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We study a patrolling game played on a network Q, considered as a metric space. The Attacker chooses a

point of Q (not necessarily a node) to attack during a chosen time interval of fixed duration. The Patroller

chooses a unit speed path on Q and intercepts the attack (and wins) if she visits the attacked point during

the attack time interval. This zero-sum game models the problem of protecting roads or pipelines from an

adversarial attack. The payoff to the maximizing Patroller is the probability that the attack is intercepted.

Our results include the following: (i) a solution to the game for any network Q, as long as the time required

to carry out the attack is sufficiently short, (ii) a solution to the game for all tree networks that satisfy a

certain condition on their extremities, and (iii) a solution to the game for any attack duration for stars with

one long arc and the remaining arcs equal in length. We present a conjecture on the solution of the game

for arbitrary trees and establish it in certain cases.
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1. Introduction

Patrolling games were introduced at the end of Alpern et al. (2011) to model the operational prob-

lem of how to optimally schedule patrols to intercept a terrorist attack, theft or infiltration. That

paper, contrasting with earlier adversarial patrolling (Stackelberg) versions, modeled the problem
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as a zero-sum game between an Attacker and a Patroller, who wish to respectively maximize and

minimize the probability of a successful attack. The domain on which the game was played out

was taken to be a graph, with attacks restricted to the nodes and taking a given integer number

of periods. A patrol is a walk on the graph, and intercepts the attack if it visits the attacked node

during the attack period. This could model a guard in an art museum who enters a room while a

thief is in the midst of removing a valuable painting from the wall. That paper was able to make

some key observations about their game, giving bounds on the value, but was unable to find the

value precisely or give optimal strategies except in some very limited cases. Papadaki et al. (2016)

solved the game for line graphs, but the solution was very complicated even for this apparently

simple graph. In the Conclusion section of the original paper Alpern et al. (2011), an extension of

the problem to continuous space and time was suggested. The purpose of this paper is to carry out

this suggestion.

We allow attacks that have a prescribed duration α to occur at any point of a continuous network

Q. A unit speed patrol on Q is said to intercept the attack (and win for the Patroller) if it arrives

at the attacked point at some time during the attack. The value of the game is the probability of

interception, with best play on both sides. We find that optimal play for the Attacker typically

involves mixing pure attacks that take place at different times.

After this type of continuous game was first proposed in 2011, it has been solved for some special

networks. The circle network (or any Eulerian network) is easy to solve: a periodic traversal of

the Eulerian tour, starting at a random point, is optimal for the Patroller; attacking starting at

a fixed time at a uniformly random location is optimal for the Attacker (see Alpern et al. (2016)

and Garrec (2019)). The line segment network was solved in Alpern et al. (2016). In Garrec (2019)

a solution for some values of α is given for the network with two nodes connected by three unit

length arcs, and a complete formulation of the general game is given, including a proof of the

existence of the value. The present paper extends to some extent all three of these prior results

to general classes of networks: Eulerian networks to networks without leaf arcs; the line segment
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network to trees; the three-arc network to networks with large girth - for small attack times. The

Area Editor has observed that “in real-life the attacker has no incentive to hang out at the attack

site - he would disappear as fast as he can following the attack. Therefore, small α is reasonable

for many real-life situations.”

Our main results and chapter organization are as follows. Section 3 presents several (mixed)

strategies for the players that can be used or adapted to obtain solutions of the game for various

classes of networks in later sections. We note that Eulerian networks have no leaves, and Section 4

generalizes the solution of the former to networks without leaves. In particular, as long as the

attack time is sufficiently short, we show that the attack strategy that chooses a point uniformly

at random is still optimal; an optimal strategy for the Patroller is to follow a double cover tour

of the network which never traverses an arc consecutively in opposite directions (as described in

Theorem 4). We also give a new algorithm for constructing such a tour in Theorem 3. In Section 5

we allow the network to have leaves, and modify the optimal strategies of the previous section to

generate optimal strategies for arbitrary networks, as long as the attack time is sufficiently short

(see Theorem 6).

Section 6 considers trees and in particular those that satisfy a condition we call the Leaf Con-

dition. We give a precise definition of the condition, which requires some delicacy (Definition 8).

In fact, any tree satisfies the Leaf Condition as long as the attack time is sufficiently short. Star

networks (trees with only leaf arcs) also satisfy the Leaf Condition for sufficiently large attack

times, and the only stars that do not satisfy the Leaf Condition are those that have an arc that

is longer than half the total length of the network. In Theorem 7 we solve the game for all trees

in the case that the Leaf Condition holds, giving a simple expression for the value of the game

in terms of the length of the network, the attack time and another parameter. In Subsection 6.4

Conjecture 1 states that this expression is always equal to the value of the game on trees. We

establish the conjecture for some stars that do not satisfy the Leaf Condition.
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2. Literature Review

In addition to the papers discussed in the Introduction, which were the most relevant to continuous

patrolling, there is a more extensive literature on adversarial patrolling. The problem of patrolling

a perimeter has been analyzed by Zoroa et al. (2012) (where the attack location can move to

adjacent locations) and Lin (2019), the latter in a continuous time context. Extensions of Alpern

et al. (2016) where the costs of successful attacks are time and node dependent have been studied

by Lin et al. (2013) (for random attack times), Lin et al. (2014) (with imperfect detection) and

Yolmeh and Baykal-Gürsoy (2019) (which includes an application to an urban rail network).

Stackelberg approaches, with the Patroller as first mover, have been pioneered in an artificial

intelligence context by Basilico et al. (2012) (which includes an algorithm for large cases) and

Basilico et al. (2017) (where the optimal strategy in certain cases is for the Patroller to stay in

place until the sensor reveals an attack an unknown location).

More applied approaches to patrolling are of practical importance. Applications to scheduling

randomized security checks and canine patrols at Los Angeles Airport have been developed and

deployed in Pita et al. (2008). The United States Coast Guard also uses a game-theoretic system

to schedule patrols in the Port of Boston (An et al. 2013). Recently, a game theoretic approach to

schedule patrols to guard against poachers has been explored in Fang et al. (2016) (where the novel

algorithm PAWS was introduced) and Xu et al. (2019) (where the success of deploying PAWS in

the field is described). Patrolling to detect radiation and consequently nuclear threats was modeled

in the novel paper of Hochbaum et al. (2014).

The possibility that the Attacker could know when the Patroller is nearby (perhaps at the same

node), raised in Alpern et al. (2011), has recently been studied in Alpern and Katsikas (2019),

Alpern et al. (2021) and Lin (2019) in different contexts. In the former this knowledge helped the

Attacker, in the latter, it did not. Multiple patrollers have been considered in the robotics and

computer science literatures, where an important paper with a similar network structure to ours

is Czyzowicz et al. (2017). A connection between patrols and inspection games is made in Baston

and Bostock (1991) and between patrols and hide-seek games in Garrec (2019). Restricting the

Patroller to periodic paths creates difficulties analyzed in Alpern et al. (2018).
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3. Formal Definitions for Network and Game

In this section we define the continuous patrolling game and present definitions related to the

connected network Q on which it is played. For Q, standard graph theoretic definitions must be

modified for a network which is considered as a metric space and a measure space, not simply a

combinatorial object.

To define Q, we begin with a graph G with edges and vertices, with the addition of a length

λ (e) assigned to each edge e. We can then identify an edge e with an open interval of length λ (e),

endowed with Lebesgue measure and Euclidean distance d, and consider λ as a measure on Q,

called length. The total length of Q is denoted by µ= λ (Q). The topology on these intervals gives

a topology on their union Q. A path in Q is a continuous function from a closed interval to Q.

We take the metric d (x, y) on Q as the minimum length of a path between x and y. A point x

of Q is called a regular point if it has a neighborhood homeomorphic to an open interval. The

remaining non-regular points are called nodes. The degree of a point y is defined as the number

of connected components of a small neighborhood of y after y has been removed from it. Such a

neighborhood is called a punctured neighborhood in the topology literature. A point of degree 2 is

always by definition regular, and hence not a node. We say that two nodes of Q are adjacent if

there is a path between them consisting only of regular points. Such a path is called an arc. A node

of degree 1 is called a leaf node, and its incident arc is called a leaf arc. To ensure that every leaf

arc has a single leaf node in its closure, we exclude the line segment network from consideration.

In any case the continuous patrolling game has been solved for the line segment in Alpern et al.

(2016).

A circuit in Q is a closed path (that is, with the same startpoint and endpoint) consisting of

distinct adjacent arcs. A tour of Q is a closed path visiting all points of Q, and a tour of minimum

length is called a Chinese Postman Tour (CPT). The length of this path is denoted µ̄. It was shown

by Edmonds and Johnson (1973) that a CPT can be found in polynomial time, with respect to the

number of nodes. A closed path which is a circuit and a tour is called an Eulerian tour. As is well
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known, a connected network has an Eulerian tour if and only if it is Eulerian, defined as having

nodes all of even degree. If we double every arc of a network Q, the resulting network is Eulerian

with length 2µ, so Q has a tour of length 2µ and hence µ̄≤ 2µ.

The continuous patrolling game is played on Q as follows. The Attacker chooses a point x in Q

to attack, and a closed time interval J of given length α during which to attack it. Since α is fixed,

the attack interval J = [τ, τ +α] is determined by its starting time τ. The game and its value are

determined by the pair (Q,α). The Patroller chooses a path S (t), where t ≥ 0, which we call a

patrol, satisfying

d (S (t) , S (t′))≤ |t− t′| , for all t, t′ ≥ 0. (1)

For simplicity, we shall call a path satisfying the 1−Lipshitz condition (1) a unit speed path. We

don’t specify an upper bound on the starting time of the attack, but in every case we have studied

there is an optimal mixed attack strategy in which all its (pure strategy) attacks are over by

time 4µ. A patrol is said to intercept an attack if it visits the attacked point while it is being

attacked. The game is very simply defined: the maximizing Patroller wins (payoff P = 1) if her

patrol intercepts the attack. Otherwise, the Attacker wins (payoff P = 0 to the Patroller). The

payoffs to the Attacker are reversed, so the game has constant sum 1. In other words, if the patrol is

S and the attack is at point x during the interval J = [τ, τ +α], then the payoff P to the maximizing

Patroller is given by

P (S, (x,J)) =


1 if x∈ S (J) ,

0 otherwise.

For mixed strategies, the expected payoff can be interpreted as the probability that the attack is

intercepted. The value of the game, denoted V , is the interception probability, with best play on

both sides.

Garrec (2019) used the fact that P is lower semicontinuous to establish the existence of a value V

for this infinite game. We note that if α= 0 then the Attacker can win almost surely by attacking

uniformly on Q (according to λ) at a fixed time; if α≥ µ̄, the Patroller can ensure a win by adopting
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a Chinese Postman Tour, starting anywhere at time 0 and repeating the tour with period µ̄. So to

avoid the trivial cases where one of the player can always win, we assume 0<α< µ̄.

We follow Garrec (2019) in not imposing a finite time horizon. However, if we require that the

attack ends by some time T > α, this is only a restriction on the Attacker’s strategy set. Hence,

all Patroller estimates (lower bounds on the value) would remain valid. Attacker estimates (upper

bounds on the value) also remain valid for sufficiently large T because all the optimal Attacker

strategies presented in this paper end by a stated finite time. For example, the uniform attack

strategy, discussed in the next subsection, ends by time M +α, where M can be chosen arbitrarily.

Throughout the paper the complement Q−Y of a set Y is denoted by Y c.

3.1. The Uniform and the Independent Attack Strategies

Some networks, as we shall see in later sections, require Attacker strategies specifically suited to

their structure, such as attacks on leaf nodes when the network is a tree. But there are also some

general strategies that are available on any network. Here we define two of these and present the

general bounds on the value that they give.

Definition 1 (Uniform attack strategy). A uniform attack strategy is a mixture of pure

attacks that have a common attack time interval J = [M,M+α], where M can be chosen arbitrarily

(for example M = 0). The attacked point is chosen uniformly at random. That is, the probability

that the attacked point lies in a set Y is given by λ (Y )/µ.

We restate a lemma from Alpern et al. (2016) for completeness (the proof is in the Online

Appendix).

Lemma 1. Against any patrol S, a uniform attack strategy is intercepted with probability not more

than α/µ. Consequently V ≤ α/µ for any network.

We now define independence for sets and strategies.

Definition 2 (Independent set). A subset I of Q is called independent if the distance

between any two of its points is at least α. For any subset Y of Q, the set W ≡W (Y ) is the subset

of Q consisting of all points at distance at most α/2 from Y .
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Definition 3 (Independent attack strategy). Given an independent set I of cardinality l and

the set W ≡W (I), the independent attack strategy is as follows for p= lα
λ(W c)+lα

.

1. With probability p attack at an element of I chosen equiprobably at a start time chosen

uniformly at random in J = [0, α].

2. With probability 1− p attack uniformly on W c at start time α/2.

The independent attack strategy randomizes over both time and space, unlike the strategy of the

same name defined in Alpern et al. (2011) for the discrete patrolling game, which randomizes only

over space. The following result gives an upper bound on the strategy’s interception probability.

Theorem 1. Suppose I is an independent subset of Q of cardinality l. Then

V ≤ α

λ (W c) + lα
,

which the Attacker can ensure by adopting the independent attack strategy. If λ (W c) = 0 we have

V ≤ 1/l. Furthermore, if I is the set of leaf nodes, and leaf arcs have lengths exceeding α/2, then

V ≤ α

µ+ lα/2
.

Proof. Let S denote any patrol and suppose the independent attack strategy is adopted. If

S remains in W during J , it intercepts the attack with probability at most p/l, where l is the

cardinality of I. Similarly, since S has unit speed, if it remains in W c during time J , it intercepts

an attack with probability at most (1−p) (α/λ (W c)). The chosen value of p is the one that makes

these probabilities both equal to α/ (λ (W c) + lα).

Finally, suppose the patrol S starts in W c at time 0, reaches a point x ∈ I at some time t,

α≤ t≤ 2α, early enough to intercept some attacks on I and late enough to intercept some attacks

on W c. Since the latest such a patrol can leave W c is at time t−α/2, it can cover a set of length

at most (t−α/2) − (α/2) = t − α in W c after the attacks at time α/2, intercepting a fraction

(t−α)/λ (W c) of the attacks there. In addition, the patrol can intercept the attacks at x starting

between t−α and α, so a fraction (2α− t)/α of the attacks at x, or (2α− t)/lα of the attacks on
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I. Thus the maximum probability that a patrol arriving at I at time t can intercept an attack is

given by

(1− p) t−α
λ(W c)

+ p
2α− t
lα

=
α

λ (W c) + lα.

By time symmetry, the same bound holds if the patrol starts at a point of I and ends up in W c.

If λ (W c) = 0 we have V ≤ 1/l trivially.

To prove the last assertion note that if I is the set of leaf nodes, and leaf arcs have lengths

exceeding α/2, then leaf nodes form an independent set I and λ (W ) = lα/2. �

3.2. A General Strategy Available to the Patroller

Some patrol strategies come from finding closed paths on the network with specific properties, and

then have the Patroller go around them periodically starting at a random point. Normally the

closed path will be a tour, but we give a more general definition in case it is not.

Definition 4 (Randomized periodic extension). If S : [0,L]→Q is a closed unit speed path,

we can extend it to various patrols S∆ : [0,∞)→Q of period L by the definition

S∆ (t) = S ( (t+ ∆) mod L ) , for all t≥ 0.

Thus S∆ is a periodic patrol that starts at the point S (∆) at time 0. The randomized periodic

extension S̃ of S is defined as the random mixture of the pure patrols S∆, with ∆ chosen uniformly

in the interval (or circle) [0,L]. In the special case that S is a Chinese Postman Tour, with L= µ̄,

we call S̃ a Chinese Postman Tour strategy.

3.3. k−covering Tours and Identifying Points of Q

If a network Q has an Eulerian tour, its randomized periodic extension makes an effective patrolling

strategy, because it visits all regular points equally often (once), so the Attacker is indifferent as to

where to attack. If there is no Eulerian tour (the general case), we can still use this idea, if there is

a tour which visits all regular points equally often. In Theorem 3 and Lemma 6, we will show that

there is indeed such a tour which visits all regular points twice (a 2−cover), with some additional

properties. This idea is formalized in the following.
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Theorem 2. Suppose S : [0,L]→ Q is a closed unit speed tour that visits every point of Q at k

times which are separated by at least α (mod L). Suppose S̃ is the randomized periodic extension

of S (from Definition 4). Then we have

(i) S̃ intercepts any attack with probability at least kα/L.

(ii) If L= kµ, then the randomized periodic extension S̃ (for the Patroller) and a uniform attack

strategy (for the Attacker) are optimal and the value of the game is given by α/µ.

Proof. For part (i), suppose the attack takes place at a point x in Q starting at some time

τ . Let ti, i = 1, . . . , k be times, separated by at least α, such that S (ti) = x. The attack will be

intercepted by S∆ if ∆ is in the set Y = ∪i [ti− τ −α, ti− τ ] (modulo L), since in this case the

Patroller will visit x = S (ti) at some time in [τ, τ +α]. The separation assumption ensures that

these intervals are disjoint, and since they all have length α, the length (Lebesgue measure) of Y

is given by |Y |= kα. By the definition of S̃, the probability that ∆∈ Y is equal to |Y |/L= kα/L,

as claimed in (i), so we have V ≥ kα/L = kα/kµ = α/µ under the assumption of part (ii). By

Lemma 1, we also have that V ≤ α/µ, so the two inequalities give V = α/µ, with S̃ and the uniform

attack strategy optimal. �

As suggested above in the introductory remarks of this subsection, taking k = 1 in Theorem 2

gives another proof of the following elementary result of Alpern et al. (2016) and Garrec (2019).

Corollary 1. If Q is Eulerian, with Eulerian tour S, then for α≤ µ we have V = α/µ. (V = 1

if α ≥ µ.) In this case the randomized periodic extension S̃ and the uniform attack strategy are

optimal for the Patroller and Attacker, respectively. Furthermore, for a Chinese Postman Tour S

of any network Q, taking k= 1 and L= µ̄ gives V ≥ α/µ̄.

It is useful to note for applications to patrolling by m robots, that if in Theorem 2 we require

that S visits every point at k times separated by time intervals mα, then m Patrollers can intercept

any attack with probability at least mkα/L (or 1, if mkα/L≥ 1). To see this conclusion, pick ∆

as above and let the path of the i’th Patroller (robot) be defined by Si (t) = S (∆ + i(L/m) + t).

The arrival times at any point of Q are then separated by at least α. This reasoning shows that in
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our later lower bounds for V , these can be multiplied by the number of Patrollers, with an upper

bound of 1.

We conclude this section with an observation on the effect of identifying points of Q on the value.

Alpern et al. (2011) considered the effect of identifying two nodes of a graph. Here, we identify

two points of the network Q, using the well known quotient topology. In Figure 1 we identify the

arc midpoints C and D of the network Q to produce a new network Q′.

Figure 1 Identifying points C, D of Q to obtain Q′.

We may first look at two cases which have already been solved, the line segment Qline = [0,1]

and the circle Qcircle = [0,1] mod 1 (which is obtained from the line segment by identifying the

endpoints), with say α = 1/2. From Alpern et al. (2016), we have V (Qline) = α/ (µ+α) = 1/3.

However as the circle is Eulerian, we have V (Qcircle) = α/µ = 1/2, which is larger. It is easy to

show that identifying points cannot decrease the value. Of course if we further identify points on

the circle, we get new points of degree 4, so the resulting Eulerian network retains the value of 1/2.

Lemma 2. Suppose Q′, d′ is the metric space obtained from Q,d by replacing the metric d with a

smaller metric d′, that is, with 0≤ d′ (x, y)≤ d (x, y) for all x, y ∈Q=Q′. Then V (Q′, d′)≥ V (Q,d).

Furthermore, if Q′ is obtained from Q by decreasing the length of an arc or simply identifying two

points x and y, the same result holds.

The proof of Lemma 2 is given in the Online Appendix. An application of it is given at the end

of Section 4.

4. Networks Without Leaves

To extend Corollary 1 to general networks, we first note that Eulerian networks have no leaf arcs,

so we attempt to find such a tour S satisfying the hypothesis of Theorem 2 for networks without
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leaf arcs. It turns out that taking k = 2 in Theorem 2 is high enough. We can find such a tour

(see Theorem 4) if α is sufficiently small with respect to the girth g of Q, defined for networks as

the minimum length of a circuit in Q, and if Q has no circuits then g =∞. (For networks with

unit length arcs, our definition of girth coincides with the usual integer definition of the girth of a

graph.) Our first result is the following.

Theorem 3. For any network Q there is a tour S2 which covers every arc twice and for which no

arc is traversed consecutively in opposite directions, except for leaf arcs.

Theorem 3 is not new; it was proved by Sabidussi (1977). See also Klavzar and Rus (2013) and

Eggleton and Skilton (1984). We originally proved Theorem 3 independently and subsequently

found it in the literature. Our proof, based on the new result, Lemma 3, is elementary.

The way we will prove Theorem 3 is to double every arc of Q to create an network Q̂. Then Q̂ is

Eulerian and has an Eulerian tour. We note that in Euler’s Theorem (finding an Eulerian tour in

graphs of even degree), we can control to some extent the construction of the tour. The following

refinement of Euler’s Theorem (Lemma 3) is based on some simple modifications of the traditional

proof and shows that we can control the pairing of entered and exited passages of the tour at every

node. Formally, a passage at a node x is a pair (x,a), where a is an arc incident to x. So a node of

degree d has d passages and every arc is part of two passages.

Lemma 3. Suppose Q is a connected Eulerian network such that at every node the passages are

identified in pairs (they are “paired”). Then there is an Eulerian tour S of Q satisfying

S never enters and leaves a node via paired passages. (2)

The proof of Lemma 3 can be found in the Online Appendix.

As mentioned at the beginning of Section 3 there are no nodes of degree 2. Thus, the minimum

node degree in our Eulerian network is 4.

Now we are ready to prove Theorem 3.
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Proof of Theorem 3. Let Q̂ be the Eulerian network obtained from Q by doubling every arc.

(This action has the effect of replacing leaf arcs with loops of double the length.) At every node of

Q̂ we pair passages that correspond to the same passage of Q. Now apply Lemma 3 to Q̂ to obtain

an Eulerian circuit Ŝ of Q̂ satisfying condition (2). The result is S2, a double cover of Q (a tour of

Q where every arc is traversed twice), in which consecutive arcs are distinct, except for leaf arcs.

For loops, an arc may be repeated consecutively, but always in the same direction both times. �

The proof of Lemma 3 gives rise to an algorithm for constructing an Eulerian tour of Q̂ satisfying

condition (2), and hence a tour of Q of the form described in the statement of Theorem 3 (named

S2). Indeed, by following the rules listed in the proof of Lemma 3, we obtain a circuit C in Q̂ satis-

fying (2); by recursively applying the rules to the connected components of Q̂−C and appending

these circuits to C at appropriate points, we can obtain an Eulerian tour of Q̂ satisfying (2).

We illustrate the creation of the ∗-circuit described above for the networkK4 depicted in Figure 2.

Doubling each arc, we give the extra arc the same label as the original arc but with a prime.

Applying the rules of the proof of Lemma 3, starting at the bottom left node, we obtain a circuit:

a, b, c, d, e, c′, a′, f, d′. Removing this circuit leaves the network consisting of arcs b′, e′ and f ′, which

is already a circuit. Adding this circuit at the first possible opportunity, we obtain the Eulerian

tour a, b′, e′, f ′, b, c, d, e, c′, a′, f, d′.

𝑏

𝑑

𝑐

𝑎

𝑑

𝑒

𝑓

Figure 2 The network K4.

Theorem 4. Suppose Q is a network without leaf arcs. Then for α≤ g, where g is the girth, we

have the following:

1. The value of the game is V = α/µ.
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2. For the Attacker, any uniform attack strategy is optimal.

3. For the Patroller, the randomized periodic extension S̃2 is optimal, for any tour S2 given by

Theorem 3.

Proof. Let S2 be a tour of Q given by Theorem 3. Note that it has length L= 2µ. Since there

are no leaf arcs, any two consecutive arcs of S2 are distinct. Suppose some point x of Q is reached

by S2 at consecutive times t and s with t < s. Let Z denote the restriction of S2 to the interval [t, s].

Then Z is a circuit of length s− t and hence s− t≥ g, by the definition of girth. Hence V = α/µ,

by Theorem 2(ii) with k= 2 and since α≤ g. �

For the network K4 depicted in Figure 2, assuming all arcs have length 1, the girth g is 3. So for

α≤ 3, the uniform attack strategy is optimal and the Patroller strategy S2 is optimal, where S2 is

the tour a, b′, e′, f ′, b, c, d, e, c′, a′, f, d′.

As a further example, consider Q to be a network with two nodes A and B connected by three

arcs of lengths a ≤ b ≤ c. Then g = a+ b and µ = a+ b+ c, so we have by Theorem 4 that the

value is V (α) = α/ (a+ b+ c) for α ≤ a+ b. This network, with a = b = c = 1 (and hence g = 2),

was studied by Garrec (2019), who found (among other results) that V (α) = α/3 for α ≤ 2 and

V (α)≤ f(α)≡ 1− (1/3)(2−α/2)2 for α ∈ [2,10/3]. Since f(α)<α/3 for α ∈ (2,10/3] (f(α) = α/3

for a = 2 and f ′(α) = (4 − α)/6 < 1/3 for α > 2), the Patroller cannot obtain an interception

probability of α/3 for α in this interval, so the bound α≤ g= 2 in Theorem 4 is tight.

The condition α≤ g specified in Theorem 4 is a sufficient but not necessary condition. Consider

a network Q5 with two nodes connected by five arcs labeled as 1,2,3,4,5, with arc i having length

i. The girth is given by g = g (Q5) = 1 + 2 = 3. However, suppose we obtain a double cover (with

k = 2) S of Q described by the sequence [1,2′,3,4′,5,1′,2,3′,4,5′], where unprimed arcs go from,

say, node A to node B and primed arcs go from node B to node A. The shortest return time to a

regular point is for a point x near node B on the arc of length 5. After leaving x, going to nearby

B, the patrol traverses arcs of lengths 1 + 2 + 3 + 4 = 10 before going back to x from B. Note that

S returns to A after gaps of 3,7,6,5 and 9, so at two time points separated by 14 (at the start
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and after the gap of 6). Also B is visited twice separated by a gap of 14. So for the network Q5

we have V = α/µ for α ≤ 10 rather than just for α ≤ 3. This observation leads to combinatorial

questions about the maximum shortest circuit in a k-cover of a network Q. As noted above based

on Garrec’s analysis of the three arc network, in certain cases V = α/µ fails for all α> g.

Now let Q be a network with two nodes connected by n arcs. If n is even, then Q is Eulerian

and thus, by Corollary 1, V = α/µ for all α. If n is odd then our example Q5 generalizes easily to

the following.

Theorem 5. Suppose Q is a network with two nodes connected by an odd number of arcs. Then

V = α/µ for α≤ µ−D, where D is the length of the longest arc.

Proof. Label the arcs between the two nodes A and B as a1, . . . , an, in order of increasing length

b1 ≤ b2 ≤ · · · ≤ bn where bj is the length of arc aj and bn = D. We note that since the girth is

given by g = b1 + b2, Theorem 4 says that V = α/µ for α≤ g = b1 + b2. We have to establish the

stronger result that V = α/µ for α ≤ b1 + b2 + · · ·+ bn−1 = µ−D. Following the construction of

S for Q5 given above, we define a double tour S of Q. Let j denote the traversal of arc aj from

A to B and j′ denote the traversal of arc aj from B to A. Let S be defined by the arc sequence[
1,2′,3,4′, . . . , (n− 2) , (n− 1)

′
, n,1′,2, . . . , n− 1, n′

]
. Returns to any regular point x of Q occur after

traversing n− 1 of the arcs once. So the shortest return occurs when the arc not traversed is the

longest one, namely arc an of length bn =D. So the shortest return time under S to any regular

point is given by b1 + b2 + · · ·+ bn−1 = µ−D. So the double tour S reaches every regular point x

twice at times separated by at least time µ−D. So if α≤ µ−D it reaches every regular point x

twice at times separated by at least time α. Since the length of S is given by L= 2µ, by Theorem 2,

the value of the game is equal to α/µ.

We conclude this section with an application of our earlier result on identifying points.

Example 1. Consider the two networks Q and Q′ drawn in Figure 1, with α= 3. We would like

to show that V (Q′) = α/µ= 3/6 = 1/2. We know from Lemma 2 that V (Q′)≤ α/µ= 1/2. So we

only need 1/2 as a lower bound on V (Q′). However we cannot apply Theorem 4 because it is not
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true that α is less than or equal to the girth of Q′, which is 2. However we know either from Garrec

(2019) or from Theorem 4 (which applies because 3 = α < g = 4) that V (Q) = α/µ = 1/2. So by

viewing Q′ as coming from Q by identifying points C and D, Lemma 2 gives V (Q′)≥ V (Q) = 1/2.

5. Brief Attacks on Arbitrary Networks

We now extend Theorem 4 to networks with leaves. We begin with a modified Patroller strategy

based on the tour S2 of Theorem 3.

Definition 5. Suppose S2 is a tour given by Theorem 3. We denote by Sα2 the tour that follows

the same trajectory as S2 but stops for time α whenever it reaches a leaf node.

Lemma 4. Suppose Q is a network with l≥ 0 leaf nodes and girth g. Then

V ≥ α

µ+ lα/2
, for α≤ g.

Proof. Tour Sα2 takes total time 2µ+ lα. Note that every point of Q is visited by Sα2 at two times

differing by at least α. So by Theorem 2 part (i) with k= 2, L= 2µ+ lα, we have V ≥ 2α/ (2µ+ lα).

(We observe that instead of stopping for time α, the tour Sα2 could do anything in this time interval,

such as going away from the node a distance α/2 and returning.) �

Definition 6 (Generalized girth). We define the generalized girth g∗ of a network Q by

considering a leaf arc of length L to be a circuit of length 2L. So g∗ is the smaller between (1) the

shortest circuit length of Q and (2) twice the length of the shortest leaf arc.

In particular g∗ ≤ g, with equality if there are no leaf arcs or if all leaf arcs have length greater

than g/2. Note that if α≤ g∗ we know in particular that all leaf arcs have length at least α/2 and

hence Theorem 1 applies. Thus we have the following Attacker estimate (upper bound on V ).

Lemma 5. Suppose Q is a network with l≥ 0 leaf nodes and generalized girth g∗. Then by adopt-

ing the independent attack strategy on the set I of leaf nodes, the Attacker can ensure that the

interception probability is less than α
µ+lα/2

for α≤ g∗. Hence,

V ≤ α

µ+ lα/2
, for α≤ g∗.
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Proof. As noted above, the assumption on α ensures that all leaf arcs have length at least α/2,

so the result follows from Theorem 1. �

Since g∗ ≤ g, Lemmas 4 and 5 apply when α≤ g∗ and hence we have the following extension of

Theorem 4 to networks with leaf arcs.

Theorem 6. If Q is a network with l≥ 0 leaf nodes and generalized girth g∗, then

V =
α

µ+ lα/2
, for α≤ g∗.

For the Patroller, an optimal strategy is Sα2 as defined above. For the Attacker, an optimal strategy

is the independent attack strategy, taking I to be the independent set of leaf nodes.

Since g∗ is always positive, Theorem 6 gives the solution of the game for some positive values of

α on any network.

It is useful for later comparisons to specialize this result to trees.

Corollary 2. If Q is a tree with l leaf arcs, then

(i) V ≥ α
µ+lα/2

,

(ii) with equality if all leaf arcs have length at least α/2.

Proof. To establish (ii), note that trees have no circuits, so the generalized girth g∗ is twice the

length of its smallest leaf arc, so by assumption, α≤ g∗. The result now follows from Theorem 6.

For (i), consider the patrol Sα2 . Note that between any two visits by Sα2 to a point of Q, a leaf node

is visited. Hence the return times exceed the time α that Sα2 stops at that node, and the result

follows from Theorem 2(i) with k= 2 and L= 2µ+ lα. �

For example, consider the tree Q depicted in Figure 3. The number of leaf arcs is l = 5, the

generalized girth is g∗ = 2 and total length is µ = 9, so by Theorem 6, the value of the game is

α/(9 + 5α/2) for α≤ 2. We will later solve the game for α≤ 4, using Theorem 7.
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Figure 3 The tree Q.

6. Solving the Game for Trees

In Corollary 2 we gave some preliminary results for trees. Lemma 4 gave a lower bound on the

value of the game based on the Patroller strategy Sα2 . Furthermore, for α ≤ g∗, where g∗ is the

generalized girth, we showed in Theorem 6 that the independent attack strategy ensures that this

lower bound is tight. Note that for a tree, g∗ is twice the length of the shortest leaf arc. In this

section, we extend these results and give optimal Patroller and Attacker strategies for some values

of α which are greater than g∗. We start by defining the extremity set E, a subset of Q that is

essential in describing optimal Patroller and Attacker strategies.

6.1. The Extremity Set E

The relationship between the network Q and the duration α of the attack interval determines the

type of optimal player strategies. In this section we define the extremity set E that helps us explore

this relationship for trees.

If B is a set of points then we denote by B̄ the topological closure of B. If Q is a tree network,

then its minimum tour time is 2µ, as every arc must be traversed twice. If x is a regular point of

tree network Q, then Q−{x} has two connected components Q1 =Q1(x) and Q2 =Q2(x), whose

lengths satisfy λ(Q1) +λ(Q2) = λ(Q) = µ. We introduce a subset E of Q called the extremity set.

Definition 7 (The extremity set E). Suppose Q is a tree. The extremity set E ≡ E(Q,α) is

defined as the set of all regular points x∈Q such that

min
i=1,2

λ(Qi(x))<α/2. (3)
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Note that mini=1,2 λ(Qi) ≤ µ/2 and if additionally µ < α then (3) holds for all regular points,

which implies that Ē =Q. The extremity set E consists of regular points whose minimum return

time during a CPT is less than the attack duration α. It can be partitioned into maximal connected

sets that we call components of E and we denote by Ej.

Example 2. We illustrate the extremity set E on the tree network of Figure 3 that has µ = 9.

Figure 4 shows how E changes for increasing values of α on this network. As α increases the

components grow starting from points near the five leaf nodes of the tree. Initially there are five

components (cases α= 1,2,3,4); but eventually points near non-leaf nodes become members of E

and the number of components increase to seven (cases α= 5,6,7,8). Note that in case α= 8 the

closure Ē of E is equal to the whole network. The results from the previous sections (Theorem 6,

Corollary 2) solve the game for cases α≤ g∗ = 2, but in this section we extend the results to cover

all cases of α≤ 4.

Figure 4 The extremity set E(Q,α), shown in thick (red) lines, for the tree Q of Figure 3 and α= 1, . . . ,8.

Example 3. Figure 5 depicts a star network. The extremity set E is depicted by red thick lines for

attack time α, if the lengths of AD and AF are each greater than α/2 and those of AB and AC

are each less than or equal to α/2. Note that the nodes indicated by the small disks are not part

of E. Here, E decomposes into four components: (A,B), (A,C), (D,G), (F,H). We claim that

λ(DG) = λ(FH) = α/2; this is because on leaf arc AD (similarly for AF) if λ(DG) < α/2 there

would be a point X on the right of G whose distance from D would be <α/2, implying λ(DX)<α/2
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and thus contradicting X /∈ E. Similarly, if λ(DG)> α/2 there would be a point X on the left of

G where λ(DX)>α/2 contradicting X ∈E. Thus, components Ej that are strict subsets of a leaf

arc and whose closure contains the leaf node will have length α/2. However, components Ej whose

closure is the entire leaf arc (like AB and AC) must have length ≤ α/2; if they had length >α/2

then there would be point X on the component AB near node A where λ(BX)>α/2 contradicting

X ∈E.

Figure 5 A tree, with its extremity set E in thick red.

6.2. The E-patrolling Strategy SE for Trees

We will see that for some trees, the uniform CPT strategy is still optimal for the Patroller, but

its optimality depends on the size of the attack duration, α. As mentioned earlier, for a tree a

CPT is simply any depth-first search which returns to its start point after completing its search, so

that µ̄= 2µ; every point of the tree except the leaf nodes is visited at least twice by a CPT. This

means the leaf nodes and regular points near them are left “less protected” by a uniform CPT than

the other points, and for sufficiently small values of α, there will be points in the tree whose two

closest visit times (modulo µ̄) are at least time α apart, meaning that they are, in a sense “twice

as protected” as the leaf nodes. (In all that follows, arithmetic on time will be performed modulo

the length of the tour in question).

This observation motivates the introduction of a new Patroller strategy SE for trees that we call

the E-patrolling strategy. We construct it in such a way that each point is visited at least twice

at times that differ by at least α, and then we use Theorem 2, part (i) to obtain a lower bound on

the value. To describe the strategy, we use the extremity set E ≡E(Q,α) that we defined earlier;

in particular, we use the closure Ē of E and its components Ē1, . . . , Ēk, each of which is a subtree
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of Q. We have λ(Ē) = λ(E) but by using the components of Ē rather than the components of E,

we include the nodes and thereby unite adjacent components of E into a single component of Ē.

For example, in Figure 5 there are four components of E but only three components of Ē, since in

Ē the lines AB and AC join to form a single component BAC.

Let Q be a tree with Ē 6= Q. We first construct a CPT S with the additional property that

every component Ēj is searched in a single CPT of Ēj, which we call Cj; note that some CPTs

of Q might search different subsets of Ēj during non-consecutive time intervals - we exclude this

possibility by construction.

To obtain a CPT of Q with this property, we begin at any regular point not in Ē and go in either

direction. When arriving at any node, we leave by a passage not already traversed, if there is such

a passage. (This is the usual depth-first construction and ensures we obtain a CPT.) Furthermore,

if the node belongs to some component Ēj and there are untraversed passages staying in that

component, we take one of these. For example, in Figure 5 if we start somewhere on GA going right,

and tour the leaf arc to B from A, we must then take the passage to C (staying in component BAC)

rather than the other untraversed passage out of A going to F . This rule ensures that the CPT

say ABAFACADA (in which the component BAC of Ē is not traversed in a single CPT of BAC)

will not be constructed, but rather one like [ABACA]FADA, where the bracketed expression is a

CPT of the component BAC.

Then we make two types of additions at every component. If λ
(
Ēj
)
≥ α/2, we follow the CPT

Cj of Ēj in S by another identical one, before continuing with S. Note that this local CPT takes

time ≥ α, so the time between the first and second CPT of Ēj reaching any (regular) point is at

least α.

If λ
(
Ēj
)
<α/2 we wait until S comes back to Ēj after the first occurrence of Cj in S, and then

insert a second Cj. Let [t1, t2] be the time interval during which S tours Ēj so that S(t1) = S(t2)

and t2−t1 = 2λ(Ēj). We have α> t2−t1. In this case, we cannot simply tour Ēj twice in succession,

because some points in Ēj will not be visited at two times that are at least time α apart. Let



Alpern, Lidbetter and Papadaki: Continuous Patrolling Games
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

x = S(t1) = S(t2), and we claim that x is a (non-leaf) node of the network. For suppose not, so

that x is a regular point, and let x′ /∈E be on the same arc with ε := d(x,x′)<α/2−λ(Ēj). Then

the length of S ((t1− ε, t2 + ε)) , which is λ(Ēj) + ε, is less than α/2. The set S ((t1− ε, t2 + ε)) is a

component of Q−x′ and by the definition of E, since the smaller component of Q−x′ has length

less than α/2, we have x′ ∈E, a contradiction. So x is a non-leaf node, and thus Q−x has at least

three components. If any component A of Q−x has length less than α/2, then its closure Ā, which

contains x, must be a subset of Ē, and hence of Ēj (since x∈ Ēj). Hence, all components of Q−x

that are disjoint from Ēj must have length at least α/2. So the next time after t2 that S arrives at

x is t3 ≥ t2 +α, and the next time after t3 that S arrives at x is at least t3 +α. Then S is updated

by adding another tour of Cj at time t3.

Observe that each additional local CPT of Ēj takes time 2λ
(
Ēj
)
, so the total length of the

resulting tour SE is 2µ+ 2
(∑

j λ
(
Ēj
))

= 2
(
µ+λ

(
Ē
))

and by construction it reaches every point

of Q at two times separated by at least α (modulo the length of the tour). Note that if Ē =Q, we

simply take SE = S. The optimal periodic strategy is thus SE. For the network of Figure 5, taking

S as ABACADAFA we could have SE =ABACAGD [GDG] [ABACA]HF [HFH]A, where the

brackets indicate the three inserted local CPT’s of the components of Ē. Note that two of these are

inserted right after their first occurrence, but the third one [ABACA] is inserted nonconsecutively.

Our construction would not work directly on the CPT ABAFACADA.

Thus we have established the following result by explicit construction.

Lemma 6. Suppose Q is a tree. Then there is a tour SE, called an E-patrolling strategy, of length

2 (µ+λ(E)) such that every point x of Q is visited at least twice at times that differ by at least α.

We can obtain a lower bound on the value of the game obtained by using an E-patrolling strategy.

Lemma 7. Suppose Q is a tree. Any E-patrolling strategy intercepts any attack with probability at

least v∗ ≡ α/(µ+λ(E)).

Proof. Follows from Lemma 6 and Theorem 2 part (i) with k= 2, S = SE, and L= 2(µ+λ(E)).

�



Alpern, Lidbetter and Papadaki: Continuous Patrolling Games
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

We conjecture the following on trees:

Conjecture 1 If Q is a tree network, then for any α the E-patrolling strategy is optimal and the

value of the game is V = v∗ ≡ α/(µ+λ(E)).

We later confirm the conjecture in some special cases.

Note that when α≤ g∗ we have λ(E) = lα/2, and the result of Lemma 7 becomes the same as

the result of Corollary 2. In that case, the patrolling strategy Sα2 gives the same lower bound as

an E-patrolling strategy.

6.3. The E-attack Strategy

In the previous section we showed that on a tree, any E-patrolling strategy intercepts any attack

with probability at least v∗. Here, we define the E-attack strategy, whose attacks are intercepted

with probability at most v∗ on some trees. The condition that allows this strategy to be defined

and to be optimal is given in Definition 8. It is useful to note that while for patrolling strategies

we looked at the components of the closure Ē of E, for the attack strategy given here we look at

the components of E itself.

Definition 8 (Leaf Condition). Suppose Q is a tree. We say that (Q,α) satisfies the Leaf

Condition if the extremity set E consists of all points on every leaf arc within distance α/2 of its

leaf node.

For example, in Figure 4 the cases that satisfy the Leaf Condition are the first four (α= 1,2,3,4),

where E consist of five components; all of these five components are subsets of leaf arcs and they

are within α/2 from the leaf node. Note that the Leaf Condition implies that every component

Ej of E corresponds to a leaf node; this is easy to check in Figure 4. Cases α = 5,6,7,8 have

seven components; five of these components are subsets of leaf arcs but two of them are subsets of

non-leaf arcs and thus (Q,α) does not satisfy the Leaf Condition. (Recall that the extremity set

does not contain nodes, thus the nodes separate the components.)
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Definition 9 (E-attack strategy). Suppose (Q,α) satisfies the Leaf Condition, where Q is a

tree. Let xj denote the leaf node contained in the closure of the component Ej of E, and let

ej = λ(Ej) and let M = maxj λ(Ej) be the maximum length of a component of E. We define the

E-attack strategy as follows:

1. With probability λ(Ec)/(µ+λ(E)), attack a uniformly random point of Ec at time M .

2. With probability 2ej/(µ+ λ(E)), attack at leaf node xj at a start time chosen uniformly in

the interval [M − ej,M + ej].

Note that the Leaf Condition implies that
∑

j ej = λ(E), therefore the sum of the probabilities

from 1. and 2. above sum to 1. Also, unlike the uniform attack strategy, the E-attack strategy is

not synchronous. That is, the attack does not start at a fixed, deterministic time.

Example 4. We revisit Figure 5, where the leaf arcs have lengths 2,1,6,6 and α= 6. We illustrate

the E-attack strategy on this star network in Figure 6. Here µ= 15; the extremity set E is shown

in thick red lines. E consists of four components that are subsets of leaf arcs and whose points

are within α/2 from the leaf node, thus the Leaf Condition is satisfied. Also, note that λ(E) = 9

and µ+ λ(E) = 24. The E-attack strategy then attacks as follows: with equal probabilities 6/24 it

attacks at nodes D and F with a starting time chosen uniformly on [0,6]; with probabilities 4/24,

2/24 it attacks leaf nodes B, C with a starting time chosen uniformly on [1,5], [2,4] respectively;

with probability 6/24 it attacks uniformly on set Ec at time M = 3.

Figure 6 The E-attack strategy on an asymmetric star with arcs lengths 2,1,6,6 with α= 6. The set E is shown

in thick red lines.
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We next prove that for trees Q, the E-attack strategy is optimal if (Q,α) satisfies the Leaf

Condition.

Lemma 8. Suppose Q is a tree and (Q,α) satisfies the Leaf Condition. Then the E-attack strategy

is intercepted by any patrol with probability at most v∗ = α/(µ+λ(E)).

The proof of Lemma 8 is in the Online Appendix. If we combine the results of Lemma 7 and

Lemma 8 on patrolling and attack strategies for trees, we obtain the following exact result for the

value of the game.

Theorem 7. Suppose Q is a tree and (Q,α) satisfies the Leaf Condition. Then any E-patrolling

strategy is optimal, the E-attack strategy is optimal, and the value of the game is V = v∗.

Example 5. We revisit the network Q from Figure 6 with α = 6 and µ = 15. We first consider

patrolling strategies. The Sα2 patrolling strategy is ADDABBACCAFFA, where repeating a node

means it stays there for duration α; this tour has length 2µ + 4(6) = 54. From Corollary 2 we

have V ≥ α
µ+lα/2

= 6/27. An E-patrolling strategy is ADGDABACABACAFHFA with length

2µ+ 2λ(E) = 48; from Lemma 7 we have V ≥ v∗ = α
µ+λ(E)

= 6/24. As we can see, an E-patrolling

strategy, which is defined only for trees offers an improvement over the Sα2 patrolling strategy, which

is a more general strategy.

Now, we consider attacker strategies. Let I be the set of leaf nodes. The sets E and W ≡W (I)

are shown in Figure 7 with solid thick red and dashed thick green lines respectively. Note that

(Q,α) satisfies the Leaf Condition. The E-attack strategy is demonstrated in Figure 6 and it gives

a lower bound, v∗ = α
µ+λ(E)

= 6/24, from Theorem 7, which is optimal. The bound given by Theo-

rem 1 α
λ(W c)+lα

= α
µ+lα/2

= 6/27 does not hold in this case because I is not an independent set or,

equivalently, leaf arcs do not have lengths exceeding α/2.

Figure 7 Star with arc lengths 6,6,2,1 and α= 6. The solid thick red line is the set E and the thick dashed green

line is the set W ≡W (I), where I is the set of leaf nodes; note that here I is not an independent set.
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A star is a network consisting entirely of leaf arcs. We call a star balanced if no arc comprises

more than half of its total length; otherwise we say that it is skewed. It is easy to check that

balanced stars satisfy the Leaf Condition. All symmetric stars (whose arcs are all the same length)

are balanced. An example of a skewed star is a star with n arcs of length 1 and one arc of length

x> n, as shown in Figure 8; the long arc has length x, which is more than half of µ= n+x.

It is also easy to see that if Q is a star (which may be balanced or skewed) whose longest arc

has length at most α/2, then Ē =Q and hence Q satisfies the Leaf Condition. So Theorem 7 gives

the following.

Corollary 3. Suppose Q is a star. Then the E-attack strategy and any E-patrolling strategy are

optimal and the value of the game is V = v∗ = α/(µ+λ(E)) if either

(i) Q is balanced or

(ii) α is at least twice the length of the longest arc of Q.

Note that if Q is the line segment network, then by adding an artificial node in the center, we

can apply Corollary 3, part (i), recovering the result for the value of this game, given previously

in Alpern et al. (2016) (though the optimal strategies given here are different).

6.4. Stars Not Satisfying the Leaf Condition

In Lemma 7 we showed that the E-patrolling strategy intercepts any attack with probability at

least v∗ = α/ (µ+λ (E)) and that (Lemma 8) for trees satisfying the Leaf Condition, the E-attack

strategy avoids interception with probability at least v∗. Thus for trees we have V = v∗ if the Leaf

Condition is satisfied, but what happens when it is not satisfied? In this subsection we present a

class of trees Q for which the Leaf Condition fails for some values of α but nevertheless V = v∗ for

all values of α. We do this by specifying particular attack strategies which are optimal on these

trees.

We consider the class of skewed stars with n arcs of length 1 and one arc of length x > n, as

shown in Figure 8. We refer to these skewed stars as symmetric skewed stars. The degree 1 nodes



Alpern, Lidbetter and Papadaki: Continuous Patrolling Games
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

incident to the arcs of length 1 are denoted a1, . . . , an, the node of degree n+ 1 is denoted a0 and

the degree 1 node at the end of the arc of length x is denoted b. It is easy to see that symmetric

skewed stars satisfy the Leaf Condition only for α≤ 2n and α≥ 2x. In what follows we introduce

attack strategies for these stars that guarantee v∗ for the attacker for 2n≤ α≤ 2x, and thus show

that Conjecture 1 holds for symmetric skewed stars for all values of α. Later, in Subsection 6.5 we

give an attack strategy on a non-star tree that also guarantees the value v∗ for the attacker and

show that Conjecture 1 holds for this example.

ua0 v b

a1

an

Figure 8 A symmetric skewed star. The extremity set E consists of the n+ 2 thick (red) lines. The black line is

the set Ec.

We define an attack strategy that we will show is optimal for symmetric skewed stars for 2n≤

α≤ 2x. We note that for the a symmetric skewed star with 2n≤ α≤ 2x it is easy to check that

λ(E) = α if 2n≤ α≤ µ= x+n and λ(E) = µ (equivalently, λ(Ec) = 0) if α≥ µ. We denote the left

and right boundary points of Ec with E by u and v respectively; since 2n≤ α≤ 2x, both of these

points are on the long arc or on its boundary.

We note that the Leaf Condition for this star holds for α= 2n but not for 2n<α≤ 2x, thus the

E-attack strategy is not defined for the latter set of values. Thus, we define a new attack strategy.

For α= 2n either strategy can be used.

Definition 10 (Symmetric-skewed attack). The symmetric-skewed attack strategy is defined

as follows:
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Left attacks: With probability (2λ(E) − α)/(µ + λ(E)), attack equiprobably at nodes ai, for

i = 1, ..., n, starting uniformly at times in [n − 1, α + n − 1] if 2n ≤ α ≤ x + n and at times in

[α−x− 1, x+ 2(n− 1) + 1] if x+n≤ α≤ 2x.

Middle attacks: With probability λ(Ec)/(µ+λ(E)), attack at a uniformly random point of Ec,

starting equiprobably at times α/2 + 2j for j = 0,1, ..., n− 1.

Right attacks: With probability α/(µ+λ(E)), attack node b, starting at a time in [0, α+2(n−1)]

chosen as follows: conditional on the attack taking place here, the starting time is given by the

following probability cumulative function. For z = 1, ..., n− 1,

f(y) =



z(y−z+1)

nα
if 2(z− 1)≤ y≤ 2z,

n−1
α

+ y−2(n−1)

α
if 2(n− 1)≤ y≤ α,

α−(n−1)

α
+ z(z−1)

nα
+ (y−α)(n−z)

nα
if α+ 2(z− 1)≤ y≤ α+ 2z.

Note that when α≥ µ, we have λ(Ec) = 0 so there are no middle attacks.

Theorem 8. Suppose Q is a symmetric skewed star. For any α the E-patrolling is optimal and the

value of the game is V = v∗ = α/(µ+λ(E)). If x> n and 2n≤ α≤ 2x then the symmetric-skewed

attack strategy is optimal, otherwise the E-attack strategy is optimal.

The proof of Theorem 8 can be found in the Online Appendix. Theorem 8 provides a counterex-

ample to a conjecture in Alpern et al. (2016). The conjecture was that for trees, if α is at least

the diameter of the network, the value of the game is α/µ̄= α/(2µ). For a symmetric skewed star,

the diameter is x+ 1, and by Theorem 8, for x+ 1 ≤ α < 2x, the value is α/(µ+ λ(E)). This is

not equal to α/(2µ), since λ(E)<µ in that range of α, disproving the conjecture in Alpern et al.

(2016).

6.5. A non-star tree with Ē =Q satisfying Conjecture 1.

We now consider the tree depicted in Figure 9 with unit length arcs and α= 6. This gives Ē =Q

and thus λ(E) = µ. Here µ= 6 and thus v∗ = α/2µ= 1/2.

We propose the following Attacker strategy for this specific tree with α= 6.
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Figure 9 A tree with µ= 6.

� At each leaf node 1 and 2 attack with probability 6/24 at a start time chosen uniformly in the

interval [0,6] (total attack probability 12/24).

� At leaf node 6 attack with attack start time uniformly: in the interval [0,2] with probability

2/24, in the interval [2,4] with probability 4/24, in the interval [4,6] with probability 2/24 (total

attack probability 8/24).

� At leaf node 7 attack takes place with probability 4/24 at a start time chosen uniformly in

the interval [1,5] (total attack probability 4/24).

It is easy to verify that the probability of interception guaranteed by this strategy is v∗ = 1/2,

thus showing that the conjecture holds for this example; the proof is along the same lines as that

of Theorem 8.

7. Conclusions

This paper models the problem of patrolling a pipeline or road system against attacks which can

be made anywhere, not just at a discrete set of “targets”. We do this by analyzing the continuous

patrolling game on arbitrary metric networksQ,d, where d is the shortest path metric. The Attacker

picks a point of Q to attack (not necessarily a node) during a chosen time interval of given length

α. The Patroller chooses a unit speed path in the network and wins the game if the path crosses the

attacked point during the attack; otherwise the Attacker wins. Mixed strategies are required for

optimal play in this game, where the payoff to the maximizing Attacker is the probability that the

attack is intercepted. Prior work of Alpern et al. (2016) and Garrec (2019) has solved the game for

Eulerian networks, the line (or interval) network and a network consisting of two nodes connected

by three arcs of certain lengths.
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In this paper we show that for any network with total length µ and l≥ 0 leaf arcs, the value V of

the game (probability that the attack is intercepted) is given by V = α/ (µ+ lα/2) when α is less

than the minimum circuit length and also less than twice the length of any leaf arc. So the game

is completely solved on any network for sufficiently small positive α. If there are no leaf arcs, the

optimal patrol strategy reduces to a periodic cycle on the network which covers every arc exactly

twice. (We give a new proof that such a cycle always exists.) Such a path is an efficient way of

patrolling a network.

Of course many networks, for example museum corridors, have cul-de-sacs, which make them

hard to patrol. Our general result, stated above, solves this problem for short attack durations α,

but we also have results for larger durations. For networks which have a tree structure, we identify

a useful technical property which implies that the value of the game is given by V = v∗, where

v∗ = α/ (µ+ Λ) and Λ is the total length of certain points near the leaf nodes of the network. We

conjecture that in fact V = v∗ for all trees. We show that our technical property (and hence V = v∗)

holds for stars where no leaf arc has more than half the total length µ of the star. Finally, we show

that for stars with a single arbitrarily long arc and the rest equal length short arcs, our conjecture

V = v∗ holds. Star networks are important and often occur at airports where there is a central

hub. The related problem of the “uniformed patroller” studied by Alpern and Katsikas (2019) and

Alpern et al. (2021), where the presence of the Patroller at the node chosen for eventual attack can

be detected by the Attacker, is studied in a spatial context that can be viewed as a star network.

The knowledge of our results would be useful in designing networks which are easier to patrol,

as well as showing how to optimally patrol them. Even when the network is given, one might add

additional links between some leaf nodes for the Patroller to use. A useful extension to this problem

would be to make certain points of Q more valuable than others, so that successful attacks at such

points are more costly to the Patroller and so would need to be patrolled more intensively.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-

1935826.



Alpern, Lidbetter and Papadaki: Continuous Patrolling Games
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

References

Alpern S, Morton A, Papadaki, K (2011) Patrolling games. Oper. Res. 59(5):1246–1257.

Alpern S, Lidbetter T, Morton A, Papadaki K (2016) Patrolling a Pipeline. In International Conference on

Decision and Game Theory for Security 2016, 129–138, Springer International Publishing.

Alpern S, Lidbetter T, Papadaki K (2018) Optimizing Periodic Patrols against Short Attacks on the Line

and Other Networks. Eur. J. Oper. Res. 273(3):1065–1073.

Alpern S, Katsikas S (2019) The Uniformed Patroller Game. arXiv:1908.01859.

Alpern S, Chleboun P, Katsikas S, Lin KY (2021) Adversarial Patrolling in a Uniform. Oper. Res. (in press).
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