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a b s t r a c t

Frequentist semiparametric theory has been used extensively to develop doubly robust
(DR) causal estimation. DR estimation combines outcome regression (OR) and propensity
score (PS) models in such a way that correct specification of just one of two models
is enough to obtain consistent parameter estimation. An equivalent Bayesian solution,
however, is not straightforward as there is no obvious distributional framework to the
joint OR and PS model, and the DR approach involves a semiparametric estimating
equation framework without a fully specified likelihood. In this paper, we develop a fully
semiparametric Bayesian framework for DR causal inference by bridging a nonparametric
Bayesian procedure with empirical likelihood via semiparametric linear regression.
Instead of specifying a fully probabilistic model, this procedure is only realized through
relevant moment conditions. Crucially, this allows the posterior distribution of the causal
parameter to be simulated via Markov chain Monte Carlo methods. We show that the
posterior distribution of the causal estimator satisfies consistency and the Bernstein–
von Mises theorem, when either the OR or PS is correctly specified. Simulation studies
suggest that our proposed method is doubly robust and can achieve the desired coverage
rate. We also apply this novel Bayesian method to a real data example to assess the
impact of speed cameras on car collisions in England.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Causal inference is concerned with estimation of the relationship between a treatment and an outcome. In observa-
ional studies, assignment of the treatment may be not random and this can lead to potential biases due to confounding
ffects. To infer cause–effect relationships in these settings, we require an appropriate causal inferential framework for
dentification and statistical modeling methods appropriate to the data. Propensity score (PS) and outcome regression
OR) have been extensively used to reduce confounding bias in estimating causal effects (Rosenbaum and Rubin, 1983).
he PS is defined as the conditional probability of the treatment assignment given confounding covariates. The treatment–
utcome relationship can be adjusted via estimated PSs in a variety of ways to reduce biases in the OR (see for example
ahn, 1998; Imbens, 2000; Hirano et al., 2003). The OR model performs regression on a set of confounders in addition to
he treatment to reduce confounding bias (e.g. via linear regression). Double robust (DR) causal estimators, as pioneered
n the past few decades in frequentist inference, have great appeal as they combine OR and PS models such that one only
eeds to correctly specify either the OR or the PS model to obtain consistent causal estimation. Specifically, Robins et al.
1992) proposed doubly robust estimation via regression by including the estimated PSs in the OR, while Robins et al.
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(1994) and Scharfstein et al. (1999) introduced an augmented inverse probability-weighted estimating equation approach
based on regression for incomplete data, which also possesses the DR property. Bang and Robins (2005) extended this
approach to longitudinal marginal structural models. Cao et al. (2009) proposed alternative doubly robust estimators to
improve the robustness of previous methods when some estimated PSs are close to zero. Little and An (2004) achieved the
DR property by adding a flexible function of the PS in the OR. Recently, Chernozhukov et al. (2018) developed a debiased
approach via double machine learning to estimate the treatment effect which allows that both the OR and the PS are
estimated by flexible machine learning models.

A major challenge in the frequentist DR method is that the uncertainty in the estimated PS has been ignored, and there
ave been a lot of efforts to derive the theoretical approximation to the variance (see for example Rubin and Thomas,
996). Abadie and Imbens (2016) showed that the estimator of the average treatment effect (ATE) and the parameters in
he PS model are jointly normal distributed, and suggested to adjust the variance of the ATE downward to account for
he estimated PS (also see Henmi and Eguchi, 2004). These results indicate that the Bayesian method can be an appealing
lternative in the PS analysis as it naturally quantifies the uncertainty via a probabilistic statement. Bayesian inference
voids unknown deterministic quantities to studying distributions, which has proven to be increasingly powerful in a
arge spectrum of applications over the decades. In the context of causal inference, the Bayesian approach offers natural
olutions of quantifying uncertainty with multiple component models, predicting complex causal quantities in terms of
robabilistic statements and incorporating prior information when expert knowledge becomes available. For example,
he posterior predictive distribution on treatment effects may provide more intuition for policy making. There is growing
iterature on the Bayesian paradigm of causal inference recently, but the primary focus is on the complicated procedures
or modeling the OR. However, such approaches utilize flexible and non-parametric modeling to avoid the misspecification
n the OR, which is not the primary focus of this paper. Specifically, we will address issues of how to accommodate the
wo-stage Bayesian causal analysis via the PS adjustment, in the context of misspecification, and in addition develop fully
ayesian strategies to reflect this. Rubin (1985) discussed the importance of PSs as randomized probabilities, and should
e of great interest to the applied Bayesian practitioner. The uncertainty of the PS can be well calibrated via Bayesian
nference if the PS is an adequate summary of confounders that can be obtained and retains strong ignorability (Rubin,
985). Although a well-calibrated Bayesian argument is appealing in the context of PS analysis to incorporate all sources
f uncertainty, there are some debates on the actual estimation of the PS or the OR from a fully Bayesian perspective.
n a conventional Bayesian causal analysis under the PS adjustment, it is natural to fit a joint model for the treatment
nd outcome (McCandless et al., 2009); however, Rubin (2007) argued that PSs should be estimated without knowing
he outcome in order to have balancing properties. Thus, joint estimation is not a true Bayesian PS adjustment approach
s the posterior distribution of the PS depends on the outcome (Saarela et al., 2015), leading to a biased estimator of
he treatment effect. To avoid this dependence, McCandless et al. (2010) suggested to cut the feedback from the outcome
odel into the PS model in a fully Bayesian setting. In addition, an alternative to this cut feedback approach is to assume a
omplete separation between the PS and OR models, and conduct a two-step procedure (Kaplan and Chen, 2012), using the
ayesian propensity score model in the first step, followed by a Bayesian outcome model in the second step. This approach
as been shown to provide a preferred estimation procedure (Stephens et al., 2022). While frequentist inference has
rovided well-established theory for DR causal estimation; the Bayesian counterpart, however, is not straightforward as
he standard Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model
lass. Therefore, a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure.
ecently, there have been some attempts for Bayesian DR estimation (Gustafson, 2012; Graham et al., 2016; Saarela et al.,
016; Luo et al., 2021), due to the advancement in Bayesian non-parametric inference for models formulated through
oment restrictions (Chamberlain and Imbens, 2003; Bornn et al., 2019). Specifically, Bayesian DR estimation has been
ttempted via the Bayesian bootstrap strategy (Rubin, 1978; Newton and Raftery, 1994), with causal quantities derived
rom posterior predictive distributions. Stephens et al. (2022) has shown that the combination of two-step estimation
ith a Bayesian bootstrap gives a fully Bayesian procedure with good frequentist properties.
On the frequentist side, a nonparametric analogue of the usual likelihood theory, empirical likelihood, has been

eveloped, which has been proven to possess many properties of conventional parametric likelihood inference (Owen,
001). Qin and Lawless (1994) linked empirical likelihood and estimating equations for parameter estimation so that
t can also satisfy certain moment conditions. This framework offers a different perspective to construct Bayesian
ethods for models formulated through moment restrictions. Schennach (2005) proposed a computationally convenient

epresentation as an empirical-likelihood-type likelihood where the probability weights are obtained via exponential
ilting, admitting a nonparametric limit of a Bayesian procedure for moment condition models. Chib et al. (2018) extended
his representation to incorporate misspecified moment condition models. Yiu et al. (2020) used this framework to study
nequal probability sampling; however, they focused an augmented inverse probability weighted estimator, resulting in
higher bias in estimating the causal effect in small sample cases. In addition, it is still questionable to deploy plug-in
pproaches in conventional prior-to-posterior updating as a fully Bayesian approach (Robins andWasserman, 2000; Robins
t al., 2015).
In light of these considerations, in this paper, we attempt to develop a fully semiparametric Bayesian estimation

rocedure for DR causal inference which bridges the nonparametric Bayesian method with empirical likelihood theory via
emiparametric linear regression. Specifically, we employ the conventional Bayesian paradigm using the product of a prior
nd a likelihood defined by moment constraints, and develop the asymptotic results as the semiparametric frequentist
-estimator. We specifically achieve the following:
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1. Improving robustness — by introducing an augmented, rather than weighted regression model, which is less
sensitive to estimation bias from extreme values in the PS distribution and reduces finite sample bias;

2. Developing fully Bayesian DR inference — via a two-step procedure for Bayesian regression adjustment. As discussed
previously, the two-step procedure has been shown to yield a fully Bayesian procedure with good frequentist
properties (Stephens et al., 2022);

3. Investigating posterior consistency and asymptotic normality under model misspecification. We develop asymptotic
results when either the PS or the OR model is misspecified, which provides a valid uncertainty quantification for
the ATE via the posterior (predictive) distribution.

Although it is not widely agreed that fully Bayesian doubly robust inference is possible, it is argued that the
semiparametric efficient adjustment via the fitted PS (see for example Robins et al., 1992) or augmented inverse
probability weighting (Bang and Robins, 2005) necessarily involves a plug-in strategy, and as such cannot be regarded
as fully Bayesian. This issue can be overcome using Bayesian non-parametric calculations and an alternative view of
Bayesian estimation that adopts a decision theoretic standpoint; furthermore, the Bayesian bootstrap, and its extensions,
can again be justified as a (Monte Carlo-based) exact Bayesian inference procedure, which offers an alternative view of
Bayesian estimation via an exact Bayesian nonparametric calculation (Stephens et al., 2022; Luo et al., 2021). It is under
this standpoint that our approach offers an appealing alternative paradigm to the previous Bayesian causal inference
strategy via the Bayesian bootstrap. Unlike the Bayesian predictive inference approach in Saarela et al. (2016) and Luo
et al. (2021), the posterior distribution of the causal parameter can be derived via the conventional prior-to-posterior
update and simulated using Markov chain Monte Carlo (MCMC) methods. We also show the asymptotic behavior of the
posterior distribution of the causal parameter in terms of consistency and asymptotic normality. Our proposed method
opens up the possibility of developing Bayesian causal inference in other settings, such as marginal structural models and
dynamic treatment regimes. Our approach incorporates the usual Bayesian prior-to-posterior updating framework, which
provides a means of informed and coherent decision making in the presence of uncertainty.

The rest of the paper is organized as follows. Section 2 recaps DR causal inference via semiparametric linear regression.
Section 3 introduces the empirical-likelihood-based Bayesian representation for causal inference using regression with the
estimated PS, followed by the asymptotic behavior of the posterior distribution of the causal parameter for misspecifying
either the PS or OR model. We provide simulation studies to compare the proposed method with other Bayesian
approaches and the frequentist double machine learning method in Section 5, followed by a real example in Section 6.
Finally, Section 7 presents some concluding remarks and future research directions.

2. Background

2.1. The average treatment effect

In a causal inference setting, let Zi = (Yi,Di, Xi), i = 1, . . . , n, where for the ith unit of observation Yi denotes a response,
i a binary treatment (or exposure) received, and Xi a vector of pre-treatment covariates or confounder variables. Under

an appropriate experimental design, we know that Di ⊥⊥ Xi. Therefore, the average treatment effect (ATE) can be directly
estimated via

θ = E [Yi |Di = 1 ] − E [Yi |Di = 0 ] .

This causal quantity of interest measures the expected change of Y when D is changed from 0 to 1. However, in
observational studies, Di ̸⊥⊥ Xi and appropriate adjustment is required to estimate causal effects. The PS, which is defined
as the conditional probability of the treatment assignment given confounding covariates, fD (d |x ) ≡ e (x), has been
increasingly used to reduce confounding bias in estimating causal effects. As shown in Fig. 1, it can block the backdoor path
from X → D, which effectively results in X ⊥⊥ D given the PS under certain assumptions (Rosenbaum and Rubin, 1983).
The treatment–outcome relationship can be adjusted via an estimated PS either by weighting, matching, stratification, or
regression adjustment. In a frequentist regression setting, as e(X) is a balancing score, the ATE can be evaluated as

θ =

∫
x
{E [Y |d = 1, x, e(x) ] − E [Y |d = 0, x, e(x) ]} f (x)dx.

Suppose we specify the PS model parameterized by γ , i.e., e (x; γ ). Typically, γ is estimated from the observed data
on x and d. In this setting, e (x; γ ) is a balancing score only if the PS model is correctly specified. Given the existence of
the true value γ0 of γ , the estimator of γ is consistent for γ0 under frequentist likelihood theory or the Bernstein–von
Mises theorem, justifying holding the balancing property asymptotically.

2.2. Doubly robust causal inference via semiparametric linear regression.

The DR estimator indicates that we can obtain a consistent estimator of the causal effect from D to Y if at least one of
the OR model and the PS model is correctly specified. Scharfstein et al. (1999) proposed an augmented regression which
173
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Fig. 1. Directed acyclic graphs (DAGs) with the adjustment via the propensity score. The dashed arrow from e(X) to Y indicates the modeling
dependence in the outcome regression model rather than the true data generating mechanism.

has a bias correction property, and the ATE possesses the DR property when estimates of θ are obtained by solving the
Q score equations

n∑
i=1

κ̂i (xi, di)
∂u (di, xi; ξ)

∂ξ⊤
[yi − u (di, xi; ξ)] = 0 (2.1)

where κ̂i (Xi,Di) =
I1(Di)

e(Xi;γ̂ )
+

1−I1(Di)
1−e(Xi;γ̂ )

and u (Di, Xi; ξ) is the mean of the conditional density of outcome, Y , given covariates,
X and D, and parameterized by ξ . The weights, κ̂i (xi, di), in (2.1) become extremely large when there are extreme values of
PSs, leading to skewed and highly variable sampling distributions of those estimators (Robins and Wang, 2000). Therefore,
we retain our focus on the DR estimator constructed via semiparametric linear regression (Robins et al., 1992). Suppose
the true OR model is

Yi = θ0Di + h0(Xi, β0) + ϵi, ∀i = 1, 2, . . . , n (2.2)

where ϵi is a random residual error term with E(ϵi|Di, Xi) = 0 and Var(ϵi|Di, Xi) = σ 2 < ∞. The function h0(·) is some
nknown component to describe the relationship between X and Y . In this setting, θ0 is the ATE and parameter of interest.
iven that we estimate the PS either via maximum likelihood estimation or a fully Bayesian procedure, one strategy to
stimate the ATE based on covariate adjustments is to add the estimated PS into the OR as

Yi = θDi + h1(Xi, β) + φe
(
Xi; γ̂

)
+ ϵi, ∀i = 1, 2, . . . , n. (2.3)

This model has the advantage of double robustness. If the h1(x, β) component of the OR model is correctly specified
nd reflects the data-generating mechanism as h0(x, β0), then the estimator of θ will be consistent regardless of whether
he PS model was correctly specified as φ = 0. On the other hand, if the PS model is correctly specified, as demonstrated
n the causal diagram (Fig. 1), it blocks the backdoor path from X → D, which leads to X ⊥⊥ D | e(X) . Therefore, the OR
odel based on (2.3) will still yield a consistent causal estimand, i.e., θ , even if the h1(x) component of the OR model was

ncorrectly specified. Alternatively, this can be also explained using the semiparametric efficiency theory. The estimating
ystem in (2.3) becomes

n∑
i=1

Ui (β, θ, φ) =

n∑
i=1

⎛⎝ di
∂h1(xi,β)
∂β

e
(
xi; γ̂

)
⎞⎠ [Yi − θdi − h1(xi, β) − φe

(
xi; γ̂

)
] = 0. (2.4)

ubtracting the third equation from the first yields the equivalent form of the estimating equation
n∑

i=1

(di − e
(
xi; γ̂

)
)
(
Yi − θdi − h1(xi, β) − φe

(
xi; γ̂

))
= 0

with solution

θ̂ =

∑n
i=1

(
di − e

(
xi; γ̂

))
(Yi − h1(xi, β̂) − φe

(
xi; γ̂

)
)∑n

i=1

(
di − e

(
xi; γ̂

))
di

.

This is the generalized estimator (or G-estimator) proposed in Robins et al. (1992), resulting in consistent inference for θ
and robustness to misspecification. Accordingly, double robustness is achieved via the regression approach. For simplicity,
we assume that there is a linear relationship between Y and D in (2.2) without interaction terms between D and X;
however, it can be extended to include interactions in (2.2) with interaction terms between e

(
xi; γ̂

)
and X included in

(2.3) to achieve double robustness. We show an example with interaction terms in Appendix A.
As demonstrated above, least square estimation of the conditional mean model, E [Yi |xi, di, θ, β, φ ], is equivalent

to solving a set of estimating equations,
∑n U β, θ, φ = 0, defined in (2.4). This semiparametric procedure yields
i=1 i ( )

174
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a frequentist DR estimator for θ and the variance–covariance matrix can be computed using the theory of estimating
equations (Tsiatis, 2007). Stephens et al. (2022) extensively discussed how a parametric PS should be incorporated in the
Bayesian setting, which is not the focus of this paper. Therefore, we adopt a two-step approach which assumes a complete
separation between the PS and OR models and focus only on the estimating equations deriving from the OR model.

3. Bayesian doubly robust causal inference

3.1. The Bayesian bootstrap

In Bayesian inference, the objective is to draw a posterior sample of the parameter ξ := (β, θ, φ) based on the observed
ata zi = (yi, di, xi) for i = 1, . . . , n, i.e.,

π (ξ |z1, . . . , zn ) ∝ π0 (ξ)

n∏
i=1

p
(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ )

where π0 (ξ) is the prior distribution. To bridge the data generating mechanism, p
(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ), with the set

of estimating equations in (2.4), one can specify a non-parametric distribution for p
(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ). If we assume

that the data points are realizations a multinomial model on the finite set {y1, . . . , yn} with unknown probability ϖ =

(ϖ1, . . . ,ϖn) and a priori of (ϖ1, . . . ,ϖn) ∼ Dirichlet (1, . . . , 1), then p
(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ) =

∑n
k=1ϖkδyk (yi) and the

equivalent estimating equation becomes
n∑

k=1

ϖkUk (ξ) = 0.

Therefore, we can repeatedly draw a single set of random weights (ϖ1, . . . ,ϖn) from Dirichlet (1, . . . , 1) to obtain the
posterior distribution of ξ under the limiting Dirichlet process specification (Rubin, 1981; Newton and Raftery, 1994), and
the prior information can be incorporated via the sampling-importance resampling method (Newton and Raftery, 1994).
Bayesian causal inference based on this framework has been extensively elaborated by Chamberlain and Imbens (2003),
Saarela et al. (2015), Graham et al. (2016), Saarela et al. (2016) and Stephens et al. (2022).

3.2. Exponentially tilted empirical likelihood

On the other hand, empirical likelihood provides another form of non-parametric likelihood which seeks to reweight
the sample so that it can also satisfy moment conditions (Qin and Lawless, 1994). This has opened up possibilities for
dealing with models motivated via the estimating equation framework. Lazar (2003) proposed a heuristic strategy of
incorporating empirical likelihood in a Bayesian framework for the data distribution. Subsequently, Schennach (2005)
proposed a nonparametric likelihood method via exponential tilting to include moment conditions, which is similar to the
empirical likelihood representation. Specifically, p

(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ) , i = 1 . . . , n, can be specified as nonparametric

probabilities, (p1, . . . , pn), that minimize the Kullback–Leibler (KL) divergence between the probabilities (p1, . . . , pn)
assigned to each sample observation and the empirical probabilities ( 1n , . . . ,

1
n ), which can be summarized as the following

onstrained optimization problem

max
p1,...,pn

n∑
i=1

−pi log(npi)

subject to
n∑

i=1

pi = 1 and
n∑

i=1

piUi (ξ) = 0.

(3.1)

hen the solution for pi can be expressed via a Lagrange multiplier λ as a dual representation

p
(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ) =

exp
(
λ̂(z, ξ )⊤Ui (ξ)

)
∑n

j=1 exp
(
λ̂(z, ξ )⊤Uj (ξ)

) (3.2)

here λ̂(z, ξ ) = argminλ 1
n

∑n
i=1 exp

(
λ⊤Ui (ξ)

)
. Therefore,

π (ξ |z1, . . . , zn ) ∝ π0(ξ ) ×

n∏
i=1

exp
(
λ̂(z, ξ )⊤Ui (ξ)

)
∑n

j=1 exp
(
λ̂(z, ξ )⊤Uj (ξ)

) .
The function π (ξ |z1, . . . , zn ) is the posterior distribution for ξ via the exponentially tilted empirical likelihood, and

we can use MCMC to obtain the sample from this posterior distribution. Suppose we have an independent proposal
175
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distribution, q(ξ |z), for example, a multivariate Student’s t distribution where the location parameter is the maximum
likelihood estimate of empirical likelihood

∏n
i=1 p

(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ) and the dispersion matrix is the estimated

variance–covariance matrix of the fitted model in (2.3). With this independent proposal, we can draw a sample of ξ
as follows, with initial values ξ 0 and superscript i = 1, 2, . . . denoting the iteration number:

1. Propose ξ p from the proposal, q(ξ |z), and evaluate the quantity in (3.2), that is, solving the optimization problem
in (3.1).

2. Calculate the Metropolis–Hastings probability of the move from ξ i−1 to ξ p,

α
(
ξ i−1

→ ξ p
)

= min
{
1,

π (ξ p|z)
π (ξ i−1|z)

×
q(ξ i−1

|z)
q(ξ p|z)

}
.

3. Set ξ i = ξ p if R < α
(
ξ i−1

→ ξ p
)
where R ∼ Unif [0, 1]. Otherwise, let ξ i = ξ i−1.

Thus, we have introduced a fully Bayesian procedure which satisfies the set of estimating equations in (2.4).

4. Asymptotic properties: Double robustness

In this section, we establish the large sample properties of the posterior distribution of the ATE parameter under model
misspecification. All proofs are relegated to the Appendix. The Bayesian consistency is defined as the posterior distribution
of θ being concentrated around the true data generating parameter θ0. The following definition formulates the Bayesian
consistency with the frequentist analogy (Walker and Hjort, 2001).

Definition 4.1 (Consistency). As data z1, z2, . . . , zn accumulate from some unknown underlying f (z|θ0), then the posterior
mass for the model assigning to a set A is given by

Πn (A) = π (θ ∈ A |z1, . . . , zn ) =

∫
A Rn (θ) π0 (dθ)∫
Rn (θ) π0 (dθ)

where Rn (θ) =
∏n

i=1
f (zi|θ )
f (zi|θ0 )

and π0 (θ) is the prior density for θ . If Aϵ = {θ : d(θ, θ0) > ϵ} where d(θ, θ0) is some distance

measure, Bayesian consistency is defined as

Πn (Aϵ) → 0 almost surely.

Throughout this section, we assume that the true data generating outcome mean model is

u (d, x; θ0, β0) = θ0d + h0(x, β0)

or equivalently with φ0 = 0

u (d, x; θ0, β0, φ0) = θ0d + h0(x, β0) + φ0e
(
x; γ̂

)
,

and therefore ξ0 := (θ0, β0, φ0) is the true parameter. In addition, we assume the true PS model as e (x; γ0). Since we use
the estimated PS in the OR model, γ̂ → γ0 when the PS model is correctly specified, and it has the balancing property as
demonstrated in Fig. 1. The log-empirical-likelihood function, log p

(
yi
⏐⏐xi, di, e (xi; γ̂ ) , ξ ) := ℓi(ξ ), can be written as

ℓi(ξ ) = log
exp

(
λ̂(z, ξ )⊤Ui (ξ)

)
∑n

j=1 exp
(
λ̂(z, ξ )⊤Uj (ξ)

) .
We start with the M-estimator ξ̂0 in frequentist inference, which is defined as the solution to the empirical estimating

equation
∑n

i=1 Ui (ξ) = 0. The M-estimator ξ̂0 maximizes the empirical likelihood in (3.1) (Owen, 2001). Based on
previous work (Owen, 2001; Yiu et al., 2020), the empirical likelihood decays superpolynomially to zero outside of any
neighborhood of ξ̂0, i.e., under certain regularity conditions, for any ϵ > 0 there exists a δ > 0,

supξ−ξ̂0>ϵ
exp

[
n∑

i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
≤ exp

[
−δ(n − 1)1/2

]
.

If ξ̂0 belongs to the support of the prior distribution, then the convergence rate of the Bayesian exponentially tilted
empirical likelihood to the point mass ξ̂0 will be superpolynomially as well. In the next two sections, we attempt to
construct the posterior consistency and asymptotic normality under two different scenarios.
176
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4.1. Misspecified PS and correctly specified OR

When the PS model is misspecified, γ̂ ̸→ γ0 and e
(
x; γ̂

)
does not have the balancing property anymore; we can still

achieve consistency if the part of h1(·) in the OR is correctly specified as h0(·). Thus, the OR is specified as

u
(
d, x, e

(
x; γ̂

)
; θ, β, φ

)
= θd + h0(x, β) + φe

(
x; γ̂

)
regardless of the value of e

(
x; γ̂

)
because φ → φ0 as n → ∞, and φ0 = 0 in this case. We use the following notations

to show asymptotic results of the proposed method. We denote ξ ∈ Ξ with Ξ product space for the parameter space
of (θ, β, φ), which is assume to be compact and connected. In addition, we state the assumptions that are used for the
theorems regarding the misspecified PS case.

Assumption 4.1. ξ0 = (θ0, β0, φ0) ∈ Ξ is the unique solution to EU (ξ) = 0, and ξ0 is in the interior of Ξ .

Assumption 4.2. Assume that the data generating parameter ξ0 belongs to the support of the prior distribution,
i.e. π0 (ξ ∈ U) > 0, for every neighborhood U of ξ0. π0 is also a continuous probability measure with respect to the
Lebesgue measure.

Assumption 4.3. Suppose the outcome variables, Y1, . . . , Yn, take value in the space Y ⊂ R.

Assumption 4.4. Ui (ξ) is continuous ∀ξ ∈ Ξ and ∀i = 1, . . . , n.

Assumption 4.5. E
[
supξ∈Ξ ∥U (ξ)∥α

]
< ∞ for some α > 2.

Assumption 4.6. I non-singular and J is full rank, i.e., rank(J ) = p, with

I = E[U(ξ0)U(ξ0)⊤] J = −E[U̇(ξ0)]

both (p × p) matrices, and U̇(ξ0) =
∂U(ξ )
∂ξ⊤

⏐⏐⏐⏐
ξ=ξ0

.

Assumption 4.7. SupposeΞ∗ is a neighborhood of ξ0 where U(ξ ) is continuously differentiable, and E[supξ∈Ξ∗

U̇(ξ )F ] <
∞, with ∥·∥F denoting as the Frobenius norm.

Alongside with Assumptions 4.1–4.7, the semiparametric theory for a p × 1 system of estimating equations with∑n
i=1 Ui(ξ̂0) = 0 and E[U(ξ0)] = 0, under some regularity conditions, we have that M-estimator ξ̂0 is consistent and

asymptotically normally distributed (Van der Vaart, 2000), that is
√
n(ξ̂0 − ξ0)

d
−→ Normalp(0,V)

where V = J−1IJ−⊤. We can construct the similar result for the proposed Bayesian empirical likelihood approach under
Bayesian consistency.

Theorem 4.1 (Consistency-misspecified PS). Under Assumptions 4.1–4.7 and U = {ξ : ∥ξ − ξ0∥2 < ϵ},

Πn (U) =

∫
U exp

[∑n
i=1 (ℓi(ξ ) − log f (yi|di, xi, ξ0))

]
π0 (dξ)∫

Ξ
exp

[∑n
i=1 (ℓi(ξ ) − log f (yi|di, xi, ξ0))

]
π0 (dξ)

→ 1 almost surely.

The frequentist counterpart of consistency also follows under a well-specified outcome model. Another aspect of the
asymptotic property in frequentist inference is the limiting behavior of the estimator in terms of the probability law,
i.e., the asymptotic normality. The Bayesian analogy is the Bernstein–von Mises theorem, which establishes the asymptotic
normality of the posterior density, π

(
√
n(ξ − ξ̂0) |z1, . . . , zn

)
. To derive this result, We need some additional assumptions

that coincide with some regularity conditions in the frequentist semiparametric theory.

Assumption 4.8. There exists a neighborhood B of ξ0 on which, with probability approaching 1, ℓi(ξ ) is non-zero, that
is there exists a function λ̂n of ξ which is the minimizer of 1

n

∑n
i=1 exp

(
λ⊤Ui (ξ)

)
, for all ξ ∈ B.

Assumption 4.9. For all values of z, U (ξ) is twice differentiable with respect to ξ in a neighborhood of ξ0, and the second
derivative satisfies the Lipschitz conditionÜ(ξ ) − Ü(ξ ′)


o ≤ K (z)

ξ − ξ ′

2

for an integrable function K (·), where Ü(ξ ) =
∂U̇(ξ )

and ∥·∥o represents the operator norm.

∂ξ⊤
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Assumption 4.10. For all values of z, there exists a neighborhood of (0, ξ0), in Rp
×Ξ , in which the function a(λ, ξ ) =

xp{λ⊤U (ξ)}U (ξ) and all of its first and second partial derivatives are dominated by an integrable function.

With these additional assumptions, we have the following Bernstein–von Mises theorem under the misspecified PS
ase.

heorem 4.2. If
∫

∥ξ∥2 π0(ξ )dξ < ∞ and Assumptions 4.1–4.10 hold, the posterior mass for the model assigning to an
rbitrary set A ⊆ Ξ converges to a normal distribution, i.e.,

sup
A

⏐⏐π (√n(ξ − ξ0) ∈ A |z1, . . . , zn
)
− Normalp(0,V) ∈ A

⏐⏐ p
−→ 0.

The proof of this theorem is shown in Appendix C, which is based on Chib et al. (2018), Ghosh and Ramamoorthi
(2003) and Van der Vaart (2000). This theorem essentially shows the limiting posterior distribution of ξ concentrates on
a

√
n-ball centered at the true value of ξ0 with the same variance–covariance matrix as the M-estimator.

4.2. Misspecified OR and correctly specified PS

When the OR model is misspecified but the PS model is correctly specified, according to Fig. 1, X ⊥⊥ D |e (x; γ0) and
γ̂ → γ0. Therefore, e

(
x; γ̂

)
is an asymptotic balancing score. Suppose we specified the OR as

u
(
d, x, e

(
x; γ̂

)
; θ, β, φ

)
= θd + h1(x, β) + φe

(
x; γ̂

)
. (4.1)

Therefore, assuming that there is no unmeasured confounding, we can find β∗ and φ∗ such that

u
(
d, x, e

(
x; γ̂

)
; θ, β, φ

)
− h1(x, β∗) − φ∗e

(
x; γ̂

)
= θ0d

that is, the dependence of the mean model on D is correctly specified, and the effect of D is captured via θD.
Therefore, we have a pseudo-true value, ξ ∗

= (θ0, β
∗, φ∗). The pseudo-true value of β, φ is determined by (β∗, φ∗) =

argminβ,φ K (f0, f1), where K (f0, f1) is the KL divergence between the true model f0 and the misspecified model f1. With
the following assumptions on the identification of the pseudo-true value, we can construct the same asymptotic results
as the misspecified PS case by replacing ξ0 with ξ ∗.

Assumption 4.11. Assume that the data generating parameter ξ ∗ belongs to the support of the prior distribution,
i.e. π0 (ξ

∗
∈ U) > 0, for every neighborhood U of ξ ∗.

In our empirical likelihood analysis case, we approximate the misspecified model f1 by minimizing the KL divergence
between the probabilities (p1, . . . , pn) assigned to each sample observation and the empirical probabilities ( 1n , . . . ,

1
n ). It

ight not be the solution to the dual problem

max
ξ∈Ξ

min
λ∈Rp

[
1
n

n∑
i=1

exp(λ⊤Ui(ξ ))

]
.

Sueishi (2013) explained that this is because the probability measures in misspecified models might not have common
support with the true model, f0, and therefore gave a condition of the identification for the pseudo-true value and the
validity of the dual theorem. In addition, Chib et al. (2018) stated that the dual representation is guaranteed to hold
for (β∗, φ∗) defined as the KL minimizer, if there exists Q ∈ P(β,θ,φ) =

{
Q : EQ [U(β, θ, φ)] = 0

}
such that Q is mutually

bsolutely continuous with respect to the true data generating model, f0, where Ef0 [U(β0, θ0, φ0)] = 0. Therefore, we have
the following assumption, which implies that the set of all misspecified models is in a nonempty set. It also indicates the
identification of the pseudo-true value as the KL minimizer, which replaces Assumption 4.1.

Assumption 4.12. For a fixed ξ ∈ Ξ , there exists Q ∈ {f1 : all misspecified models in (2.3)} such that Q is mutually
absolutely continuous with respect to f0, where f0 is defined as the true data-generating process as in (2.2).

Assumption 4.12 is required since the ATE in semiparametric linear regression is a single or a linear combination of
parameter(s). Hence, the identification of the pseudo-true value implies that the true ATE can be recovered under model
misspecification. With these additional assumptions, we have the following corollaries of the asymptotic results for the
misspecified OR case.

Corollary 4.1 (Consistency-misspecified OR). Under Assumptions 4.3–4.7 and 4.11–4.12 and U = {θ : ∥ξ − ξ ∗∥2 < ϵ},

Πn (U) =

∫
U exp

[∑n
i=1 (ℓi(ξ ) − log f (yi|di, xi, ξ ∗))

]
π0 (dξ)∫

Ξ
exp

[∑n
i=1 (ℓi(ξ ) − log f (yi|di, xi, ξ ∗))

]
π0 (dξ)

→ 1 almost surely.

Corollary 4.2. If
∫

∥ξ∥2 π0(ξ )dξ < ∞ and Assumptions 4.3–4.12 hold, the posterior mass for the model assigning to an
arbitrary set A ⊆ Ξ converges to a normal distribution, i.e.,

sup
⏐⏐π (√n(ξ − ξ ∗) ∈ A |z1, . . . , zn

)
− Normalp(0,V) ∈ A

⏐⏐ p
−→ 0.
A
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Table 1
Example 1: Simulation results of the marginal causal contrast, with true value equal to 1, on 5000 simulation runs on generated datasets of size
1000. BEL-DR represents our Bayesian doubly robust approach via empirical likelihood, and BS-DR represents results from doubly robust inference
via the Bayesian bootstrap approach in Saarela et al. (2016)’s simulation study.
Estimator Scenario I Scenario II

Mean Variance Coverage Mean Variance Coverage

BEL-DR 1.00 0.005 94.7% 1.00 0.005 94.8%
BS-DR 1.00 0.007 94.1% 1.00 0.005 94.8%

5. Examples

The methodology proposed above can be applied in various causal inference problems. In this section, we illustrate
ome simulated examples, including verifying the double robustness property and the robustness property under some
xtreme PS distributions. Finally, we compare this proposed method with some recently developed flexible modeling
pproaches, such as Bayesian causal forests and the double machine learning method.

.1. Example 1: Double robustness

We consider the simulation study by Saarela et al. (2016) to compare with their doubly robust inference via the
ayesian bootstrap approach. The data are simulated as the following hierarchy:

X1, X2, X3, X4 ∼ N (0, 1)

U1 =
|X1|

√
1 − 2/π

D |U1, X2, X3 ∼ Bernoulli (expit (0.4U1 + 0.4X2 + 0.8X3))

Y |D,U1, X2, X4 ∼ N (D − U1 − X2 − X4, 1) .

In this case, two scenarios are considered:

• Scenario I: Misspecify the outcome model using covariates (x1, x2, x4) and correctly specify the treatment assignment
model using covariates (u1, x2, x3).

• Scenario II: Correctly specify the outcome model using covariates (u1, x2, x4) and misspecify the treatment assign-
ment model using covariates (x1, x2, x3).

In both scenarios, normal priors with mean 0 and standard deviation 1000 are placed on all the parameters. Table 1
shows the results of 5000 Monte Carlo replicates of the averages of the posterior means, variances and coverage rates
for θ based on 5000 MCMC samples with 1000 burn-in iterations in each replicate. The coverage rates are computed by
constructing, for each data replicate, a 95% credible interval for θ from the posterior sample, with the 2.5% and 97.5%
posterior sample quantiles. The results indicate that our proposed method is doubly robust with unbiased estimation and
correct coverage at the nominal level in both scenarios, and has a similar empirical variance compared with the Bayesian
bootstrap approach used in Saarela et al. (2016). We notice that when the PS is correctly specified, the variance in the
Bayesian bootstrap is slightly higher compared to the case with a misspecified PS model. These results indicate that the
posterior means in both methods center at the true ATE, and it verifies the theoretical result of double robustness for the
proposed approach, showing that both approaches yield the similar posterior samples.

5.2. Example 2: Propensity score distribution

In this example, we examine the performance of our method under some extreme PS distributions. It corresponds
to Stephens et al. (2022)’s simulation study with binary exposure, where there is no treatment effect. The data are
simulated as the following hierarchy:

X1, X2 ∼ N (1, 1)
X3, X4 ∼ N (−1, 1)

D |X1, X2, X3, X4 ∼ Bernoulli (expit (γ0 + γ1X1 + γ2X2 + γ3X3 + γ4X4))

Y |D, X1, X2, X3, X4 ∼ N (0.25X1 + 0.25X2 + 0.25X3 + 0.25X4 + 1.5X3X4, 1) .

In the analyses, we investigate how the PS distribution affects the estimation of the treatment effect. Therefore, different
PS distributions are considered using three scenarios with different values of γ :

• Scenario I: γ = (0.00, 0.30, 0.80, 0.30, 0.80), generating a nearly uniform distribution of PSs.
• Scenario II: γ = (0.50, 0.50, 0.75, 1.00, 1.00), having a greater density of lower scores.

• Scenario III: γ = (0.00, 0.45, 0.90, 1.35, 1.80), having very few high scores.
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Table 2
Example 2: Simulation results of the marginal causal contrast, with true value equal to 0, on 1000 simulation runs on generated datasets of size
n. BEL-WDR used the estimating equation in (2.1), and BB represents results from the Bayesian two-step approach via the Bayesian bootstrap in
Stephens et al. (2022)’s simulation study. Bayes-OR represents standard Bayesian inference for the correctly specified OR with non-informative
priors.
n Scenario I Scenario II Scenario III

100 200 500 1000 100 200 500 1000 100 200 500 1000

Mean

BEL-DR 0.023 0.008 0.010 −0.002 0.025 −0.004 0.000 0.003 0.031 0.006 0.013 0.002
BEL-WDR −0.032 0.001 0.010 0.004 −0.058 −0.052 0.004 −0.001 −0.375 −0.311 −0.215 −0.186
BB −0.011 0.006 −0.003 −0.007 −0.029 −0.015 −0.020 −0.004 −0.018 −0.025 −0.013 −0.012
Bayes-OR 0.000 −0.001 0.002 −0.004 0.008 0.001 −0.004 −0.007 −0.005 0.002 0.000 0.002

Variance

BEL-DR 0.171 0.080 0.030 0.015 0.188 0.087 0.033 0.016 0.278 0.128 0.046 0.023
BEL-WDR 0.301 0.157 0.069 0.032 0.375 0.244 0.143 0.083 0.676 0.633 0.542 0.371
BB 0.155 0.071 0.030 0.015 0.163 0.080 0.032 0.016 0.233 0.112 0.043 0.023
Bayes-OR 0.055 0.026 0.010 0.006 0.066 0.031 0.012 0.006 0.087 0.040 0.017 0.008

In this example, the PS model is correctly specified while we fit the OR by only including the treatment indicator
and the PS as a covariate. We place zero-mean normal priors with the standard deviation 1000 for the parameters in
the OR model. Table 2 summarizes the estimates of θ over the 1000 Monte Carlo replicates for the scenarios described
bove. We also investigate the fully Bayesian model via a correctly specified outcome probability model. In each replicate,
e generate 5000 MCMC samples with 1000 burn-in iterations. We implement the proposed Bayesian approach via
emiparametric linear regression and the weighting method in (2.1). The results suggest that the shape of the true
istribution of the PS affects the magnitude of the bias. In general, the correct specified Bayesian OR approach yields
mallest variances compared to other approaches as there is no model misspecification. For our proposed method,
oth the variance and bias increase in Scenarios II and III when there are more extreme PSs, but they decrease as the
ample size increases. The weighting method performs well in Scenario I when the PS distribution is uniform. When
he PS distribution becomes more extreme, the biases and empirical variances increase significantly, compared to other
egression approaches. This indicates the regression method is less sensitive to the extreme PS. We also notice that,
n all cases, our method has similar variances compared to the two-step approach based on the Bayesian bootstrap.
ccording to Luo et al. (2021), the Bayesian bootstrap and its extension have asymptotic sandwich variance, which is
onfirmed by these numerical results. However, the proposed approach employs the prior-to-posterior framework, and
ore straightforward to incorporate informative prior whenever the information is available.

.3. Example 3: Comparison with frequentist regression estimation

In this example, we consider a simulation study with more misspecified forms, and aim to compare with the existing
requentist DR regression-based approaches. This simulation scenario is constructed under the observational setting
escribed in and follows the design of Kang and Schafer (2007), where the data are simulated as the following hierarchy:

X1, X2, X3, X4 ∼ N (0, 1)
D |X1, X2, X3, X4 ∼ Bernoulli (expit (−X1 + 0.5X2 − 0.25X3 − 0.1X4))

Y |D, X1, X2, X3, X4 ∼ N (210 + 27.4X1 + 13.7X2 + 13.7X3 + 13.7X4, 1) .

n addition to the correctly specified models, the covariates actually observed are assumed to be Z1 = exp(X1/2), Z2 =

X2/(1 + exp(X1)) + 10, Z3 = (X1X3/25 + 0.6)3 and Z4 = (Z2 + Z4 + 20)2. Under misspecification, the covariates Xi are
replaced with Zi. In this case, four scenarios are considered:

• Scenario I: Misspecify the outcome model using covariates (z1, z2, z3, z4) and correctly specify the treatment
assignment model using covariates (x1, x2, x3, x4).

• Scenario II: Correctly specify the outcome model using covariates (x1, x2, x3, x4) and misspecify the treatment
assignment model using covariates (z1, z2, z3, z4).

• Scenario III: Correctly specify both the outcome model and treatment assignment model using covariates
(x1, x2, x3, x4).

• Scenario IV: Misspecify both the outcome model and treatment assignment model using covariates (z1, z2, z3, z4).

We compare the performance with regression-based frequentist DR methods discussed in Kang and Schafer (2007).
Specifically, we consider frequentist regression estimators based on inverse-propensity weighted least squares (WLS) and
propensity-covariate (as a single covariate) regression (π-cov). Fig. 2 shows the boxplots of this study under different
estimation procedures across n = 20, 200, 1000. As discussed in Yiu et al. (2020) and Luo et al. (2021), an informative
prior yields more stabilized results with higher shrinkage towards the prior mean when the sample size is small. Therefore,
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Fig. 2. Example 3: Simulation results of the marginal causal contrast, with true value equal to 0, on 1000 simulation runs on generated datasets of
size n using the set up in Kang and Schafer (2007). pi-cov represents the least squared estimation for propensity-covariate regression. WLS represents
nverse-propensity weighted estimation for the OR.

e place an informative normal prior for θ with mean zero the and standard deviation 2 when n = 20. For n = 200, 1000,
e place zero-mean normal priors with the standard deviation 1000 for the parameters in the OR model. When n = 20,
EL-DR yield more stable results with fewer extreme values compared to other approaches. BB and WLS have more
xtreme estimates due to the sensitivity to extreme weights with small sample sizes. We notice that when the OR model
s correctly specified, BEL-DR has the smallest empirical variance compared to other methods. In all other scenarios when
= 200, 1000, the WLS approach yields higher biases and significantly large empirical variances as expected. In Scenarios
and II when the either of PS or OR is misspecified, our proposed method has a smaller variance compared to other
pproaches. While in Scenarios III and IV, all three methods yield similar results in terms of empirical mean and variance
stimates, except the WLS method having a greater empirical variance. This example demonstrates that the Bayesian
rior-to-posterior update yields a more stable results when using the informative prior, compared to the frequentist
ethods in small sample cases.

.4. Example 4: Comparison with flexible modeling

In this example, we seek to compare the proposed approach with existing flexible/machine learning causal estimation
pproaches. We first consider the following data generating mechanism:

X1, X2 ∼ N (1, 1) , X3, X4 ∼ N (−1, 1)
D |X1, X2, X3, X4 ∼ Bernoulli (expit (0.3X1 + 0.9X2 − 1.25X3 + 1.5X4))

Y |D, X1, X2, X3, X4 ∼ N (µ0(D, X;β), 1)

µ0(D, X) = D + 2DX1 + X1 + X2 + X3 + X4 + 0.25X2
1 + 0.75X2X4 + 0.75X3X4.

The ATE in this case is E[µ0(1, X)] − E[µ0(0, X)] = 1 + 2 × E[X1] = 3. Since there are interaction terms in the OR, we
specify the mean of the treatment-effect model as

β + (θ + θ x )d + φ e
(
x; γ̂

)
+ φ x e

(
x; γ̂

)
.
1 1 1 2 1
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Table 3
Example 4: Comparison of results for the proposed Bayesian empirical likelihood, Bayesian causal forests (BCFs) and
frequentist double machine learning estimator (FDML). Summary of 1000 simulation runs. Rows correspond to the bias,
root mean square error (RMSE), and coverage rates.

Method n

200 1000 2000

Bias

BEL-DR −0.007 −0.006 0.001
BCF 0.021 −0.004 0.001
FDML-Tree −0.348 −0.366 −0.255
FDML-Forest 0.252 −0.060 0.010
FDML-Boosting −0.147 −0.116 −0.102
FDML-Nnet −0.090 −0.089 −0.088
FDML-Ensemble −0.022 0.018 −0.067
FDML-Best −0.111 0.020 −0.089

RMSE

BEL-DR 0.339 0.143 0.101
BCF 0.293 0.115 0.080
FDML-Tree 0.448 0.390 0.272
FDML-Forest 0.401 0.153 0.100
FDML-Boosting 0.343 0.179 0.139
FDML-Nnet 0.341 0.168 0.134
FDML-Ensemble 0.317 0.158 0.116
FDML-Best 0.346 0.169 0.135

Coverage rate

BEL-DR 89.9 93.3 94.5
BCF 92.3 90.8 89.5
FDML-Tree 91.0 42.3 45.4
FDML-Forest 93.2 94.0 95.4
FDML-Boosting 93.6 90.8 85.2
FDML-Nnet 95.1 92.0 86.4
FDML-Ensemble 96.0 92.8 90.7
FDML-Best 94.4 92.0 86.0

As discussed in Appendix A, this model yields a consistent estimate for the ATE, and is fitted through the proposed Bayesian
exponentially tilted empirical likelihood approach. We also consider the Bayesian causal forests (BCFs) method in Hahn
et al. (2020). The BCF is a flexible approach for the OR using the Bayesian additive regression trees (BARTs) to infer the
individual treatment effects, and it is based on linear predictor

µ(d, x) = h(x, e
(
x; γ̂

)
) + t

(
x, e

(
x; γ̂

))
d

with assumed normal errors. The functions h(·, ·) and t(·, ·) are estimated via the BCFs. In this analysis, we assume the
PS model is correctly specified and estimated via a parametric logistic regression in BCFs and the proposed Bayesian
approach. Finally, we consider a frequentist double machine learning (FDML) approach proposed in Chernozhukov et al.
(2018). In their method, the ATE estimator, θ , is the solution to E[ψ(Z; θ, µ, e(X))] = 0, where

ψ(Z; θ, µ, e(X)) = µ(1, X) − µ(0, X) +
D(Y − µ(1, X))

e(X)
−

(1 − D)(Y − µ(0, X))
1 − e(X)

− θ

nd µ(·, ·) is the treatment-effect model and e(·) is the PS. Both of them are estimated via various machine learning
pproaches. Specifically, we use the FDML estimator in Definition 3.2 in Chernozhukov et al. (2018), for which the data are
artitioned into K groups. The functions µ̂k(·, ·) and êk(·) are estimated using the all the data excluding the kth group. Then
he FDML estimator for ATE the solution to 1/K

∑K
k=1 Ek[ψ(Z; θ, µ̂k, êk(X))] = 0, where Ek(·) is the empirical expectation

over the kth fold of the data.
The results of this analysis are presented in Table 3. In the FDML, we used the methods described in Chernozhukov et al.

(2018), i.e., regression tree (CART), random forest, boosting (tree-based), and neural network (two neuros) to estimate the
µ(·, ·) and e(·). There are two hybrid methods. ‘Ensemble’ represents the optimal combination of boosting and random
forest and neural network, while ‘Best’ represents the best methods for estimating each of µ(·, ·) and e(·) based on the
verage out-of-sample prediction for the ATE associated with each of µ(·, ·) and e(·) estimates obtained from the previous
achine learning approaches. The BCFs display certain bias in the small size, but have relatively a small variance, and

herefore a lower RMSE compared to the BEL-DR approach. All FDML results show quite significant biases, especially
sing the regression tree approach. However, the variances are relatively smaller than other approaches, and therefore
he RMSEs are not far off from the other two methods. In terms of the coverage rate, the coverage of BCFs and FDML
s decreasing as n increases and ultimately is below the nominal level, except the FDML-Forest. FDML-Tree results in a
arge bias, and its coverage rate is eventually below 50%, while the proposed approach yields the coverage rate at the
ominal level in all cases. It should be noted that the comparison is not completely fair as the flexible approaches such
s the BCFs and FDML do not assume a known functional form for the OR model, which is robust to mis-specification of
he treatment effect model. Finally, it should also be stressed that the BCFs and FDML methods require on average more
omputational expenditure compared to the proposed BEL-DR method.
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Table 4
Summary statistics for the posterior predictive distribution of the percentage change of the average
treatment effect for the UK speed camera data. ABDR represents results from the Bayesian bootstrap
doubly robust approach from Graham et al. (2019). Gibbs-Post represents results from the Bayesian
approach via loss functions from Luo et al. (2021).

Posterior mean SD 95% Credible interval

BEL-DR −18.375 2.377 (−23.102, −13.710)
Gibbs-Post (B-spline) −16.412 1.851 (−20.009, −12.780)
Gibbs-Post (GAM) −16.213 1.847 (−19.779, −12.569)
ABDR −14.359 3.605 (−21.841, −7.352)

6. Application: UK speed camera data

In this section, we follow the real data example used in Graham et al. (2019) and Luo et al. (2021) to assess the
ausal effect of the installation of speed cameras on the number of car related personal injury collisions. The data were
ollected from eight English administrative districts, including Cheshire, Dorset, Greater Manchester, Lancashire, Leicester,
erseyside, Sussex and the West Midlands, on the location of fixed speed cameras for 771 camera sites. The control group

s a random sample of 4787 points on the network within the eight administrative districts. The outcome of interest is
he number of personal injury collisions per kilometer as recorded from the location with or without speed cameras. The
onfounders include variables, such as the site length, the number of fatal and serious collisions (FSCs) and the number of
ersonal injury collisions (PICs), the annual average daily flow (AADF), road types, speed limit, and the number of minor
unctions within site length.

Graham et al. (2019) estimated the PS with a generalized additive model (GAM) by including smooth functions on the
ADF, the number of minor junctions, and we adopt this model to estimate the PS. For the OR model, we include all the
onfounders and the estimated PS. We place zero-mean normal priors with standard deviation 1000 on the parameters.
able 4 shows the summary statistics of the posterior predictive distribution of the percentage change of the average
reatment effect based on 50,000 MCMC samples with 10,000 burn-in iterations. Our model indicates that there is around
n 18% reduction in road traffic collisions due to the presence of the speed camera, indicating a stronger causal relationship
etween the installation of the speed camera and the number of road traffic collisions. Compared to the approach Bayesian
stimation approach (Graham et al., 2019), we obtained narrower 95% credible intervals. However, we obtained a slightly
reater standard deviation and a stronger causal effect, compared to the Gibbs posterior approach (see Luo et al., 2021).
he majority part of the 95% credible intervals overlapped among all methods, indicating an agreement in estimation of
he percentage change of the ATE. Therefore, there is robust evidence of the reduction of road traffic collisions associated
ith the presence of speed cameras.

. Discussion

In this article, we developed a fully semiparametric Bayesian DR causal estimation procedure via the non-parametric
ikelihood. This methodology was constructed by incorporating empirical likelihood for the data distribution and reweight-
ng the sample so that it can also satisfy the moment condition. Specifically, we employed the exponentially tilted
mpirical likelihood strategy (Schennach, 2005, 2007), which connects the non-parametric Bayesian method and exponen-
ial tilting empirical likelihood estimator. We have also shown in this paper that the posterior distribution of the causal
arameter is consistent and asymptotically normal, when either the OR or PS model is correctly specified. Simulation
tudies and the real data example demonstrated that our method is doubly robust, robust to the PS distribution, and also
ore stable when the sample size is small compared to frequentist approaches.
Our approach is appealing as it offers a prior-to-posterior update for causal inference which connects with frequentist

R inference based on estimating equations. This has been an obstacle to the widespread update of Bayesian methods
n causal inference as a full probabilistic model is required in the usual Bayesian setting. To our knowledge, in current
ausal inference research, only the Bayesian bootstrap and its extension can adopt the estimating equation framework,
nd therefore our method provides an attractive alternative. This is because, unlike the Bayesian bootstrap method
hich requires resampling to include the prior distribution, our proposed method is ready to implement via MCMC.
herefore, it offers a means of informed and coherent decision making in the presence of uncertainty. In our analyses, we
onsidered noninformative priors with a relatively large sample, which has yielded a smaller empirical variance compared
o frequentist approaches when either of the PS or OR is misspecified. For smaller sample sizes, we suggest the usage of
n informative prior so that the ATE is more stable and less sensitive to extreme PSs.
In our illustrative semiparametric regression model, we focus on the ATE as a single parameter, which can be extended

o include further interaction terms (see Appendix A). The principles presented in this paper can be applied in much more
eneral settings. For example, other flexible outcome regression models, such as BARTs, can be incorporated within the
roposed model. Moreover, there are other versions of frequentist DR estimators (Kang and Schafer, 2007; Cao et al.,
009), which can also be implemented in this framework. The proposed methodology can be also widely applied in

ther causal settings when the traditional Bayesian set-up requires overspecifying the model, clashing with moment
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Fig. A.3. DAGs with the true data generating mechanism, including the interactions.

restrictions. For example, in finding optimal dynamic treatment regimes, decision making based on previous treatment
covariate history and baseline covariates is required, and the estimation procedure is often based on semiparametric
methods (Murphy, 2003; Moodie et al., 2007). Also in longitudinal settings, G-estimation is commonly used to study the
causal effects of time-varying exposures from a structural nested mean model (Robins and Hernán, 2009), which involves
solving a set of estimating equations to estimate parameters of interest. It will be interesting further research to link the
proposed Bayesian approach with those directions, which will offer a different perspective of uncertainty quantification
and prediction in causal inference.
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Appendix A. Semiparametric linear regression with the interactions

Suppose the true OR model as demonstrated in Fig. A.3 is

E(Y |D, X) = θ0D + θ0DXD + h0(X, β0).

n this case, the ATE is E(Y |D = 1, X) − E(Y |D = 0, X). The OR model must then contain terms that block the open
ackdoor paths that pass through the interaction, i.e., specifying the expectation of the treatment-effect model

E(Y |D, X) = D(θ + θdX) + h1(X, β) + φ1e
(
X; γ̂

)
+ φ2Xe

(
X; γ̂

)
.

his model can achieve double robustness. As argued in the main paper, if the h1(x, β) component of the OR model
s correctly specified, reflecting the data-generating mechanism as h0(x, β0), then the estimators of θ and θd will be
onsistent regardless of whether the PS model was correctly specified as φ1 = φ2 = 0. From the causal diagram in
ig. A.3, conditioning on e(X) and e(X)X , it blocks the open backdoor paths between X to D and X to XD, which achieves
he orthogonality of X and D, leading the consistent estimation of the ATE.

ppendix B. Proof of Theorem 4.1

roof. From Theorem 1 in Schennach (2005), under Assumption 4.1, the posterior distribution obtained under the
mpirical likelihood approach in (3.2) is the same as under the true data generating mechanism, f (y|d, x, ξ0), which
atisfies

∫
U (ξ0) f (y|d, x, ξ0)dy = 0. Moreover, by consistency of ξ̂0, it is equivalent to show

Πn
E (U) =

∫
U exp

[∑n
i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ)∫

Ξ
exp

[∑n
i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ)

→ 1 almost surely.

rom Theorem 1 in Yiu et al. (2020), under Assumptions 4.1–4.7, then for any ϵ > 0 there exists a δ > 0, we have

sup exp

[
n∑(

ℓi(ξ ) − ℓi(ξ̂0)
)]

≤ exp
[
−δ(n − 1)1/2

]
.

∥ξ−ξ0∥>ϵ i=1
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Therefore, as π0 (ξ ∈ U) > 0, for every neighborhood U of ξ0,

Πn
E

(
U c)

≤
exp

[
−δ(n − 1)1/2

]
exp

[
−δ(n − 1)1/2

]
+
∫
U exp

[∑n
i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ)

.

e need to show that with probability approaching to 1,∫
U exp

[∑n
i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ)

exp
[
−δ(n − 1)1/2

] → ∞ as n → ∞

hich implies
∫
U exp

[∑n
i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ) → C as n → ∞, where C is some constant. As the M-estimator, ξ̂0,

aximizes the likelihood in (3.1), exp
[∑n

i=1 ℓi(ξ̂0)
]

= 1. Then, by the consistency of ξ̂0, ξ̂0 will also lie inside of the ball
= {ξ : ∥ξ − ξ0∥2 < ϵ},∫

U
exp

[
n∑

i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ) =

∫
U
exp

(
n∑

i=1

ℓi(ξ )

)
π0 (dξ)

≤

∫
U
exp

(
n∑

i=1

ℓi(ξ̂0)

)
π0 (dξ) = 1.

herefore,
∫
U exp

[∑n
i=1

(
ℓi(ξ ) − ℓi(ξ̂0)

)]
π0 (dξ) is bounded between 0 and 1. This implies that Πn

E (U) → 1 almost
urely. □

ppendix C. Proof of Theorem 4.2

roof. As
∫

∥ξ∥2 π0(ξ )dξ < ∞ and Assumptions 4.1–4.10 hold, from Theorem 3 in Yiu et al. (2020), then we have

n1/2(ξ̂0 − ξ ∗) → 0 and n1/2(ξ ∗
− ξ0) → N (0,V).

herefore, it is equivalent to show

sup
A

⏐⏐⏐π (√n(ξ − ξ̂0) ∈ A |z1, . . . , zn
)

− Normalp(0,V) ∈ A
⏐⏐⏐ p
−→ 0.

Denote w =
√
n(ξ − ξ̂0) and the posterior distribution

πn (w) := π

(√
n(ξ − ξ̂0) |z1, . . . , zn

)
.

hen by the change of variable

πn (w) = C−1
n π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]

here Cn =
∫
π0

(
ξ̂0 +

w
√
n

)
exp

[∑n
i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
dw. Then in order to show that

sup
A

⏐⏐πn (w ∈ A)− Normalp(0,V) ∈ A
⏐⏐ p
−→ 0.

It is equivalent to show∫
A

⏐⏐⏐⏐⏐C−1
n π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
− (2π)−

p
2 |V|

−
1
2 e−

1
2 (w

TV−1w)

⏐⏐⏐⏐⏐ dw
p

(C.1)
−→ 0.
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Note that (C.1) can be written as∫
A

⏐⏐⏐C−1
n π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
− C−1

n π0 (ξ0) e−
1
2 (w

TV−1w)

+ C−1
n π0 (ξ0) e−

1
2 (w

TV−1w)
− (2π)−

p
2 |V|

−
1
2 e−

1
2 (w

TV−1w)
⏐⏐⏐dw

≤ C−1
n

∫
A

⏐⏐⏐⏐⏐π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
− π0 (ξ0) e−

1
2 (w

TV−1w)

⏐⏐⏐⏐⏐ dw
+

∫
A

⏐⏐⏐C−1
n π0 (ξ0) e−

1
2 (w

TV−1w)
− (2π)−

p
2 |V|

−
1
2 e−

1
2 (w

TV−1w)
⏐⏐⏐ dw.

(C.2)

Therefore, it is equivalent to show∫
A

⏐⏐⏐⏐⏐π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
− π0 (ξ0) e−

1
2 (w

TV−1w)

⏐⏐⏐⏐⏐ dw p
−→ 0

as this also implies that

Cn =

∫
π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
dw

p
−→ π0 (ξ0) (2π)

p
2 |V|

1
2 .

Then the second term in (C.2) becomes∫
A

⏐⏐⏐C−1
n π0 (ξ0) e−

1
2 (w

TV−1w)
− (2π)−

p
2 |V|

−
1
2 e−

1
2 (w

TV−1w)
⏐⏐⏐ dw p

−→ 0. (C.3)

For the first term in (C.2), by Lemma C.1 in Chib et al. (2018) and Lemma 2 in Yiu et al. (2020) with Assumptions 4.1–4.10,
it can be shown that∫

A

⏐⏐⏐⏐⏐π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
− π0 (ξ0) e−

1
2 (w

TV−1w)

⏐⏐⏐⏐⏐ dw p
−→ 0

by breaking the domain of integration A into different regions, i.e., A1 =
{
w : ∥w∥ < c log

√
n
}
, A2 =

{
w : c log

√
n ≤

∥w∥ ≤ δ
√
n
}
and A3 =

{
w : ∥w∥ > δ

√
n
}
for any given c and δ. Therefore,

C−1
n

∫
A

⏐⏐⏐⏐⏐π0

(
ξ̂0 +

w
√
n

)
exp

[
n∑

i=1

(
ℓi

(
ξ̂0 +

w
√
n

)
− ℓi

(
ξ̂0

))]
− π0 (ξ0) e−

1
2 (w

TV−1w)

⏐⏐⏐⏐⏐ dw p
−→ 0. (C.4)

Combining the results in (C.4) and (C.3), we can obtain the result of the theorem. i.e.,

sup
A

⏐⏐πn (w ∈ A)− Normalp(0,V) ∈ A
⏐⏐ p
−→ 0. □
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