating these arguments, we obtain that

(𝐿(1),…,(𝑚)
, 𝑏

(1),…,(𝑚)
; 𝕍) ⊆ (𝐿(1),…,(𝑚−1)

, 𝑏
(1),…,(𝑚−1)

; 𝕍) (B.119)

⊆ … ⊆ (𝐿(1)
, 𝑏

(1)
; 𝕍) ⊆ (𝐿, 𝑏; 𝕍), (B.120)

and hence indeed compressing sequentially (1), … ,(𝑚) reduces systemic risk.
Suppose the second condition, that is, Equation (38) holds, then Proposition 4.9 yields the

statement. If the third condition, that is, 𝕍 = 𝕍zero;𝐽 holds, the statement follows from Propo-
sition 4.12. □

Proof of Corollary 4.14.

1. This statement and its proof is given in D’Errico & Roukny (2021, EC.5., e-companion).
2. This statement follows directly from Proposition 4.13 by using the sequence of cycles to obtain

𝑋̃ that is guaranteed to exist from part 1. of this Corollary.
3. The algorithmdeveloped inD’Errico&Roukny (2021, Algorithm2, e-companion) to determine

the sequence of cycles (1), … ,(𝑚) can still be used if a lower bound 𝑎𝑖𝑗 ≥ 0 is introduced. The
results derived in Proposition 4.13 hold for all possible compression volumes and not just for
the original 𝜇max

𝑖
, 𝑖 ∈ {1, … ,𝑚}. Hence, in line with Remark 2.2, the results remain valid for

the case of a lower bound that is not necessarily 0.

□
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