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Abstract 
The class of rules that we propose and characterize can be viewed as a variant of the 
standard model in the literature on cost and surplus sharing. It basically has two reference 
points: an equal share of the loss and a weighted difference between an agent’s 
endowment or claim and the average endowment of the individuals concerned. Our class 
of rules comprises some prominent sharing rules such as equal split and the 
proportionality principle. 
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1. Introduction 

The object of our study are rules that propose solutions in situations in which losses have to 
be shared. We consider cases where several agents who possess some initial endowment face 

 
1 We are grateful to the editor and two anonymous referees for their constructive comments on an earlier 
version of the paper. 
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a situation where they are asked, perhaps forced, to give something away so that they will no 
longer be able to keep their status quo allocation, and we are looking for rules which may be 
acceptable to the persons concerned to resolve such situations. Cases such as these have been 
considered from different angles in economics. Closest to what we have in mind, though still 
substantially different, are situations of bankruptcy and bequest.  In the former, various agents 
have claims of differing size against a bank or firm and the liquidation value that remains is 
not sufficient to satisfy all entitlements. In the latter, a father, let’s say, made promises to his 
children but after his death, the heirs find out that the estate he left behind is not large enough 
to honor all promises. Another case, and an important one, is taxation which in the words of 
Young (1988, p. 322) perhaps is “the most familiar example of a distribution problem 
involving loss”. 

Various theoretical concepts exist in the literature which prescribe how a deficit or loss should 
be shared. Most prominent are the proportional solution and the egalitarian rule (Moulin, 
1987, 2002) but also the constrained equal-awards solution and the constrained equal-losses 
rule (Herrero and Villar, 2001), not to forget the Talmud rule (Aumann and  Maschler, 1985), 
the latter being a compromise between the constrained equal-awards and the constrained 
equal-losses rule. Young (1988) provided a characterization of equal sacrifice methods in 
taxation. One should also mention contributions by Shapley (1953), O’Neil (1982), Pfingsten 
(1991), and the comprehensive investigations by Thomson (2003, 2013, 2015, 2019) on the 
adjudication of conflicting claims and the division problem in the light of resource allocation. 
The latter aspect has also recently been addressed by Ju and Moreno-Ternero (2018). Ju et al. 
(2007) characterize non-manipulable division rules which may treat an agent differently from 
other persons based on this agent’s characteristic vector. Finally, Hougaard et al. (2012) 
generalize the analysis of Thomson and Yeh (2008) who developed the concept of operators 
on the space of rules. Hougaard et al. introduce the notion of baselines which represent some 
reference point in the division problem of adjudicating conflicting claims.  

The class of rules that we propose and characterize in this paper can be viewed as another 
variant of the standard model in the literature on cost and surplus sharing. It basically has two 
reference points: an equal share of the loss and a weighted difference between an agent’s 
endowment or claim and the average endowment of the people concerned. The following 
section presents the model and provides its axiomatic characterization. A few final remarks 
are offered in section 3. 

 

2. The model 

Let 𝑁 = {1, ⋯ , 𝑛} denote the set of individuals in society with 𝑛 ≥ 2. Each individual 𝑖 ∈ 𝑁 
is endowed with a certain amount of resources, money let’s say, 𝜔௜ ≥ 0. The society incurs a 
loss 𝐿 with 0 < 𝐿 ≤ ∑௜∈ே 𝜔௜ . (𝐿, (𝜔ଵ, ⋯ , 𝜔௡)) is called a loss division problem. 𝐿 is given 
and fixed. From now on, we shall simply refer to (𝜔ଵ, ⋯ , 𝜔௡) as a loss division problem. 

Let Ξ denote the following set of problems:  

 {(𝜔ଵ, ⋯ , 𝜔௡): (0 < 𝐿 ≤ ∑௜∈ே 𝜔௜), (𝜔௜ ≥ 0  ∀𝑖 ∈ 𝑁)}. 
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For any  𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ, let  

 𝜇(𝜉) =
ఠభା⋯ାఠ೙

௡
 

denote the mean of 𝜔ଵ, ⋯ , 𝜔௡. For any 𝜇̅ > 0, let Ξ(𝜇̅) denote the set  

 {𝜉 ∈ Ξ: 𝜇(𝜉) = 𝜇̅}. 

Let 𝐑ା be the set of all non-negative numbers and  𝐑ା
௡  as the 𝑛-fold Cartesian product of 𝐑ା. 

A sharing rule 𝑓: Ξ →  𝐑ା
௡  is such that, for each 𝜉 ∈ Ξ , [𝑓௜(𝜉) ∈ 𝐑ା for all 𝑖 ∈ 𝑁 ] and 

[∑௜∈ே 𝑓௜(𝜉) ≥ 𝐿], where 𝑓௜(𝜉) is the loss that individual i incurs. 

We now consider the class of  rules that we wish to discuss and characterize in this paper. 

A sharing rule 𝑓 is the (
௅

௡
, 𝜇)-referenced rule if, for each 𝜇̅ > 0, there exists 𝛼 ∈ 𝐑ା such that  

 ∀𝜉 ∈ Ξ(𝜇̅),    ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯. 

Therefore, the (
௅

௡
, 𝜇)-referenced rule uses the average “burden” to everyone, 

௅

௡
, as  reference 

and then adds to this reference level a proportion of the gap between an individual’s 
endowment and the mean of individuals’ endowments to compute individual 𝑖’s share. The 
second term can be viewed as a position-dependent corrective to an equal division of the 
overall loss.  

Remark 1. We note that the (
௅

௡
, 𝜇)-referenced rule establishes a class of rules that depend 

on the choice  of 𝛼, some prominent members of the class are given below. Note also that 𝛼 
may depend on the mean of a problem. 

Remark 2.  If 𝛼 = 0  or if there is equality in initial endowments, the (
௅

௡
, 𝜇)-referenced rule 

becomes the equal-loss-division rule.  

Remark 3.  If 𝛼 = 1, the (
௅

௡
, 𝜇)-referenced rule leads to an equalization of final endowments 

of all agents. 

Remark 4.  If 𝛼 =
௅

௡ఓ
, then 𝑓௜(𝜉) = 𝛼𝜔௜ for all 𝑖 ∈ 𝑁, and, as a consequence, the (

௅

௡
, 𝜇)-

referenced rule  becomes the proportional rule.  

Remark 5.  When 𝛼 =
௅

௖ା∑ ఠ೔೔∈ಿ
, where 𝑐 is a positive constant, then  ∀𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈

Ξ(𝜇̅),    ∀𝑖 ∈ 𝑁: 

𝑓௜(𝜉) =
𝐿

𝑛
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ =

𝐿𝜔௜

𝑐 + ∑ 𝜔௝௝∈ே
+

𝐿

𝑛
ቈ1 −

∑ 𝜔௝௝∈ே

𝑐 + ∑ 𝜔௝௝∈ே
቉ 

The (
௅

௡
, 𝜇)-referenced rule becomes the rule that was proposed and axiomatically 

characterized by Pfingsten (1991).  
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The axioms that characterize our class of rules are “symmetry”, “efficiency”, “independence 
of rank-and-mean-preserving changes”, and “monotonicity in contributions”. They are 
defined and explained below.  

Symmetry: For all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ, if 𝜔ଵ = ⋯ = 𝜔௡, then 𝑓ଵ(𝜉) = ⋯ = 𝑓௡(𝜉). 

Efficiency: For all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ,  ∑௜∈ே 𝑓௜(𝜉) = 𝐿. 

Independence of Rank-and-Mean-Preserving Changes: For all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) and 𝜉ᇱ =

(𝜔ଵ
ᇱ , ⋯ , 𝜔௡

ᇱ ) ∈ Ξ with [for all 𝑖, 𝑗 ∈ 𝑁 , 𝜔௜ ≤ 𝜔௝ ⇒ 𝜔௜
ᇱ ≤ 𝜔௝

ᇱ], if 𝜇(ξ) = 𝜇(𝜉ᇱ), then, for any 

𝑖 ∈ 𝑁, [𝜔௜ = 𝜔௜
ᇱ ⇒ 𝑓௜(𝜉) = 𝑓௜(𝜉ᇱ)]. 

Monotonicity in Contributions: For all 𝜀 ∈ 𝐑ା  with 𝜀 ≠ 0 , there exists a continuous 
function 𝑔: 𝐑ା → 𝐑ା such that, for all 𝑖 ∈ 𝑁, all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) and 𝜉ᇱ = (𝜔ଵ

ᇱ , ⋯ , 𝜔௡
ᇱ ) ∈ Ξ, 

if 𝜇(𝜉) = 𝜇(𝜉ᇱ) and 𝜔௜
ᇱ = 𝜔௜ + 𝜀, then 𝑓௜(𝜉ᇱ) = 𝑓௜(𝜉) + 𝑔(𝜀). 

The first two axioms are standard in distributional analyses. “Symmetry” says that if everyone 
has the same endowment, the total loss should be shared equally. Symmetry is a much weaker 
requirement than Anonymity and Equal Treatment of Equals which are commonly used in the 
related literature (see, for example, Moulin (2002), Ju et al. (2007), Hougaard et al. (2012)). 
“Efficiency” merely requires that the total contributions by all  players must come up to the 
loss that is to be shared, also a standard requirement in the related literature.     

To the best of our knowledge, the next axiom is new and does not have a counterpart in the 
literature on cost or surplus sharing to which we referred above.   

“Independence of Rank-and-Mean-Preserving Changes” considers two sets of endowments 
with the same mean and the same rank order of the agents in terms of their endowments. This 
axiom postulates that if an individual has the same endowment in two situations, this 
individual’s share of total loss should be the same. This requirement is very natural since the 
individual’s position in the “hierarchy” of endowments has not changed. What this axiom, 
however, ignores are endowment differences as long as the hierarchy of endowments among 
the agents is preserved. 

Finally, the axiom “Monotonicity in Contributions” considers incremental changes in the 
vector of initial endowments while the average endowment across all agents remains the 
same. It requires that if the endowment of a particular individual increases (decreases) from 
one situation to another, the contribution to the overall loss of this person should increase 
(decrease) as well. The attribute “monotonicity” refers to the demand that an agent’s change 
in initial endowment and this person’s share of the loss move in the same direction.  This 
directional requirement is similar to an axiom called “Claim Monotonocity”, used by Ju et al. 
(2007) when those authors characterize a rule which is a convex combination of the 
proportional rule and equal division. As a matter of fact, the property of claim monotonicity 
can be found in Dagan et al. (1997) in connection with bankruptcy rules, in Yeh (2006) in 
relation to the constrained equal-awards solution, in Thomson’s extensive survey from 2003, 
and at other places. Finally, an axiom called aggregate monotonicity which goes back to 
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Megiddo (1974) has very recently been used by Calleja et al. (2020) within the setting of 
cooperative transferable utility games. 

Theorem.  A sharing rule 𝑓 on 𝛯 satisfies Symmetry, Efficiency, Independence of Rank-and-

Mean-Preserving Changes, and Monotonicity in Contributions if and only if it is the (
௅

௡
, 𝜇)-

referenced rule.  

Proof.  It can be checked that the (
௅

௡
, 𝜇)-referenced rule satisfies Symmetry, Efficiency, 

Independence of Rank-and-Mean-Preserving Changes, and Monotonicity in Contributions. In 
what follows, we shall show that, if a sharing rule 𝑓 on 𝛯 satisfies Symmetry, Efficiency, 
Independence of Rank-and-Mean-Preserving Changes, and Monotonicity in Contributions, 

then it is the (
௅

௡
, 𝜇)-referenced rule. 

Let 𝑓  on Ξ satisfy the four conditions. Furthermore, let 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ  and consider 

𝜉ఓ = (𝜔ଵ
ఓ

, ⋯ , 𝜔௡
ఓ

) ∈ Ξ such that [𝜔௜
ఓ

= 𝜇(𝜉) for all 𝑖 ∈ 𝑁]. By Symmetry and Efficiency, 

 𝑓௜(𝜉ఓ) =
௅

௡ 
   for  all   𝑖 ∈ 𝑁.  

Consider max{𝜔ଵ, ⋯ , 𝜔௡} and min{𝜔ଵ, ⋯ , 𝜔௡}. If max{𝜔ଵ, ⋯ , 𝜔௡} = min{𝜔ଵ, ⋯ , 𝜔௡}, then 
𝜔௜ = 𝜇(𝜉) for all i ∊ N. It then follows immediately that, in this case, for all 𝑖 ∊  𝑁  

𝑓௜(𝜉) =
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ for any 𝛼 ≥ 0.  

Suppose now that max{𝜔ଵ, ⋯ , 𝜔௡} > min{𝜔ଵ, ⋯ , 𝜔௡}. Without loss of generality, let 𝜔௡ =

max{𝜔ଵ, ⋯ , 𝜔௡} and 𝜔ଵ = min{𝜔ଵ, ⋯ , 𝜔௡}. Let 𝜀 = min{𝜔௡ − 𝜇(𝜉), 𝜇(𝜉) − 𝜔ଵ}. Note that 
𝜀 > 0. 

Consider the case in which 𝜀 = 𝜔௡ − 𝜇(𝜉) first. Take any 𝜀ଵ, 𝜀ଶ ∈ [0, 𝜀] such that 𝜀ଵ + 𝜀ଶ = 𝜀 
and three vectors  𝜉ଵ = (𝜔ଵ

ଵ, ⋯ , 𝜔௡
ଵ), 𝜉ଶ = (𝜔ଵ

ଶ, ⋯ , 𝜔௡
ଶ), 𝜉ଷ = (𝜔ଵ

ଷ, ⋯ , 𝜔௡
ଷ) ∈ Ξ such that  

 𝜔ଵ
ଵ = 𝜇(𝜉) − 𝜀ଵ,    𝜔௡

ଵ = 𝜇(𝜉) + 𝜀ଵ,    𝜔௝
ଵ = 𝜇(𝜉)    ∀𝑗 ∈ 𝑁\{1, 𝑛} 

 𝜔ଵ
ଶ = 𝜇(𝜉) − 𝜀ଶ,    𝜔௡

ଶ = 𝜇(𝜉) + 𝜀ଶ,    𝜔௝
ଶ = 𝜇(𝜉)    ∀𝑗 ∈ 𝑁\{1, 𝑛} 

 𝜔ଵ
ଷ = 𝜇(𝜉) − 𝜀,    𝜔௡

ଷ = 𝜇(𝜉) + 𝜀,    𝜔௝
ଷ = 𝜇(𝜉)   ∀𝑗 ∈ 𝑁\{1, 𝑛}. 

By Monotonicity in Contributions, there exists a continuous function 𝑔: 𝐑ା → 𝐑ା such that  

 𝑓௡(𝜉ଵ) = 𝑓௡(𝜉ఓ) + 𝑔(𝜀ଵ),    𝑓௡(𝜉ଶ) = 𝑓௡(𝜉ఓ) + 𝑔(𝜀ଶ) (1) 

 and  

 𝑓௡(𝜉ଷ) = 𝑓௡(𝜉ఓ) + 𝑔(𝜀ଵ + 𝜀ଶ),    𝑓௡(𝜉ଷ) = 𝑓௡(𝜉ଵ) + 𝑔(𝜀ଶ). (2) 

From equation (2), we have  

 𝑓௡(𝜉ఓ) + 𝑔(𝜀ଵ + 𝜀ଶ) = 𝑓௡(𝜉ଵ) + 𝑔(𝜀ଶ).  
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Noting equation (1), we then obtain  

 𝑔(𝜀ଵ + 𝜀ଶ) = 𝑔(𝜀ଵ) + 𝑔(𝜀ଶ). (3) 

This is the Cauchy equation. Noting that 𝑔(∙) ≥ 0, its unique solution is given by (see Aczél, 
1966):  

                      for all t ⩾ 0, 𝑔(𝑡) = 𝛼𝑡   for some constant  𝛼 ∈ 𝐑ା.  

Therefore,  

 𝑓௡(𝜉ଷ) = 𝑓௡(𝜉ఓ) + 𝛼൫ 𝜔௡
ଷ − 𝜇(𝜉)൯ =

௅

௡
+ 𝛼൫ 𝜔௡

ଷ − 𝜇(𝜉)൯.  

By Independence of Rank-and-Mean-Preserving Changes and noting that 𝜔௡
ଷ = 𝜇(𝜉) + 𝜀 =

𝜔௡ in this case, we have  

 𝑓௡(𝜉) = 𝑓௡(𝜉ଷ) =
௅

௡
+ 𝛼൫𝜔௡ − 𝜇(𝜉)൯. (4) 

By Independence of Rank-and-Mean-Preserving Changes and noting that 𝜇(𝜉) = 𝜇(𝜉ଷ) and 

𝜔௜
ଷ = 𝜇(𝜉) for all 𝑖 ∈ 𝑁\{1, 𝑛}, we also have  

 ∀𝑖 ∈ 𝑁\{1, 𝑛}:  𝑓௜(𝜉ఓ) = 𝑓௜(𝜉ଷ) =
୐

୬
. 

Applying the above arguments to 𝑓ଵ and noting that, for the case analyzed here, 𝜀 = 𝜔௡ −

𝜇(𝜉) = min{𝜔௡ − 𝜇(𝜉), 𝜇(𝜉) − 𝜔ଵ}, we can obtain  

 𝑓ଵ(𝜉ଷ) = 𝑓ଵ(𝜉ఓ) − 𝛼൫𝜔௡ − 𝜇(𝜉)൯ =  L/n −𝛼൫𝜔௡ − 𝜇(𝜉)൯.  

Now, consider max{𝜔ଵ, ⋯ , 𝜔௡ିଵ}. Without loss of generality, let 𝜔௡ିଵ = max{𝜔ଵ, ⋯ , 𝜔௡ିଵ}. 
By repeating the procedures for 𝑓ଵ and 𝑓௡ above, we can show that  

      𝑓ଵ(𝜉) = 𝐿/𝑛 + 𝛼(𝜔ଵ − 𝜇(𝜉)),  if min{𝜔௡ିଵ − 𝜇(𝜉), 𝜇(𝜉) − 𝜔ଵ
ଷ} = 𝜇(𝜉) − 𝜔ଵ

ଷ 

or  

𝑓௡ିଵ(𝜉) = 𝐿/𝑛 + 𝛼(𝜔௡ିଵ − 𝜇(𝜉)), if min{𝜔௡ିଵ − 𝜇(𝜉), 𝜇(𝜉) − 𝜔ଵ
ଷ} = 𝜔௡ିଵ − 𝜇(𝜉). 

And by repeating the above, we can obtain  

    for  all   𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯. (5) 

The case in which 𝜀 = 𝜇(𝜉) − 𝜔ଵ can be dealt with analogously to the above argument, and 
we can obtain equation (5) as well. This completes the proof of the theorem.  ∎ 

 

Remark 6.  It may be noted that the Theorem does not explicitly put further restrictions on 

the value of 𝛼 that figures in the (
௅

௡
, 𝜇)-referenced rule in which, ∀𝜉 ∈ Ξ(𝜇̅), ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
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௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯, though in the proof of the Theorem, we implicitly incorporated the 

following two properties of a sharing rule:   

Nonnegative Contributions.  For all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ and all 𝑖 ∈ 𝑁, 𝑓୧(𝜉) ≥ 0. 

Nonnegative Wealth after Contributions.  For all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ and all 𝑖 ∈ 𝑁, 𝜔௜ −

𝑓୧(𝜉) ≥ 0. 

In addition, we now introduce the following progressivity condition on contributions: 

Progressivity.  For all 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ and all 𝑖, 𝑗 ∈ 𝑁, if 𝜔௜ ≥ 𝜔௝, then [(𝜔௜ − 𝑓୧(𝜉)) −

(𝜔௝ − 𝑓୨(𝜉)) ≥ 0, 𝑓୧(𝜉) − 𝑓୨(𝜉) ≥ 0]. 

If we require a sharing rule to satisfy Nonnegative Contributions, Nonnegative Wealth after 

Contributions and Progressivity  as stated above, then the 𝛼 value that figures in the (
௅

௡
, 𝜇)-

referenced rule, namely ∀𝜉 ∈ Ξ(𝜇̅), ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ , can be further 

restricted as follows: if 𝜔௜ ≠ 𝜇(𝜉) for some 𝑖 ∈ 𝑁, then  

max {0,

𝐿
𝑛

− min {𝜔௜: 𝑖 ∈ 𝑁}

𝜇(𝜉) − min {𝜔௜: 𝑖 ∈ 𝑁}
} ≤ 𝛼 ≤ min {1,

𝐿
𝑛

𝜇(𝜉) − min {𝜔௜: 𝑖 ∈ 𝑁}
} 

Note that ∀𝜉 ∈ Ξ(𝜇̅), ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯.  Then, noting that 𝑓௜(𝜉) − 𝑓௝(𝜉) = 

௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ − ൬

௅

௡
+ 𝛼 ቀ𝜔௝ − 𝜇(𝜉)ቁ൰ = 𝛼൫𝜔௜ − 𝜔௝൯ and from Progressivity, it follows 

easily that 𝛼 ≥ 0 .  Similarly, observing that [൫𝜔௜ − 𝑓୧(𝜉)൯ − ቀ𝜔௝ − 𝑓௝(𝜉)ቁ = [(𝜔௜ −

൬
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯൰ − ቆ𝜔௝ − ൬

௅

௡
+ 𝛼 ቀ𝜔௝ − 𝜇(𝜉)ቁ൰ቇ = (1 − 𝛼)൫𝜔௜ − 𝜔௝൯ and again from 

Progressivity, it follows that 𝛼 ≤ 1.  Next, without loss of generality, let 𝜉 = (𝜔ଵ, ⋯ , 𝜔௡) ∈ Ξ 
be such that 𝜔ଵ ≤ 𝜔ଶ ≤ ⋯ ≤ 𝜔௡  and 𝜔ଵ < 𝜇(𝜉) .  Note that min {𝜔௜: 𝑖 ∈ 𝑁} = 𝜔ଵ .  

Nonnegative Contributions implies that 𝑓ଵ(𝜉) =
௅

௡
+ 𝛼൫𝜔ଵ − 𝜇(𝜉)൯ ≥ 0.  Then, 𝛼 ≤

ಽ

೙

ఓ(క)ିఠభ
 

follows immediately.  On the other hand, by Nonnegative Wealth after Contributions,  𝜔ଵ −

௅

௡
− 𝛼൫𝜔ଵ − 𝜇(𝜉)൯ ≥ 0, which implies that 𝛼 ≥

ಽ

೙
ି୫୧୬ {ఠ೔:௜∈ே}

ఓ(క)ି୫୧୬ {ఠ೔:௜∈ே}
.  Note that 𝛼 ≥ 0 and 𝛼 ≤ 1 

as well.  Therefore, 𝛼 ≥ max {0,
ಽ

೙
ି୫୧୬ {ఠ೔:௜∈ே}

ఓ(క)ି୫୧୬ {ఠ೔:௜∈ே}
} and 𝛼 ≤ min {1,

ಽ

೙

ఓ(క)ି୫୧୬ {ఠ೔:௜∈ே}
}. 

 

Remark 7.  The logical independence of the axioms that figure in the Theorem can be 
checked.  First, it may be noted that, when 𝑛 = 2, the axiom of Independence of Rank-and-
Mean Preserving Changes is redundant since it is vacuously satisfied.  For 𝑛 ≥ 3, we consider 
the following sharing rules:   ∀𝜉 ∈ Ξ(𝜇̅), 
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(7.1) 𝑓ଵ(𝜉) =
୐

ଶ
+ 𝛼൫𝜔ଵ − 𝜇(𝜉)൯, and ∀𝑖 ∈ 𝑁\{1}: 𝑓௜(𝜉) =

௅/ଶ

௡ିଵ
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯, 

(7.2) ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
୐

௡
+

ఠ೔

௡ఓ(క)
, 

(7.3) ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
୐

௡
+

ఈ൫ఠ೔ିఓ(క)൯

୫ୟ୶ {ఠ೔:௜ఢ ே}
,  

(7.4)   ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =
୐

௡
−

ఠ೔

௡ఓ(క)
+

ଵ

௡
.   

It can be verified that the sharing rule defined in (7.1) violates Symmetry while it satisfies the 
other three axioms; (7.2) violates Efficiency while satisfying the other three axioms. Rule 
(7.3) violates Independence of Rank-and-Mean Preserving Changes while it satisfies the other 
three axioms, and (7.4) violates Monotonicity in Contributions while satisfying the other three 
axioms.   

 

Remark 8.  It may be noted that the (
௅

௡
, 𝜇)-referenced rule, ∀𝜉 ∈ Ξ(𝜇̅),    ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =

௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯, gives a class of sharing rules. Do we have a `procedure’ that can single out 

some specific members of this family of rules?  In an interesting paper, Hougaard et al. (2012) 
study `operators’ that map rules to each other (see also Thomson and Yeh (2008)) and 
uncover interesting structural properties of some well-known rules in the literature.  Their 

study can be fruitfully applied in our context to identify certain members of the class of (
௅

௡
,

𝜇)-referenced rules.  For example, for a loss division problem (𝐿, (𝜔ଵ, ⋯ , 𝜔௡)), we define its 
dual problem as (∑ 𝜔௜

௡
௜ୀଵ − 𝐿, (𝜔ଵ, ⋯ , 𝜔௡)) .  For a given loss division problem 

(𝐿, (𝜔ଵ, ⋯ , 𝜔௡))  and a (
௅

௡
, 𝜇) -referenced rule 𝑓 , ∀𝑖 ∈ 𝑁: 𝑓௜(𝜉) =

௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ , we 

define the dual rule of 𝑓, to be denoted by 𝑓ௗ, as a (
௅

௡
, 𝜇)-referenced rule applied to the dual 

problem of the given loss division problem: 𝑓ௗ =
∑ ఠ೔

೙
೔సభ ି௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯.  We can then 

impose a structural requirement on a member of the (
௅

௡
, 𝜇)-referenced rules: a member rule 

must be self-dual, i.e., 𝜔 − 𝑓 = 𝑓ௗ (see Hougaard et al. (2012), p. 108).  It can be checked 
that the proportional rule and the Talmud rule are self-dual, and if  the parameter 𝛼 is further 

assumed to be independent of the loss, then 𝛼 =
ଵ

ଶ
: given a loss division problem 

(𝐿, (𝜔ଵ, ⋯ , 𝜔௡)) , for each 𝑖 ∈ 𝑁 , 𝑓௜(𝜉) =
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ and fi

d(ξ ) =
∑ ఠ೔

೙
೔సభ ି௅

௡
+

𝛼൫𝜔௜ − 𝜇(𝜉)൯ . Since 𝑓  is self-dual, we have 𝜔௜ − ቂ
௅

௡
+ 𝛼൫𝜔௜ − 𝜇(𝜉)൯ቃ =

∑ ఠ೔
೙
೔సభ ି௅

௡
+

𝛼൫𝜔௜ − 𝜇(𝜉)൯ for all 𝑖 ∈ 𝑁; it can then be checked that 𝛼 =
ଵ

ଶ
.  One could use other operators 

studied in Hougaard et al. (2012) to single out specific members of the family of the (
௅

௡
, 𝜇)-

referenced rules and we leave this investigation to another occasion. 
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3. Final Remarks 

We pointed out in the previous section that our class of rules comprises some prominent 
sharing rules such as equal split and the proportionality principle. However, it does not ex- 
plicitly propose a non-trivial convex combination of the proportional rule and equal division 
as it is put forward in Ju et al. (2007). Depending on the value of the behavioral parameter 
alpha in combination with the endowment vector, one can obtain a situation in which the 
person with the lowest initial endowment is completely exempted from any burden sharing or, 
for a different alpha value, a case in which the agent “at the bottom” has to contribute only 
very little. Since our model satisfies continuity, this contribution can, of course, be made 
successively larger. We should mention that during recent years we ran laboratory 
experiments at different universities. We found  that the proportionality principle did not get 
too much support among agents who were bargaining over the share of a loss in groups of 
four (Gaertner et al., 2019). As a final solution to which every group member had to agree, 
proportionality actually rarely occurred. On the other hand, the variant of  our model that 
exempts the lowest endowed person received considerable backing among the participants 
(Gaertner et al., 2020). A strong contestant in our series of experiments was the constrained 
equal awards rule, well known from bankruptcy problems, which in our experimental set-up 
exempts the lowest two agents from any loss contribution. Such a loss division is, however, 
not compatible with our class of rules. 
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