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THE RAMSEY NUMBER OF
A LONG EVEN CYCLE VERSUS A STAR

PETER ALLEN, TOMASZ  LUCZAK, JOANNA POLCYN, AND YANBO ZHANG

Abstract. We find the exact value of the Ramsey number R(C2ℓ,K1,n), when ℓ and

n = O(ℓ10/9) are large. Our result is closely related to the behaviour of Turán number

ex(N,C2ℓ) for an even cycle whose length grows quickly with N .

1. Introduction

For a graph H by

ex(N,H) = max{|E| : G = (V,E) ̸⊇ H and |V | = N}

we denote its Turán number. Let us recall that for graphs H with chromatic number

at least three the asymptotic value of ex(N,H) was determined over fifty years ago by

Erdős and Stone [8], and Erdős and Simonovits [7], while for most bipartite graphs H the

behaviour of ex(N,H) is not well understood. Let us recall some results on the case when

H is an even cycle C2ℓ. The best upper bound for ex(N,C2ℓ) for general ℓ is due to Bukh

and Jiang [4], who improved the classical theorem of Bondy and Simonovits [3] to

ex(N,C2ℓ) ≤ 80
√
ℓ ln ℓN1+1/ℓ + 10ℓ2N.

The best lower bound which holds for all ℓ follows from the construction of regular graphs

of large girth by Lubotzky, Phillips, and Sarnak [11], which gives

ex(N,C2ℓ) ≥ N1+(2+o(1))/3ℓ.

The correct exponent αℓ for which ex(N,C2ℓ) = Nαℓ+o(1) is known only for ℓ = 2, 3, 5,

when it is equal to 1 + 1/ℓ (see the survey of Füredi and Simonovits [9] and references

therein), and finding it for every ℓ is one of the major open problems in extremal graph

theory. Can it become easier when we allow the length of an even cycle to grow with

N? This paper was inspired by this question. However, instead of the original problem

we consider its, nearly equivalent, partition version, and, instead of ex(N,C2ℓ), we study
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the Ramsey number R(C2ℓ, K1,n). Although typically we define Ramsey numbers using

colours, here and below we rather view R(C2ℓ, K1,n) as the minimum N such that each

graph on N vertices and minimum degree at least N − n contains a copy of C2ℓ, i.e. we

assume that in the second colour there are no stars K1,n and concentrate on the graph

induced by the first colour. Using this point of view let us note that if ex(N,H) ≤ M ,

then the complement of any H-free graph on N vertices contains a vertex of degree at

least N − ⌊2M/N⌋, which we can express as

R(H,K1,N−⌊2M/N⌋) ≤ N .

On the other hand, if there exists a d-regular H-free graph on N vertices, then, clearly,

R(H,K1,N−d) > N .

Consequently, from the result of Bukh and Jiang and the construction of Lubotzky,

Phillips, and Sarnak mentioned above we get

n+ 2n(2+o(1))/3ℓ ≤ R(C2ℓ, K1,n) ≤ n+ 161
√
ℓ ln ℓn1/ℓ + 22ℓ2. (1)

Since a graph on N vertices with minimum degree at least N/2 is hamiltonian (Dirac [5]),

and if its minimum degree is larger than N/2, it is pancyclic (Bondy [1]), for ℓ ≥ n ≥ 2,

we have R(C2ℓ, K1,n) = 2ℓ. Moreover, Zhang, Broersma, and Chen [14] showed that if

n/2 < ℓ < n then R(C2ℓ, K1,n) = 2n, while for 3n/8 + 1 ≤ ℓ ≤ n/2, we get R(C2ℓ, K1,n) =

4ℓ − 1. Our main result determines the value of R(C2ℓ, K1,n) for all large ℓ, and n not

much larger than ℓ.

Theorem 1. For every t ≥ 2, ℓ ≥ (19.1t)9, and n such that (t − 1)(2ℓ − 1) ≤ n − 1 <

t(2ℓ− 1), we have

R(C2ℓ, K1,n) = ft(ℓ, n) + 1,

where

ft(ℓ, n) = max{t(2ℓ− 1), n+ ⌊(n− 1)/t⌋}.

The condition ℓ ≥ (19.1t)9 in Theorem 1 above, which holds when, say, n ≤ 0.1ℓ10/9,

follows from the bounds given by Lemma 5 below, one of the key ingredients of our

argument. It is certainly far from being optimal and we suspect that the result holds for

any n growing polynomially with ℓ, but it is conceivable that it remains true even for n

which grows exponentially with ℓ. On the other hand, because of (1), the assertion of

Theorem 1 fails for, say, n ≥ ℓ2ℓ.

We remark that one can use a similar technique to find the value of ex(N,C2ℓ) when

N is not much larger than ℓ. In this case ex(N,C2ℓ) is the same as ex(N,C≥2ℓ), i.e.

the maximum number of edges in a graph on N vertices which contains no cycles of
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length at least 2ℓ. Let us recall that ex(N,C≥2ℓ), was determined already by Erdős and

Gallai [6] who also described the structure of all extremal graphs for this problem – it turns

out that all their blocks, except perhaps one, are cliques on 2ℓ − 1 vertices. However,

the behaviour of R(C2ℓ, K1,n) seemed to us more intriguing. Indeed, for a given ℓ and

(t− 1)(2ℓ− 1) ≤ n− 1 < t2

t+1
(2ℓ− 1) we have

ft(ℓ, n) = (2ℓ− 1)t,

i.e. for this range of n the value of R(C2ℓ, K1,n) does not depend on the size of the star.

On the other hand, as is shown in the next section, for t2

t+1
(2ℓ − 1) ≤ n − 1 < t(2ℓ − 1),

when

ft(ℓ, n) = n+ ⌊(n− 1)/t⌋

the ‘extremal graphs’ which determine the value of R(C2ℓ, K1,n) typically have all blocks

smaller than 2ℓ− 1.

2. The lower bound for R(C2ℓ, K1,n)

In this section we show that for given integers t, ℓ, and n such that (t − 1)(2ℓ − 1) ≤
n− 1 < t(2ℓ− 1), we have

R(C2ℓ, K1,n) > ft(ℓ, n) = max{t(2ℓ− 1), n+ ⌊(n− 1)/t⌋}. (2)

Let us consider first the graph H1 which consists of t vertex-disjoint copies of the com-

plete graph K2ℓ−1. Clearly, |V (H1)| = t(2ℓ − 1) and H1 ⊉ C2ℓ. Moreover, ∆(H1) =

(t− 1)(2ℓ− 1) ≤ n− 1 yielding H1 ⊉ K1,n. Hence

R(C2ℓ, K1,n) > t(2ℓ− 1) .

Now let k = n − 1 − t⌊(n − 1)/t⌋ and m = ⌊(n − 1)/t⌋ + 1. We define a graph H2 as

a union of k vertex-disjoint complete graphs Km and t+ 1− k other copies of Km which

are ‘almost’ vertex-disjoint except that they share exactly one vertex (see Figure 1).

Km Km . . . Km

k

Km

Km Km

t+ 1− k

Figure 1. Graph H2. Here k = n− 1− t⌊n−1
t
⌋ and m =

⌊
n−1
t

⌋
+ 1
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Then

|V (H2)| = km+ (t+ 1− k)(m− 1) + 1 = (t+ 1)m− (t− k)

= (t+ 1)(⌊(n− 1)/t⌋+ 1)− t+ n− 1− t⌊(n− 1)/t⌋

= n+ ⌊(n− 1)/t⌋.

Note also that n− 1 < t(2ℓ− 1), and so m = ⌊(n− 1)/t⌋+ 1 ≤ 2ℓ− 1. Hence H2 ̸⊇ C2ℓ.

Finally,

∆(H2) = |V | −m = n+ ⌊(n− 1)/t⌋ − ⌊(n− 1)/t⌋ − 1 = n− 1.

Therefore

R(C2ℓ, K1,n) > |V (H2)| = n+ ⌊(n− 1)/t⌋,

and (2) follows.

Let us remark that the two graphs H1 and H2 we used above are by no means the

only ‘extremal graphs’ with R(C2ℓ, K1,n)− 1 vertices. Let us take, for example, n = 4.1ℓ.

Then R(C2ℓ, K1,n) = 3(2ℓ − 1) + 1 and the lower bound for R(C2ℓ, K1,n) is ‘certified’

by the graph H ′
1 which consists of three vertex disjoint cliques K2ℓ−1. However, if we

replace each of these cliques by a graph on 2ℓ− 1 vertices and minimum degree 1.91ℓ, the

complement of the resulting graph will again contain no K1,n, so each such graph shows

that R(C2ℓ, K1,n) > 3(2ℓ − 1) as well. On the other hand, adding to H ′
1 a triangle with

vertices in different cliques does not result in a copy of C2ℓ, so H ′
1 is not even a maximal

extremal graph certifying that R(C2ℓ, K1,n) > 3(2ℓ− 1).

3. Cycles in 2-connected graphs

In order to show the upper bound for R(C2ℓ, K1,n) we have to argue that large graphs

with a sufficiently large minimum degree contain C2ℓ. In this section we collect a number

of results on cycles in 2-connected graphs we shall use later on.

Let us recall first that the celebrated theorem of Dirac [5] states that each 2-connected

graph G on n vertices contains a cycle of length at least min{2δ(G), n}, and, in particular,

each graph with minimum degree at least n/2 is hamiltonian. Below we mention some

generalizations of this result. Since we are interested mainly in even cycles, we start with

the following observation due to Voss and Zuluaga [13].

Lemma 2. Every 2-connected graph G on n vertices contains an even cycle C of length

at least min{2δ(G), n− 1}. □

The following result by Bondy and Chvátal [2] shows that the condition δ(G) ≥ n/2,

sufficient for hamiltonicity, can be replaced by a somewhat weaker one. Recall that the
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closure of a graph G = (V,E) is the graph obtained from G by recursively joining pairs of

non-adjacent vertices whose degree sum is at least |V | until no such pair remains.

Lemma 3. A graph G is hamiltonian if and only if its closure is hamiltonian. □

If we allow δ(G) > n/2, then, as observed by Bondy [1], G becomes pancyclic. We use

the following strengthening of this result, proved under slightly stronger assumptions, due

to Williamson [12].

Lemma 4. Every graph G = (V,E) on n vertices with δ(G) ≥ n/2 + 1 has the following

property. For every v, w ∈ V and every k such that 2 ≤ k ≤ n − 1, G contains a path of

length k which starts at v and ends at w. In particular, G is pancyclic. □

Finally, we state a theorem of Gould, Haxell, and Scott [10], which is crucial for our

argument. Here and below ec(G) denotes the length of the longest even cycle in G.

Lemma 5. Let a > 0, K̂ = 75 · 104a−5, and G be a graph with n ≥ 45K̂/a4 vertices and

minimum degree at least an. Then for every even r ∈ [4, ec(G) − K̂], G contains a cycle

of length r.

Let us also note the following consequence of the above results.

Lemma 6. For c ≥ 1 we set

K(c) = 24 · 106c5 = 75 · 104(1/2c)−5, (3)

and let ℓ ≥ 360c4K(c). Then for every 2-connected C2ℓ-free graph H = (V,E) such that

|V | ≤ 2ℓc and δ(H) ≥ ℓ+K(c), we have

|V | ≤ 2ℓ− 1.

Proof. Let us consider first the case |V | < 2ℓ+ 2K(c)− 2. Then, since

δ(H) ≥ ℓ+K(c) > |V |/2 + 1,

from Lemma 4 we infer that H is pancyclic. But C2ℓ ⊈ H meaning that |V | ≤ 2ℓ− 1, as

required.

On the other hand, for |V | ≥ 2ℓ+ 2K(c)− 2 Lemma 2 implies that

ec(H) ≥ 2ℓ+ 2K(c)− 2 > 2ℓ+K(c)

Moreover, as |V | ≤ 2ℓc and ℓ ≥ 360c4K(c), one gets

δ(H) > ℓ ≥ 1

2c
|V | and |V | > 2ℓ ≥ 45

(
1

2c

)−4

K(c).

Therefore, from Lemma 5 applied to H with a = 1/(2c), we infer that H contains a cycle

of length 2ℓ, contradicting C2ℓ-freeness of H. □
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4. Proof of the main result

The two examples of graphs we used to verify the lower bound for R(C2ℓ, K1,n) (see

Section 2) suggest that a natural way to deal with the upper bound for R(C2ℓ, K1,n) is to

show first that each C2ℓ-free graph G with a large minimum degree has all blocks smaller

than 2ℓ. However, most results on the existence of cycles in 2-connected graphs use the

minimum degree condition, and even if the minimum degree of G is large, some of its

blocks may contain vertices of small degree. Nonetheless we shall prove that the set of

vertices in each such G contains a ‘block-like’ family of 2-connected subgraphs without

vertices of very small degree. Then, based on the results of the last section, we argue that

each subgraph in such family is small. In the third and final part of our proof we show

that if this is the case, then G has at most ft(ℓ, n) vertices.

Before the proof of Theorem 1 we state two technical lemmata. The first one will

become instrumental in the first part of our argument, when we decompose the graph G

into 2-connected subgraphs without vertices of small degree.

Lemma 7. Let n ≥ k ≥ 2. For each graph G with n vertices and minimum degree

δ(G) ≥ n/k + k, there exists an s < k and a set of vertices U ⊂ V (G), |U | ≤ s− 1, such

that G− U is a union of s vertex-disjoint 2-connected graphs.

Proof. Consider a sequence U0, U1, . . . , Ut = U of subsets of V which starts with U0 = ∅
and, if G− Ui contains a cut vertex vi, we put Ui+1 = Ui ∪ {vi}. The process terminates

when each component of G − Ui is 2-connected. Note that in each step the number of

components of a graph increases by at least one, so G − Ui has at least i + 1 = |Ui| + 1

components. Moreover, the process must terminate for t < k−1 since otherwise the graph

G− Uk−1 would have n− k + 1 vertices, at least k components, and the minimum degree

at least n/k + 1 which, clearly, is impossible. Hence the graph G− U = G− Ut has n− t

vertices, s ≥ |U |+1 = t+1 components, and minimum degree larger than n/k+1. Finally,

let us notice that, again, since each component has more than n/k vertices, we must have

s < k. □

The following result is crucial for the final stage of our argument, when we show that each

graph G with a large minimum degree, which admits a certain block-like decomposition

into small 2-connected subgraphs, cannot be too large.

Lemma 8. For a given set V and positive integers ℓ, s, t, n ≥ 2, satisfying (t−1)(2ℓ−1) ≤
n− 1 < t(2ℓ− 1), let V1, V2, . . . , Vs be subsets of V such that

(i ) V = V1 ∪ V2 ∪ · · · ∪ Vs,

(ii ) |Vi| ≤ 2ℓ− 1 for i = 1, 2, . . . , s,
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(iii ) |V \ Vi| ≤ n− 1 for i = 1, 2, . . . , s,

(iv ) |V1|+ |V2|+ · · ·+ |Vs| ≤ |V |+ s− 1.

Then

|V | ≤ ft(ℓ, n) = max{t(2ℓ− 1), n+ ⌊(n− 1)/t⌋} .

Proof. Note first that if s ≤ t, then (i ) and (ii ) imply that |V | ≤ t(2ℓ− 1). Thus, let us

assume that s ≥ t+ 1. Then,

s(n− 1)
(iii )

≥
s∑

i=1

|V \ Vi| = s|V | − (|V1|+ |V2|+ · · ·+ |Vs|)

(iv )

≥ s|V | − (|V |+ s− 1) = (s− 1)|V | − (s− 1),

and thereby

|V | ≤ s

s− 1
(n− 1) + 1 = n+

n− 1

s− 1
≤ n+

n− 1

t
.

Since |V | is an integer, the assertion follows. □

Proof of Theorem 1. Since we have already bounded R(C2ℓ, K1,n) from below in Section 2,

we are left with the task of showing that

R(C2ℓ, K1,n) ≤ ft(ℓ, n) + 1.

For this purpose, let t ≥ 2,

ℓ ≥ (19.1t)9 > 360(t+ 1)4 ·K(t+ 1),

where K(t+ 1) = 24 · 106(t+ 1)5 is the function defined in (3), and

(t− 1)(2ℓ− 1) ≤ n− 1 < t(2ℓ− 1).

Moreover, let G = (V,E) be a C2ℓ-free graph on

|V | = ft(ℓ, n) + 1

vertices such that G ⊉ K1,n (or equivalently, ∆(G) ≤ n− 1).

Recall that ft(ℓ, n) = max{t(2ℓ− 1), n+ ⌊(n− 1)/t⌋} and observe that

(n− 1) +
t(2ℓ− 1)

t+ 1
< ft(ℓ, n) < (t+ 1)(2ℓ− 1) . (4)

Indeed, the upper bound follows immediately from the fact that n− 1 < t(2ℓ− 1), so it is

enough to verify the lower bound for ft(ℓ, n). If

(n− 1) +
t(2ℓ− 1)

t+ 1
< t(2ℓ− 1)
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then we are done, otherwise we have

t(2ℓ− 1)

t+ 1
≤ n− 1

t

and, since ft(ℓ, n) ≥ n+ ⌊n−1
t
⌋, (4) holds as well.

Our aim is to show that G contains a family of 2-connected subgraphs Gi = (Vi, Ei),

i = 1, 2, . . . , s, such that their vertex sets fulfil the conditions (i )-(iv ) listed in Lemma 8.

We first apply Lemma 7 to G with k = (t+1)2+1
t

. We are allowed to do this, because (4)

tells us that

δ(G) = |V | − 1−∆(G) ≥ ft(ℓ, n)− (n− 1) >
t(2ℓ− 1)

t+ 1
≥ t|V |

(t+ 1)2
(5)

However, both |V | and ℓ are much larger than t, in particular, |V | ≥ 2ℓ > (19.1t)9. Hence,

δ(G) ≥ t|V |
(t+ 1)2

>
t

(t+ 1)2 + 1
|V |+ (t+ 1)2 + 1

t

and the assumptions of Lemma 7 hold with k = (t+1)2+1
t

≤ t + 3. Thus, there exists

s ≤ t+2 and a set of vertices U ⊂ V , |U | ≤ s− 1, such that G−U is a union of s vertex-

disjoint, 2-connected graphs, G′
i = (V ′

i , E
′
i). Note that since |U | ≤ t+1 and ℓ > 4K(t+1)

are large,

δ(G′
i) ≥ δ(G)− |U | > 2(2ℓ− 1)

3
− (t+ 1) > ℓ+K(t+ 1). (6)

Moreover, clearly, |V ′
i | ≤ |V | < (t+ 1)2ℓ, so Lemma 6 applied to G′

i, with c = t+ 1, gives

|V ′
i | ≤ 2ℓ− 1 for i = 1, 2, . . . , s.

Now, for every i = 1, 2, . . . , s, we define

Ui = {u ∈ U : degG(u, V
′
i ) ≥ 4t}, Vi = V ′

i ∪ Ui, and Gi = G[Vi].

We will show that the sets V1, V2, . . . , Vs satisfy the conditions (i )-(iv ) of the hypothesis

of Lemma 8.

In order to verify (i ) observe that since the minimum degree ofG is large, i.e. δ(G) ≥ 8t2,

every vertex u ∈ U belongs to at least one of the sets Ui, and therefore V = V1∪V2∪· · ·∪Vs.

To prove that |Vi| ≤ 2ℓ − 1, let us assume that |Vi| ≥ 2ℓ. Now take any subset Ûi of

Ui, with |Ûi| = 2ℓ− |V ′
i | elements and set Hi = G[V ′

i ∪ Ûi]. Note that Hi has 2ℓ vertices.

We will argue that Hi is hamiltonian. To this end, consider the closure of Hi. From (6)

we know that all vertices from V ′
i have degree at least δ(G′

i) > ℓ + K(t + 1), so in the

closure of Hi the set V ′
i spans a clique of size at least 2ℓ− |U | ≥ 2ℓ− t− 1. On the other

hand, each vertex from Ûi has in V ′
i at least 4t neighbours, so the closure of Hi is the

complete graph and therefore, by Lemma 3, Hi is hamiltonian. However it means that
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C2ℓ ⊆ Hi ⊆ G which contradicts our assumption that G is C2ℓ-free. Consequently, for

every i = 1, 2, . . . , s, we have |Vi| ≤ 2ℓ− 1, as required by (ii ).

Note that from (6) it follows that |V ′
i | > δ(G′

i) > ℓ. Since U \ Ui sends at most

4t|U | ≤ 4t(t+ 1) < ℓ edges to the set V ′
i , there exists a vertex vi ∈ V ′

i ⊆ Vi which has all

its neighbours in Gi. It means however that, since G ̸⊇ K1,n, the set V \Vi, which contains

only vertices which are not adjacent to vi, has at most n− 1 elements, and so (iii ) holds.

Finally, to verify (iv ) consider an auxiliary bipartite graph F = (VF , EF ), where VF =

{V ′
1 , V

′
2 , . . . , V

′
s} ∪ U and

EF = {uV ′
i : u ∈ Ui}.

We claim that F is a forest. Indeed, assume for the sake of contradiction that F contains a

cycle C = V ′
i1
uj1 . . . V

′
iwujwV

′
iw+1

, i1 = iw+1. Observe that every vertex ujx , x = 1, 2, . . . , w,

has at least two neighbours in both sets V ′
ix and V ′

ix+1
. Moreover, δ(G′

i) > ℓ + 1 and

|V ′
i | ≤ 2ℓ− 1, so from Lemma 4 it follows that any two vertices of V ′

i can be connected by

a path of length y for every y = 2, 3, . . . , |Vi| − 1. Therefore, since w ≤ |U | ≤ t+ 1 ≤ ℓ/4,

the existence of C in F implies the existence of a cycle C2ℓ in G, contradicting the fact

that G is C2ℓ-free.

Since F is a forest it contains at most |U |+ s− 1 edges, i.e.∑
u∈U

degF (u) ≤ |U |+ s− 1.

Note that in the sum |V1| + |V2| + · · · + |Vs| each vertex from
⋃

i V
′
i = V \ U is counted

once, and each vertex u ∈ U is counted precisely degF (u) times, so

|V1|+ · · ·+ |Vs| = |V | − |U |+
∑
u∈U

degF (u) ≤ |V |+ s− 1,

as required by (iv ).

Now we can apply Lemma 8 and infer that |V | ≤ ft(ℓ, n) while we have assumed that

|V | = ft(ℓ, n) + 1. This final contradiction completes the proof of the upper bound for

R(C2ℓ, K1,n) and, together with (2), concludes the proof of Theorem 1. □
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Poland

Email address: joaska@amu.edu.pl

Hebei Normal University, School of Mathematical Sciences, Shijiazhuang, P.R.China

Email address: ybzhang@163.com


