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Abstract
Parity games have witnessed several new quasi-polynomial algorithms since the breakthrough result
of Calude et al. (STOC 2017). The combinatorial object underlying these approaches is a universal
tree, as identified by Czerwiński et al. (SODA 2019). By proving a quasi-polynomial lower bound on
the size of a universal tree, they have highlighted a barrier that must be overcome by all existing
approaches to attain polynomial running time. This is due to the existence of worst case instances
which force these algorithms to explore a large portion of the tree.

As an attempt to overcome this barrier, we propose a strategy iteration framework which can
be applied on any universal tree. It is at least as fast as its value iteration counterparts, while
allowing one to take bigger leaps in the universal tree. Our main technical contribution is an
efficient method for computing the least fixed point of 1-player games. This is achieved via a careful
adaptation of shortest path algorithms to the setting of ordered trees. By plugging in the universal
tree of Jurdziński and Lazić (LICS 2017), or the Strahler universal tree of Daviaud et al. (ICALP
2020), we obtain instantiations of the general framework that take time O(mn2 log n log d) and
O(mn2 log3 n log d) respectively per iteration.
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1 Introduction

A parity game is an infinite duration game between two players Even and Odd. It takes
place on a sinkless directed graph G = (V, E) equipped with a priority function π : V →
{1, 2, . . . , d}. Let n = |V | and m = |E|. The node set V is partitioned into V0 ⊔ V1 such that
nodes in V0 and V1 are owned by Even and Odd respectively. The game starts when a token
is placed on a node. In each turn, the owner of the current node moves the token along an
outgoing arc to the next node, resulting in an infinite walk. If the highest priority occurring
infinitely often in this walk is even, then Even wins. Otherwise, Odd wins.
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63:2 Strategy Iteration with Universal Trees

By the positional determinacy of parity games [8], there exists a partition of V into
two subsets from which Even and Odd can force a win respectively. The main algorithmic
problem of parity games is to determine this partition, or equivalently, to decide the winner
given a starting node. This is a notorious problem that lies in NP ∩ co-NP [9], and also in
UP ∩ co-UP [14], with no known polynomial algorithm to date.

Due to its intriguing complexity status, as well as its fundamental role in automata theory
and logic [9, 18], parity games have been intensely studied over the past three decades. Prior
to 2017, algorithms for solving parity games, e.g. [27, 15, 26, 4, 24, 17, 25, 20, 2], are either
exponential or subexponential. In a breakthrough result, Calude et al. [5] gave the first quasi-
polynomial algorithm. Since then, many other quasi-polynomial algorithms [10, 16, 19, 22, 3]
have been developed. Most of them have been unified by Czerwiński et al. [6] via the concept
of a universal tree. A universal tree is an ordered tree into which every ordered tree of a
certain size can be isomorphically embedded. They proved a quasi-polynomial lower bound
on the size of a universal tree.

Value iteration. The starting point of this paper is the classic progress measure algorithm
[15, 16] for solving parity games. It belongs to a broad class of algorithms called value
iteration – a well-known method for solving more general games on graphs such as mean
payoff games and stochastic games. In value iteration, every node v in G is assigned a
value µ(v) ∈ V from some totally ordered set V, and the values are locally improved until
we reach the least fixed point of a set of operators associated with the game. The set V is
called the value domain, which is usually a bounded set of real numbers or integers. For the
progress measure algorithm, its value domain is the set of leaves L(T ) in a universal tree
T . As the values are monotonically improved, the running time is proportional to |L(T )|.
The first progress measure algorithm of Jurdziński [15] uses a perfect n-ary tree, which
runs in exponential time. Its subsequent improvement by Jurdziński and Lazić [16] uses a
quasi-polynomial-sized tree, which runs in nlog(d/ log n)+O(1) time.

Despite having good theoretical efficiency, the progress measure algorithm is not robust
against its worst-case behaviour. In fact, it is known to realize its worst-case running time
on very simple instances. As an example, let (G, π) be an arbitrary instance with maximum
priority d, with d being even. For a small odd constant k, if we add two nodes of priority k

as shown in Figure 1, then the progress measure algorithm realizes its worst-case running
time. This is because the values of those nodes are updated superpolynomially many times.

(G, π) k kd

Figure 1 A worst-case construction for the progress measure algorithm. Nodes in V0 and V1 are
drawn as squares and circles, respectively.

Strategy iteration. A different but related method for solving games on graphs is strategy
iteration. For a parity game (G, π), a (positional) strategy τ for a player (say Odd) is a
choice of an outgoing arc from every node in V1. Removing the unchosen outgoing arcs from
every node in V1 results in a strategy subgraph Gτ ⊆ G. A general framework for strategy
iteration is given, e.g., in [12]. Following that exposition, to rank the strategies for Odd, one
fixes a suitable value domain V and associates a valuation µ : V → V to each strategy. This
induces a partial order over the set of strategies for Odd. Note that most valuations used
in the literature can be thought of as fixed points of a set of operators associated with the
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1-player game (Gτ , π) for Even. In every iteration, the algorithm maintains a strategy τ for
Odd and its corresponding valuation µ : V → V. Based on a pivot rule, it modifies τ to a
better strategy τ ′, and updates µ to the valuation µ′ of τ ′. Note that µ′ ≥ µ. This process is
repeated until we reach the optimal strategy for Odd.

Originally introduced by Hoffman and Karp for stochastic games [13], variants of strategy
iteration for parity games have been developed [23, 26, 4, 24]. They usually perform well
in practice, but tedious constructions of their worst case (sub)exponential complexity are
known [11]. Motivated by the construction of small universal trees [16, 7], a natural question
is whether there exists a strategy iteration algorithm with value domain L(T ) for a universal
tree T . It is not hard to see that with value domain L(T ), unfortunately, the fixed point
of a 1-player game (Gτ , π) may not be unique. Moreover, in a recent thesis [21], Ohlmann
showed that a valuation that is fit for strategy iteration cannot be defined using L(T ).

Our contribution. We show that an adaptation of strategy iteration with value domain
L(T ) is still possible. To circumvent the impossibility result of Ohlmann [21], we slightly alter
the strategy iteration framework as follows. After pivoting to a strategy τ ′ in an iteration,
we update the current node labeling µ to the least fixed point of (Gτ ′ , π) that is pointwise at
least µ. In other words, we force µ to increase (whereas this happens automatically in the
previous framework). Since the fixed point of a 1-player game may not be unique, this means
that we may encounter a strategy more than once during the course of the algorithm. The
motivation of our approach comes from tropical geometry, as discussed in the full version.

To carry out each iteration efficiently, we give a combinatorial method for computing
the least fixed point of 1-player games with value domain L(T ). It relies on adapting the
classic techniques of label-correcting and label-setting from the shortest path problem to the
setting of ordered trees. When T is instantiated as a specific universal tree constructed in
the literature, we obtain the following running times:

The universal tree of Jurdziński and Lazić [16] takes O(mn2 log n log d).
The Strahler universal tree of Daviaud et al. [7] takes O(mn2 log3 n log d).
The perfect n-ary tree of height d/2 takes O(d(m + n log n)).

The total number of strategy iterations is trivially bounded by n|L(T )|, the same bound
for the progress measure algorithm. Whereas we do not obtain a strict improvement over
previous running time bounds, it is conceivable that our algorithm would terminate in fewer
iterations than the progress measure algorithm on most examples. Moreover, our framework
provides large flexibility in the choice of pivot rules. Identifying a pivot rule that may provide
strictly improved (and possibly even polynomial) running time is left for future research.

Computing the least fixed point of 1-player games. Let (Gτ , π) be a 1-player game for
Even, and µ∗ be its least fixed point with value domain L(T ) for some universal tree T .
Starting from µ(v) = min L(T ) for all v ∈ V , the progress measure algorithm successively
lifts the label of a node based on the labels of its out-neighbours until µ∗ is reached. However,
this is not polynomial in general, even on 1-player games. So, instead of approaching µ∗ from
below, we approach it from above. This is reminiscent of shortest path algorithms, where
node labels form upper bounds on the shortest path distances throughout the algorithm.
In a label-correcting method like the Bellman–Ford algorithm, to compute shortest paths
to a target node t, the label at t is initialized to 0, while the label at all other nodes is
initialized to +∞. By iteratively checking if an arc violates feasibility, the node labels are
monotonically decreased. We refer to Ahuja et al. [1] for an overview on label-correcting and
label-setting techniques for computing shortest paths.

MFCS 2022
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In our setting, the role of the target node t is replaced by a (potentially empty) set of
even cycles in Gτ . A cycle is said to be even if its maximum priority is even. However, this
set is not known to us a priori. To overcome this issue, we define base nodes as candidate
target nodes. A node w ∈ V is a base node if it dominates an even cycle in Gτ , that is, it is
a node with the highest priority in the cycle. Note that π(w) is even.

To run a label-correcting method, we need to assign initial labels ν to the nodes in Gτ .
The presumably obvious choice is to set ν(w)← min L(T ) if w is a base node, and ν(w)← ⊤
otherwise, where ⊤ is bigger than every element in L(T ) (⊤ is analogous to +∞ for real
numbers). However, this only works when T is a perfect n-ary tree. For a more complicated
universal tree, the number of children at each internal vertex of T is not the same. Hence, it
is possible to have ν(w) < µ∗(w) for a base node w. We also cannot make ν(w) too large, as
otherwise we may converge to a fixed point that is not pointwise minimal.

To correctly initialize ν(w) for a base node w, let us consider the cycles dominated by w

in Gτ . Every such cycle C induces a subgame (C, π) on which Even wins because C is even.
The least fixed point of (C, π) consists of leaves of an ordered tree TC of height j := π(w)/2.
Initializing ν(w) essentially boils down to finding such a cycle C with the “narrowest” TC .
To this end, let Tj be the set of distinct subtrees of height j of our universal tree T . We
will exploit the fact that Tj is a poset with respect to the partial order of embeddability. In
particular, let Cj be a set of chains covering Tj , and fix a chain Ck

j in Cj . We define the width
of a cycle C as the “width” of the smallest tree in Ck

j into which TC is embeddable. Then,
we show that our problem reduces to finding a minimum width cycle dominated by w in Gτ .

To solve the latter problem, we construct an arc-weighted auxiliary digraph D on the set
of base nodes. Every arc uv in D represents a path from base node u to base node v in Gτ ,
in such a way that minimum bottleneck cycles in D correspond to minimum width cycles in
Gτ . It follows that the desired cycle C can be obtained by computing a minimum bottleneck
cycle in D containing w. After getting C, we locate the corresponding subtree T ′ of T into
which TC is embeddable. Then, the label at w is initialized as ν(w)← min L(T ′).

With these initial labels, we show that a generic label-correcting procedure returns the
desired least fixed point µ∗ in O(mn) time. The overall running time of this label-correcting
method is dominated by the initialization phase, whose running time is proportional to the
size of the chain cover Cj . We prove that the quasi-polynomial universal trees constructed
in the literature [16, 7] admit small chain covers. Using this result, we then give efficient
implementations of our method for these trees.

In the full version of the paper, we also develop a label-setting method for computing µ∗,
which is faster but only applicable when T is a perfect n-ary tree. Unlike the label-correcting
approach, in a label-setting method such as Dijkstra’s algorithm, the label of a node is fixed
in each iteration. In the shortest path problem, Dijkstra’s algorithm selects a node with the
smallest label to be fixed in every iteration. When working with labels given by the leaves
of a universal tree, this criterion does not work anymore. Let H be the subgraph of Gτ

obtained by deleting all the base nodes. For p ∈ N, let Hp be the subgraph of H induced by
the nodes with priority at most p. We construct a suitable potential function by interlacing
each node label with a tuple that encodes the topological orders in H2, H4, . . . . In every
iteration, a node with the smallest potential is selected, and its label is fixed.

Paper organization. In Section 2, we introduce notation and provide the necessary pre-
liminaries on parity games and universal trees. Section 3 contains our strategy iteration
framework based on universal trees. In Section 4, we give a label-correcting method for
computing the least fixed point of 1-player games. The label-setting method, on the other
hand, is given in the full version. Missing proofs can also be found in the full version.
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2 Preliminaries on Parity Games and Universal Trees

For d ∈ N, let [d] = {1, 2, . . . , d}. For a graph G, we use V (G) as its vertex set, and E(G) as
its edge set. A parity game instance is given by (G, π), where G = (V, E) is a sinkless directed
graph with V = V0⊔V1, and π : V → [d] is a priority function. Without loss of generality, we
may assume that d is even. In this paper, we are only concerned with positional strategies.
A strategy for Odd is a function τ : V1 → V such that vτ(v) ∈ E for all v ∈ V1. Its strategy
subgraph is Gτ = (V, Eτ ), where Eτ := {vw ∈ E : v ∈ V0} ∪ {vτ(v) : v ∈ V1}. A strategy for
Even and its strategy subgraph are defined analogously. We always denote a strategy for
Even as σ, and a strategy for Odd as τ . If we fix a strategy τ for Odd, the resulting instance
(Gτ , π) is a 1-player game for Even.

For the sake of brevity, we overload the priority function π as follows. Given a subgraph
H ⊆ G, let π(H) be the highest priority in H. The subgraph H is said to be even if π(H)
is even, and odd otherwise. For a fixed π, we denote by Π(H) the set of nodes with the
highest priority in H. If v ∈ Π(H), we say that v dominates H. For p ∈ [d], Hp refers to the
subgraph of H induced by nodes with priority at most p. For a node v, let δ−

H(v) and δ+
H(v)

be the incoming and outgoing arcs of v in H respectively. Similarly, let N−
H (v) and N+

H(v)
be the in-neighbors and out-neighbors of v in H respectively. When H is clear from context,
we will omit it from the subscripts.

The win of a player can be certified by node labels from a universal tree, as stated in
Theorem 3. We give the necessary background for this now.

2.1 Ordered Trees and Universal Trees
An ordered tree T is a prefix-closed set of tuples, whose elements are drawn from a linearly
ordered set M . The linear order of M lexicographically extends to T . Equivalently, T can be
thought of as a rooted tree, whose root we denote by r. Under this interpretation, elements
in M correspond to the branching directions at each vertex of T (see Figures 2 and 3 for
examples). Every tuple then corresponds to a vertex v ∈ V (T ). This is because the tuple
can be read by traversing the unique r-v path in T . Observe that v is an h-tuple if and only
if v is at depth h in T . In particular, r is the empty tuple.

In this paper, we always use the terms “vertex” and “edge” when referring to an ordered
tree T . The terms “node” and “arc” are reserved for the game graph G.

Given an ordered tree T of height h, let L(T ) be the set of leaves in T . For convenience,
we assume that every leaf in T is at depth h throughout. The tuple representing a leaf
ξ ∈ L(T ) is denoted as ξ = (ξ2h−1, ξ2h−3, . . . , ξ1), where ξi ∈M for all i. We refer to ξ2h−1
as the first component of ξ, even though it has index 2h − 1. For a fixed p ∈ [2h], the

p-truncation of ξ is ξ|p :=
{

(ξ2h−1, ξ2h−3, . . . , ξp+1), if p is even
(ξ2h−1, ξ2h−3, . . . , ξp), if p is odd.

In other words, the p-truncation of a tuple is obtained by deleting the components with
index less than p. Note that a truncated tuple is an ancestor of the untruncated tuple in T .

▶ Definition 1. Given ordered trees T and T ′, we say that T embeds into T ′ (denoted T ⊑ T ′)
if there exists an injective and order-preserving homomorphism from T to T ′ such that leaves
in T are mapped to leaves in T ′. Formally, this is an injective function f : V (T )→ V (T ′)
which satisfies the following properties:
1. For all u, v ∈ V (T ), uv ∈ E(T ) implies f(u)f(v) ∈ E(T ′);
2. For all u, v ∈ V (T ), u ≤ v implies f(u) ≤ f(v).
3. f(u) ∈ L(T ′) for all u ∈ L(T ).

We write T ≡ T ′ if T ⊑ T ′ and T ′ ⊑ T . Also, T ⊏ T ′ if T ⊑ T ′ and T ̸≡ T ′.

MFCS 2022



63:6 Strategy Iteration with Universal Trees

In the definition above, since f is order-preserving, the children of every vertex in T are
mapped to the children of its image injectively such that their order is preserved. As an
example, the tree in Figure 3 embeds into the tree in Figure 2. It is easy to verify that ⊑ is
a partial order on the set of all ordered trees.

▶ Definition 2. An (ℓ, h)-universal tree is an ordered tree T ′ of height h such that T ⊑ T ′

for every ordered tree T of height h and with at most ℓ leaves, all at depth exactly h.

The simplest example of an (ℓ, h)-universal tree is the perfect ℓ-ary tree of height h, which
we call a perfect universal tree. The linearly ordered set M for this tree can be chosen as
{0, 1, . . . , ℓ− 1} (see Figure 2 for an example). It has ℓh leaves, which grows exponentially
with h. Jurdziński and Lazić [16] constructed an (ℓ, h)-universal tree with at most ℓlog h+O(1)

leaves, which we call a succinct universal tree. In this tree, every leaf ξ corresponds to an
h-tuple of binary strings with at most ⌊log(ℓ)⌋ bits in total1. We use |ξ| and |ξi| to denote the
total number of bits in ξ and ξi respectively. The linearly ordered set M for this tree consists
of finite binary strings, where ε ∈ M is the empty string (see Figure 3 for an example).
For any pair of binary strings s, s′ ∈ M and a bit b, the linear order on M is defined as
0s < ε < 1s′ and bs < bs′ ⇐⇒ s < s′.

0 1 2

0 1 2 0 1 2 0 1 2

Figure 2 The perfect (3,2)-universal tree.

0 ε 1

ε 0 ε 1 ε

Figure 3 The succinct (3,2)-universal tree.

2.2 Node Labelings from Universal Trees
Let (G, π) be a parity game instance and T be an ordered tree of height d/2. We augment
the set of leaves with an extra top element ⊤, denoted L̄(T ) := L(T )∪ {⊤}, such that ⊤ > v

for all v ∈ V (T ). We also set ⊤|p := ⊤ for all p ∈ [d]. A function µ : V → L̄(T ) which maps
the nodes in G to L̄(T ) is called a node labeling. For a subgraph H of G, we say that µ is
feasible in H if there exists a strategy σ : V0 → V for Even with vσ(v) ∈ E(H) whenever
δ+

H(v) ̸= ∅, such that the following condition holds for every arc vw in H ∩Gσ:
If π(v) is even, then µ(v)|π(v) ≥ µ(w)|π(v).
If π(v) is odd, then µ(v)|π(v) > µ(w)|π(v) or µ(v) = µ(w) = ⊤.

An arc vw which does not satisfy the condition above is called violated (with respect to µ).
On the other hand, if µ(v) is the smallest element in L̄(T ) such that vw is non-violated, then
vw is said to be tight. Any arc which is neither tight nor violated is called loose. We say
that a subgraph is tight if it consists of tight arcs.

In the literature, a node labeling which is feasible in G is also called a progress measure.
The node labeling given by µ(v) = ⊤ for all v ∈ V is trivially feasible in G. However, we are
primarily interested in progress measures with minimal top support, i.e. such that the set of
nodes having label ⊤ is inclusion-wise minimal.

1 A slightly looser bound of ⌈log ℓ⌉ was derived in [16, Lemma 1]. It can be strengthened to ⌊log ℓ⌋ with
virtually no change in the proof.
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▶ Theorem 3 ([15, Corollaries 7–8]). Given an (n, d/2)-universal tree T , let µ∗ : V → L̄(T )
be a node labeling which is feasible in G and has minimal top support. Then, Even wins from
v ∈ V if and only if µ∗(v) ̸= ⊤.

The above theorem formalizes the following intuition: nodes with smaller labels are more
advantageous for Even to play on. Note that if µ is a minimal node labeling which is feasible
in G, i.e. µ′ is infeasible in G for all µ′ < µ, then there exists a strategy σ for Even such that
vσ(v) is tight for all v ∈ V0. The next observation is well-known (see, e.g., [16, Lemma 2])
and follows directly from the definition of feasibility.

▶ Lemma 4 (Cycle Lemma). Let µ be a node labeling and C be a cycle such that µ(v) ̸= ⊤
for all v ∈ V (C). If µ is feasible in C, then C is even. If C is also tight, then µ(v) = µ(w)
for all v, w ∈ Π(C).

We assume to have access to the following algorithmic primitive, whose running time we
denote by γ(T ). Its implementation depends on the ordered tree T . For instance, γ(T ) = O(d)
if T is a perfect (n, d/2)-universal tree. If T is a succinct (n, d/2)-universal tree, Jurdziński
and Lazić [16, Theorem 7] showed that γ(T ) = O(log n log d).

Tighten(µ, vw)

Given a node labeling µ : V → L̄(T ) and an arc vw ∈ E, return the unique element
ξ ∈ L̄(T ) such that vw is tight after setting µ(v) to ξ.

Given a node labeling µ : V → L̄(T ) and an arc vw ∈ E, let lift(µ, vw) be the smallest
element ξ ∈ L̄(T ) such that ξ ≥ µ(v) and vw is not violated after setting µ(v) to ξ. Observe
that if vw is violated, lift(µ, vw) is given by Tighten(µ, vw). Otherwise, it is equal to µ(v).
Hence, it can be computed in γ(T ) time.

Let L be the finite lattice of node labelings mapping V to L̄(T ). For a sinkless subgraph
H ⊆ G, consider the following operators. For every node v ∈ V0, define Liftv : L×V → L̄(T )
as Liftv(µ, u) := minvw∈E(H) lift(µ, vw) if u = v, and µ(u) otherwise. For every arc vw ∈
E(H) where v ∈ V1, define Liftvw : L×V → L̄(T ) as Liftvw(µ, u) := lift(µ, vw) if u = v, and
µ(u) otherwise. We denote H↑ = {Liftv : v ∈ V0} ∪ {Liftvw : v ∈ V1} as the operators in H.
Since they are inflationary and monotone, for any µ ∈ L, the least simultaneous fixed point
of H↑ that is pointwise at least µ exists. It is denoted as µH↑ . Note that a node labeling
is a simultaneous fixed point of H↑ if and only if it is feasible in H. The progress measure
algorithm [15, 16] is an iterative application of the operators in G↑ to µ to obtain µG↑ .

3 Strategy Iteration with Tree Labels

In this section, we present a strategy iteration algorithm (Algorithm 1) whose pivots are
guided by a universal tree. It takes as input an instance (G, π), a universal tree T , and
an initial strategy τ1 for Odd. Throughout, it maintains a node labeling µ : V → L̄(T ),
initialized as the least simultaneous fixed point of G↑

τ1
. At the start of every iteration, the

algorithm maintains a strategy τ for Odd, and a node labeling µ : V → L̄(T ) which is feasible
in Gτ . Furthermore, there are no loose arcs in Gτ with respect to µ. So, every arc in Gτ is
either tight (usable by Even in her counterstrategy σ) or violated (not used by Even). Note
that our initial node labeling satisfies these conditions with respect to τ1.

For v ∈ V1, we call a violated arc vw ∈ E with respect to µ admissible (as it admits
Odd to perform an improvement). If there are no admissible arcs in G, then the algorithm
terminates. In this case, µ is feasible in G. Otherwise, Odd pivots to a new strategy τ ′ by

MFCS 2022



63:8 Strategy Iteration with Universal Trees

Algorithm 1 Strategy iteration with tree labels: (G, π) instance, T universal tree, τ1 initial
strategy for Odd.

1: procedure StrategyIteration((G, π), T, τ1)
2: µ(v)← min L(T ) ∀v ∈ V

3: τ ← τ1, µ← µG↑
τ

4: while ∃ an admissible arc in G with respect to µ do
5: Pivot to a strategy τ ′ by selecting admissible arc(s) ▷ requires a pivot rule
6: τ ← τ ′, µ← µG↑

τ

7: return τ , µ

switching to admissible arc(s). The choice of which admissible arc(s) to pick is governed by
a pivot rule. Then, µ is updated to µG↑

τ′ . Due to the minimality of µG↑
τ′ , there are no loose

arcs in Gτ ′ with respect to µG↑
τ′ , so this invariant continues to hold in the next iteration.

The correctness of Algorithm 1 follows from the Knaster–Tarski Theorem. We remark
that a strategy τ may occur more than once during the course of the algorithm, as mentioned
in the description of strategy iteration in Section 1. This is because the fixed points of G↑

τ

are not necessarily unique. See Figure 4 for an example run with a succinct universal tree.
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(0, ε)
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2
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3
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e2

e3

e1

Figure 4 An example run of Algorithm 1 with the succinct (3,2)-universal tree. The left figure
depicts a game instance (nodes in V0 and V1 are drawn as squares and circles respectively). The
next two figures show Odd’s strategy and the node labeling at the start of Iteration 1 and 2. Arcs
not selected by Odd are greyed out. In the right figure, e1 is loose, e2 is tight, and e3 is violated.

4 Computing the Least Fixed Point of 1-Player Games

Let (Gτ , π) be a 1-player game for Even, and let µ ∈ L be a node labeling such that there
are no loose arcs in Gτ . In this section, we develop an efficient method for computing µG↑

τ .
We know that applying the operators in G↑

τ to µ is not polynomial in general. So, we will
approach µG↑

τ from above instead.
Given a node labeling ν : V → L̄(T ) and an arc vw ∈ E, let drop(ν, vw) be the largest

element ξ ∈ L̄(T ) such that ξ ≤ ν(v) and vw is not loose after setting ν(v) to ξ. Observe
that if vw is loose, then drop(ν, vw) is given by Tighten(ν, vw). Otherwise, it is equal to
ν(v). Hence, it can be computed in γ(T ) time.

We are ready to define the deflationary counterpart of Liftvw. For every arc vw ∈ Eτ ,
define the operator Dropvw : L×V → L̄(T ) as Dropvw(ν, u) := drop(ν, vw) if u = v, and ν(v)
otherwise. For a subgraph H ⊆ Gτ , we denote H↓ = {Drope : e ∈ E(H)} as the operators
in H. Since they are deflationary and monotone, for any ν ∈ L, the greatest simultaneous
fixed point of H↓ that is pointwise at most ν exists. It is denoted as νH↓ . Note that a node
labeling is a simultaneous fixed point of H↓ if and only if there are no loose arcs in H with
respect to it.
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Our techniques are inspired by the methods of label-correcting and label-setting for the
shortest path problem. In the shortest path problem, we have a designated target node t

whose label is initialized to 0. For us, the role of t is replaced by a (potentially empty) set of
even cycles in Gτ , which we do not know a priori. So, we define a set of candidates nodes
called base nodes, whose labels need to be initialized properly.

▶ Definition 5. Given a 1-player game (Gτ , π) for Even, we call v ∈ V a base node if
v ∈ Π(C) for some even cycle C in Gτ . Denote B(Gτ ) as the set of base nodes in Gτ .

The base nodes can be found by recursively decomposing Gτ into strongly connected
components. Initially, for each strongly connected component K of Gτ , we delete Π(K). If
π(K) is even and |V (K)| > 1, then Π(K) are base nodes and we collect them. Otherwise,
we ignore them. Then, we are left with a smaller subgraph of G, so we repeat the process.
Using Tarjan’s strongly connected components algorithm, this procedure takes O(dm) time.

In the next subsection, we develop a label-correcting method for computing µG↑
τ , and

apply it to the quasi-polynomial universal trees constructed in the literature [16, 7]. The
label-setting method, which is faster but only applicable to perfect universal trees, is deferred
to the full version.

4.1 Label-Correcting Method
The Bellman–Ford algorithm for the shortest path problem is a well-known implementation
of the generic label-correcting method [1]. We start by giving its analogue for ordered
trees. Algorithm 2 takes as input a 1-player game (Gτ , π) for Even and a node labeling
ν : V → L̄(T ) from some ordered tree T . Like its classical version for shortest paths, the
algorithm runs for n− 1 iterations. In each iteration, it replaces the tail label of every arc
e ∈ Eτ by drop(ν, e). Clearly, the running time is O(mnγ(T )). Moreover, if ν′ is the returned
node labeling, then ν′ ≥ νG↓

τ .

Algorithm 2 Bellman–Ford: (Gτ , π) 1-player game for Even, ν : V → L̄(T ) node labeling from
an ordered tree T .

1: procedure BellmanFord((G, π), ν)
2: for i = 1 to n− 1 do
3: for all vw ∈ E do ▷ In any order
4: ν(v)← drop(ν, vw)
5: return ν

Recall that we have a node labeling µ ∈ L such that Gτ does not have loose arcs, and
our goal is to compute µG↑

τ . We first state a sufficient condition on the input node labeling
ν such that Algorithm 2 returns µG↑

τ . In the shortest path problem, we set ν(t) = 0 at the
target node t, and ν(v) =∞ for all v ∈ V \ {t}. When working with node labels given by
an ordered tree, one has to ensure that the algorithm does not terminate with a fixed point
larger than µG↑

τ , motivating the following definition.

▶ Definition 6. Given a node labeling µ ∈ L, the threshold label of a base node v is

µ̂(v) := min
µ̃∈L
{µ̃(v) : µ̃(v) ≥ µ(v) and µ̃ is feasible in a cycle dominated by v} .

The next lemma follows directly from the pointwise minimality of µG↑
τ (v).
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▶ Lemma 7. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. For every
base node v ∈ B(Gτ ), we have µ̂(v) ≥ µG↑

τ (v).

The next theorem shows that if we initialize the base nodes with their corresponding
threshold labels, then Algorithm 2 returns µG↑

τ . Even more, it suffices to have an initial
node labeling ν ∈ L such that µG↑

τ (v) ≤ ν(v) ≤ µ̂(v) for all v ∈ B(Gτ ). For the other nodes
v /∈ B(Gτ ), we can simply set ν(v)← ⊤.

▶ Theorem 8. Let µ ∈ L be a node labeling such that Gτ does not have loose arcs. Given
ν ∈ L where ν ≥ µG↑

τ and ν(v) ≤ µ̂(v) for all v ∈ B(Gτ ), Algorithm 2 returns µG↑
τ .

Our strategy for computing such a ν is to find the cycles in Definition 6. In particular,
for every base node v ∈ B(Gτ ), we aim to find a cycle C dominated by v such that µ̂(v)
can be extended to a node labeling that is feasible in C. To accomplish this goal, we first
introduce the notion of width in Section 4.1.1, which allows us to evaluate how “good” a
cycle is. It is defined using chains in the poset of subtrees of T , where the partial order is
given by ⊑. Then, in Section 4.1.2, we show how to obtain the desired cycles by computing
minimum bottleneck cycles on a suitably defined auxiliary digraph.

4.1.1 Width from a Chain of Subtrees in T

Two ordered trees T ′ and T ′′ are said to be distinct if T ′ ̸≡ T ′′ (not isomorphic in the sense
of Definition 1). Let h be the height of our universal tree T . For 0 ≤ j ≤ h, denote Tj as
the set of distinct (whole) subtrees rooted at the vertices of depth h− j in T . For example,
Th = {T}, while T0 contains the trivial tree with a single vertex. Since we assumed that all
the leaves in T are at the same depth, every tree in Tj has height j. We denote T = ∪h

j=0Tj

as the union of all these subtrees. The sets T and Tj form posets with respect to the partial
order ⊑. The next definition is the usual chain cover of a poset, where we additionally require
that the chains form an indexed tuple instead of a set.

▶ Definition 9. For 0 ≤ j ≤ h, let Cj = (C0
j , C1

j , . . . , Cℓ
j) be a tuple of chains in the poset

(Tj ,⊑). We call Cj a cover of Tj if ∪ℓ
k=0Ck

j = Tj . A cover of T is a tuple C = (C0, C1, . . . , Ch)
where Cj is a cover of Tj for all 0 ≤ j ≤ h. We refer to Cj as the jth-subcover of C. Given a
cover C of T , we denote the trees in the chain Ck

j as T k
0,j ⊏ T k

1,j ⊏ · · · ⊏ T k
|Ck

j
|−1,j

.

An example of an ordered tree with its cover is given in Figure 5. We are ready to
introduce the key concept of this subsection.

▶ Definition 10. Let C be a cover of T . Let H be a subgraph of Gτ and j = ⌈π(H)/2⌉. For
a fixed chain Ck

j in Cj , the kth-width of H, denoted αk
C(H), is the smallest integer i ≥ 0 such

that there exists a node labeling ν : V (H) → L(T k
i,j) which is feasible in H. If i does not

exist, then αk
C(H) =∞.

Note that T k
i,j is the (i + 1)-th smallest tree in the chain Ck

j . We are mainly interested
in the case when H is a cycle, and write αk(H) whenever the cover C is clear from context.
Observe that the definition above requires ν(v) ̸= ⊤ for all v ∈ V (H). Hence, an odd cycle
has infinite kth-width by the Cycle Lemma. As (Ck

j ,⊑) is a chain, for all finite i ≥ αk(H),
there exists a node labeling ν : V (H) → L(T k

i,j) which is feasible in H. The next lemma
illustrates the connection between the kth-width of an even cycle and its path decomposition.

▶ Lemma 11. Let C be a cover of T . For an even cycle C, let Π(C) = {v1, v2, . . . , vℓ} and
j = π(C)/2. Decompose C into arc-disjoint paths P1, P2, . . . , Pℓ such that each Pi ends at vi.
Then, αk(C) = maxi∈[ℓ] αk(Pi) for all 0 ≤ k < |Cj |.
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T1 = , , C0
1 = , ,

T2 =
, ,

C0
2 =

C1
2 =

,

Figure 5 An ordered tree T of height 3, and a cover Cj of Tj for all 0 < j < 3. Recall that Tj is
the set of distinct subtrees of T rooted at depth 3 − j, while Ck

j is the kth chain in Cj .

For a base node v ∈ B(Gτ ), let us consider the cycles in Gτ which are dominated by v.
Among them, we are interested in finding one with the smallest kth-width. So, we extend
the notion of kth-width to base nodes in the following way.

▶ Definition 12. Let C be a cover of T . Let v ∈ B(Gτ ) be a base node and j = π(v)/2. For 0 ≤
k < |Cj |, define the kth-width of v as αk

C(v) := min
{

αk
C(C) : C is a cycle dominated by v

}
.

Again, we write αk(v) whenever C is clear from context. Observe that T k
αk(v),π(v)/2 is the

smallest tree in the chain Ck
π(v)/2 which can encode a node labeling that is feasible on some

cycle dominated by v.
Given a leaf ξ ∈ L(T ) and integers i, j, k ∈ Z≥0, the following subroutine locates a subtree

of T that is a member of the chain Ck
j and into which T k

i,j is embeddable.
Raise(ξ, i, j, k)

Given a leaf ξ ∈ L(T ) and integers i, j, k ∈ Z≥0, return the smallest leaf ξ′ ∈ L(T )
such that (1) ξ′ ≥ ξ; and (2) ξ′ is the smallest leaf in the subtree T k

i′,j for some i′ ≥ i.
If ξ′ does not exist, then return ⊤.

Now, fix a base node v ∈ B(Gτ ). For any 0 ≤ k < |Cπ(v)/2|, notice that the label returned
by Raise(µ(v), αk(v), π(v)

2 , k) is an upper bound on the threshold label µ̂(v). The smallest
such label over all k is precisely the threshold label µ̂(v), as the next lemma shows.

▶ Lemma 13. Fix v ∈ B(Gτ ). Let ξk be the label returned by Raise(µ(v), αk(v), π(v)
2 , k) for

all 0 ≤ k < |Cπ(v)/2|. If there are no loose arcs in Gτ with respect to µ, then µ̂(v) = mink ξk.

The necessary number of chains in the subcover Cπ(v)/2 can be large if T is an arbitrary
ordered tree. Fortunately, the universal trees constructed in the literature admit covers with
small subcovers. In the full version, we prove that a succinct (n, h)-universal tree has a cover
with only 1 chain per subcover, whereas a succinct Strahler (n, h)-universal tree (introduced
by Daviaud et al. [7]) has a cover with at most log n chains per subcover.
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Let ρ(T, C) denote the running time of Raise. We provide efficient implementations of
Raise for succinct universal trees and succinct Strahler universal trees in the full version.
They have the same running time as Tighten, i.e., ρ(T, C) = O(log n log h).

4.1.2 Estimating the Width of Base Nodes
In light of the previous discussion, we can now focus on computing the kth-width of a
base node w ∈ B(Gτ ). Fix a 0 ≤ k < |Cπ(w)/2|. Since we ultimately need a label that
lies between µG↑

τ (w) and µ̂(w) in order to initialize Algorithm 2, it suffices to compute a
“good” under-estimation of αk(w). In this subsection, we reduce this problem to computing
a minimum bottleneck cycle in an auxiliary digraph D with nonnegative arc costs ck ≥ 0.

For a base node w ∈ B(Gτ ), let Kw denote the strongly connected component containing w

in (Gτ )π(w), the subgraph of Gτ induced by nodes with priority at most π(w). Let K ′
w ⊆ Kw

be the subgraph obtained by deleting the incoming arcs δ−(v) for all v ∈ Π(Kw) \ {w}.
Then, we define Jw as the subgraph of K ′

w induced by those nodes which can reach w in K ′
w.

These are the nodes which can reach w in Kw without encountering an intermediate node of
priority π(w).

1

4 w4

5

4

w2

2 1

2

w1

4w3

3

w1

w2

w3 w4

Figure 6 An example of a 1-player game (Gτ , π) for Even is given on the left, with its auxiliary
digraph D on the right. Nodes in V0 and V1 are drawn as squares and circles respectively. Base
nodes are labeled as w1, w2, w3, w4. The light gray region is Kw4 , while the dark gray region is Jw4 .

The auxiliary digraph D is constructed as follows. Its node set is B(Gτ ). For every
ordered pair (v, w) of base nodes where π(v) = π(w), add the arc vw if v has an outgoing
arc in Jw. Note that if (v, w) ∈ D, then v can reach w by only seeing smaller priorities
on the intermediate nodes. As ordered pairs of the form (v, v) are also considered, D may
contain self-loops. Observe that D is a disjoint union of strongly connected components,
each of which consists of base nodes with the same priority (see Figure 6 for an example).
For w ∈ B(Gτ ), we denote Dw as the component in D which contains w.

To finish the description of D, it is left to assign the arc costs ck. Note that the graph
structure of D is independent of k. We give a range in which the cost of each arc should lie. Fix
a base node w ∈ B(Gτ ) and let j = π(w)/2. Recall that J ↓

w = {Drope : e ∈ E(Jw)} is the set
of Drop operators in the subgraph Jw ⊆ Gτ . For each 0 ≤ i < |Ck

j |, let λk
i,w : V (Jw)→ L̄(T k

i,j)
be the greatest simultaneous fixed point of Jw subject to λk

i,w(w) = min L(T k
i,j). Then, for

each arc vw ∈ E(D), the lower and upper bounds of ck(vw) are given by

ck(vw) := min
{

i : λk
i,w(u) ̸= ⊤ for some u ∈ N+

Jw
(v)

}
ck(vw) := min

{
αk(P ) : P is a u-w path in Jw where u ∈ N+

Jw
(v)

} (1)

respectively. The lower bound ck(vw) is the smallest integer i ≥ 0 such that the greatest
simultaneous fixed point λk

i,w assigns a non-top label to an out-neighbor of v in Jw. On
the other hand, the upper bound ck(vw) is the minimum kth-width of a path from an
out-neighbor of v to w in Jw. Note that these quantities could be equal to +∞.
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▶ Lemma 14. For every arc vw ∈ E(D), we have ck(vw) ≤ ck(vw).

For a cycle C in D, its (bottleneck) ck-cost is defined as ck(C) := maxe∈E(C) ck(e). Note
that self-loops in D are considered cycles. The next theorem allows us to obtain the desired
initial node labeling ν for Algorithm 2 by computing minimum bottleneck cycles in D.

▶ Theorem 15. Let C be a cover of T . Let µ ∈ L be a node labeling such that Gτ does not
have loose arcs. For a base node w, let ck be arc costs in Dw such that ck ≤ ck ≤ ck for all
0 ≤ k < |Cπ(w)/2|. For each k, let ik be the minimum ck-cost of a cycle containing w in Dw,
and ξk be the label returned by Raise(µ(w), ik, π(w)

2 , k). Then, µG↑
τ (w) ≤ mink ξk ≤ µ̂(w).

4.1.3 The Label-Correcting Algorithm
The overall algorithm for computing µG↑

τ is given in Algorithm 3. The main idea is to initialize
the labels on base nodes via the recipe given in Theorem 15, before running Algorithm 2.
The labels on V \B(Gτ ) are initialized to ⊤. The auxiliary graph D serves as a condensed
representation of the “best” paths between base nodes. The arc costs are chosen such that
minimum bottleneck cycles in D give a good estimate on the width of base nodes.

Algorithm 3 Label-Correcting: (Gτ , π) 1-player game for Even, C cover of T for some universal
tree T , µ : V → L̄(T ) node labeling such that Gτ does not contain loose arcs.

1: procedure LabelCorrecting((Gτ , π), C, µ)
2: ν(v)← ⊤ for all v ∈ V

3: Construct auxiliary digraph D

4: for all components H in D do
5: for k = 0 to |Cπ(H)/2| − 1 do
6: Assign arc costs ck to H where ck ≤ ck ≤ ck

7: for all v ∈ V (H) do
8: ik ← minimum ck-cost of a cycle containing v in H

9: ν(v)← min(ν(v), Raise(µ(v), ik, π(v)
2 , k))

10: ν ← BellmanFord((Gτ , π), ν)
11: return ν

In Algorithm 3, the arc costs ck can be obtained using Algorithm 2. For each base node
w ∈ B(Gτ ), in order to compute ck(e) for all incoming arcs e ∈ δ−

D(w), we run Algorithm 2
on the subgraph Jw for |Ck

π(w)/2| times. If the chain Ck
π(w)/2 is too long, then this can be

sped up using binary search. For specific families of trees such as succinct universal trees,
one can compute ck even faster. More details are given in the full version. Overall, this
yields the following generic running time bound.

▶ Theorem 16. In O(mn2γ(T ) ·maxj,k |Cj |min{|Ck
j |, n log |Ck

j |}+ nρ(T, C) ·maxj |Cj |) time,
Algorithm 3 returns µG↑

τ .

As mentioned in Section 4.1.1, a succinct (n, d/2)-universal tree has a cover with 1 chain
per subcover, while a succinct Strahler (n, d/2)-universal tree has a cover with at most log n

chains per subcover. So, applying Algorithm 3 to these trees yields the following runtimes.

▶ Corollary 17. For a succinct universal tree, µG↑
τ is returned in O(mn2 log n log d).

▶ Corollary 18. For a succinct Strahler universal tree, µG↑
τ is returned in O(mn2 log3 n log d).
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