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Abstract

Rankings and leaderboards are often used in crowdsourcing contests and online communities to motivate

individual contributions but feedback based on social comparison can also have negative effects. Here,

we study the unequal effects of such feedback on individual effort and performance for individuals of

different ability. We hypothesize that the effects of social comparison differ for top performers and bottom

performers in a way that the inequality between the two increases. We use a quasi-experimental design

to test our predictions with data from Topcoder, a large online crowdsourcing platform that publishes

computer programming contests. We find that in contests where the submitted code is evaluated against

others’ submissions, rather than using an absolute scale, top performers increase their effort while bottom

performers decrease it. As a result, relative scoring leads to better outcomes for those at the top but lower

engagement for bottom performers. Our findings expose an important but overlooked drawback from using

gamified competitions, rankings, and relative evaluations, with potential implications for crowdsourcing

markets, online learning environments, online communities, and organizations in general.
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Introduction

Social comparison is deeply rooted in our nature. According to the eminent social psychologist Leon

Festinger, we have a powerful drive to gain accurate self-evaluations and we often achieve this by comparing

our opinions and skills to those of others (Festinger, 1954). Even more importantly, we tend to seek

a better standing in relation to others, that is, we pursue distinction and status (Fiske, 2011; Payne,

2017). Thus, social comparison induces competition (Festinger, 1954; Garcia, Tor, & Schiff, 2013), and

competition increases individual effort. Specifically, contests and tournaments, where financial rewards

depend on rank performance, elicit more individual effort than piece-wise remuneration schemes and,

in fact, drive individual effort expenditure beyond what is rational (Cason, Masters, & Sheremeta, 2010;

Connelly, Tihanyi, Crook, & Gangloff, 2014; Dechenaux, Kovenock, & Sheremeta, 2015; Dickinson & Isaac,

1998). As a result, contests can be successfully employed to spur innovation (Wright, 1983). For instance,

there is a growing practice of launching online crowdsourced prize-based contests and idea competitions

to solve hard scientific problems, optimize company algorithms, or redesign brand identity (Howe, 2008;

Lakhani et al., 2013; Travis, 2008). Still, social comparison can induce competitive behavior and increase

effort even without financial incentives (Mago, Samak, & Sheremeta, 2016; Messick & McClintock, 1968;

Sheremeta, 2010). This is the idea behind using game design elements such as likes, badges, skill levels,

and leaderboards to increase learning in online courses, exercise on e-health platforms, or performance in

standard organizational tasks (Denny, McDonald, Empson, Kelly, & Petersen, 2018; Koivisto & Hamari,

2019; Landers, Bauer, & Callan, 2017).

Although competition driven by social comparison increases individual effort, it could have detrimental

effects on group morale and cooperation. Within-group competition for scarce resources reduces trust

and trustworthiness (Charness, Masclet, & Villeval, 2013; Chowdhury & Gürtler, 2015; Liu, Lin, & Xin,

2014), decreases contributions to public goods (Barker & Barclay, 2016), diminishes cooperation (West

et al., 2006), and hinders agreement in bargaining situations (Barclay & Stoller, 2014). Competition also

increases spiteful behavior and sabotage, making individuals more likely to harm others at a personal cost

in order to diminish their opponents’ performance and increase their own chances of winning (Harbring &

Irlenbusch, 2011).

This study investigates the effects of social comparison on another potential group-level problem—

inequality in effort and performance. In creative tasks, input, or effort, is positively correlated with but still

distinct from output, or performance. Effort is related to the level of engagement and mental investment,

while performance indicates the level of learning, innovation, and creativity that has occurred. Some social
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settings benefit from a single best performing contributor or a higher average performance: for example,

multiple record-breaking performances can fuel audience interest in a sports tournament, while a single

brilliant idea can generate value in an innovation contest. Other social contexts, however, benefit more

from an even distribution of effort and performance. Online citizen science initiatives, learning platforms,

user-contribution communities, and crowd workplaces flourish when their members keep engaging and

learning (Kittur et al., 2013). More generally, reducing experiential inequality has been shown to increase

individual productivity and job satisfaction and improve organizational performance (Bapuji, Ertug, &

Shaw, 2020; Stainback, Tomaskovic-Devey, & Skaggs, 2010).

We investigate how social comparison affects inequality in effort and performance using data from the

online crowdsourcing platform Topcoder. Established in 2001, Topcoder is the largest competitive soft-

ware development portal that constitutes both a marketplace for software solutions and a social network

community. Topcoder maintains an active community of hundreds of thousands of designers, develop-

ers, data scientists, and programmers who regularly compete in programming challenges (Archak, 2010;

K. J. Boudreau, Lacetera, & Lakhani, 2011; K. Boudreau, Helfat, Lakhani, & Menietti, 2012; Lakhani et

al., 2013). Each Topcoder challenge poses a well-defined problem and has a unique leaderboard and prize

structure. Some challenges are commercial and offer monetary prizes while others are organized by the

platform and only offer contestants the opportunity to gain experience and improve their rating.

Our study focuses on Topcoder challenges where coders iteratively work on their solution and can

repeatedly submit it for feedback over the duration of the challenge. To investigate the effects of social

comparison, we differentiate between challenges in which the feedback shows performance relatively to the

performance of other coders’ solutions and challenges in which the feedback is a measure of the performance

of the solution in a test. We rely on impressively large data and advanced computational techniques to

measure coder ability, effort, and performance and we apply an innovative matching method to offer

statistical evidence for causal effects. The results bring attention to an overlooked negative side-effect from

exploiting the power of social comparison and relative-performance feedback to motivate user contributions.

Our findings suggest the need to carefully evaluate the use of gamified competitions, rankings, and relative

evaluations in online communities and organizations that prioritize universal participation and equalized

individual outcomes.

Our findings contribute to a growing body of research on contest design for crowdsourced innova-

tion coming largely from economics, management science, and human-computer interaction (Adamczyk,

Bullinger, & Möslein, 2012). Researchers have investigated both theoretically and empirically design
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elements such as award structures, problem characteristics, contest duration, and evaluation and feed-

back mechanisms to maximize contestants’ effort, predict individual success, or simply understand con-

testants’ behavior (Archak & Sundararajan, 2009; DiPalantino & Vojnovic, 2009; Bullinger, Neyer, Rass,

& Moeslein, 2010; LaToza, Chen, Jiang, Zhao, & Hoek, 2015). Several studies have specifically focused

on how information about other contestants and their submissions could affect entry, effort, and inno-

vativeness and even more notably, could exert differential effects on different individuals (Archak, 2010;

Bullinger et al., 2010; Bockstedt, Druehl, & Mishra, 2016; K. Boudreau et al., 2012; K. J. Boudreau,

Lakhani, & Menietti, 2016). What unites these latter studies is the recognition, even if not always made

explicitly, that contestant behavior and success are endogenous and shaped by both contest and contestant

characteristics. We build upon and extend this research in two important ways. First, by investigating

the effects of absolute versus relative feedback, we directly compare situations with weaker versus stronger

group effects. And second, by theoretically focusing on inequality, we bring attention to the complete

feedback loop, whereby not only the group affects individual behavior, but also individual behavior affects

group outcomes.

Theoretical Background and Predictions

We study the effects of social comparison on inequality in effort and performance in online communities,

educational platforms, and organizations, which constitute large heterogeneous groups of people. When

considering inequality in heterogeneous populations, there are two distinct aspects to take into account—the

dispersion of outcomes and the predictability of outcomes (Lynn, Podolny, & Tao, 2009; Salganik, Dodds, &

Watts, 2006). Dispersion, which measures the differences between the worst and best performers, represents

an intuitive understanding of inequality, as evidenced by the widespread use of the Gini coefficient to

discuss income and wealth inequality (Allison, 1978; Piketty & Goldhammer, 2014). In our context, lower

inequality would entail more consistent levels of effort and engagement across individuals, resulting in more

evenly distributed performance. Predictability, however, is a less straightforward concept because it can

indicate both high and low inequality depending on the characteristic that is associated with the outcome.

In the case of an inherent quality or virtue, more predictable outcomes imply more equality and fairness

(Cook & Hegtvedt, 1983; Jasso, 1983; Salganik et al., 2006). However, in the case of arbitrary or unfair

pre-existing differences, more predictable outcomes signal the lack of equality of opportunity and upward

mobility (Van de Werfhorst & Mijs, 2010). In a supportive, learning-based community, lower inequality

would entail an even chance for everyone to perform well, making outcomes less correlated with prior skills

4



and achievements. In short, in the context we investigate, lower inequality involves lower dispersion of

effort and performance and lower predictability of current from prior performance, while higher inequality

entails higher dispersion and predictability.

Previous literature has not directly studied the effects of social comparison on inequality in effort and

performance but it nevertheless contains some insights and suggestive empirical evidence, albeit contradic-

tory. On the one hand, in his seminal essay, Festinger suggests that social comparison drives competition

in a direction that facilitates convergence towards uniformity (Festinger, 1954). He argues that social com-

parison increases underachieving individuals’ motivation to perform better and hence, they increase effort.

In addition, overachievers become willing to help underachievers while, at the same time, underachievers

cooperate less with overachievers. Further, he mentions that when the achievement gap is too large, indi-

viduals will avoid comparison by simply avoiding or leaving the group. All of these mechanisms—increasing

effort, cooperating with underachievers, undermining overachievers, or self-selecting out of an unfavorable

comparison group—serve to equalize outcomes and thus decrease inequality in performance. Two of these

mechanisms are empirically supported: the tendency to select into and out of contests (Dohmen & Falk,

2011; Eriksson, Teyssier, & Villeval, 2009) and the tendency to sabotage winners in contests (Chen, 2003).

However, empirical research on contests and tournaments contradicts Festinger’s expectation that un-

derachievers increase effort. Compared to piece-rate schemes, contests, all-pay auctions, and tournaments

result in higher variance in individual effort (Cason et al., 2010; Dechenaux et al., 2015; van Dijk, Son-

nemans, & van Winden, 2001). Similarly, the contributions to a public good increase in dispersion when

individuals are incentivized with tournament rewards for contributing (Dickinson & Isaac, 1998). These

outcomes can be explained with demographic differences and heterogeneous preferences towards winning,

risk, losses, and inequality (Dechenaux et al., 2015). In essence, social comparison may have differing effects

on different people: some may become more competitive, while others may lose interest and decrease effort

as their chances of winning drop. This implies that social comparison could result in a rich-get-richer and

poor-get-poorer dynamics that widen existing ability differences and make performance more predictable,

going directly against Festinger’s arguments. We hypothesize that social comparison tends to do exactly

this.

There are two forms of social comparison people can make: upward and downward (Fiske, 2011).

Upward social comparison occurs when people compare themselves to those who are better off and although

it often triggers negative self-evaluation, resentment, and envy, it can also be motivating and self-enhancing

(Collins, 1996). Downward social comparison occurs when people compare themselves to those who are
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worse off and, in parallel, it generally boosts self-confidence and improves self-evaluation but may also

induce negative affect, especially among those with low self-confidence (Buunk, Collins, Taylor, VanYperen,

& Dakof, 1990). We suggest that the positive and negative effects from upward and downward social

comparison could align in a way that social comparison becomes motivating and enabling for those who

are already well off but demotivating and discouraging for those who are currently worse off.

When individual achievement is measured and evaluated in reference to others, success becomes a

moving target. Individuals who put the effort and improve their personal performance may lack a sense

of accomplishment because others may still be advancing faster. This may trigger feelings of unfairness,

resentment, even relative deprivation among those at the bottom of the chart. These subjective experiences

have been linked to short-sightedness, emphasis on small and immediate rewards compared to large and

delayed ones (Callan, Shead, & Olson, 2011), and more risky behavior (Payne, 2017). Conversely, those at

the top of the chart may experience the opposite effect, whereby a provisional reward for a serendipitous

move could increase their confidence and motivation to persevere (Restivo & van de Rijt, 2012). Indeed,

prior empirical research shows that higher-ranked individuals behave more competitively than lower-ranked

individuals (Garcia, Tor, & Gonzalez, 2006). In short, social comparison exaggerates small differences in

ability and effort but individuals’ reaction to the ongoing results could feedback into individuals’ behavior

in a way that reinforces these differences.

We thus expect that social comparison will result in higher individual effort among already well-

performing individuals and lower individual effort among worse-performing individuals. This in turn will

produce higher inequality by increasing both the dispersion and the predictability of individual perfor-

mance. In particular, while fierce competition at the top could produce outstanding results and surprise

winners, low effort at the bottom is likely to result in lower-quality results from the expected losers. More

formally, our predictions are as follows:

H1. Social comparison increases the dispersion of effort by eliciting more effort from top performers

but less effort from bottom performers.

H2. Social comparison increases the dispersion of performance by eliciting better performance from

top performers but worse performance from bottom performers.

H3. Social comparison increases the predictability of performance from prior performance for bottom

performers.

We test these predictions in the context of online crowdsourcing contests using data from programming
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challenges on Topcoder.

Data and Methods

Data

We combine data from two sources. First, we obtained detailed data from Topcoder on 189,659 successful

code submissions by 17,000 individuals in 367 challenges in the period from 15 December, 2005 until 1

April, 2018. The dataset covers almost all “marathon matches” in the Data Science track that were posted

since the platform was launched, except for a handful of challenges with proprietary data. Marathon

matches are relatively long-running challenges that allow coders to make repeated submissions and receive

provisional scores for their current performance, giving them the opportunity to improve their solutions.

We combine these data with manual classifications of the challenges computed from answers provided

by coders in a dedicated challenge on Topcoder itself. Coders classified the challenges along categories

such as ease of entry, complexity of the scoring function, type of task, and scoring type. Coders marked

the scoring type as absolute when “The score shows absolute performance of the solution on the test”

and as relative when “The score shows performance relative to the performance of the other solutions”.

We assume that social comparison is more prominent in the relatively scored challenges compared to the

absolutely scored ones. To test the hypotheses, we examine how the scoring type of the challenge affects

the coder’s effort and performance, depending on the coder’s prior performance. The data and scripts for

the analyses are openly available on Figshare (Tsvetkova, Müller, Vuculescu, Ham, & Sergeev, 2022).

Measures

Our primary measure of effort is lines of code (LOC)—a common metric for programmer productivity and

effort employed in software development management (Fenton & Neil, 2000). We calculate the number of

code lines (disregarding comments) written by the contestant for the challenge by summing the number of

code lines in the first submission with the number of new or edited code lines in all subsequent submissions,

given by the code file diffs (see Appendix B). This measure does not differentiate between small edits,

such as changing a variable name, and a major overhaul, such as rewriting the algorithm, but it generally

captures the amount of work and attention involved. There are two cases where more than 10,000 new code

lines were inserted between subsequent submissions, which on closer inspection turned out to constitute

hard-coded data; we remove these two outliers from the relevant analyses. To confirm the robustness of
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the findings on effort, we additionally look at the number of submissions and the duration of the coder’s

participation in the challenge, expressed as a proportion of the challenge duration.

To measure the quality of performance, we require an objective metric that does not depend on the

scoring type. This precludes using the absolute final scores since they are deliberately scaled for relatively

scored challenges, as well as the final rank percentiles since they are influenced by differences in skill-based

selection into differently scored challenges. Hence, to quantify the quality of performance, we estimate the

cyclomatic complexity of the code in the final submission. Cyclomatic complexity is a software complexity

measure that is based on the decision structure of the code (McCabe, 1976). It quantifies the number of in-

dependent paths in the source code by counting the number of decision points, which occur at conditionals,

logical expressions, and loops. We use cyclomatic complexity to measure how advanced and sophisticated

the coder’s solution is in terms of control logic (Munson & Khoshgoftaar, 1989). Although the measure in-

creases with modularization and design effort (Shepperd, 1988), very convoluted and inefficient code would

also have high cyclomatic complexity. We find that the correlation between the cyclomatic complexity of

the code in the final submission and the coder’s final rank percentile is positive in the analyzed challenges,

with mean Spearman rank correlation 0.51 for absolutely scored challenges and 0.54 for relatively scored

challenges, both significantly different from 0 according to one-sample t-tests (p < 0.000) but not from

each other (two-independent-sample t = −0.668, p = 0.507). This confirms that the metric is independent

from the effects of the scoring type, as intended. Nevertheless, the correlation with rank percentile can

be quite low in some cases (Fig. 3, right), which brings attention to the fact that the measure mainly

captures the elaboration and development of the code, rather than how well it addresses the particular

problem. Relevantly to this, we find that the cyclomatic complexity typically increases with subsequent

submissions, further supporting the idea that it reflects elaboration and development, rather than con-

solidation and refinement (Fig. 3, left). Most importantly, the cross-over experimental design we employ

compares the difference in performance between the treatment and control within individuals. Essentially,

we ignore individual differences in coding style and only focus on the change in the code complexity for

each individual.

For the predictability of performance, we estimate the absolute difference between the percentile rank

by final score and the percentile rank by prior performance; we then subtract it from 1 in order to have

higher values correspond to higher predictability. For prior performance, which we use as proxy for ability,

we use the coder’s official Topcoder Marathon Match rating. Topcoder calculates this rating using a

complex algorithm that evaluates the coder’s actual performance in reference to the performance expected
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by their previous rating and accounts for how many previous challenges the coder has participated in

and how volatile their performance in these previous challenges has been. It should be noted that this

measure is not perfect since it is noisier for coders who have participated in fewer previous challenges on

the platform. We mitigate for this limitation, however, by controlling for the number of previous challenges

in the statistical models.

Coarsened Exact Matching

Since our data are observational, we use a quasi-experimental research design to establish a causal link

between scoring type and dispersion of effort, dispersion of performance, and predictability of performance.

First, we use coarsened exact matching to identify strata of challenges that are similar in all possible respects

except for the scoring procedure. With coarsened exact matching, we first coarsen the matching variables

C to fewer meaningful categories c(C) and then perform exact matching on c(C) (Iacus, King, & Porro,

2012). Subsequently, the data is sorted into strata of unique values in c(C). Any stratum that does not

include at least one observation for each level of the treatment variable, i.e. scoring procedure, is then

pruned. For any estimation that is carried out after the pruning process, we add weights that are based on

the relative frequency of observations within strata. This step ensures that differences in the distribution

of observations across strata do not distort the results (Iacus et al., 2012).

We choose to match on all variables that might be correlated with the scoring type X and any of the

outcomes Y : variables related to the size, duration, difficulty, reward structure, and task of the challenge.

For most discrete data, we simply use the levels as the values for which the data must match. For continuous

variables we select cut points to coarsen the data based on substantive judgement and an analysis of the

variables’ distributions. Table 3 in Appendix C summarizes the variables and the coarsened levels that we

use for constructing the strata in the matching process.

To coarsen the variables for number of contestants, challenge duration, prize pool, and number of

prizes, we started with an a priori expectation about meaningfully different categories (e.g., contests

without monetary prizes vs. contests with top-three prizes vs. contests with multiple prizes) and adjusted

it according to the observed distribution in our sample of challenges (for the same example, we settled on 0

prizes, 1–5 prizes, and 8–10 prizes). For engagement barrier and scoring complexity, which are based on five-

level Likert scale responses, we split between the categories “1–Strongly Agree” and “2–Agree” on the one

hand, and the rest on the other. The decision how to coarsen the variables for contestants/registrants ratio

and average contestant experience was mainly driven by the distributions of these variables. Specifically,
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we divided average contestant experience by tercile and split contestants/registrants ratio halfway through,

with an additional category for very high values ≥ 0.9.

After performing the matching procedure, we obtain a dataset of 52 challenges in 16 strata, with a

reasonable covariate balance for the six coarsened variables (Fig. 4). We note that none of the matched

challenges have monetary or nonmonetary prizes (Table 4). This means that they are challenges designed

and posted by Topcoder with the purpose to keep their user community stimulated and engaged. Coders

contribute to such challenges in order to learn and practice and in order to establish their reputation in

the community (K. J. Boudreau et al., 2011; K. Boudreau et al., 2012).

Crossover Quasi-Experiment

Analyzing all the individuals in the matched challenges would not allow us to distinguish between self-

selection into the treatment and any actual treatment effect on behavior. To provide causal answers to

the hypotheses, we restrict the sample of contest participants to coders with observations for both scoring

procedures in the same stratum for whom there are also measures of prior performance. Doing this allows

us to approximate a controlled crossover experiment in which subjects are exposed to both the treatment

and control and their outcomes are measured on each occasion. This experimental design is commonly

employed in clinical and health research but relatively underused in social science.

After matching the challenges and identifying individuals with Topcoder rating who have at least one

treatment and one control observation in one of the strata, we are left with 1,239 observations of 319

coders over 42 challenges in 12 strata; these coders made 12,914 successful code submissions altogether.

Compared to the average contestant in the same challenge, our “subjects” are more experienced and higher

rated; further, they make more submissions and perform better (Table 5). Nevertheless, in most cases,

the observations in the matched data span the full range of values, giving us enough variability to make

conclusions about a diverse set of individuals on Topcoder.

Statistical Models

Our data are partially crossed since individuals are nested within different challenges but not all individuals

are present in all of the challenges. Essentially, we have a non-balanced design with non-independent

observations and we account for it by fitting mixed effects models with random intercepts for strata,

challenges, and individuals (Barr, Levy, Scheepers, & Tily, 2013). Since not all types of challenges are

equally represented, we additionally weigh the observations by strata.
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To test the hypotheses, the models include the coder’s Topcoder rating Zij , which is a challenge-varying

individual-level variable. Additionally, we control for treatment ordering effects by including the number

of challenges the coder has already participated in, which is another challenge-varying individual-level

covariate (Pij). The following equation describes the general structure of our models:

Yijk = b0 +K0k + J0j + I0i + b1Xj + b2Zij + b3XjZij + b4Pij + eij

where K0k is the stratum random intercept, J0j is the challenge random intercept, and I0i is the

individual random intercept. The interaction term between scoring type and coder rating b3XjZij helps to

disentangle the different effects we expect on high-performers and low-performers. In practice, we model

the relationship between rating and proximity to rating as quadratic and the relationship between rating

and code complexity, number of code lines, number of submissions, and time in challenge as cubic. This

decision is informed by the shape of the bivariate relations depicted in Figure 1 and Figure 2 and the best

model fit. These two criteria similarly inform our decisions about which terms to interact with scoring type.

To test the hypotheses, we use the Chi-square difference test to compare the models with and without the

direct and interaction effects that involve scoring type.

The outcome variables number of code lines written, number of submissions, and code complexity are

strictly positive and can be seen as a continuous representation of count variables. The variables are heavily

skewed to the right and hence, we fit gamma regression models with a log link function for these measures

(Brooks et al., 2017; Faraway, 2005). The outcome variables proximity to rating and time in challenge are

also positive but bounded by 1 and hence, we fit a beta regression model for these two cases. Since the

beta distribution excludes the extreme values 0 and 1, we rescaled the two outcome variables using the

equation y′ = (y(N − 1) + 0.5)/N , where N is the sample size. We use N = 29, 075, which is the total

number of challenge contestants (but notice, not unique coders) in our data (Smithson & Verkuilen, 2006).

Since we are using pruned data, we cannot claim to measure the treatment effect on the whole popu-

lation. Rather, the estimand in our statistical models is the local average treatment effect for the treated

(Iacus et al., 2012).

Results

To test the hypotheses causally, we restrict our analyses to individuals who participated in two or more

challenges that differed in scoring type but were similar in every other aspect. We then use statistical
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models to test whether the scoring type of the challenge affects the effort (H1), the quality of performance

as measured by the cyclomatic complexity of the solution (H2), and the predictability of performance (H3)

of individuals of different abilities in the predicted direction.

Effort

Compared to absolutely scored challenges, in relatively scored challenges low-rated individuals work less on

their code, while high-rated individuals work more: on average, a contestant in the bottom 15% by rating

writes and edits 46-245 fewer lines in relatively scored challenges compared to absolutely scored challenges

while a contestant in the top 15% writes and edits 300-383 more (Fig. 1). This difference is statistically

significant when we test it in regression models that account for variability by stratum, challenge, and

individual, control for ordering effects, and weigh the observations by stratum (∆χ2(2df) = 7.633, p = 0.022

between Model 1.1 and Model 1.2 in Table 1). The negative effect of relative scoring on the effort exerted

by low-rated individuals is also evident when we study how many submissions they made and how long

they stayed active in the challenge. The difference for number of submissions is statistically significant

(∆χ2(2df) = 7.537, p = 0.023 between Model 2.1 and 2.2 in Table 1), although not the one for duration

(∆χ2(2df) = 4.682, p = 0.096 between Model 3.1 and 3.2 in Table 1). More concretely, Figure 1 shows that

contestants in the bottom 45% by rating make on average 1.6-2.5 fewer submissions in relatively scored

challenges compared to absolutely scored challenges but this difference starts to disappear for those with

higher ratings. Overall, these results support H1. The evidence is strongest and most consistent when it

comes to the negative effects of social comparison on the effort exerted by low-performing individuals.

Performance

We find that the difference in the level of performance, as measured by the computational complexity

of the final submitted code, is more extreme between low-rated and high-rated individuals in challenges

with relative scoring compared to challenges with absolute scoring (Fig. 2). The statistical models reveal

that this difference is significant (∆χ2(3df) = 11.532, p = 0.009 between Models 4.1 and 4.2 in Table 2),

providing support for H2. The effect is mainly driven by the higher code complexity produced by coders

rated above the 50th percentile. The left panel in Figure 2 reveals that relatively scored challenges tend to

result in more sophisticated code solutions, mainly because higher-rated individuals produce solutions with

higher cyclomatic complexity: those in the top half by rating submit software with about 30-74 additional

independent logical paths when scoring is relative. The lowest-rated individuals, in contrast, do not appear
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Table 1: Results for effort.

Total code lines Num. submissions Time in challenge

(1.1) (1.2) (2.1) (2.2) (3.1) (3.2)

Relative scoring −0.269∗ −0.292∗∗ −0.341
(0.130) (0.109) (0.194)

Relative scoring × Rating 0.405∗∗ 0.338∗ 0.531∗

(0.148) (0.140) (0.247)

Rating 5.340∗∗∗ 5.307∗∗∗ 4.109∗∗∗ 4.009∗∗∗ 6.898∗∗∗ 6.573∗∗∗

(1.046) (1.045) (1.007) (1.007) (1.557) (1.561)

Rating2 −8.260∗∗∗ −8.675∗∗∗ −6.834∗∗ −7.058∗∗ −10.520∗∗ −10.540∗∗

(2.299) (2.300) (2.206) (2.207) (3.445) (3.443)

Rating3 4.673∗∗ 4.932∗∗∗ 3.879∗∗ 4.026∗∗ 5.641∗ 5.681∗∗

(1.467) (1.467) (1.415) (1.416) (2.204) (2.204)

Number of prev. challenges −0.002 −0.002 −0.004 −0.004 −0.001 −0.001
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Constant 5.476∗∗∗ 5.605∗∗∗ 1.292∗∗∗ 1.453∗∗∗ −1.776∗∗∗ −1.573∗∗∗

(0.155) (0.170) (0.172) (0.181) (0.232) (0.258)

Observations 1025 1239 1229
Individuals 279 319 317
Challenges 40 42 42
Strata 11 12 12
Individual-level variance 0.223 0.221 0.300 0.301 0.344 0.346
Challenge-level variance 0.050 0.046 0.021 0.018 0.060 0.059
Stratum-level variance 0.027 0.027 0.116 0.110 0.092 0.083
Log Likelihood −7821 −7817 −3847 −3843 614 616
AIC 15659 15656 7712 7708 −1209 −1210
∆χ2 7.633∗ (2 df) 7.537∗ (2 df) 4.682 (2 df)

Note: Coefficients and standard errors (in brackets) for: (1) mixed effects gamma regression for the total number
of code lines the coder wrote in the challenge; (2) mixed effects gamma regression for the number of submissions
the coder made in the challenge; (3) mixed effects beta regression for the duration of the coder’s participation
in the challenge, measured as the difference between the time of their last and first submissions, divided by the
duration of the challenge. The models include weights by stratum and control for treatment ordering effects using
the number of previous challenges the coder has participated in. The models also include random intercepts by
individual, challenge, and stratum.
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Figure 1: Low-rated coders put less effort in Topcoder challenges with relative scoring than in challenges
with absolute scoring: they write fewer lines of code (top left), make fewer submissions (top right), and
stay for shorter period out of the duration of the challenge (bottom). The shaded area indicates 95%
confidence intervals around the means, which are estimated over 954 stratum-individuals.

to develop their solutions as much in relatively scored challenges.

Regarding the predictability of performance, the U-shaped relationship in the right panel in Figure

2 suggests a tendency for higher predictability at the lower and higher ends of rating. It appears that

relatively scored challenges make the performance of low-rated individuals more predictable, while that of

individuals in the 60-80 percentile by rating less predictable. This would suggest that relatively scored

challenges are more likely to reinforce the position of low-rated coders but also more likely to produce

upsets or surprise wins for above-average performers. This difference, however, does not reach statistical

significance in our data and models: comparing the model without treatment effects (Model 5.1 in Table

2) and the model with treatment effects for the intercept and slope of the relationship between rating and

predictability in the treated group (Model 5.2 in Table 2) yields ∆χ2(2df) = 3.974 and p = 0.137. In short,

the data do not provide sufficient evidence in support of H3.

Finally, to confirm that the differences in code complexity we observe in support of H2 result from the

differential effect of scoring type on effort, we additionally compare the timing, length, and code complexity

of the first submission (Fig. 5 and Table 6). The differences between contestants in the challenges with

absolute and relative scoring are not statistically significant at the start of the challenges, indicating that

the final outcomes are not driven by the contestants’ a priori expectations and dispositions but are the

result of social comparison dynamics.
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Table 2: Results for performance.

Code complexity Proximity to rating

(4.1) (4.2) (5.1) (5.2)

Relative scoring −0.189 0.201
(0.166) (0.108)

Relative scoring × Rating 1.480∗∗ −0.349∗

(0.544) (0.176)

Relative scoring × Rating2 −1.171∗

(0.495)

Rating 4.354∗∗∗ 3.656∗∗∗ −1.792∗∗∗ −1.575∗∗∗

(0.882) (0.176) (0.384) (0.397)

Rating2 −6.801∗∗∗ −6.477∗∗∗ 2.431∗∗∗ 2.420∗∗∗

(1.933) (1.950) (0.355) (0.355)

Rating3 4.043∗∗∗ 4.271∗∗∗

(1.227) (1.225)

Num. previous challenges −0.001 −0.001 0.004∗∗ 0.004∗

(0.002) (0.002) (0.002) (0.002)

Constant 3.863∗∗∗ 3.946∗∗∗ 1.544∗∗∗ 1.426∗∗∗

0.139 (0.169) (0.111) (0.128)

Observations 1188 1239
Individuals 308 319
Challenges 42 42
Strata 12 12
Individual-level variance 0.138 0.136 0.028 0.028
Challenge-level variance 0.082 0.073 0.000 0.000
Stratum-level variance 0.031 0.030 0.002 0.002
Log Likelihood −6752 −6747 1040 1042
AIC 13523 13517 −2063 −2063
∆χ2 11.532∗∗ (3 df) 3.974 (2 df)

Note: Coefficients and standard errors (in brackets) for: (4) mixed effects gamma regression
for the cyclomatic complexity of the code in the final submission; (5) mixed effects beta
regression for the proximity between the coder’s challenge-specific percentile rank by Top-
coder rating and their percentile rank by final score in the challenge. The models include
weights by stratum and control for treatment ordering effects using the number of previous
challenges the coder has participated in. The models also include random intercepts by
individual, challenge, and stratum.
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Figure 2: High-rated coders produce solutions with higher cyclomatic complexity compared to low-rated
coders in Topcoder challenges with relative scoring than in challenges with absolute scoring (left). There
is also indicative evidence that the performance of low-rated coders is more predictable in relatively scored
challenges (right) but this result is not statistically significant (Table 2). The shaded area indicates 95%
confidence intervals around the means, which are estimated over 954 stratum-individuals.

Discussion

Nowadays, some of the most common and prominent strategies to motivate and engage users on crowd-

sourcing platforms, social media networks, online learning portals, and gaming communities rely on the

power of social comparison. Leaderboards, level achievements, badges, and prizes aim to stimulate the

user’s competitive drive and increase participation, effort, and creativity (Morschheuser, Hamari, Koivisto,

& Maedche, 2017). These practical approaches are backed by decades of behavioral economics and orga-

nizational research on the positive effects of contests and tournaments on average individual performance.

Nevertheless, researchers have also warned about possible backfire effects from social comparison and com-

petition (Barker & Barclay, 2016; Charness et al., 2013; Liu et al., 2014), and the current study presents

arguments and evidence aligning with this more measured and cautious outlook.

We hypothesized that feedback based on social comparison affects the effort of individuals of different

ability differentially, in ways that make individual performance more predictable and unequal. We employed

advanced computational measures and a crossover quasi-experiment to test these predictions with data

from the online crowdsourcing community Topcoder. The empirical results support two of our three

hypotheses. We found that when feedback for the submissions is based on relative performance, low-rated

Topcoder participants reduce effort, while high-rated participants increase it. Although the quality of the

submissions is not necessarily lower for the low-rated participants, it is markedly higher for the high-rated

participants. Thus, as predicted, relative feedback leads to individual performance that is more extremely

distributed in the group. Unfortunately, the data do not provide sufficient evidence for the prediction

that performance becomes more predictable. Nevertheless, over time, the unequal effects on effort and

performance we discovered could lead to a self-reinforcing loop that solidifies and even increases differences
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between bottom and top performers.

Theoretical Implications

The study makes several important theoretical contributions. First, we enrich the economic and manage-

ment literature on contests and tournaments by introducing the problem of inequality. Under the umbrella

of “tournament theory,” most prior research has focused on the optimal design of prize structures to in-

crease average and best performance (Connelly et al., 2014; Lazear & Rosen, 1981). In contrast, we posit

that the dispersion and predictability of effort and performance are just as important group outcomes

to consider. If effort and performance reinforce pre-existing differences in skills and abilities, low-ability

individuals may lose motivation to engage and learn. Thus, inequality in effort and performance has impli-

cations for the well-being, sustainability, and growth of organizations and communities, similarly to other

manifestations of social and economic inequality (Bapuji et al., 2020).

Second, we contribute to social psychology theory by recognizing and partially testing a seminal hy-

pothesis that has received little prior attention. Although indirectly, Festinger (Festinger, 1954) implied

that social comparison should equalize individual outcomes because it makes underachievers exert more

effort, receive more help, undermine overachievers, or altogether avoid tough competition. Our study

bracketed self-selection and focused on how the same individuals change behavior under social comparison

in non-cooperative situations. Thus, we directly addressed Festinger’s prediction on effort and proved

it wrong in competitive settings. We found that, in the absence of opportunities for cooperation, social

comparison can actually make underachievers exert less effort, not more, and thus produce more unequal

performance. Our findings pave the way for future theoretical and empirical work that comprehensively

revisits, revises, and restricts Festinger’s predictions on the group effects of social comparison.

Last but not least, we add to the literatures on crowdsourced contests, contest design, and gamified

crowdsourcing (Adamczyk et al., 2012; Feng, Jonathan Ye, Yu, Yang, & Cui, 2018; Morschheuser et al.,

2017) by shedding light on the differential effects that feedback based on social comparison can have on

users of different ability. From previous empirical research on the Topcoder community we know that

high-skilled contestants affect contest dynamics by discouraging entry (Archak, 2010) and eliciting higher

effort and greater performance from other top performers (K. J. Boudreau et al., 2016); here, we expand

this view by including the converse effects on low performers too. In fact, prior research on gamification

has already raised an alarm that long-term leaderboards may lead to inequality (Preist, Massung, &

Coyle, 2014). Specifically, one experimental study of dyadic tournaments on an online labor market shows
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that while leaderboards make weak participants who face strong competitors drop out, they make strong

participants who face strong competitors compete harder (Straub, Gimpel, Teschner, & Weinhardt, 2015).

We extend this work by studying tournaments with more complex and realistic tasks, longer duration, and

more participants, while retaining focus on causal inference. Overall, our argument that the exploitation

of social comparison for competition may have undesirable long-term and group-level consequences aligns

well with the recent shift in innovation contest design towards interaction, cooperation, and idea sharing

(Bailey & Horvitz, 2010; Bullinger et al., 2010; LaToza et al., 2015; Malone et al., 2017; McInnis, Xu, &

Dow, 2018).

Practical Implications

Our findings suggest that relying on social comparison for performance feedback could negatively affect

underachievers in competitive settings. Although Topcoder relies on commercial programming challenges

to finance itself, most of the challenges it organizes are designed and organized with the sole purpose to

stimulate and engage the Topcoder community. In fact, our results are based precisely on the latter type

of challenges, which are not monetarily rewarded. Thus, the direct implication from our study is that

Topcoder, and other similar contest-based online crowdsourcing communities, should carefully consider

whether to use evaluation and feedback focusing on relative performance if the aim is to motivate and

engage less active and less invested users. While relative feedback may stimulate experienced overachievers,

it may demotivate learners. Crowdsourcing platform providers should stay acutely aware of this tradeoff

when it comes to individuals competing against each other.

The focus of our study also brings attention to the need to consider long-term group-level outcomes

in addition to short-term goals and effects when designing crowd-based contests. Leaderboards, rankings,

and other-based feedback may help elicit value for clients in the short term but may also drive away

some users, inadvertently impacting the size, composition, and identity of the community. Yet, it is not

social comparison per se that is the problem but its use to heighten competition. When combined with

opportunities for cooperation and idea exchange, social comparison can in fact foster learning, community

building, and innovation. For example, innovation contests that make submissions public and allow for

peer comments and evaluation help contestants learn and incorporate ideas from others’ solutions and

improve the quality of their own solution (Bockstedt et al., 2016; Bullinger et al., 2010). Importantly, low

and top performers appear to benefit similarly from such an arrangement (LaToza et al., 2015).

Beyond crowdsourcing, the study carries implications more generally for computer-supported commu-
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nities and organizations that are centered around the learning, engagement, and continuous participation

of their members. For example, there is a trend to use leaderboards and badges to gamify learning ex-

periences but, complementing other empirical research (Domı́nguez et al., 2013; Hanus & Fox, 2015), our

findings suggest that this innovation may not be equally beneficial for students of all ability levels if the

emphasis is on individual competition. “Grading on a curve”, whereby course grades are determined in ref-

erence to others’ performance, has been shown to increase average effort under some conditions (Andreoni

& Brownback, 2017; Becker & Rosen, 1992) but our research suggests that it might also increase the dis-

parity in effort and performance between bottom achievers and top achievers. Along the same lines, some

organizations employ a performance management practice known as “stack ranking”, “forced ranking”, or

“vitality curve”, whereby employees are rated against their coworkers (Stewart, Gruys, & Storm, 2010).

Our research suggests that even if such performance feedback is not directly related to financial rewards

and promotion, it can trigger a self-reinforcing process and lower effort further among bottom performers.

Limitations and Future Research

Despite the advanced computational measures and novel causal inference methods employed by the study,

several limitations remain. To provide more accurate causal estimates, we used matching and a quasi-

experimental crossover design. However, this made us disregard the majority of our data and narrow

down the scope of our claims. For example, our findings do not necessarily transfer to contests that offer

monetary rewards. In those cases, financial considerations could overwhelm the subtle behavioral effects

from social comparison we found but could also possibly interact with them (Cerasoli, Nicklin, & Ford,

2014; Liang, Wang, Wang, & Xue, 2018; Rogstadius et al., 2011).

We also recognize that our sophisticated matching techniques do not entirely preclude the possibility

for confounding. Despite matching on multiple aspects, including task difficulty, task type, task goal, and

the complexity of the scoring procedure, it is still possible that relatively and absolutely scored challenges

differ in respects that we have not captured and that may explain the observed effects. This is an inherent

limitation to any causal inference research that relies on observational data such as ours. We assumed

that the only difference between the two types of challenges is the emphasis on social comparison but we

cannot entirely preclude other subtle differences responsible for alternative behavioral mechanisms. For

example, it is possible that relative scoring is mainly applied to challenges that are more open-ended and

less structured and it is in fact the absence of clear detailed instructions that leads low performers to

lose motivation and top performers to gain ambition. Ideally, we would have survey data on how coders
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experienced the challenge and what motivated their contribution. Even better, we would randomly assign

coders of varying abilities to identical challenges that only differ on the scoring procedure. As always,

randomized field or lab experiments are the gold standard for causal claims, whenever they are possible

and feasible.

The measure for the quality of performance we employed—the cyclomatic complexity of the final sub-

mitted code—has limitations too. We required an objective measure of performance that is not correlated

with the scoring type; we thus could not rely on the official performance metrics employed by the chal-

lenges. Further, the measure had to work for multiple programming languages and be easily calculated for

thousands of code submissions, each involving hundreds of code lines. Evaluating the quality of software

code is a difficult task and there is a proliferation of metrics available (Munson & Khoshgoftaar, 1989;

Fenton & Neil, 2000). We chose McCabe’s cyclomatic complexity with the intention to quantify software

quality in terms of its elaborated logical flow and development. Although theoretically simple and appeal-

ing, empirically, the metric has been shown to be strongly correlated with lines of code (Shepperd, 1988).

Indeed, the Pearson correlation between the two for the final code submissions we analyze is 0.878. We

thus caution that our results on the quality of performance should be interpreted more narrowly in terms

of the extent of elaboration and development of the solution, and not in reference to other possible criteria

such as software maintainability, optimization, code legibility, etc.

Further, our research design is powerful when it comes to dealing with self-selection bias, but has

limitations with respect to sample selection bias. We know for a fact that the matched sample we study

does not represent the Topcoder population accurately. In supplementary analyses, we found out that

our results concern only coders with prior experience on the platform and do not extend to first-time

contestants. Assuming that first-timers randomly choose their first challenge, we tested if the performance,

effort, and likelihood to participate again are different for those who happened to enter Topcoder with a

relatively scored challenge versus absolutely scored challenge. However, the only statistically significant

difference is that first-timers in relatively scored challenges tend to exit the contest faster than first-timers

in absolutely scored challenges (Table 7). One possibility is that the effects on newcomers are exactly the

same as for experienced Topcoder users but since we don’t observe their ability, we cannot measure them.

Of course, another possibility is that the effects do not extend to näıve participants and thus, our findings

are restricted to a specific context and population.

We recognize that the Topcoder community is not representative of other crowdsourcing platforms or

online communities in general. Thus, there is an obvious need to replicate our findings on other online
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sites and in other contexts. This will help clarify the frequency, strength, and conditions for the effects

we observed. Specifically, we note that although we framed our argument more broadly in terms of

social comparison, the effects could deffer for upward and downward social comparison. Out of the 31

relatively scored challenges we analyze, in six the score depends on the number of competitors the player

beats (downward comparison) while in the rest, the score is normalized by the current best score (upward

comparison). When we split the analyses by the direction of comparison, we observe that downward

comparison appears to be the one that demotivates those already at the bottom of the ranking, while

upward comparison is the one that motivates those at the top (Fig. 6). Because we halve the data

after the split, we cannot disentangle these effects quantitatively but we hope future research can test

for this possible effect difference. Another hypothesis is that the negative effects of social comparison on

under-achievers may be non-existent, or even positive, in smaller, less anonymous, and more collaboration-

centered groups. If proven, such result will delineate more precisely the scope of Festinger’s arguments

(Festinger, 1954), as well as the scope of our findings here.

Conclusion

To motivate user effort and engagement, many online platforms introduce game elements such as rankings,

leaderboards, and contests (Deterding, Dixon, Khaled, & Nacke, 2011; Morschheuser et al., 2017). These

elements rely on humans’ natural proclivity for social comparison and status seeking to trigger competition

and interest (Festinger, 1954; Garcia et al., 2013). However, using data from the online crowdsourcing

platform Topcoder, we presented evidence that social comparison increases effort for better-performing

individuals but has exactly the opposite effects on worse-performing individuals. This can trigger a rich-

get-richer-poor-get-poorer dynamic that increases engagement and performance differences in the group

even further. In this way, social comparison and competition can negatively impact motivation and learning,

and organizations and communities that focus on equity and sustainability should be careful to promote

them.
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Appendix

Data

Data Collection

For each challenge, we obtained data from Topcoder on the number of registrants, the number of con-

testants, an estimate of the duration of the challenge, and an estimate of the average rating of the

contestants based on their performance in prior challenges. In addition, we have manual classifica-

tions of the challenges along a number of less straightforward categories—for example, ease of entry,

the complexity of the scoring function, the type of the task, and the type of scoring. These classi-

fications were computed from answers provided by coders in a dedicated challenge on Topcoder itself

(https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17094&pm=14852).

For each contestant in a challenge, we know their Topcoder rating, the number of challenges in which

they participated before, and their final score and rank in the challenge. To calculate a coder’s rating, Top-

coder uses a complex formula that considers the coder’s actual performance in reference to their expected

performance given all contestants’ previous rating, the volatility of performance, and the number of previous

contests (https://community.topcoder.com/longcontest/?module=Static&d1=support&d2=ratings).

Additionally, for each submission the contestant made in the challenge, we have the actual submitted

code and know the time of submission, the programming language, and the provisional score achieved.

Data Cleaning

Each challenge poses a well-defined problem and has a unique leaderboard and prize structure. However,

sometimes different challenges may be based on the same problem or challenges may be complementary,

with each of them covering one aspect of a larger problem, often with an increasing level of difficulty. To

avoid outlier effects in our analyses, we excluded 111 challenges that were based on a single problem (these

presented a controlled experiment on the platform), leaving us with 256 challenges based on 214 unique

problems. We additionally removed any challenge that had fewer than 10 contestants (5 challenges). The

final set of 52 matched challenges corresponds to 49 unique problems.

When analyzing individual submissions we ignored 0-point submissions. These occur extremely often

in the data and could be explained with minor bugs in the code that break the provisional scoring system.

They are thus not indicative of effort in the same way that a new code revision is.
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Similarly, when analyzing contestants in a challenge, we only considered individuals who made at

least one non-zero submission. Although any coder who made a submission, whether successful or not, was

considered a contestant and attributed a new rating as a result of their rank in the challenge, it is impossible

to discern whether coders with only 0-point submissions made consistent effort or simply tested the system

without being aware of the repercussions. Consistent with our decision to ignore 0-point submissions, we

considered that these individuals made 0 successful submissions and, in effect, did not participate.

New contestants who have just joined the platform by definition lack a Topcoder rating. Since chal-

lenges that took place soon after Topcoder started contain mainly new platform members, the number

of observations that we end up analyzing when rating is involved is actually lower: 42 instead of the 52

challenges we originally matched. The analyses involving cyclomatic complexity and file diffs also contain

a number of missing values due to the algorithms failing to run on the submitted code.

Measures

Scoring Type

The classification by scoring type was provided by Topcoder users in a dedicated challenge on the platform.

They were asked to mark the scoring type as absolute when “The score shows absolute performance of

the solution on the test” and as relative when “The score shows performance relative to the performance

of the other solutions”. Below we provide two examples of how the scoring description might look like in

each case.

Stratum 5, Absolute scoring: “You will score 100 points for each coal that is dumped into

a shaft. 1 point is deducted for each time step that you use, this relates to the running costs

of your trucks. You may only use a maximum of 10000 time steps. All time steps greater

than 10000 will be ignored. Your score for a test case will be Max(0, 100*(Coal gathered) -

(Simulation steps used)). Any invalid move will result in a zero score. Your overall score will

be the sum of your scores over all test cases.”

Stratum 5, Relative scoring: “Your score for an individual test case will be the BEST/YOU.

Where YOU is the number of moves returned by your solution and BEST is the lowest number

of moves returned by any of the competitors. Any kind of failure (invalid return, exceeding

time/memory limit, moves not resulting in connected groups) will result in 0 score for that test.

Your total score is simply the sum of scores for every test case.”
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Stratum 12, Absolute scoring: “The score for a test case will be 100 * max(0, 1 - (number

of shifts in your return) / (SZ*SZ)). Invalid returns or returns which result in non-connected

group of white tiles result in 0 score for that test case. The overall score is calculated as a sum

of individual scores for all test cases.”

Stratum 12, Relative scoring: “Your score for an individual test case will be the sum of sizes

of your returned polygons. If your return has invalid format or specifies any invalid polygons,

your score for the test case will be 0. Your overall score will be calculated in the following

way: for each test case where your score is not 0, you get 1 point for each competitor you beat

on this test case (i.e., your score on a test case is larger than this competitor’s score) and 0.5

points for each competitor you tie with (a tie with yourself is not counted); finally, the sum of

points is divided by (the number of competitors - 1). ”

Code Complexity

The complexity of the source code was measured using cyclomatic complexity, as introduced by Thomas J.

McCabe (McCabe, 1976). This software complexity measure uses the control graph of the code in order to

determine the maximum number of linearly independent paths through the code. It is based on the idea

that the complexity of the code is independent of its length and can be measured instead with the number

of decision points.

We calculated cyclomatic complexity with the Python package Lizard (Yin, 2019). Lizard is a cyclo-

matic complexity analyzer that can be applied to all of the major programming languages used in the

Topcoder source code files, including C++, C#, Java, and Python. The software increments the complex-

ity measure by one unit each time it finds a condition in a function. For example, the Python conditions

that the algorithm looks for are “if”, “for”, “while”, “and”, “or”, “elif”, “except”, and “finally”. Each of

these conditions marks the creation of another linearly independent path through the code and therefore

increases the complexity by one. The scores are calculated for each function in the source code and then

summed to give the final measure.

Total Number of Code Lines Written

To quantify effort, we estimate the total number of lines the coder wrote for the challenge. To do this, we

sum over the number of new code lines inserted with every submission. We first select all submissions that

received a non-zero score (solutions which fail to compile receive a score of zero). We then clean up all
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comments in the code files, alongside trailing and leading spaces. Finally, we use a matlab implementation

of the diff algorithm to count the insertions in each submission compared to the previous one. The diff

utility is a common tool to compare two sets of data (e.g. files) line by line (Hunt & MacIlroy, 1976).

This differentiates it, for example, from the edit distance, another popular text comparison measure,

which executes the comparison by character. The particular implementation of the diff utility we used

(SimpleDiff) was developed by Paul Butler and relies on the Ratcliff/Obershelp algorithm to solve the

longest common subsequence problem in order to determine the smallest set of deletions and insertions to

create one set from the other (Ratcliff & Metzener, 1988).

Supplementary Figures and Tables
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Figure 3: The cyclomatic complexity of the source code is a suitable measure of performance because it
generally increases in subsequent submissions (left) and is correlated with rank percentile by final score
in the challenge (right). The left plot shows the cyclomatic complexity of the submitted code for each
subsequent submission for 100 contestants who made at least 10 submissions, randomly selected from the
sample of matched individuals. The right plot shows boxplots of the Spearman rank correlation between
the cyclomatic complexity of the code in the final submission and the rank percentile by final score in the
52 matched challenges.
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Figure 4: Covariate balance for the coarsened variables used for the coarsened exact matching. The
figure shows histograms of the difference in means between the relatively scored and the absolutely scored
challenges in the 16 matched strata. A positive value means that the relatively scored challenges in the
particular stratum have a higher value for this covariate than the absolutely scored challenges in that
stratum; the converse holds for a negative value.
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Figure 5: There are no significant differences in the timing (top left), length (top right), and complexity
(bottom) of the first submission between relatively scored and absolutely scored challenges. Error bars and
shaded areas indicate 95% confidence intervals around the means, which are estimated over 954 stratum-
individuals.
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Figure 6: Low-rated coders put less effort and produce solutions with lower cyclomatic complexity in
relatively scored challenges with downward social comparison (left), while high-rated coders put more
effort and produce solutions with higher cyclomatic complexity in relatively scored challenges with upward
social comparison (right). Error bars and shaded areas indicate 95% confidence intervals around the means,
which are estimated over 450 (left) and 486 (right) stratum-individuals.
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Table 3: Description of the challenge variables used for the coarsened exact matching (N = 256).

Variable name Distribution Coarsening

Scoring type

Absolute Relative
0

100

Number of contestants

0 200 400 600
0

50

Less than 50
50–149
150–299
300 or more

Contestants/registrants ratio

0.00 0.25 0.50 0.75 1.00
0

100
[0, 0.5)
[0.5, 0.9)
[0.9, 1]

Duration

0 500 1000 1500
0

100

8–72 hrs (0.3–3 days)
108–204 hrs (4.5–8.5 days)
228–504 hrs (9.5–21 days)
600–1512 hrs (25–63 days)

Average contestant experience

0 100 200 300
0

100
Bottom tercile
Mid tercile
Top tercile

Engagement barrier

1 2 3 4 5
0

100 [1, 2]
[2.5, 4]

Scoring complexity

1 2 3 4 5
0

100 [1, 2]
[2.5, 3]

Prize pool

0 20000 40000 60000 80000
0

100

None
$1,000–$7,500
$10,000–$30,000
$35,000 or more

Number of prizes

0.0 2.5 5.0 7.5 10.0
0

100

0
1–5
8–10

Non-monetary prize

Yes No
0

250

Final vs. provisional testing

Similar Different
0

250

Provisional testing type

Shared TC preferred TC only
0

100

Task type

Exp
loratio

n

Stra
tegy

Optim
iza

tio
n

Inference

Classi
fica

tio
n

Segmentatio
n

Predicti
on

Detectio
n

0

100

Submission type

Code List of Answers
0

200

Machine learning

Yes No
0

200

Task goal

Quality Resource or Both
0

200

Task goal is to improve exist. solution

Yes No
0

200
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Table 4: Description of the matched challenges (N = 52).

Variable name Category Mean / Freq. St. Dev. Min Max

Scoring type Absolute 40.38% (21)
Relative 59.62% (31)

Number of contestants 122.52 80.33 10 293
Contestants/registrants ratio 0.77 0.31 0.14 1.00
Duration 289.63 96.09 8 355
Average contestant experience 29.50 50.30 1.16 221.53
Engagement barrier 1.89 0.29 1 2
Scoring complexity 1.32 0.44 1 2
Prize pool 0 0 0 0
Number of prizes 0 0 0 0
Non-monetary prize No 100%
Final vs. provisional testing Similar 100%
Provisional testing type Shared 92.31% (48)

TC only 7.69% (4)
Task type Optimization 67.31% (35)

Strategy 32.69% (17)
Submission type Code 100%
Machine learning No 100%
Task goal Quality 96.15% (50)

Resource or both 3.85% (2)
Task goal is improve exist. sol. No 100%

Table 5: Description of the contestants in the matched challenges.
Variable name All (N = 5,916) In both scoring types (N = 1,239)

Mean St. Dev. Min Max Mean St. Dev. Min Max

Number of unique individuals 2774 319
Rating1 0.506 0.288 0.004 1 0.565 0.290 0.004 1
Number of prev. challenges 8.204 13.175 0 125 19.718 18.345 1 125
Code complexity2 117.180 115.361 1 1476 147.124 128.391 1 1208
Proximity to rating1 0.813 0.162 0.062 1 0.830 0.151 0.181 1
Total code lines written3 783.165 1120.635 3 37076 1006.899 1123.781 3 20701
Number of submissions 7.864 9.364 1 162 10.423 11.312 1 147

Note:
1. Based on N = 4,158 observations for all.
2. Based on N = 5,577 observations for all and N = 1,195 for individuals in both scoring types.
3. Based on N = 5,113 observations for all and N = 1,123 for individuals in both scoring types.
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Table 6: Results for the timing, length, and complexity of the first submission.
Timing Length Code complexity

(C1.1) (C1.2) (C2.1) (C2.2) (C3.1) (C3.2)

Relative scoring 0.319 −0.353∗ −0.441∗

(0.174) (0.175) (0.217)

Relative scoring × Rating −0.400 1.442∗ 1.274∗

(0.218) (0.577) (0.615)

Relative scoring × Rating2 −1.218∗ −0.998
(0.530) (0.562)

Rating 0.183 0.411 2.685∗∗ 1.848 3.043∗∗ 2.361∗

(0.596) (0.613) (0.967) (1.027) (0.997) (1.062)

Rating2 −0.368 −0.368 −4.659∗ −3.891 −5.510∗ −5.003∗

(0.548) (0.550) (2.127) (2.156) (2.189) (2.222)

Rating3 3.027∗ 2.977∗ 3.608∗∗ 3.639∗∗

(1.359) (1.357) (1.396) (1.395)

Number of prev. challenges −0.004 −0.004 −0.002 −0.002 −0.002 −0.002
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Constant −0.706∗∗∗ −0.893∗∗∗ 4.759∗∗∗ 4.956∗∗∗ 3.396∗∗∗ 3.639∗∗∗

0.180 (0.206) (0.166) (0.194) (0.182) (0.222)

Observations 1229 1029 1188
Individuals 317 280 308
Challenges 42 40 42
Strata 12 11 12
Individual-level variance 0.374 0.374 0.196 0.194 0.192 0.190
Challenge-level variance 0.053 0.053 0.076 0.078 0.187 0.187
Stratum-level variance 0.064 0.064 0.087 0.084 0.110 0.111
Log Likelihood 534 534 −6395 −6391 −5848 −5845
AIC −1048 −1048 12807 12807 11714 11714
∆χ2 3.869 (2 df) 6.630 (3 df) 6.847 (3 df)

Note: Coefficients and standard errors (in brackets) for: (C1) mixed effects beta regression for the timing of
the first submission, measured as proportion of the challenge duration; (C2) mixed effects gamma regression for
the number of lines of the first submission; (C3) mixed effects gamma regression for the cyclomatic complexity
of the code in the first submission. The models include weights by stratum and control for treatment ordering
effects using the number of previous challenges the coder has participated in. The models also include random
intercepts by individual, challenge, and stratum.
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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Table 7: Results for performance, likelihood to return, and effort for first-time contestants.
Code complexity If returns Total code lines Num. submiss. Time in chall.

(C4) (C5) (C6) (C7) (C8)

Relative scoring 0.052 −0.256 0.050 −0.147 −0.231∗

(0.148) (0.216) (0.158) (0.129) (0.114)

Constant 4.416∗∗∗ 0.221 6.204∗∗∗ 1.898∗∗∗ −0.985∗∗∗

(0.144) (0.223) (0.141) (0.105) (0.107)

Individuals 1159 1198 1055 1198 1198
Challenges 41 41 41 41 41
Strata 13 13 13 13 13
Challenge-level var. 0.142 0.200 0.146 0.093 0.046
Stratum-level var. 0.102 0.268 0.066 0.017 0.037
Log Likelihood −6178 −726 −7658 −3436 1682
AIC 12366 1461 15326 6882 −3355

Note: Coefficients and standard errors (in brackets) for: (C4) mixed effects gamma regression for the cyclomatic
complexity of the code in the final submission; (C5) mixed effects logistic regression for the likelihood to participate
in at least one other challenge on Topcoder; (C6) mixed effects gamma regression for the the total number of code
lines the coder wrote in the challenge; (C7) mixed effects gamma regression for the the number of submissions the
coder made in the challenge; (C8) mixed effects beta regression for the duration of the coder’s participation in the
challenge, measured as the difference between the time of their last and first submissions, divided by the duration of
the challenge. The models include weights by stratum and random intercepts by challenge and stratum.
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001
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