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We investigate a semi-online variant of load balancing with restricted assignment. In this problem, we 
are given n jobs, which need to be processed by m machines with the goal to minimize the maximum 
machine load. Since strong lower bounds rule out any competitive ratio of o(log n), we may reassign jobs 
at a certain job-individual cost. We generalize a result by Gupta, Kumar, and Stein (SODA 2014) by giving 
a O(log log mn)-competitive algorithm with constant amortized reassignment cost.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Online algorithms are a classical, well-studied way to model 
problems with an inherent uncertainty. In the offline scenario, the 
complete input to an algorithm is given right from the start. For 
many dynamic real-world systems, such a knowledge is often not 
feasible, as the input only arrives over time. Hence, one aims to 
produce a solution for these partial inputs that is not too far from 
an optimal solution produced by an algorithm knowing the com-
plete input. While online algorithms with such a bounded compet-
itive ratio exist for a surprisingly large class of problems, the in-
ability of online algorithms to reconsider previous decisions allows 
to show several impossibility results. Clearly, allowing an arbitrary 
amount of reconsideration would trivially remove the uncertainty 
aspect of the problem, and this situation can easily be solved by 
iterative use of the best offline algorithm for the problem. Fur-
thermore, a small amount of reconsideration is often possible in 
practice.

To overcome these impossibility results, several semi-online 
models were introduced and studied that allow a bounded amount 
of reconsideration. In order to bound this amount of reconsidera-
tion, we need to define a metric that measures this reconsidera-
tion. A natural approach to do so is to associate with each new 
object added to the instance a reassignment cost that needs to be 
paid if the object is reassigned during such a reconsideration. Now, 
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if one wants to bound the number of reassigned objects, this can 
be modeled as having unit reassignment costs. This model is usu-
ally known as the recourse model. On the other hand, one might 
be interested in bounding the volume of the reassigned objects by 
associating the reassignment costs with the size or volume of the 
objects. This model is usually known as the migration model. In our 
work, we consider the natural generalization of these models by 
allowing arbitrary reassignment costs.

Scheduling problems have played an important role in the design 
of online algorithms. In general, a certain set of jobs J needs to be 
scheduled on a certain set of machines M. Clearly, such problems 
arise in the design of process schedulers of operating systems, but 
also in many problems from operations research such as logis-
tics (see e.g. [24,27]). A very general scheduling problem is called 
load balancing on unrelated machines. Here, processing job j ∈ J
on machine i ∈ M takes time pi, j , i.e. the processing time de-
pends heavily on the used machine. These processing times model 
the modern scenario of highly heterogeneous computing platforms 
(such as CPUs, GPUs, FPGAs,. . . ). The goal is to distribute J onto 
M such that the maximum load Cmax, often called the makespan, 
is minimized. Here, the load of a machine i is the sum of process-
ing times pi, j of jobs j assigned to i.

In the online-list model, jobs arrive one by one and an online 
algorithm has to irrevocably assign a job to one of the m ma-
chines before the next job is revealed. That is, jobs are revealed in 
the order 1, . . . , n, and upon arrival of job j, the scheduler learns 
the processing time pi, j and has to assign j to a machine be-
fore job j + 1 is revealed. The performance of online algorithms 
is typically assessed by competitive analysis. An online algorithm 
le under the CC BY-NC-ND license 
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is α-competitive if, for each instance, its makespan is bounded 
by α C�

max, where C�
max is the minimal makespan for this job set.

In this paper, we consider an important special case of un-
related machine scheduling, called load balancing with restricted 
assignment, where pi, j ∈ {p j, ∞}. A job j can either be performed 
on machine i (and will take time p j) or it cannot be performed 
on this machine at all (taking time ∞). This special case already 
captures a lot of the complexity of the unrelated machine model. 
In fact, all known lower bounds on the competitive ratio of online 
algorithms for load balancing on unrelated machines already hold 
for the restricted assignment. In particular, Azar, Naor, and Rom [7]
give a lower bound of �(log n) for any deterministic online algo-
rithm, even in the restricted assignment scenario and with unit 
processing times pi, j ∈ {1, ∞}. Even for randomized algorithms, 
they show a lower bound of ln m, where ln m denotes the natu-
ral logarithm of m > 0, the number of machines. Aspnes et al. [5]
provide online algorithms with matching upper bounds (up to con-
stants).

To overcome these strong lower bounds, we relax the irrevoca-
bility requirement for an online algorithm. As described above, we 
associate with each job j ∈ J a non-negative assignment cost c j
that any scheduler has to pay when it (re)assigns j to a partic-
ular machine. We refer to the total assignment cost for the jobs 
[k] := {1, 2, . . . , k} by Ck := ∑k

j=1 c j . An offline optimum solution 
for n jobs does not reassign any job and has, thus, total assignment 
cost C� := Cn . We say that an online algorithm has a reassignment 
factor of β if its amortized reassignment cost for online assigning 
and possibly reassigning the first k jobs is bounded by β · Ck for 
each k ∈ [n]. The goal is to design an α-competitive online algo-
rithm with bounded reassignment factor. We show that an O(1)-
competitive algorithm with constant reassignment factor exists for 
online load balancing unit-size jobs with restricted assignment. For 
arbitrary job sizes, this problem admits an algorithm with compet-
itive ratio O(log log mn) and reassignment factor O(1).

Our model of load balancing with reassignment cost general-
izes two previously and only independently studied models, the 
recourse model (where c j = 1) and the migration model (with c j =
p j). We refer to these special reassignment factors by recourse and 
migration factor, respectively, and we give details on previous re-
sults below. Also other online problems have been investigated in 
semi-online models with recourse and migration, but hardly in a 
unified model with reassignment cost. We hope to foster further 
research on this general semi-online model.

1.1. Related work

Westbrook [31] introduced online scheduling with reassign-
ments in a very general model in which jobs may arrive and de-
part. Here, the optimal makespan may decrease over time. There-
fore, he designs algorithms that are α-competitive against the 
current optimal load, in contrast to the so far observed maxi-
mum optimal load. He gives constant competitive algorithms with 
constant migration factor and constant recourse factor, respec-
tively, for identical as well as related machines. For arbitrary reas-
signment costs ci , the algorithm is O

(
logδ

max j{c j/p j}
min j{c j/p j}

)
-competitive 

with reassignment factor O(δ) for some parameter δ with 1 ≤ δ ≤
max j{c j/p j}
min j{c j/p j} . Andrews, Goemans, and Zhang [3] improve upon these 
results giving algorithms that are constant competitive against the 
current optimal load with constant reassignment factor for identi-
cal and related machines. We are not aware of any previous work 
on scheduling with reassignment cost for unrelated machines.

Subsequent work considered either the recourse or the migra-
tion model. Both models have been analyzed from an amortized as 
well as from a worst-case point of view. In the latter, the reassign-
ment cost in round k is required to be bounded by βck . Clearly, 
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any worst-case bound translates to a bound in the amortized set-
ting while the reverse is not necessarily true.

Sanders, Sivadasan, and Skutella [29] consider online load bal-
ancing on identical parallel machines with migration. Without re-
assignments, there is a lower bound of

√
3 ≈ 1.88 on the com-

petitive ratio by Rudin and Chandrasekaran [28] while the best 
known algorithm achieves a competitive ratio of 1.92 [2]. Sanders 
et al. [29] improve upon this lower bound when using migra-
tion. More precisely, they obtain a 3

2 -competitive algorithm with 
worst-case migration factor 4

3 . Moreover, they design a family 
of (1 + ε)-competitive algorithms with worst-case migration fac-
tor β(ε) allowing for a fully scalable tradeoff between the quality 
of a solution and its migration cost. In the online setting, they call 
such a family of algorithms robust PTAS. Also for identical paral-
lel machines, Skutella and Verschae [30] develop a robust PTAS 
for two problems, minimizing the maximum load and maximiz-
ing the minimum load on any machine, with an amortized bound 
on the migration factor. When jobs can be preempted, Epstein and 
Levin [16] give a 1-competitive, i.e., optimal, algorithm with worst-
case migration factor 1 − 1

m .
Awerbuch et al. [6] investigate (among other problems) load 

balancing on unrelated machines and give an O(log m)-competitive 
algorithm reassigning each job at most O(log m) times. For the 
special case where pi, j ∈ {1, ∞} for each job j and each machine i, 
their algorithm is 16-competitive using O(log m) recourse if the 
optimal makespan is at least �(log m).

Most relevant for our work is the work by Gupta, Kumar, and 
Stein [21], who give an online algorithm for the general restricted 
assignment problem that is O(log log mn)-competitive with con-
stant recourse. We give the details in the next section.

For restricted assignment with unit-size jobs, Bernstein et 
al. [11] give an 8-competitive online algorithm with constant re-
course that simultaneously achieves the competitive ratio for ev-
ery �q-norm for q ∈ [1, ∞]. That is, if l = (l1, . . . , lm) is the load 
vector of a given job-to-machine assignment, then the �q-norm 

of l is defined by q
√∑m

i=1 lqi for q < ∞ and �∞ is maxi{li}. They 
achieve this by following an optimal assignment with machine 
loads (l�1, . . . , l

�
m) such that li ≤ 8l�i after each job arrival.

Other problems that have been studied in semi-online models 
with reassignments include matching problems [4,9–11,20,21,25], 
minimum Steiner tree problems [18,22,26], the traveling salesper-
son problem [26] as well as packing [8,14,15,17,23] and covering 
problems [19]. As already mentioned, these problems are typically 
studied in either in the recourse or the migration model. The only 
previous work on online optimization with general reassignment 
cost that we are aware of is on load balancing on identical and 
related machines [3,31] and bin-packing [17].

1.2. The approach by Gupta, Kumar, and Stein [21]

Besides results on online flows and online matching problems, 
the authors design an online algorithm for unit-size jobs with con-
stant competitive ratio and constant recourse cost. Further, they 
describe a high-level idea on how to generalize this algorithm to 
unit-size jobs with arbitrary reassignment costs.

Using these two algorithms, the authors give an O(log logmn)-
competitive algorithm for load balancing that incurs constant re-
course. To this end, they partition the set of jobs into big and 
small jobs. The big jobs are further partitioned into O(log log mn)

many classes of roughly equal size, and, after rounding, each class 
can be solved using the algorithm for unit-size jobs. Every small 
job j is split into p j unit-size jobs with the same set of feasi-
ble machines as j, for which the algorithm for unit-size jobs is 
used to determine an assignment. The assignment of the unit-size 
jobs corresponding to job j is then treated as a probability dis-
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tribution over possible assignments for j and rounded carefully, 
to obtain an assignment for j itself. The algorithm for small jobs 
achieves a competitive ratio of O(1) using an expected number 
of O(n) reassignments. Combining these two algorithms gives an 
online algorithm with competitive ratio O(log log mn) and constant 
recourse.

1.3. Our framework and our contribution

To generalize this result to arbitrary reassignment costs, we fol-
low the same approach as in [21], but adapt the algorithm as well 
as its analysis at certain key points. First, for scheduling the classes 
of big jobs, we replace the O(1)-recourse algorithm with its gener-
alization to arbitrary reassignment costs. This immediately guaran-
tees an online algorithm with competitive ratio of O(log log mn)

and constant reassignment cost. For the small jobs, we employ 
again the randomized algorithm in [21], but in this case, we have 
to adapt the analysis in order to show that this randomized al-
gorithm is still O(1)-competitive and has constant expected reas-
signment costs.

For the sake of completeness, we additionally give a detailed 
analysis of the involved algorithms whenever details are missing 
in [21].

2. Online load balancing

In this section we give our main result, a randomized online 
algorithm that achieves a competitive ratio of O(log log mn) while 
having constant expected reassignment cost. First, we describe an 
online flow problem with rerouting that generalizes online load 
balancing with unit-size jobs and reassignment cost and recall the 
algorithm for that problem by [21]. Next, we precisely describe 
the algorithm for unit-size jobs. Then, we adapt the randomized 
algorithm for small jobs with constant recourse [21] and give the 
details of the new analysis before we describe the main result of 
this section.

2.1. Online flows with rerouting

We consider the following online flow problem. We are given 
a directed graph G = (V , A) with vertices V and arcs A. Each 
arc a ∈ A has a capacity ua ∈ Z+ and an assignment cost ca ≥ 0. 
Moreover, there is a unique source vertex s ∈ V . In round t , ver-
tex vt ∈ V is specified as sink and the task is to (unsplittably) send 
one unit of flow from s to vt , in addition to the unit flows al-
ready being routed from the source to the vertices v1, . . . , vt−1, 
without violating the arc capacities ua . Throughout the paper we 
assume that the underlying offline problem admits a feasible so-
lution fulfilling all capacity constraints, while an online algorithm 
may violate some capacity constraints, which is necessary for de-
terministic online algorithms with bounded competitive ratio.

For determining the quality of an algorithm, we are interested 
in two properties: (i) the factor by which any arc capacity is vio-
lated and (ii) the total assignment cost of the flow. In round t , that 
is after satisfying the demand of vertices v1, . . . , vt , let ( fa(t))a∈A ∈
N A denote the flow found by the online algorithm. We say that 
the algorithm is α-competitive if fa(t) ≤ αua holds for each arc a
and each round t , which seems orthogonal to the classical defi-
nition. However, this different notion is helpful for our use case, 
online load balancing with restricted assignment.

Let us next describe the relationship between the problem of 
load balancing unit-size jobs with restricted assignment and the 
flow problem. In the offline load balancing problem, we create for 
each machine and for each job one vertex and add one vertex s
as source. Given the optimal makespan C�

max, the source connects 
to each machine-vertex i by an arc with capacity us,i = C�

max and 
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assignment cost cs,i = 0. Further, between each machine-vertex i
and each job-vertex j, we draw an arc (i, j) with capacity 1 and 
assignment cost c j if and only if j can be scheduled by machine i, 
i.e., if pi, j = 1. By specifying each job-vertex as sink with unit de-
mand, we obtain an instance of the offline version of the above 
introduced flow problem. The online flow problem assumes that 
the graph is known upfront while online load balancing is char-
acterized by having the jobs, i.e., in the reduction the job-vertices, 
revealed one by one. We emphasize that the graph we created has 
a very special structure. Before a job-vertex is specified as a sink, 
sending flow along its incident arcs violates the flow conservation 
at this vertex since all incident arcs are entering this node. Thus, 
any algorithm that always maintains a feasible solution to the flow 
problem will not use any of these arcs. The shortest-augmenting-
path algorithm designed by Gupta, Kumar and Stein [21] satisfies 
this condition.

The just developed reduction implies that the lower bound 
of �(log m) on the competitive ratio for any online algorithm with-
out reassignment for load balancing with restricted assignment 
also holds for the online flow problem using the above defini-
tion of competitiveness for this problem. To beat this strict lower 
bound, we allow the online algorithm to reroute flow at a certain 
assignment cost. More precisely, every time the flow sent along an 
arc a is decreased or increased by one unit, the assignment cost ca

has to be paid. Let C�
t be the assignment cost of an optimal solu-

tion after the first t rounds. We aim at developing algorithms that 
violate the arc capacities by at most a constant factor and simulta-
neously reroute flow at a reassignment cost bounded by O(C�

t ).
To this end, we have a closer look at the shortest path algo-

rithm in [21]. Let f be the flow in graph G after round t . We 
define the residual network Gt on the vertex set V as follows: 
For every arc a ∈ A let ā be its backward arc, i.e., if a = (v, w), 
then ā = (w, v). Set ut

a = αua − fa and ut
ā = fa , where α is the 

competitive ratio we are aiming for. Moreover, let ct
a = ct

ā = ca . 
That is, in contrast to the classical shortest-augmenting-path al-
gorithm, the backward arc of every arc with positive flow has 
assignment cost identical to its forward arc. If vertex vt is speci-
fied as sink in round t , we use a shortest path algorithm to find P , 
a shortest path from s to vt in the residual network Gt . We aug-
ment the flow f along P by one unit, i.e., if a ∈ P , then the flow 
along a is increased by one unit, while ā ∈ P implies that fa is 
decreased by one unit.

Gupta, Kumar, and Stein [21] show that this algorithm main-
tains a (2 + ε)-competitive flow while the assignment cost of 
rerouting the flow is at most

(
1 + 2

ε

)
times the assignment cost 

of an offline optimum.

Theorem 1 (Theorem 6.1 in [21]). If there is a feasible solution f � to the 
flow instance G with source s and sinks v1, . . . , vt of assignment cost C�

t , 
the total assignment cost of augmentations performed by the adapted 
shortest-augmenting-path algorithm on instance G is at most 

(
1 + 2

ε

)
C�

t . 
The capacities on the arcs are violated by at most a factor (2 + ε).

As pointed out already by Bernstein et al. [11], the original 
proof of the above theorem was erroneous (Lemma 5.4 in [21]) 
but has been fixed by the authors.

2.2. Unit-size jobs

In this section, we give the details for the usage of the al-
gorithm described in the previous section to solve online load 
balancing with unit-size jobs with constant competitive ratio and 
constant recourse. As discussed above, this problem can directly 
be translated to the online flow problem assuming that C�

max, the 
optimal makespan, is known in advance. This assumption is not a 
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restriction as we can employ a standard guess-and-double frame-
work at the cost of losing an additional factor of 4 in the competi-
tive ratio. Specifically, we start by guessing C�

max = 1, i.e., we assign 
the arcs (s, i) for i ∈ [m] a capacity of (2 + ε), where ε > 0 is the 
parameter that describes the trade off between competitive ratio 
and reassignment cost in Theorem 1. That is, our algorithm will 
be 4(2 + ε)-competitive with reassignment cost at most

(
1 + 2

ε

)
. 

In general, let round t refer to the point in time when job jt is re-
vealed. If C�

max is the guess of the optimal makespan in round t , 
then the arcs (s, i) for i ∈ [m] have capacity (2 + ε)C�

max. If the 
shortest augmenting path algorithm does not find a feasible flow 
in this network, then Theorem 1 implies that the true optimum is 
strictly greater than C�

max. Hence, we double C�
max and rerun the 

shortest augmenting path algorithm on the residual network Gt
with the updated capacities us,i = (2 + ε)C�

max. As the failure of 
the shortest augmenting path algorithm before doubling gives a 
lower bound on the optimal makespan, we obtain the following 
corollary; see also Section 7 in [21].

Corollary 1. Let 0 < ε ≤ 1. If there is a feasible solution with makespan 
C�

max and assignment cost C� to the (offline) load balancing problem 
with restricted assignment and unit-size jobs, then the shortest aug-
menting path algorithm combined with a guess-and-double framework 
maintains a schedule with makespan at most 4(2 + ε)C�

max and reas-
signment cost at most

(
1 + 2

ε

)
C� .

We note that this result may overestimate the actual reassign-
ment cost due to the following observation: In the online flow 
problem, increasing or decreasing the flow along an arc a by one 
unit costs ca . When balancing load online with reassignment, the 
reassignment of job j costs c j . However, the reduction we use 
implies that reassigning one unit-size job j from machine i to ma-
chine i′ is equivalent to decreasing the flow along the arc (i, j)
by one unit while simultaneously increasing the flow along the 
arc (i′, j) by one unit. This implies that the cost for rerouting the 
unit-flow associated with job j is 2c j .

2.3. Small jobs

Our algorithm classifies jobs as big and small depending on the 
current guess of the optimal makespan and the total number of 
jobs. Let us assume that we know n, the number of jobs, and C�

max, 
the optimal makespan. We justify this assumption later when de-
signing the complete algorithm in Section 2.4. Let γ = log(mn). We 
say a job j is big if p j ≥ C�

max
γ , and otherwise, the job is small. Our 

algorithm treats these jobs differently, and we start by only consid-
ering the small jobs, JS , of the instance. We prove the following.

Theorem 2. There is a randomized online algorithm maintaining an 
assignment of the small jobs JS with expected makespan at most 
O(1)C�

max while incurring an expected reassignment cost of at most 
O(1) 

∑
j∈JS

c j .

For simplicity, we assume that the set JS of small jobs is in-
dexed in the order of the arrival of jobs, i.e., JS = {1, . . . , nS}, 
where nS = |JS |. For scheduling these jobs, we first generate a 
fractional assignment of the jobs to machines which we then in-
terpret as probability distribution of the jobs over the machines. 
By using the rounding scheme of [21], we obtain an integral as-
signment.

Formally, for job j with processing time p j and assignment 
cost c j , we generate p j unit-size jobs with reassignment cost

c j
p j

and consider them as an input to online load balancing with unit-
size jobs as solved in Section 2.2. The set of machines that are able 
to process a unit-size job associated with j is identical to the set 
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of eligible machines for job j. Then, the assignment of the asso-
ciated unit-size jobs gives a fractional assignment of the original 
job.

Consider round t , i.e., the assignment after job t has arrived and 
was fractionally assigned by the algorithm in pt steps, one part per 
step. We are only interested in the final assignment (of all unit-
size jobs) and discard the intermediate assignments while job t
was only partially assigned. Let xi, j(t) be the number of unit-size 
jobs of job j that are assigned to machine i at time t . Then, the 
total (fractional) load on machine i at time t is given by �

f
i (t) =∑t

j=1 xi, j(t). Consider a machine i with xi, j(t) = xi, j(t − 1). Then, 
no unit-size job is moved from or to machine i. Hence, the reas-
signment cost for such a machine is equal to zero. For machine i
with xi, j(t − 1) > xi, j(t), exactly xi, j(t − 1) − xi, j(t) unit-size jobs 
are moved from machine i to machines i′ with xi′, j(t −1) < xi′, j(t). 
By definition, reassigning one unit-size job associated with j has 
actual cost

c j
p j

. However, as observed in Section 2.2, the transfor-

mation to the online flow problem implies that reassigning one 
unit-size job from i to i′ costs us 2

c j
p j

as it involves decreasing the 
flow on the edge between j and i and increasing the flow on the 
edge between j and i′ . Hence, the assignment cost c(t) incurred 
due to the arrival of job t is given by

c(t) :=
m∑

i=1

t∑
j=1

c j

p j

∣∣xi, j(t − 1) − xi, j(t)
∣∣. (1)

If there is a schedule with makespan C�
max, the algorithm main-

tains a fractional schedule with makespan at most 12C�
max and 

reassignment cost at most
∑t

s=1 c(s) ≤ 3 
∑t

j=1 c j by Corollary 1.
Since we are interested in an assignment of the original jobs j, 

we need to transform the fractional assignment (xi, j(t))i, j at time t
to an integral assignment without significantly increasing the reas-
signment cost. To this end, let X j(t) ∈ [m] be the random vari-

able dictating the assignment of j with distribution 
( xi, j(t)

p j

)m
i=1, 

i.e., P [X j(t) = i] = xi, j(t)
p j

. Since the unit-size jobs associated with j

have the same set of feasible machines, xi, j(t) = 0 if pi, j = ∞. 
Hence, the assignment given by X j(t) for 1 ≤ j ≤ t is feasible.

However, simply drawing the random variables X j(t) according 
to the distribution given by

( xi, j(t)
p j

)m
i=1 does not allow us to bound 

the reassignment cost of the actual jobs in terms of the bound c(t)
given in (1). Therefore, we use the rounding approach developed 
by [21] that takes the realization of X j(t − 1), i.e., the assignment 
of job j in round t − 1, into account when drawing the new as-
signment X j(t).

In round t , the newly arrived job t is always assigned according 
to the probabilities

( xi,t (t)
pt

)m
i=1 since there is no previous assign-

ment that needs to be taken into account.
We fix a small job j ∈ JS with j < t and construct the follow-

ing complete bipartite directed graph G(t) with vertex set V (t −
1) ∪ V (t) and arc set V (t − 1) × V (t), denoted by A(t). The two 
vertex sets V (t − 1) and V (t) contain one vertex for each ma-
chine, i.e., V (s) = {i(s) : i ∈ [m]} for s ∈ {t − 1, t}. An arc a =
(i(t −1), i′(t)) has cost ca = 0 if i = i′ . Otherwise, the unit flow cost 
for arc a ∈ A equals ca := c j

p j
. Each vertex i(t − 1) is a source with 

demand di(t−1) = −xi, j(t − 1), while each vertex i(t) is a sink with 
demand di(t) = xi, j(t). Since

∑
i xi, j(t − 1) = p j = ∑

i xi, j(t), we can 
solve the min-cost transportation problem for the p j units of flow 
from V (t − 1) to V (t); for details please refer to, e.g., [1]. Consider 
now the integral assignment X j(t − 1) = i of j at time t . Then, 
pick one of the xi, j(t − 1) units placed at i uniformly at random 
independently of other jobs j′ �= j. If this unit is sent to node i′(t)
by the solution of the transportation problem, set X j(t) = i′ . The 
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following lemma gives some useful properties of the random vari-
ables that enable us to bound the reassignment cost of the integral 
assignment. As these properties are only mentioned but not proven 
in [21], we provide a full proof here.

Lemma 1. The random variables X j(t) for 1 ≤ j ≤ t ≤ nS satisfy the 
following properties:

1. X j(t) and X j′ (t) are independent for j �= j′ ,
2. P [X j(t) = i] = xi, j(t)

p j
, and

3. P [X j(t −1) �= X j(t)] =∑
i∈[m]:

P [X j(t−1)=i]>0

1
p j

(xi, j(t −1) −xi, j(t))+ ,

where x+ = max{x, 0}.

Proof. We fix a time t .

Ad 1 Solving the transportation problem independently for each 
job implies Property 1.

Ad 2 We prove this by induction on round t . Let j = 1 be the 
first small job that arrived. Clearly, P [X1(1) = i] = xi,1(1)

p1
by defini-

tion. Suppose now that Property 2 holds for all jobs 1 ≤ j ≤ t − 1
in round t − 1. Consider the fractional assignment (xi, j(t))i, j af-
ter job t arrived. Let f i,i′ denote the flow from machine ver-
tex i(t − 1) to vertex i′(t) as given by the optimal solution to the 
min-cost transportation problem. If X j(t − 1) = i, then the proba-

bility that X j(t) = i′ is
f i,i′

xi, j(t−1)
. By the Law of Total Probability and 

by the induction hypothesis,

P
[

X j(t) = i′
]
=

∑
i∈[m]:

P [X j(t−1)=i]>0

P
[

X j(t) = i′ | X j(t − 1) = i
]

· P [
X j(t − 1) = i

]
=

∑
i∈[m]:

P [X j(t−1)=i]>0

f i,i′

xi, j(t − 1)

xi, j(t − 1)

p j
= xi′, j(t)

p j
,

where the last equality follows from f i,i′ being a feasible solution 
to the transportation problem.

Ad 3 Recall that c(i(t−1),i(t)) = 0. For a machine i with xi, j(t −
1) > xi, j(t), the optimal solution to the transportation problem 
sends xi, j(t − 1) − xi, j(t) unit jobs to other machines. Thus, 
P

[
X j(t) �= X j(t − 1) | X j(t − 1) = i

] = xi, j(t−1)−xi, j(t)
xi, j(t−1)

. For i with 
xi, j(t − 1) ≤ xi, j(t) the optimal solution to the transportation prob-
lem sends xi, j(t −1) unit jobs from i(t −1) to i(t). Thus, P

[
X j(t) �=

X j(t − 1) | X j(t − 1) = i
] = 0. Therefore,

P
[

X j(t) �= X j(t − 1)
]

=
∑

i∈[m]:
P [X j(t−1)=i]>0

P
[

X j(t) �= X j(t − 1) | X j(t − 1) = i
]

· P [
X j(t − 1) = i

]

=
∑

i∈[m]:
P [X j(t−1)=i]>0

(
xi, j(t − 1) − xi, j(t)

)+

xi, j(t − 1)

xi, j(t − 1)

p j

=
∑

i∈[m]:
P [X j(t−1)=i]>0

(
xi, j(t − 1) − xi, j(t)

)+

p j
,
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where the first equality holds because of the Law of Total Prob-
ability and the second equality follows from Property 2 and the 
observation discussed above. �
Proof of Theorem 2. We first show that the above described algo-
rithm incurs a total cost of at most 3 

∑nS
j=1 c j while maintaining a 

solution that has a small load on each machine in expectation. To 
this end, let Li(t) := ∑

j:X j(t)=i p j denote the random load on ma-
chine i at time t . We start with showing that E[Li(t)] ≤ 12C�

max(t)
for all 1 ≤ i ≤ m. Here, C�

max(t) denotes the optimal makespan in 
round t . As a bound on the expected load per machine is not suffi-
cient to bound the expected maximum, i.e., E[maxi Li(t)], we then 
show how to guarantee a makespan less than 72C�

max with proba-
bility one at the loss of a constant factor in the reassignment cost.

With Lemma 1, it follows

E[Li(t)] =
t∑

j=1

P [X j(t) = i]p j =
t∑

j=1

xi, j(t)

p j
p j = �

f
i (t),

where �
f
i (t) is the fractional load on machine i after having as-

signed job t . By Corollary 1, we know that max1≤i≤m{� f
i (t)} ≤

12C�
max if there exists a feasible solution with makespan C�

max. 
Now consider the reassignment cost C(t) our algorithm incurs over 
the course of the arrival of t small jobs. For 1 ≤ j ≤ t , the algo-
rithm pays c j whenever X j(t − 1) �= X j(t). Thus, with Property 3
of Lemma 1, we have

E[C(t)] =
t∑

j=1

P [X j(t − 1) �= X j(t)]c j

=
t∑

j=1

∑
i∈[m]:

P [X j(t−1)=i]>0

c j

p j
(xi, j(t) − xi, j(t − 1))+

≤
t∑

j=1

m∑
i=1

c j

p j
|xi, j(t) − xi, j(t − 1)| = c(t).

Again, with Corollary 1, the expected total cost of the randomized 
algorithm is bounded by

∑n
t=1 c(t) ≤ 3 

∑n
j=1 c j .

Unfortunately, bounding E[Li(t)] does not imply a bound 
on E[max1≤i≤m Li(t)] as noted by [21].

We use the fact that we are only considering small jobs 
in order to get a better bound. Consider a time t and a ma-
chine i. Let Yi, j(t) indicate whether or not j is assigned to i
at time t . So, Yi, j = 1{X j(t)=i} and Li(t) = ∑

j∈JS
p j Yi, j . We 

have E
[∑

j∈JS
p j Yi, j(t)

]
= �

f
i (t) ≤ 12C�

max(t) as discussed above. 
Now, we bound the probability that the makespan of our schedule 
exceeds 72C�

max(t) in round t .

P
[

max
i

Li(t) > 72C�
max(t)

]

= P

[
∃i :

∑
j∈JS :X j(t)=i

p j > 72C�
max(t)

]

≤
m∑

i=1

P

[ ∑
j∈JS :X j(t)=i

p j > 72C�
max(t)

]

=
m∑

i=1

P

[ ∑
j∈JS

γ p j Yi, j(t)

C�
max(t)

> 72γ

]
.

Fix a machine i and a round t . As the random variables Yi, j

only depend on the event {X j(t) = 1} and the variables X j(t) are 
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independent by construction, for fixed i, the Yi, j are independent 
as well. Hence, γ p j Yi, j(t)

C�
max(t) are independently distributed in [0, 1]

with E
[∑

j∈JS

γ p j Yi, j(t)
C�

max(t)

]
= γ �

f
i (t)

C�
max(t) ≤ 12γ . Applying a Chernoff-

Hoeffding type bound [13, Theorem 1.1] yields

P

[ ∑
j∈JS

γ p j Yi, j(t)

C�
max(t)

> 72γ

]
≤ 2−72γ ≤ 1

(mt)72
.

Inserting this in the bound calculated above gives

P
[

max
i

Li(t) > 72C�
max(t)

] ≤ 1

m71t72
.

Hence, for one instance with nS jobs, the probability that the 
makespan of our algorithm exceeds 72C�

max(t) in some round t is 
bounded by

P
[∃t : max

i
Li(t) > 72C�

max(t)
] ≤ 1

m71

nS∑
t=1

1

t72
≤ 1.01

m71 .

Now, whenever the randomized rounding algorithm incurs a 
makespan more than 72C�

max, we just restart the algorithm from 
scratch and fast-forward to time t . Then, we reassign all small 
jobs accordingly, incurring a reassignment cost of at most C� =∑

j∈JS
c j . If we observe such a failure mode, we run the algorithm 

independently of all previous runs. Hence, the probability that we 
observe such a failure mode k times for one instance is bounded 
by 1.01

m71 ≤ 1
2k for m ≥ 2. Thus, the total expected cost of possible 

failure modes is bounded by 
∑∞

k=1 C� k 
( 1

2

)k = 2C� if m ≥ 2. �
2.4. The final algorithm

We prove the following theorem.

Theorem 3. There is a randomized online algorithm maintaining an as-
signment with expected makespan at most O(log log(mn))C�

max while 
incurring an expected reassignment cost of at most O(1) · C� .

As discussed in Section 2.3, we assume that we know n, 
the number of jobs we will encounter, and C�

max, the optimal 
makespan. Based on these two values, we classify each arriving 
job as big or as small, where a job j is big if p j ≥ C�

max
log(mn)

, and oth-
erwise, the job is small. Small jobs are assigned by the randomized 
algorithm described in Section 2.3. For big jobs, we first partition 
them into classes Ck , where a job j belongs to Ck if p j ∈ [2k−1, 2k)

for k ∈N . Rounding the processing time of jobs in Ck to 2k−1 loses 
at most a factor 2 in the competitive ratio.

We then separately consider each class, which (after the round-
ing) constitutes an instance of online load balancing with unit-size 
jobs. Given that there are O(log log(mn)) classes of big jobs, we 
get:

Corollary 2. There is an online algorithm maintaining an assignment of 
the big jobs JB with makespan at most O(log log(mn))C�

max and reas-
signment cost at most O(1) 

∑
j∈JB

c j .

Maintaining C�
max or n. We still need to argue that we can as-

sume that either the current value of C�
max or n are known to us. 

Recall that the threshold deciding whether a job is big or small is 
defined as C�

max
log(mn)

. This implies that a job changes its classification 
at most once.

We start with the case where n is known, but not C�
max. As 

the optimal makespan C�
max only increases, the threshold C�

max is 
log(mn)
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monotonously increasing, implying that a class of big jobs might 
become small at some point. If this happens, the whole class 
makes the transition from big to small at the same time and we 
simply ignore their previous assignment; instead we consider these 
jobs as newly arriving small jobs (without changing n) and invoke 
the algorithm for small jobs. Per job, this transition happens at 
most once, which guarantees that the reassignment cost remains 
bounded by O(1)C� . Theorem 2 guarantees that after such a tran-
sition the load on machine i because of small jobs is still bounded 
by O(1)C�

max.
The case where C�

max is known but not n is slightly more tech-
nical as now our threshold decreases, which implies that a subset 
of small jobs becomes big and leaves the assignment of small jobs. 
Again, we treat this transition as arrival of new jobs and give the 
newly big jobs as input to the algorithm for big jobs. Since this 
transition happens at most once per job, the overall increase in 
the reassignment jobs is bounded by O(1)C� . However, because 
other jobs remain small and our algorithm does not handle the 
case where jobs disappear, we freeze their assignment at an addi-
tional increase of O(1)C�

max in the load on machine i. This means, 
any small jobs that have arrived so far and remain small, will 
not be reassigned in the future. Only small jobs arriving later and 
the big jobs are subject to reassignments. In the end, there are at 
most O(log log(mn)) many frozen blocks of small jobs, each adding 
a load of at most O(1)C�

max to machine i. Hence, the total increase 
of the load on machine i is bounded by O(log log(mn))C�

max.

Proof of Theorem 3. Theorem 2 guarantees that the algorithm 
maintains a schedule for the small jobs of makespan at most 
O(1)C�

max while incurring a reassignment cost of at most
O(1) 

∑
j∈JS

c j . Corollary 2 implies that the schedule for the 
big jobs has makespan at most O(log log(mn))C�

max with total 
cost bounded by O(1) 

∑
j∈JB

c j . Hence, the algorithm achieves a 
makespan of at most O(log log(mn))C�

max with total reassignment 
cost at most O(1)C� . �
3. Concluding remarks

It is somewhat surprising that we achieve the same competi-
tive ratios (up to constants) in all three reassignment models. It 
remains as an interesting open question whether the problem ad-
mits a constant-competitive algorithm in any reassignment model 
with constant reassignment factor or if there even exists an online 
algorithm allowing for fully scaleable tradeoff between the com-
petitive ratio and the reassignment factor.

We would like to point out that the analysis of the algorithm 
is almost tight: Choosing γ ∈ �

( log(mn)
α

)
is key to guaranteeing 

that the expected makespan of the small jobs remains within a 
factor of O(α) of C�

max. While choosing α non-constant, e.g., α ∈

(log log(mn)) is possible, the impact on the competitive ratio is 
bounded; this still creates �

(
log

( log(mn)
α

))
classes of big jobs. The 

algorithm treats the O
(

log
( log(mn)

α

))
classes of big jobs indepen-

dently, which implies that, even given the optimal schedule for 
each class, the combined schedule might lose this factor. Consider 
the following example, where the processing volume is identical 
for every class and each class can be scheduled on only two ma-
chines. Of the two machines, one machine is private and the other 
one is shared among all classes. The class-optimal schedule uses 
both machines to the same extent while the combined sched-
ule that only uses the private machines is better by a factor of 



(
log

( log(mn)
α

))
. In order to improve upon the competitive ratio of 

O(log log(mn)), an algorithm needs to consider multiple classes at 
once.

Another challenge is to design an algorithm with a non-
trivial bound on the reassignment factor for the general unre-
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lated machine scheduling problem, in which jobs may have arbi-
trary machine-dependent processing times. While a best possible 

(log n)-competitive algorithm [5] is known for the online setting, 
the problem is wide open when allowing reassignments, even for 
unit reassignment costs. Our (and previous) approaches crucially 
rely on the fact that the processing times are {p j, ∞}.

Further interesting research directions include maximizing the 
minimum load and the fully dynamic setting where jobs might 
leave as well. The difficulty in both settings is that there might be 
time points where the optimum is equal to 0 which makes these 
types of problems notoriously difficult for approximation. One way 
to overcome these difficulties is to aim for competitive ratios with 
an additive constant; such an approach is developed, e.g., in [12], 
for online load balancing on identical machines.
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