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A B S T R A C T   

A large discrepancy exists between the dire impacts that most natural scientists project we could face from 
climate change and the modest estimates of damages calculated by mainstream economists. Economic assess-
ments of climate change risks are intended to be comprehensive, covering the full range of physical impacts and 
their associated market and non-market costs, considering the greater vulnerability of poor people and the 
challenges of adaptation. Available estimates still fall significantly short of this goal, but alternative approaches 
that have been proposed attempt to address these gaps. This review seeks to provide a common basis for natural 
scientists, social scientists, and modellers to understand the research challenges involved in evaluating the 
economic risks of climate change. Focusing on the estimation processes embedded in economic integrated 
assessment models and the concerns raised in the literature, we summarise the frontiers of research relevant to 
improving quantitative damage estimates, representing the full complexity of the associated systems, and 
evaluating the impact of the various economic assumptions used to manage this complexity.   

1. Introduction 

Climate change is already having economic impacts around the 
world and will continue to do so for centuries, but our understanding of 
how it affects societies and economies is much less developed than our 
understanding of likely changes in the climate system (Stern, 2013; 
Auffhammer, 2018). Estimating the economic and social impacts of 
climate change requires challenging collaborative research between 
natural and social scientists (Irwin et al., 2018; Ciscar et al., 2019; 
Stainforth and Calel, 2020). Economists provide important contribu-
tions, bringing to bear not only knowledge of impacted markets, but also 
non-market effects, decision-making under uncertainty, dynamic 
vulnerability, poverty, and economic development (Stern, 2021). 

To make sound policy decisions about the management of climate- 
related risks, including cost-benefit assessments of adaptation and 
mitigation actions, estimates of the economic costs of climate change 
impacts under different scenarios are critically important (Diaz and 
Moore, 2017). For this to happen, climate hazards, such as shifts in the 
frequency and intensity of extreme events, need to be translated into 
climate damages, to estimate the total loss (or gain) in social welfare 
associated with climate change. Economic assessments of climate 

change are intended to be comprehensive, capturing: (1) both market (e. 
g., agricultural production losses) and non-market (e.g., loss of biodi-
versity or costs of mortality and morbidity) damages (Rogers et al., 
2019); (2) impacts of climate change evolving over centuries, including 
concomitant year-to-year disasters (DeFries et al., 2019); (3) the 
inequality of impacts; and (4) the challenges of adaptation (Rao et al., 
2017). Estimates of the economic risks of climate change have also been 
developed from bottom-up impact assessments for the United States 
(Hsiang et al., 2017), the EU (Ciscar Martinez et al., 2014), and globally 
(Takakura et al., 2019). 

There is a notable disconnect between some aggregate economic 
damage estimates that describe relatively minor impacts compared to 
the more dire projections coming from non-traditional economics and 
the climate sciences (Stoerk et al., 2018; Woillez et al., 2020). At pre-
sent, economic estimates of the impacts of future climate change are 
widely acknowledged to omit some of the biggest risks (DeFries et al., 
2019; Carleton and Greenstone, 2021; Kikstra et al., 2021; Stern and 
Stiglitz, 2022). As a result, policymakers can be misled about the 
magnitude and urgency of the challenge the world faces from climate 
change, and the benefits of investments in adaptation and mitigation 
(Pindyck, 2017). 
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A class of models, called integrated assessment models (IAMs)1 are 
designed to combine models of climate change, estimates of environ-
mental changes with economic, social, and technological development, 
and climate impacts (see Fig. 1). Although many appear in the academic 
literature, three have been especially influential: DICE (Nordhaus, 
2018), PAGE (Yumashev et al., 2019) and FUND (Anthoff and Tol, 2014) 
(van den Bergh and Botzen, 2014; Ackerman and Munitz, 2016). These 
models have several limitations, arising from both our incomplete un-
derstanding of climate impacts and the more fundamental limitations of 
traditional economic thinking, as well as uncertainty about the future 
more generally (Pindyck, 2013; Stern, 2013; Stoerk et al., 2018; Stern 
and Stiglitz, 2022). Nonetheless, models have an important role to play 
by providing an opportunity to bring together opposing views and 
multiple disciplines (Metcalf and Stock, 2017; Weyant, 2017). New 
research is paving the way to address many of these problems but esti-
mates of impacts that are credible to all relevant parties remain out of 
reach. 

The purpose of this review is to summarise the frontiers of research 
on areas that could improve the estimation of the social and economic 
risks of future climate change. This document is not intended to be a 
comprehensive review of all the relevant research, but instead focuses 
on literature that has reshaped the frontiers since the publication of the 
Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change (IPCC). Our discussion is not isolated to IAMs, although this 
literature is heavily represented below, and we therefore aim to high-
light key opportunities for future development across all economic as-
sessments of climate risk. 

We further limit our discussion to the evaluation of the risks of 
climate change impacts and economic damages. An extensive literature 
uses IAMs and other approaches to study improved mitigation policies 
and the influence of uncertainty, technological change, and capital in-
vestment in these decisions (see e.g., Tavoni et al., 2015; van Vuuren and 
Kok, 2015; Geels et al., 2016; Gambhir, 2019). A different class of in-
tegrated assessment models (process-based IAMs) offers extensive detail 
on the mitigation process, and mitigation policy evaluation, which we 
do not discuss here (Clarke et al., 2014; Cointe et al., 2019; Wilson et al., 
2021). 

We begin in the following section by identifying current challenges 
to estimating economic impacts. Areas where future research could 
contribute to the improvement of damage functions are identified on the 
right of Fig. 1. We expand on some of these open research questions in 
Section 3 of the paper. Fig. 1 also identifies fundamental economic as-
sumptions that underpin the economic growth model embedded in 
IAMs. Challenging these assumptions will be an important part of future 
research to improve the estimation of the social and economic risks of 
future climate change. Some of these issues are discussed in Section 4.1 
of the paper and modelling approaches that provide a framework for 
examining the economic impacts of climate change under alternative 
assumptions are introduced in Section 4.2. Section 5 concludes. 

2. Challenges of estimating economic damages 

2.1. Scientific understanding and model calibration 

Economic damages depend upon accurate estimates of climate haz-
ards, models of biophysical impacts, and translations of these impacts 
into welfare losses. Each of these steps multiplies the level of uncer-
tainty, unknown interactions, and calibration demands. Because of their 
greater level of abstraction, IAMs are particularly vulnerable to cali-
bration problems. Parameter values are often selected such that, for a 
narrow range of warming levels, such as 1–3 ◦C (Diaz and Moore, 2017), 

estimated damages are consistent with outcomes expected according to 
common wisdom (Pindyck, 2013). More recent assessments of temper-
ature variability imply that such expected outcomes are un-
derestimations (Calel et al., 2020). Estimates of damages have been 
shown to be potentially very sensitive to uncertainties about the 
heaviness of tails of the distribution of expected temperature changes 
associated with rises in atmospheric concentrations of greenhouse gases, 
the specification of the damages function, cut-off bounds, the relative 
risk aversion of society, discounting and rates of pure time preference, 
and economic growth rates (Weitzman, 2012). Further, it has been 
argued that catastrophic damages are plausible at higher temperatures, 
and this necessitates modelling highly non-linear changes in impacts 
and much greater potential losses at the high end of the temperature 
distribution (Weitzman, 2010; Kopp and Mignone, 2012; Dietz and 
Stern, 2015). 

The calibration of the damage functions used in cost-benefit IAMs 
does not reflect the frontier of knowledge in the impact research com-
munity. Table 1 provides a summary of recent progress quantifying the 
impacts of climate change, and SI Fig. 1 compares recent progress with 
the research represented in the major IAMs. Cost-benefit estimates of 
current IAMs tend to draw either directly or indirectly on climate im-
pacts literature dating back to the 1990s (Diaz and Moore, 2017; Rose 
et al., 2017), relying on sectoral studies performed at a time when the 
understanding of and ability to model climate impacts was significantly 
less advanced (Kopp et al., 2012). Added to this is the problem that 
climate change is potentially altering our underlying physical and eco-
nomic systems, thereby reducing the validity of historic data (Daron and 
Stainforth, 2015). The sophistication and resolution of estimates of 
socioeconomically-relevant hazards has also improved, drawing upon 
impact models (Byers et al., 2018; Lange et al., 2020), although the 
connection of this work to economic risks is still incomplete. 

Multiple lines of evidence are available to improve calibrations. 
Sector-specific (“bottom-up”) damage estimates are available from both 
econometric models (e.g., mortality, labor productivity, agriculture, 
crime, and energy demand) and biophysical process models (e.g., agri-
culture, energy demand, infrastructure, flooding, droughts, and 
ecosystem losses) (Ciscar et al., 2019). Econometric approaches to 
aggregate impacts of temperature on economic output (“top-down” es-
timates) have recently provided an alternative to traditional damage 
functions, although considerable disagreement remains about the 
appropriate estimation of these effects (Dell et al., 2014; Burke et al., 
2015a). These different approaches also produce different estimates 
because of the different processes captured (econometric vs. biophysi-
cal), different coverage (bottom-up vs. top-down), and handling of non- 
market damages (economic output estimates vs. welfare losses) (Piontek 
et al., 2021). 

Progress has been made to lower the remaining barriers to including 
new knowledge into IAM damage functions. Econometric and biophys-
ical models often require high-resolution spatiotemporal weather and 
socioeconomic data, making them incompatible with aggregate IAMs 
(Rose et al., 2017). Sarofim et al. (2021) provide a process for translating 
results into climatology-based damage functions, and Hsiang et al. 
(2017) develop a flexible architecture for computing damages that is 
capable of continuously integrating new empirical findings and new 
climate model projections. However, progress on this issue often re-
quires collaboration between climate, impacts, and CGE modellers, and 
an institutional base capable of facilitating these collaborations does not 
yet exist. 

2.2. Impact category coverage 

Bottom-up estimates of economic damages are incomplete because of 
the many processes that are understudied. For estimates to be used, they 
need to have credible methods, empirical validation, and ease of access. 
Some types of impacts, such as correlated and cascading risks, and 
climate and social thresholds and tipping points, are particularly 

1 In this document, we focus on cost-benefit IAMs. Another kind of model also 
called an IAM is a process-based energy model, but these typically do not have 
climate damage representations (Weyant, 2017). 
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challenging to estimate. 
Much progress has been made in quantifying and monetising effects 

of climate change. Impacts on agriculture and forestry, water resources, 
coastal zones, energy consumption, air quality, tropical and extra-
tropical storms, human health and mortality, physical performance, 
cognitive performance, crime, and social unrest have been widely 
studied and are, at least partially, quantified (Dell et al., 2012; Tol, 2012; 
Neumann and Strzepek, 2014; Carleton and Hsiang, 2016). However, 
the impacts across many other sectors remain unclear, particularly non- 
market impacts and socially contingent impacts - those associated with 
large-scale dynamics related to human values and equity, such as con-
flict, famine, and poverty (Watkiss, 2011). There are also physical pro-
cesses that are not well understood, in terms of both occurrence and 
impact (Howard, 2014; Revesz et al., 2014; van den Bergh and Botzen, 
2014; DeFries et al., 2019). Mora et al.’s (2018) systematic literature 
search found traceable evidence for 467 pathways by which human 
health, water, food, economy, infrastructure, and security have been 
recently impacted by climate hazards such as warming, heatwaves, 
precipitation, drought, floods, fires, storms, sea-level rise and changes in 
natural land cover and ocean chemistry. 

In-depth explorations of omitted climate-impact channels emphasise 
the importance of addressing knowledge gaps, but also explicitly 
recognise barriers to progress, which include a lack of adequate data; 

uncertainty in forecasts of future climate scenarios; difficulties associ-
ated with identifying and disentangling indirect effects; and trade-offs 
associated with the spatial resolution of data (Hurd and Rouhi-Rad, 
2013; Marten et al., 2013; McLeman, 2013; Howard, 2014). 

Impacts can also interact through the supply chains, resulting in 
inter-regional (e.g., crop losses in one area producing food insecurity in 
an importing country) and inter-sectoral (e.g., food insecurity leading to 
health impacts) connections. Since the IPCC Fifth Assessment Report, 
new evidence has emerged on a range of non-trivial interaction effects 
(Baldos and Hertel, 2014; Zaveri et al., 2016). Computational general 
equilibrium (CGE) models offer one approach to understanding sectoral 
impact cascades through supply chains and import/export relationships 
(Kopp and Mignone, 2012; Ciscar et al., 2019). 

2.3. Representations of uncertainty 

Extreme risks can be more important than modal outcomes for many 
issues and actors, and many impact risk distributions have heavy tails 
(Smith and Stern, 2011). Economic impacts compound multiple sources 
of uncertainty: uncertainty about the physical nature of future climate 
change, about the physical impacts of those changes, and about the 
economic damages that result from those impacts (Dietz, 2012). 
Although considerable progress has been made to incorporate uncer-
tainty into all major IAMs (Gillingham et al., 2018), and explore long 
tails (e.g., Ackerman et al., 2010) and risk aversion (e.g., Anthoff et al., 
2009a, 2009b), challenges remain. 

IAMs most commonly deal with uncertainty through Monte Carlo 
simulation of a selection of model parameters. Although it is common to 
take independent draws of parameter uncertainty, physical constraints 
in the climate system mean they should be jointly sampled, reflecting, 
for example, the relationship between climate sensitivity and the rate of 
ocean heat uptake (Roe and Bauman, 2013). Monte Carlo simulations 
can also be used to capture climate variability and the effects of extreme 
events (e.g., Kikstra et al., 2021), although this is not common. The 
simplicity of the damage functions used in IAMs are important for 
allowing the large numbers of Monte Carlo draws, but new emulation 
approaches are bridging the gap between these and complex biophysical 
models (Takakura et al., 2021; Sarofim et al., 2021). 

When identifying optimal policies, the Monte Carlo approach as-
sumes perfect knowledge within each deterministic Monte Carlo simu-
lation. In fact, policymakers operate in an environment where decisions 
are made repeatedly over time as long-term uncertainty is reduced 

Fig. 1. Features of integrated assessment models explored in this article. The challenges and research frontiers covered in this review reflect a focus on the damage 
function and economic growth model components of cost-benefit IAMs. Fundamental economic assumptions to be challenged and areas for future research to 
improve are suggested based on our review of this literature. 

Table 1 
Progress in impact estimates. Review articles of recent progress in the climate 
impacts literature, across a range of impact sectors. Discussions of adaptation 
and areas in need of further research are included in these articles, but we also 
include rows for reviews of non-impact-specific adaptation and unquantified 
damages.  

Sector Recent Review articles 

Conflict Burke et al. (2015b), Adams et al. (2018) 
Ecosystems Pecl et al. (2017), IPBES (2019), Olsson et al. (2019) Ch. 4,  

Mbow et al. (2019) Ch. 5. 
Energy supply and 

demand 
Carleton and Hsiang (2016), Cronin et al. (2018), Hoegh- 
Guldberg et al. (2018) 3.4.9.2 

Mortality and 
morbidity 

Carleton and Hsiang (2016), Orimoloye et al. (2019), Son 
et al. (2019), Hoegh-Guldberg et al. (2018) 3.4.7 

Water resources Kour et al. (2016), Hoegh-Guldberg et al. (2018) 3.4.2 
Combined adaptation Klöck and Nunn (2019), Chapagain et al. (2020) 
Unquantified 

damages 
Howard (2014), DeFries et al. (2019)  
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(Kann and Weyant, 2000; Burke et al., 2016). An alternative modelling 
approach, stochastic optimisation, captures this dynamic, and results in 
hedging strategies and other effects of varying risk aversion. Such 
techniques have been applied in IAMs to investigate policy responses to 
parameter uncertainty relating to multiple tipping points and the pos-
sibility of breaching climate thresholds (Keller et al., 2004; Lemoine and 
Traeger, 2014; Lontzek et al., 2015; Diaz and Keller, 2016; Lemoine and 
Traeger, 2016; Lontzek et al., 2016). Further, in the face of significant 
uncertainty, traditional cost-benefit analysis can fail to represent key 
decision-making criteria, and alternatives such as minimax regret ap-
proaches can be useful (van den Bergh, 2004). 

Deep uncertainty describes situations in which conceptual models, 
probability distributions, and/or the value of various outcomes are un-
known or cannot be agreed on (Chen et al., 2021). The existence of deep 
uncertainty in impacts provides a strong motivation for precautionary 
policy, as insurance against those disasters (Ackerman et al., 2009). It 
may be necessary to look to decision-making frameworks that extend 
beyond the conventional utility-maximizing approach, such as the 
tolerable windows approach, the safe landing approach, robust decision- 
making, decision-scaling, the smooth ambiguity model, info-gap deci-
sion theory or cost-effectiveness analysis, and ambiguity aversion 
(Millner et al., 2013; Heal and Millner, 2014; Diaz and Keller, 2016; 
Simpson et al., 2016; Berger et al., 2017; Stern and Stiglitz, 2022). 

2.4. System dynamics and thresholds 

Much of the uncertainty inherent in modelling complex interactions 
between the climate and the economy reflects the lack of complete 
knowledge and understanding of these systems (Weyant, 2017). An 
additional source of uncertainty is inherent in the complex dynamics of 
each system which allows for the possibility of large-scale, nonlinear 
shifts in the Earth system (Oppenheimer et al., 2014), and the ensuing 
economic consequences (Wagner and Weitzman, 2015). Included in this 
list are a range of “tipping points” that have the potential to accelerate 
climate impacts or make them effectively irreversible. 

Lenton et al. (2008) identified nine policy-relevant sources of climate 
vulnerability to tipping elements from a long list of candidates: Arctic 
summer sea-ice, Greenland ice sheet, West Antarctic ice sheet, Atlantic 
thermohaline circulation, El Niño-Southern oscillation, Indian summer 
monsoon, Sahara/Sahel and West African monsoon, Amazon rainforest, 
and Boreal forests (see SI Fig. 2). Such nonlinear dynamics do not 
operate in isolation, and one tipping element can potentially increase 
the likelihood of other tipping points (Rocha et al., 2018). A global 
cascade of state shifts represents, arguably, an existential threat to 
civilization (Lenton et al., 2019) and there is evidence to suggest that 
real-world examples are already being observed (Caesar et al., 2018; 
Collins et al., 2019). The timescales and dynamics associated with 
breaching such critical thresholds in the earth system remain extremely 
uncertain (Schuur et al., 2015; McKinley et al., 2017). 

Similar thresholds and nonlinear effects have been suggested for 
human systems (Burke et al., 2015b) and biological systems (Thomas 
et al., 2004), with the potential for cascading impacts, such as mass 
migrations of people or mass extinctions of species. Kopp et al. (2016) 
identify four potential social tipping elements that are relevant to inte-
grated assessment of the costs of climate change: public opinion and 
policy change; technology and behaviour adoption for adaptation or 
mitigation; migration; and civil conflict. Such amplification mechanisms 
are also not necessarily negative, with positive tipping elements likely to 
exist in socioeconomic, technological, and political systems that might 
deliver, for example, accelerated climate change mitigation (Farmer 
et al., 2019; Otto et al., 2020; Lenton, 2020), such as learning-by-doing 
feedbacks in clean technologies. 

The leading IAMs have generally failed to reflect the full under-
standing of most of these negative and positive tipping elements 
(Lontzek et al., 2015; Farmer et al., 2019). Several studies have 
attempted to incorporate climate and social tipping points into 

economic models (Whiteman et al., 2013; Lontzek et al., 2015; Anthoff 
et al., 2016; Diaz and Keller, 2016; Hope and Schaefer, 2016; Kessler, 
2017; Grubler et al., 2018; Nordhaus, 2019; Yumashev et al., 2019). 
Dietz et al. (2021) perform a model-based meta-analysis combining ef-
fects from all IAM studies that include geophysically-based tipping point 
representations and provide an aggregate “tipping point damage func-
tion” which can be used to adjust models that do not include these. 
However, little is known about the socioeconomic consequences of 
environmental tipping points, and Dietz et al. only consider outcomes 
driven by changes in temperature and sea-level rise. Some studies have 
employed techniques from the field of optimal control under uncertainty 
to model stochastic tipping elements (Gjerde et al., 1999, Castelnuovo 
et al., 2003, Lemoine and Traeger, 2016). For example, Cai et al. (2016) 
incorporate five interacting climate tipping points into a stochastic- 
dynamic IAM, resulting in nearly an eightfold increase in the social 
cost of carbon in their results. 

2.5. Inequality and spatial heterogeneity 

Risk is the interaction of hazard, exposure, and vulnerability, and 
with respect to climate change, poor communities generally have higher 
levels of all these factors (Harrington et al., 2018). Climate hazards are 
expected to increase in many parts of the world, but particularly in the 
populous tropical, mostly developing, countries (Burke et al., 2015a; 
Arnell et al., 2019). Developing countries also tend to be highly 
vulnerable to extreme events as a result of poverty, weak state in-
stitutions, insufficient planning, and poor physical infrastructure 
(Edmonds et al., 2020), as well as having more limited economic and 
technological capacity to adapt to climatic change (Mertz et al., 2009). 
Given the centrality of distributional questions to many of the Sustain-
able Development Goals (SDGs), better modelling of inequality is 
required with respect to both the impacts and mitigation of climate 
change (Piontek et al., 2021; Soergel et al., 2021). 

A number of barriers exist to incorporating these effects in economic 
assessments. Models do not currently agree on the relative differences in 
impacts between developing countries (Watkiss, 2011). Empirical 
foundations are poor, since estimates of global damages are often based 
on extrapolations from studies that focus on a small number of richer 
regions (van den Bergh and Botzen, 2014; Diaz and Moore, 2017). The 
large regions used in IAMs also mask intra-regional inequality. Dennig 
et al. (2015) and Budolfson et al. (2017) have shown intra-region 
inequality can have a greater impact on the social cost of climate 
change than discounting and catastrophic damages, respectively. 

When studying optimal planning, IAMs often exclude the effect of 
inequality, to separate the climate policy problem from the wealth 
redistribution problem (Kunreuther et al., 2014; Farmer et al., 2015; 
Diaz and Moore, 2017). As a result, welfare changes in rich regions and 
poor regions are implicitly assumed to be equal, despite the greater risks 
that poor regions face from any level of consumption losses (Stanton, 
2011). 

Equity-weights have also been employed to correct climate damage 
estimates. Fankhauser et al. (1997), and more recently Anthoff et al. 
(2009a, 2009b) and Schumacher (2018), demonstrated how equity 
weighting can lead to significantly higher global damages from climate 
change than those reported by unmodified cost-benefit IAMs. As climate 
damages tend to fall disproportionately on poorer regions, weighting 
monetary damages by their importance for welfare will tend to increase 
estimates of global damages (Diaz and Moore, 2017). 

3. Some open research questions 

3.1. Adaptation 

Despite its potential to drastically reduce climate damages, adapta-
tion is one of the least studied areas of climate economics (Burke et al., 
2016). The complexity of the adaptation process represents a huge 
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modelling challenge: humans will respond to both the realization and 
the anticipation of climate change, in ways which will ameliorate hy-
pothetical impacts in some cases, aggravate them in others, and displace 
the impacts in yet others (Oppenheimer, 2013). Best-responses will be 
part of a continuous, flexible process, involving learning and adjust-
ment, and plans that incorporate limits to and costs of adaptation. 

One barrier which has slowed the incorporation of adaptation de-
cisions into economic assessments has been the lack of data on the 
aggregated costs and benefits of adaptation (Diaz and Moore, 2017). 
Assessments of the current state of knowledge on adaptation costs are 
complicated by gaps in the inclusion of key impact categories. Firstly, a 
better understanding of the limits to adaptation options and adaptation 
capacity is required (Trnka et al., 2015; Le, 2020), as well as the impacts 
of different cost methodologies across climate scenarios and time frames 
(Sussman et al., 2014; Chapagain et al., 2020). Adaptation practices are 
also very sector-, impact-, and scale-specific, and a proper evaluation 
requires a careful bottom-up approach. Recent methodological in-
novations allow for both the benefits and costs of adaptation to be 
empirically inferred from observed changes in weather sensitivity for 
individual sectors, through a revealed preference methodology (Carle-
ton et al., 2020). 

There is also limited understanding of how best to incorporate 
adaptation explicitly into damage estimates and most IAMs fail to do so 
(de Bruin et al., 2009; Burke et al., 2016). Where adaptation is included 
in existing damage functions, it tends to be implicit, in the sense that, by 
assumption, the transition to equilibrium in a new climate state is 
smooth and instantaneous, ignoring adjustment costs (Diaz and Moore, 
2017). Notable exceptions of explicitly modelling adaptation are AD- 
DICE/RICE (de Bruin et al., 2009), AD-MERGE (Bahn et al., 2019), 
and AD-WITCH (Bosello et al., 2010). These models show that joint 
implementation of mitigation and adaptation is welfare improving. 

3.2. Changes to economic growth 

The use of a damage function itself may be misleading, since it de-
scribes damages relative to an exogenous economic trajectory, which is 
itself unaffected by climate change (Stern, 2013; Dell et al., 2014). It has 
been argued that the potential disruptions we face at higher tempera-
tures - from large-scale destruction of capital and infrastructure, mass 
migration and conflict, destruction of ecosystems, adaptation demands 
that shift resources away from R&D and capital investment - do not 
characterise an environment suitable for stable and exogenously- 
growing production (Pindyck, 2013; Stern, 2013). If damages from 
weather shocks persist, rather than only reducing output within each 
year, then damages will accumulate over time and the long-term costs of 
climate change may be orders of magnitude higher than traditional es-
timates (Pretis et al., 2018), requiring ever more complex and difficult- 
to-implement policy solutions (Piontek et al., 2019). 

There is also empirical evidence of a reduced-form relationship be-
tween temperature shocks and gross domestic product (GDP) growth 
(Moore and Diaz, 2015), but considerable disagreement exists over the 
details, with considerable variance in estimates (Pretis et al., 2018). A 
negative impact of higher temperatures on the growth rate is observed in 
poor countries (Dell et al., 2012; Henseler and Schumacher, 2019; Letta 
and Tol, 2019). Several studies have shown that the risk to national 
growth rates is greater for hotter countries (Burke et al., 2015a; Burke 
and Tanutama, 2019; Kumar and Khanna, 2019; Kalkuhl and Wenz, 
2020). A key question is the potential for adaptation to reduce these 
growth effects, where growth impacts may be mitigated by higher in-
come (Kumar and Khanna, 2019), persistent temperatures (Kahn et al., 
2019), and season-specific activities (Colacito et al., 2019). Few studies 
measure the economic effects of natural disasters over the longer term 
(Botzen et al., 2019), but Krichene et al. (2021) study the persistence of 
impacts from tropical cyclones, finding robust evidence that national 
incomes decline, relative to their pre-disaster trend, and do not recover 
within 15 years. 

3.3. Environmental goods 

Ecosystem services provide enormous, but poorly quantified, bene-
fits to society (IPBES, 2019). Initiatives such as BES-SIM and Fish-MIP, 
have helped to advance understanding of climate-ecology relation-
ships (Bryndum-Buchholz et al., 2019; Rosa et al., 2020). But this is not 
matched by a comprehensive understanding of the economic implica-
tions of climate-related biodiversity and ecosystem service impacts, 
even though economists have developed a toolbox of techniques for 
valuing ecosystem services (Sukhdev et al., 2014). 

The importance of environmental goods and limitations on the 
substitutability of these goods with human-produced goods has been 
long acknowledged (Neumayer, 1999), but ways to translate this issue 
into economic assessments have lagged. The Dasgupta Review on the 
Economics of Biodiversity calls for changes to measures of economic 
success so that Nature, conceptualised as an asset that our economies, 
livelihoods and well-being all depend on, enters economic and financial 
decision-making in the same way that human-produced goods do 
(Dasgupta, 2021). Brooks and Newbold (2014) develop new biodiversity 
loss and non-use value functions that could be used in cost-benefit IAMs, 
but this approach excludes use-values associated with tangible 
ecosystem services. Further work is needed to incorporate the immense 
risks that climate change poses for biodiversity and ecosystems into 
economic assessments. 

Models often fail to accommodate non-market environmental goods 
and services, or at most assume that a reduction in environmental ser-
vices or natural capital can be substituted for by greater economic 
productivity or increased financial and/or physical capital (Sterner and 
Persson, 2008, Weitzman, 2009, Barbier and Markandya, 2013). 
Correctly incorporating in models such environmental costs, and risks of 
irreversibility justify more ambitious climate change mitigation path-
ways (i.e., higher social costs of carbon estimates) on economic grounds, 
without requiring the lower discount rates so hotly debated following 
the Stern Review (Sterner and Persson, 2008). One example is the spectre 
of complex interconnected and potentially cascading climate risks, such 
as the impacts of extreme events on energy and water availability which 
can in turn generate food scarcity and mass migration (de Amorim et al., 
2018). 

4. Issues involving fundamental economic assumptions 

4.1. Utility function preference parameters 

The social welfare function translates from individual and instanta-
neous damages to global losses with an attempt to account for uncer-
tainty, inequality, and time preferences. By collapsing damages to a 
single metric, the social welfare function allows cost-benefit trade-offs to 
be evaluated. However, the social cost of climate change, and thereby 
the benefits of mitigation, necessarily depend upon the ability of the 
function’s parameters to adequately capture different risk preferences, 
inequality, and discounting (Beck and Krueger, 2016). 

In most IAMs, the curvature of the social welfare function, or the 
elasticity of marginal utility of consumption, simultaneously represents 
aversion to risk, heterogeneity over regions, and intertemporal substi-
tution (see Fig. 2). This curvature parameter is crucial for translating 
financial shocks into welfare loss, by effectively weighing the risk of 
larger shocks, shocks on poorer people, and shocks nearer in time more 
heavily. Although captured by one value, there is evidence to suggest 
that these are empirically distinct (Sælen et al., 2009). Possible alter-
natives are utility functions that separate risk from intertemporal sub-
stitution (Epstein and Zin, 1989), risk from current inequality levels 
(Kreps and Porteus, 1978), or inequality over space and time (Anthoff 
and Emmerling, 2019). Such alternatives have been implemented in 
DICE, resulting in a significantly increased social cost of carbon (Crost 
and Traeger, 2014; Jensen and Traeger, 2014). 

Similarly, recognizing the inherent misrepresentation of income 
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equality in the aggregation of social welfare evaluations has been shown 
to increase aggregate (global) damage estimates (Fankhauser et al., 
1997). This is a similar notion to “prioritarianism” which as an ethical 
standpoint requires greater weight to be given to well-being changes 
affecting individuals at lower well-being levels (Adler and Treich, 2015). 

Another key social parameter is the pure rate of time preference 
(PRTP), a measure of the risk associated with not being able to enjoy 
future consumption (e.g., dying) and impatience, which quantifies the 
loss of welfare simply because consumption occurs in the future rather 
than today (Nordhaus, 2007; Stern, 2007). Some have argued for a 
broadening of such a narrow debate around discount rates to better 
incorporate issues of inequality and risk (Fleurbaey et al., 2019), and 
population ethics (Scovronick et al., 2017). 

In terms of consensus, a survey of over 200 experts found that, 
although there is substantial disagreement among experts on their 
chosen value for the PRTP, the modal value was 0 and 38% of responses 
were in the range 0–0.1 (Drupp et al., 2018). Hänsel et al. (2020) show 
that the preference parameters in DICE are not representative of these 
experts and adjusting them in DICE brings the results more in line with 
the UN Paris climate goals. 

Nevertheless, low values of the PRTP have been criticized because 
they do not match behaviour observed in market variables, such as in-
terest or savings rates (Nordhaus, 2007; Hampicke, 2011). This 
disconnect has been explained as a manifestation of the problem of 
aggregating from individual, subjective preferences to a social welfare 
determined by an ‘outside evaluator’ (Kaplow et al., 2010), or due to the 

Fig. 2. Consequences of income elasticity over risk, heterogeneity, and time. Each graph shows a utility (for a single agent) or welfare (for a population of agents) 
function, where concavity represents diminishing marginal welfare benefits from higher incomes. In each case, the derivation of an example certainty-equivalent 
shock (CE shock) is graphically shown producing the same welfare loss as a pair of shocks arrayed across some dimension of uncertainty or heterogeneity. A 
certainty-equivalent shock is defined as a single, deterministic reduction in consumption that would produce a welfare loss equal to a given uncertain reduction in 
consumption, where the uncertainty could be across the size, location, or timing of the shock. Below the derivation graphs, arrows summarise the main consequence 
of concavity, which effectively weights one shock greater than the other in determining welfare losses, as compared to equally-weighted income losses. (a) A risk- 
neutral agent is indifferent between an uncertain shock and the mean certain shock. (b) Across uncertainty in the size of shocks, a risk-averse agent loses more welfare 
for major shocks, resulting in a CE shock closer to the major shock loss than to a minor shock loss. (c) Climate impacts tend to harm poor populations more, such that 
under a curved welfare function the certainty-equivalent shock is nearly as great as that of the shock experienced by the poor. (d) Future generations are often 
assumed to be wealthier, and in this case, their greater losses demand little intertemporal substitution, and the CE shock is dominated by the present shock. If future 
generations are poorer, the effect is reversed, and investment now is incentivised to avoid losses later. 
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application of a finance-equivalent discount rate more suited to evalu-
ating Pareto efficiency, versus a social-welfare-equivalent discount rate 
more suited to improving aggregate social welfare (Goulder and Wil-
liams, 2012). 

One approach to resolving these differences is through Epstein-Zin 
(EZ) preferences that disentangle risk and time preferences, which 
both better describe investor behaviour and result in lower PRTP than 
specified in DICE (Crost and Traeger, 2014). Newell et al. (2021) also 
provide a framework for harmonizing prescriptive discounting as-
sumptions with projected income growth to inform elasticity and PRTP 
parameters. 

Another approach is to replace the assumption of an infinitely-lived 
agent, which does not allow for life-cycle saving to be modelled 
explicitly. An alternative approach uses an overlapping generations 
model (OLG), which captures intergenerational redistribution and 
naturally separate private and social discounting (Schneider et al., 2012; 
Karp and Rezai, 2014). Ergodicity economics offers a related approach, 
providing a theoretical basis for distinguishing between discounting 
under certainty and under uncertainty (Peters, 2019). 

4.2. Alternative modelling approaches 

For some, the assumptions in IAMs are fundamentally flawed 
because of their grounding in cost-benefit analysis, their simple 
handling of uncertainty, or their high level of aggregation, and funda-
mentally different approaches are advocated (Ackerman and Stanton, 
2014; Pezzey, 2019). A new wave of literature has emerged that at-
tempts to develop an alternative basis for modelling the consequences of 
climate change (Farmer et al., 2015; Stern and Stiglitz, 2022), of which 
four branches are particularly notable. 

4.2.1. Alternative ethical and economic assumptions 
Several papers have developed economic analyses that relax some of 

the traditional assumptions of welfare economics. These include limited 
substitution of environmental goods (Sterner and Persson, 2008), 
different perceptions of climate risks (van der Ploeg and Rezai, 2019), 
non-utilitarian ethics (Tol, 2013; Adler et al., 2017), and strong uncer-
tainty (Anthoff and Tol, 2014). In many cases, these adjustments can be 
done within existing IAMs. Generally, this research provides justifica-
tion for higher social costs of carbon when we include either non-market 
environmental goods and services, or fat-tail risks to welfare, or the 
possibility that future generations might experience lower utility. More 
broadly, most economic assessments report welfare loss in GDP terms, 
embedding an assumption that higher rates of GDP per capita are 
beneficial, and applying alternative measures of wellbeing could shift 
the narrative considerably (Stiglitz et al., 2010; van den Bergh, 2010). 

4.2.2. Process-driven IAMs 
Much of this review has been focused on cost-benefit IAMs rather 

than the alternative process-driven IAMs, such as those used for policy 
evaluation by the IPCC. Although generally more detailed, most do not 
model the impact of climate damages on the economy but rather focus 
on climate change mitigation options. However, some of the important 
weaknesses of the cost-benefit IAMs pertain to their simple representa-
tion of the global economy. The concept of market equilibrium processes 
is foundational to a class of detailed process IAMs known as Computable 
General Equilibrium (CGE) IAMs, which are built on assumptions of 
representative agents, utility/profit maximization and market clearing. 
Evidence for the prediction accuracy of general equilibrium assumptions 
is limited but they do provide an approximation of how market forces 
can distribute economic shocks between sectors and regions (Babatunde 
et al., 2017). Recent developments incorporating climate damage 
functions into such process-driven CGE-based IAMs have suggested that 
including countries’ potential climate damages in policy evaluation 
would facilitate greater action on climate damages by individual coun-
tries as a self-preservation strategy (Wei et al., 2020; Piontek et al., 

2021). Using an approach that combines a climate damage function with 
a process-driven IAM, Schultes et al. (2021) show that accounting for 
climate impacts already occurring below 2 ◦C substantially raises 
optimal near-term mitigation efforts. 

4.2.3. Analytic IAMs 
The complex numeric architecture of computational IAMs means 

that they are often perceived as black boxes at the user end. The 
emerging class of analytic IAMs (AIAM) can be helpful tools in facili-
tating communication between stakeholders and the research commu-
nity. This work was instigated by the development of an analytically 
tractable IAM (Golosov et al., 2014), which combines an energy sector 
model with a linear impulse response of economic production to carbon 
emissions. Progress in this field has included applications to multi- 
regional settings (Hassler and Krusell, 2012; Hassler et al., 2019), non- 
constant discounting (Gerlagh and Liski, 2018b; Iverson and Karp, 
2021), intergenerational games (Karp, 2017), regime shifts (Gerlagh and 
Liski, 2018a), a decentralized market economy (Rezai and Van der 
Ploeg, 2016), and uncertainty (Traeger, 2021). Such models generated 
novel insights into the role played by key model assumptions around the 
substitutability of energy sources; the costs of inaction; the value of 
committed long-term policies; and attitudes towards intergenerational 
equity. 

4.2.4. Agent-based IAMs 
Balint et al. (2017) survey the agent-based literature on the eco-

nomics of climate change and identify four areas where introducing 
heterogenous agents can be particularly important in overcoming some 
of the limitations of cost-benefit IAMs. These include incorporating (i) 
coalition formation and climate negotiations, (ii) macroeconomic im-
pacts of climate-related events, (iii) the dynamics of energy markets, and 
(iv) diffusion of climate-friendly technologies. A new class of IAMs use 
agent-based modelling to allow micro-level interactions between agents 
representing households and firms with heterogeneous preferences, 
imperfect knowledge, and localised climate and economic shocks 
(Lamperti et al., 2018; Czupryna et al., 2020). Although such models 
face challenges in modelling both the benefits of mitigation (agent-level 
damage relationships are nascent) and the costs of mitigation (emissions 
estimates require a more fine-grained representation of the energy and 
land use systems), they represent an encouraging prospect for future 
research (Lamperti et al., 2019). 

5. Conclusion 

Despite the criticisms levelled at IAMs and the uncertainties under-
lying their results, IAMs have been instrumental in highlighting the role 
of discounting and economic growth, welfare damages, and uncertainty 
in evaluating alternative policies (Nordhaus, 2014; Weyant, 2017). 
Although we have described a myriad of current challenges with IAMs, 
the field is making progress in the economic evaluation of climate im-
pacts. A summary of some of the key dimensions of the research frontier 
is shown in Table 2.2 This is not an exhaustive list of this broad field of 
research but provides an overview of the direction of future research. 
Cost-benefit IAMs exist as tools employed within this field of research 
but by necessity are simplifications of the wider research, and so do not 
necessarily cover every aspect. All IAMs appear to be heading towards 
greater sophistication, however they are likely to progress behind the 
wider research frontiers and may never incorporate some developments 
given the inherent complexity of these problems (e.g., conflict and 

2 This table was inspired by Watkiss (2005) and developed based on an 
interpretation of the research frontiers by the authors following a 2020 work-
shop on “Strengthening Understanding of the Economic Impacts of Climate 
Change” hosted by Grantham Institute (LSE), Oxford University, and UK 
Department of Department for Business, Energy & Industrial Strategy. 
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migration). 
New evidence on the economic risks of climate change is emerging 

rapidly from both the econometric and process-based research com-
munities. Updated damage estimates have been integrated into IAMs for 
economic growth (Moore and Diaz, 2015) and agricultural productivity 
(Moore et al., 2017) resulting in large increases in SCC estimates. New 
methodological approaches are developing the evidence base for the 
costs of adaptation, the existence and persistence of growth impacts, and 
the economic risk to non-market goods. Simultaneously, science from 
the biophysical process modelling community has begun to converge 
through the work of model intercomparison projects, as these models 
continue to improve in resolution and the handling of adaptation 
(Warszawski et al., 2014). 

The US National Academy of Sciences has produced suggestions on 
needed improvements (National Academies of Sciences, Engineering, 
and Medicine, 2016, 2017), and Resources For the Future is engaged in a 
multi-pronged project to implement these changes. This work is partly 
built upon the recent open-sourcing of RICE, PAGE, and FUND under a 

common modelling framework (Moore et al., 2018). 
Thus, it appears that, with regards to improving the science behind 

economic assessments, much progress has been made but there are many 
opportunities for continued advancement. There is, simultaneously, a 
diversification of models specialising in different features and insights, 
and both improvements in existing models, along with a generation of 
new models based on alternative principles. However, difficulties in 
communication between natural scientists, economists, and modellers 
remain, slowing the scientific process (Ciscar et al., 2019). Interdisci-
plinary groups remain rare. Bridging the climate-economic-model cul-
tures and improving models will require the repeated, collaboration- 
focused convening of researchers engaged in all aspects of the problem. 

Important progress in this area may come from outside economics 
including health, politics, psychology, and anthropology. For modellers 
to be able to address the shortcomings of the economic models, they will 
require increased collaboration, and a consistency of assumptions from 
both climate scientists and economists. Modellers need guidance on 
other metrics that are relevant to policymakers and other researchers. 

Table 2 
A summary of key dimensions on the research frontier in the economic evaluation of climate risks. Traditional approaches (column 1) are still reflected in many 
estimates of economic risk (e.g., the SCC), but there is established research that offers an expanded perspective (column 2). The research frontier in each dimension 
offers many new opportunities (column 3), while there remain significant undeveloped areas of enquiry (column 4). The items listed under Specific climate impacts are 
a subset of relevant impact types which are under-represented in IAMs, and these rows describe the progress in underlying biophysical impact, however economic 
valuation of these (e.g., morbidity, SLR adaptation costs, ecosystem service loss) are notably incomplete.   

Traditional Established Frontier Undeveloped 

Data inputs for estimating impacts 
Climate-related 

data 
Global resolution High resolution downscaled Extreme events, tipping points Deep uncertainty associated with a 

changing physical system 
Data for evaluating 

impacts 
Marketable goods, infrastructure Physical inputs (e.g., water, crop 

yields, labour) 
Spatially disaggregated GDP 
impacts, developing country data 

Non-market valuation, ecosystem services 
and biodiversity loss indicator  

Methodologies for producing damage functions 
Econometric 

methods 
Cross-sectional statistics Econometric models Econometrics w/ heterogeneity Empirically calibrated adaptation 

Process-based 
methods 

Point-calibrated models (e.g., 
individual, field) 

Coupled models (e.g., water- 
energy-food) 

Gridded and global models, 
adaptation 

Improved representations of uncertainty 

Top-down 
economic 
impacts 

Expert elicitation Econometric relationships Non-linearity and persistence Drivers of long-term adaptation  

Features of cost-benefit IAMs 
Regional 

heterogeneity 
Global Continental National/ 

subnational 
Local/municipality 

Tipping points ECS feedbacksa; economic 
catastrophe risk 

Analytical decision-making Multiple tipping points, 
endogenous technological 
change 

Socioeconomic tipping points; socially- 
contingent outcomes 

Equity Social-welfare function using 
observed savings and interest rates 

Social-welfare function using 
ethics-based pure time 
preferences 

Separation of intra- and inter- 
generational equity 

Heterogeneous agents with risk preferences 
vulnerability  

Features of non-IAM economic assessments 
Response-times 

studied 
Static changes Immediate responses Short-term resilience Long-run adaptation 

Agent-level 
decision-making 

Ignored Technology adoption studies Sector-specific adaptation Agent-based modelling  

Specific climate impacts 
Health and disease Climatic temperature responses Weather shock responses Accounting for adaptation; 

Vector-borne diseases 
Multi-disease vulnerability 

Sea-level rise High-tide inundation Storm surge damage Cost reduction under optimal 
protection 

Political economy of protection decisions 

Ecosystems and 
biodiversity 

Species environmental suitability Managed ecosystems (e.g., 
fisheries, forests) 

Multispecies interaction Changing and mosaic environments 

Cascading impacts Qualitative assessment Summed independent impacts CGEb-mediated equilibria across 
static risks 

Empirically grounded microfoundation 
models, simultaneous and cascading 
impacts  

a ECS- equilibrium climate sensitivity- is the long-term global temperature rise that is expected to result from an increase in atmospheric CO2 concentration. The use 
of a constant ECS does not produce any tipping point dynamics, but it captures the average outcomes of any tipping points that are included in its calibration. 

b CGE- Computational general equilibrium models used in traditional economic representations of market dynamics. 
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Welfare is largely calculated from consumption levels using simple re-
lationships, which could be better informed by behavioural economics 
and a better understanding of social heterogeneity, and which could 
take a wider range of inputs and produce a more comprehensive set of 
output metrics. Further strategic communication and engagement is 
needed with stakeholders, who are the ultimate users and beneficiaries 
of climate impact assessments. 
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Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., 
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