Chapter 7. Climate Change and the GCC: Economic and Environmental Impact Greg Shapland #### **Abstract** The economies of the GCC countries, having been negatively impacted by Covid-19, now face the longer-term challenge of climate change. Over the coming decades, this phenomenon will affect these countries in several ways. First, there will be direct effects: climate change will bring higher temperatures and humidity, reduced and more erratic precipitation, a rise in sea-level and stronger and more frequent storms of various kinds. Higher temperatures and humidity will necessitate the use of more energy for air-conditioning and will also put the residents of GCC countries at risk if there are failures in electricity supply, as summer temperatures will be "unlivable" without air conditioning. Sea-level rise will require large sums to be spent on protecting or rebuilding or moving infrastructure in coastal areas. Moreover, there will be severe environmental damage. because of phenomena such as the rise in sea temperatures and more frequent and more severe dust-storms and sand-storms. Second, countries that consume hydrocarbons may, as part of the transition to renewable energy, buy less oil and gas, so reducing the revenues available to GCC governments. Third, the countries which produce the food on which GCC countries depend may themselves suffer climate-change impacts that damage their agricultural sectors, rendering GCC food supplies less secure. GCC governments will need to find ways of responding to these major challenges. This chapter does not examine the separate question of the contribution of GCC states, whether actual or potential, to the mitigation of greenhouse-gas emissions. # 7.1. The impact of the Covid pandemic on GCC countries' adaptation to climate change It is not yet clear how the pandemic has affected the efforts of GCC governments to adapt to climate change and to prepare for the energy transition. There certainly seems to have been little if any impact on the climate change mitigation projects in, for example, Saudi Arabia and the UAE. While climate change mitigation is a separate issue (and not the subject of this chapter), the lack of impact in this area of activity may well indicate that there has been little or no effect on adaptation work either. One reason for believing that this is the case is that not much effort was being put into adaptation (as witness the repeated flooding of cities in GCC countries): in the area of climate change work, "green projects" designed to demonstrate official commitment to mitigation have had a higher priority. As regards the GCC governments' preparation for the energy transition and the likelihood of declining demand for oil and gas, the pandemic (by reducing global demand for energy) may have served as a reminder of the need to diversity economically as broadly and as genuinely as possible. GCC countries will need such diversification to create economies that can withstand the worldwide drive to reduce the use of fossil fuels. However, the increased demand for oil and gas from sources ¹ The author is very grateful to Dr Christopher Davidson of the Henry Jackson Society (email, 13 May 2022) for his input to this section of the chapter. other than Russia as a result of the Ukraine crisis may have lessened any sense of greater urgency concerning diversification that the pandemic has created. ## 7.2. The likely direct impacts of climate change on GCC countries Climate change is a reality. But it is impossible to predict with certainty what it will bring to Planet Earth. This is mainly because we do not know how far the transition to renewable energy will go or how fast it will occur – and thus how effective the mitigation of climate change will be, in terms of limiting the emission of GHGs (greenhouse gases). The most recent report by the Intergovernmental Panel on Climate Change (IPCC) examines five "illustrative scenarios" that range from very low levels of greenhouse gas emissions (GHGs) to very high.² Climate scientists are more confident about projections for temperature and sea-level rise (SLR) than for rainfall. Moreover, modelling for the globe as a whole, despite its imperfections, is still more reliable than it is for individual regions like the Gulf. The smaller the region, the less confidence we can have in projections of climate change and its impacts. Nevertheless, it seems safe to say that the direct impacts of climate change on GCC countries will include: - higher temperatures and humidity; - on average (in terms of any given year or series of years), reduced rainfall but more intense rainfall events, over most parts of the region, although Oman and the southwestern corner of Saudi Arabia (and Yemen) may receive more rainfall than they do today; - a rise in sea-level: - more storms over the sea (including cyclones), causing surges at high tide and sometimes the over-topping of coastlines and coastal defences; - higher sea-surface temperatures (SSTs); and - more dust-storms and sand-storms. There is one crucial consideration to bear in mind when considering the effect of climate change on the economic and social life of GCC countries and indeed of countries elsewhere in the world. This is that the average figures only tell us part of the story – and not the most important part. In fact, the impact of climate change will be most strongly felt through extreme events: heatwaves, intense rainstorms, protracted droughts, storm surges along low-lying coasts etc. Such extreme events will pose major challenges to governments in various ways. This will be particularly so when one considers the possibility of these events combining with one another, for example, an intense rainfall event might coincide with a storm surge to bring extensive flooding to coastal areas. science related to climate change." ² "Summary for Policymakers", in "Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. According to the IPCC's website, "The Intergovernmental Panel on Climate Change (IPCC) is the United Nations body for assessing the ## 7.3. Higher temperatures and humidity Climate change is already bringing higher temperatures to Gulf countries. For instance, the average maximum daytime temperature in summer in Saudi Arabia increased 2.05°C between 1960 and 2010.³ And a temperature of 53.9°C was recorded in Kuwait in 2016.⁴ Temperatures of 50°C or above are now being recorded 'regularly' in Kuwait.⁵ As to the future, most climate models predict longer and more intense heatwaves for the Middle East generally and the Gulf in particular. Today's extremes will become the norm. By 2050, the maximum temperatures on the hottest days in GCC countries will have increased by 3-4°C. In summer, temperatures in GCC cities will often go above 50°C. One academic study projects that, after 2070, under a high-emissions scenario, 45°C would become the usual summer maximum in Gulf cities.⁶ In some years, 60°C would be seen in places like Kuwait City. Cities, because of the 'urban heat island' effect, would be tough places to live in.⁷ This impact would be all the stronger because the GCC is one of the most urbanized parts of the world, with more than eight out of 10 people living in towns and cities.⁸ Al-Mazroui (2020) uses a parameter that quantifies just how trying these conditions could become, namely, the Survivability for a Fit Human Threshold (SFHT). (The SFHT is the highest temperature that is tolerable for a healthy human under well-ventilated outdoor conditions.) He concludes, 'The adjusted summer maximum temperature will likely cross the SFHT temperature limit of 42°C at all capital cities of the GCC states and the four major cities in Saudi Arabia by the end of the twenty-first century. This indicates that climate change has to be considered in the long-term planning of the region, since exceeding the SFHT limit will most likely cause human health-related casualties.'9 Higher humidity will exacerbate the effect of extreme temperatures. Although much of the hinterland of GCC countries is desert (where low humidity is the norm), coastal areas experience very high humidity because the Gulf and the Red Sea have a low albedo (the fraction of light that is reflected by a surface), resulting in strong absorption of solar radiation.¹⁰ The very high ³ Hilal M.S. Al-Maamarya, Hussein A. Kazemb and Miqdam T. Chaichanc, "Climate change: The game changer in the Gulf Cooperation Council Region", *Renewable and Sustainable Energy Reviews*, 76 (2017), 555–576, www.elsevier.com/locate/rser ⁴ Yasmena Al Mulla, "Why Kuwait is one of the hottest places on earth", *Gulf News*, 6 July 2021, https://gulfnews.com/world/gulf/kuwait/why-kuwait-is-one-of-the-hottest-places-on-earth-1.80465689 "Life at 50C: Surviving in Kuwait's 'unbearable' heat", 27 October 2021, BBC News, https://www.bbc.co.uk/news/av/world-middle-east-59054893 ⁶ Jeremy S. Pal and Elfatih A.B. Eltahir, "Future temperature in southwest Asia projected to exceed a threshold for human adaptability", *Nature Clim Change* 6 (2016), 197–200 ⁷ "Heat Island Effect", United States Environmental Protection Agency (EPA) website, https://www.epa.gov/heatislands, last visited 29 October 2021. ⁸ Al-Maamarya *et al.*, "Climate change: The game changer ..." ⁹ Mansour Almazroui, "Summer maximum temperature over the gulf cooperation council states in the twenty-first century: multimodel simulations overview", *Arabian Journal of Geosciences*, 13(12), (2020), DOI: 10.1007/s12517-020-05537-x ¹⁰ Pal and Eltahir, "Future temperature in southwest Asia" evaporation rate which results intensifies the concentration of water vapour in the air, while sea breezes bring this moist air inland. Moreover, as Bolleter *et al.* put it, '... the effects of the most lethal heatwaves are due to not only elevated temperatures but also the effects of humidity. Extremely high heat combined with elevated humidity diminishes the human body's ability to regulate temperature by sweating. Hence, hot and humid conditions can be more dangerous than equivalently hot dry conditions ...'12 The relevant parameter in this situation is the wet-bulb temperature (WBT). Exposure to a WBT of 35°C (an air temperature of 46°C combined with humidity of 50 per cent) for several hours will kill a healthy person as their body will not be able to cool itself adequately through sweating. WBTs of 35°C will probably not occur if global average surface temperature rises are kept to less than 2°C relative to 1986–2005 but are likely to do so at higher levels of warming. At these higher levels of warming, for some places in the Gulf (including Abu Dhabi, Dubai, Doha and Dhahran), the WBT is projected to exceed 35°C several times in the 2071-2100 period. 14 Even if the threshold of a WBT of 35°C is not crossed, some sizable groups of people will be at risk. The 'danger' threshold WBT will be 3°C degrees lower for those doing manual labour outside and may be much lower for people who are vulnerable because of their age (the elderly or very young) or pre-existing medical conditions. In these circumstances, GCC economies would be spending even more on air-conditioning (and using more energy in the process) than they do today. That may be affordable but, even if it is, there remains the possibility of a failure of the electricity supply during a heatwave. This could happen if there is a sudden surge in demand and the system breaks down due to overload. It could also happen if the network is attacked by a hostile power or sabotaged by a terrorist group, whether physically or using cyber methods. In these circumstances, the most vulnerable members of society might die. We should remember that death as a result of excessive heat is not merely theoretical: in the 2003 heatwave in Europe, 'tens of thousands' of people died from heat stress.¹⁵ Moreover, not everyone can work indoors. Construction and farming are perhaps the most obvious categories of jobs that have to be done outdoors. Working outdoors in extreme heat lowers productivity and endangers the health of workers (soldiers needing to train or fight outdoors would also be at risk). As a report for the International Labour Organisation points out, ¹³ The WBT is the temperature read by a thermometer covered in water-soaked cloth (a wet-bulb thermometer) over which air is passed. Pal and Eltahir ("Future temperature in south-west Asia") describe it as "a combined measure of temperature and humidity or degree of 'mugginess'". ¹¹ Julian Bolleter *et al.*, "Wet-bulb Temperature and Sea-level Rise in the United Arab Emirates – Planning Responses", *Planning Practice & Research*, 36 (2021), Issue 4, 408-429, DOI: 10.1080/02697459.2020.1859199 ¹² Ibid. ¹⁴ Bolleter et al, "Wet-bulb Temperature" ¹⁵ Ethan D Coffel, Radley M Horton and Alex de Sherbinin, "Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century", *Environ. Res. Lett.* 13 (2018): 014001 https://iopscience.iop.org/article/10.1088/1748-9326/aaa00e 'the lowest income-bracket work – heavy labour and low-skill agricultural and manufacturing jobs – are among the most susceptible to climate change.' ¹⁶ Moreover, if GCC countries get as hot as the models suggest, skilled expatriate workers might be reluctant to come to live and work in the Gulf, even if their jobs do not require them to do any outdoor work. (Such workers, who have some choice as to where they work, may not wish to live in countries in which, for example, their children cannot play outside during the day in summer. ¹⁷) And the hajj, when it occurs in summer, would be dangerous to all but the hardiest of pilgrims. ¹⁸ Higher temperatures and humidity may create conditions that encourage the spread of certain diseases, including dengue, malaria, hantavirus and cholera. When combined with the presence of standing water, the result of flooding (brought about, for example, by intense downpours), elevated temperatures may result in increased outbreaks of salmonellosis, cholera and giardiasis. Moreover, malaria-carrying mosquitoes can breed in any standing water, creating conditions for diseases such as West Nile virus, Ebola, and Zika. And Zika. Higher temperatures will also produce higher evapotranspiration from crops, meaning "less crop per drop". More irrigation water will therefore be needed per unit of yield. Where GCC countries are drawing on groundwater for irrigation, those resources will be depleted even more rapidly than they already are.²² Another economic effect of higher temperatures will result from increased salinity of sea-water in the Gulf, the Gulf of Oman and the Red Sea, due in turn to higher rates of evaporation from that body of water. To desalinate water with a greater salt content, more energy will have to be used by desalination plants. ## 7.5. Reduced and more variable precipitation, for most of the GCC Projections concerning precipitation (almost always rainfall in GCC countries) cannot be made with quite as much confidence as those for temperature. Some general statements about the effect of climate change on precipitation can nevertheless be made with reasonable confidence. While more rain is likely to fall over the Jebel al-Akhdar in Oman and the far southwestern corner of Saudi Arabia (and Yemen), most parts of the GCC region will have less rain in coming decades than they do today. However, these changes will not have much economic impact, even if the decrease is large in percentage terms. A reduction in rainfall would not bring disaster to countries where there is hardly any rainfed agriculture and that get their water from desalination and import almost all their food. Conversely, an increase in rainfall would not offer much in the way of new economic opportunities (although it would serve to narrow the gap between the rate of depletion ¹⁶ "Climate Change and Labour: Impacts of Heat in the Workplace", (2016), UNDP, https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---gjp/documents/publication/wcms_476194.pdf ¹⁷ "Life at 50C", BBC News ¹⁸ Pal and Eltahir, "Future temperature in southwest Asia" ¹⁹ Xiaoxu Wu *et al*, "Impact of climate change on human infectious diseases: Empirical evidence and human adaptation", *Environment International*, 86, (2016), pp. 14–23. DOI: 10.1016/j.envint.2015.09.007 ²⁰ Ibid. ²¹ Abbas El-Zein *et al.*"Health and ecological sustainability in the Arab world: a matter of survival", *The Lancet*, 383(9915), (2014), pp. 458–476, DOI: 10.1016/S0140-6736(13)62338-7 ²² Al-Maamarya *et al.*, "Climate change: The game changer" of renewable groundwater reserves and the rate at which they are recharged by rainfall), except in the highly unlikely case of a very large increase. The most significant rainfall-related change (in terms of socio-economic impact) will take the form of less frequent but more intense rain-storms. These rain-storms will lead to flooding where storm drains do not have adequate capacity to carry the water away, as is the case at the moment in many GCC cities. There have already been numerous instances of serious flooding in GCC cities within the last decade or so, for example, those which occurred in Jeddah in 2009, 2011 and 2017, in Riyadh in 2013, in Mecca in 2015 and 2021 and in Doha in 2018.²³ Lives have been lost and a great deal of property destroyed. ## 7.6.Sea-level rise (SLR) and storm surges Climate change is causing sea levels to rise in two ways. First, sea-water is expanding as the world warms. Second, more water is added to the seas and oceans as glaciers and ice-caps melt. According to the IPCC, it is 'virtually certain that global mean sea level will continue to rise over the 21st century. Relative to 1995-2014, the likely global mean sea level rise by 2100 is 0.28-0.55 m[etres] under the very low GHG emissions scenario ...' In the highest GHG emissions scenario, the IPCC projects that the rise in sea-level would range from 0.63 to 1.01 metres.²⁴ Extraction of oil, gas and groundwater plus the weight of infrastructure are probably causing subsidence in coastal areas of GCC countries. This would compound the effect of SLR consequent upon climate change. According to Hereher (2020), a rise in sea-level of one metre would permanently inundate 614 km² of Saudi Arabia along the Gulf coast, 270 km² of the UAE and 147 km² of Qatar. ²⁵ In Saudi Arabia, the low-lying areas North and South of Dammam would be the most susceptible to inundation; in the UAE, it would be the central coast and the Abu Dhabi islands, while for Qatar, it would be the Southeastern side of the country. Kuwait would also suffer inundation, with the most vulnerable locations being Bubiyan Island and the country's southern coast. While the area of Bahrain which would be flooded by a one metre rise in sea-level is only 20.5 km², this nonetheless represents almost three per cent of the territory of the country. The figure for Saudi Arabia above does not include the Red Sea: about 890 km² of land along that coast would be inundated by a SLR of one metre.²6 In relative terms, however, the Red Sea coast of Saudi Arabia is less vulnerable to inundation than the country's Gulf coast. The topography of the northern part of the Red Sea coastline is elevated and rocky and the coastal strip is narrow. To ²³ Examples taken from FloodList.com, https://floodlist.com/asia/, last visited 29 October 2021. ²⁴ "Summary for Policymakers", B.5.3, page SPM-28 ²⁵ Mohamed E. Hereher, "Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf", *Climate*, 8(4), (2020), p. 50, DOI: 10.3390/cli8040050 ²⁶ Mohamed E. Hereher, "Vulnerability assessment of the Saudi Arabian Red Sea coast to climate change", *Environmental Earth Sciences*, Vol. 75 (30), (2016), DOI: 10.1007/s12665-020-09113-0 the south of Jeddah, however, the coastal strip is broader and lower lying: here, there could be more extensive inundation and marine life could suffer significant damage.²⁷ At the same time, we also have to factor in the effect of storm surges, which will cause more coastal flooding than they do today because sea-levels will be higher. Moreover, while the coastal flooding caused by storm surges does not produce permanent inundation, it can be very destructive. Coastal lands contain the greatest concentrations of population in their respective countries, including (apart from Saudi Arabia) the capital cities. They also hold the greatest concentrations of infrastructure, such as oil and gas export facilities, power and desalination plants, ports and roads. For example, Qatar's 2021 Nationally Determined Contribution (NDC) recognises that there is a 'large coastal population at risk of inundation (particularly during extreme sea level events)' and also notes the vulnerability of 'coastal and offshore installations such as power and water cogeneration facilities, and the oil & gas infrastructure'. The 2015 version of Qatar's NDC stated that 96 per cent of people in the country lived in coastal areas. It is unlikely that this figure will have declined greatly since 2015; indeed, it is, if anything, more likely to have risen. The figures for the UAE are of the same order of magnitude as those for Qatar. 'Approximately 85 per cent of the population and over 90 per cent of the infrastructure of the UAE is located within several meters of sea level in low-lying coastal areas ...'³⁰ According to one estimate, the country could lose up to six per cent of its populated and developed coastline by the end of the century because of rising sea levels."³¹ In Oman's case, a World Bank report projects that, by 2050, the sea-level at Muscat would have risen by 0.2 metres in a low emissions scenario and by 0.25 metres in a high emissions scenario. Oman's Governorates along the coast of the Batinah Plain (along the Gulf of Oman) are certainly exposed to SLR and storm surges. Using a measure called the coastal vulnerability index (CVI), Hereher *et al* show that 'high vulnerable coastal regions to sea level rise account for 805 km of the coast, mostly along Al-Batinah plain in the north and along some scattered sectors at the eastern coast of the country.'³² (The parameters used to calculate the CVI are: coastal geomorphology, elevation, slope, tidal range and bathymetry (the depth of the sea adjacent to the coast).) The areas ²⁷ Ibid. ²⁸ "Nationally Determined Contribution", August 2021, Ministry of Municipality and Environment, State of Qatar, https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Qatar%20First/Qatar%20NDC.pdf. A Nationally Determined Contribution is a climate action plan designed to cut emissions and adapt to climate impacts. Each Party to the Paris Agreement is required to establish an NDC and update it every five years: "Welcome to the UN: All About the NDCs", United Nations, https://www.un.org/en/climatechange/all-about-ndcs ²⁹ "Intended Nationally Determined Contributions (INDCs) Report", November 19, 2015, Ministry of Environment, State of Qatar, $[\]underline{https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Qatar\%20First/Qatar\%20INDCs\%20Report\%20-English.pdf}$ ³⁰ "Climate Change", UAE government website, 'desalinating water processes increase the concentrations of salts and chemicals produced from water treatment and thrown directly into the Arab Gulf, which results in great harm to the marine creatures in it.'72 There are other things that GCC governments could do to make better use of such water resources as they have – in effect, increasing the overall availability of water. One possible approach is to encourage farmers to improve the efficiency with which they use water and to plant crops that use less water. In this regard, it is worth noting that agriculture uses between 70 per cent and 85 per cent of the water consumed in GCC countries. 73 Saudi Arabia already has a programme that aims to achieve these goals.⁷⁴ Another way forward would be the widespread introduction of recycling of water already used by domestic, commercial and industrial consumers, for use in the irrigation of crops and parks. This requires the treatment of such wastewater as well as careful management and regulation, for safety reasons; it also requires investment in infrastructure. However, none of this is new territory, whether organisationally or technically; there is a great deal of good practice elsewhere in the world that could be emulated. Following the establishment of diplomatic relations and other ties of various kinds between Israel and several GCC states, the latter could, if they wished, avail ⁶⁹ Julian Bolleter et al., "Wet-bulb Temperature" ⁷⁰ Al-Maamarya et al., "Climate change: The game changer" ⁷¹ Jennifer Aguinaldo, "Water security trends upwards in region", MEED, 30 December, 2020, https://www.meed.com/water-security-trends-upwards-in-mena ⁷² Al-Maamarya *et al.*, "Climate change: The game changer" ⁷³ Tomas Krampera, "Water in the GCC", The Euro-Gulf Information Centre, February 17, 2021, https://www.egic.info/water-in-the-gcc 74 Al-Maamarya *et al.*, "Climate change: The game changer" themselves of Israel's extensive expertise in water technology and management. Abu Dhabi adopted a water-recycling policy in 2019. Policies of this nature should be able to reduce – to some extent – the reliance on imported food. Although this is a worthwhile endeavour, the GCC countries will always be heavily reliant on imports. With this consideration in mind, GCC governments will need, in order to achieve food security, to stockpile food in case of global shortages. Thus, Qatar has already done this, with its Strategic Food Security Facilities Project, a food storage and processing facility at Hamad Port which has the capacity to <u>stockpile</u> enough rice, sugar and edible oils for three million people – more than its current population – for two-and-a-half years. Tooperative food-storage arrangements among GCC countries would offer greatly increased food security. Cutting wastage of food (which is considerable in GCC countries) would complement stockpiling, by reducing the volumes needing to be held. #### Conclusions Current projections suggest that GCC countries will be hard hit by the direct effects of climate change. The principal impacts on these countries' economies and societies will be even higher levels of temperature and humidity than are experienced today and more frequent and more severe flooding, especially in coastal areas. Much hotter and more humid weather in summer could make normal life in GCC cities virtually impossible at times, during that season. And coastal flooding will put much of the infrastructure on the Gulf, Gulf of Oman, Arabian Sea and Red Sea coasts at risk, unless measures of adaptation are implemented. For the foreseeable future, their income from the export of hydrocarbons will mean that GCC countries are much better placed to implement such measures than less wealthy countries. There are numerous things that they could do, while they have funds available. Some of these things, such as back-up power networks and adequate storm drainage, are unglamorous, even invisible – and therefore compare unfavourably with more visionary or futuristic projects. They will require careful planning, based on sound data (which in some cases has not yet been collected). In many places, installing the necessary infrastructure will seriously disrupt the existing urban fabric. This will, however, save lives and be less costly financially over the medium and long terms than repeated floods. The indirect effects of climate change on the GCC countries may be just as severe, although they are harder to predict with confidence. Food security may be impaired by the impact of climate change on those parts of the world from which the Gulf imports its food. Lack of ⁷⁵ Isaac Herzog (President of Israel), "Next stop: Making UAE-Israel relations extraordinary", *Khaleej Times*, 27 October 2021, https://www.khaleejtimes.com/opinion/next-stop-making-uae-israel-relations-extraordinary ⁷⁶ Imran Mojib, "DoE launches recycled water policy to fulfil future needs", *Gulf Today*, 29 June 2019, https://www.gulftoday.ae/news/2019/06/29/doe-launches-recycled-water-policy-to-fulfil-future-needs ⁷⁷ Peter Alagos, 'Envoy underscores Pakistan's role in Qatar food security', *Gulf Times*, 28 February 2018 Envoy underscores Pakistan's role in Qatar food security (gulf-times.com) ⁷⁸ Pirani and Arafat, "Interplay of food security" ⁷⁹ Abdullah Mamoon et al., "Flood Study in Qatar" renewable water resources in the region mean that GCC governments can do very little to hedge against such risks by striving for self-sufficiency. Treating and re-using urban wastewater for irrigation could make a contribution to the food security of GCC countries but can never be on a scale large enough to transform this situation of dependency on agricultural regions beyond the GCC. The more optimistic projections of world demand for oil and gas (more optimistic from the point of view of the exporters, that is) may turn out to be accurate. If they do, the GCC countries will be well placed to outbid others when there are shortages in the global food market. On the other hand, if the demand for oil and gas falls in absolute terms and indeed falls sharply, GCC governments may find themselves having to draw on assets such as their sovereign wealth funds in order to purchase food for the people living within their borders. ## Bibliography AbouKorin, Antar A., "Impacts of Rapid Urbanisation in the Arab World: the Case of Dammam Metropolitan Area, Saudi Arabia", paper presented at 5th International Conference and Workshop on Built Environment in Developing Countries (ICBEDC 2011), at Universiti Sains Malaysia, December 2011, https://www.researchgate.net/publication/263847805 Impacts of Rapid Urbanisation in the Arab World the Case of Dammam Metropolitan Area Saudi Arabia Aguinaldo, Jennifer, "Water security trends upwards in region", *MEED*, 30 December, 2020, https://www.meed.com/water-security-trends-upwards-in-mena Alagos, Peter, "Envoy underscores Pakistan's role in Qatar food security", *Gulf Times* 28 February 2018 Envoy underscores Pakistan's role in Qatar food security (gulf-times.com) Al-Awadhi, Talal, E. Ramadan, B.S. Choudri, and Yassine Charaabi, (2016), "Growth of coastal population: Likely exposure to sea level rise and associated storm surge flooding in the Sultanate of Oman", *Journal of Environmental Tourism and Management* 7 (14): pp. 341–6. https://journals.aserspublishing.eu/jemt/article/view/341 Alkhan, Mohammed N., "Gonu: Fujairah Evacuates", *Gulf News*, 6 June 2007, https://gulfnews.com/uae/gonu-fujairah-evacuates-1.465492 Al-Maamarya, Hilal M.S., Hussein A. Kazemb and Miqdam T. Chaichanc, "Climate change: The game changer in the Gulf Cooperation Council Region", *Renewable and Sustainable Energy Reviews*, 76 (2017), 555–576, www.elsevier.com/locate/rser Al Mamoon, Abdullah, Benjamin Regan, Carlos Sylianteng, Ataur Rahman and Abeer Ahmad Abd Alkader, "Flood Study in Qatar – Challenges and Opportunities", (2015), paper presented at 36th Hydrology and Water Resources Symposium (HWRS), Hobart, Tasmania, Australia, 7-10 December 2015), https://www.researchgate.net/publication/286931749_Flood_Study_in_Qatar_- Challenges and Opportunities Almazroui, Mansour, "Summer maximum temperature over the gulf cooperation council states in the twenty-first century: multimodel simulations overview", *Arabian Journal of Geosciences*, 13(12), (2020), DOI: 10.1007/s12517-020-05537-x Al Mulla, Yasmena, "Why Kuwait is one of the hottest places on earth", *Gulf News*, 6 July 2021, https://gulfnews.com/world/gulf/kuwait/why-kuwait-is-one-of-the-hottest-places-on-earth-1.80465689 BBC News, "Life at 50C: Surviving in Kuwait's 'unbearable' heat", 27 October 2021, https://www.bbc.co.uk/news/av/world-middle-east-59054893 Bolleter, Julian, Bill Grace, Paula Hooper and Sarah Foster "Wet-bulb Temperature and Sea-level Rise in the United Arab Emirates – Planning Responses", *Planning Practice & Research*, 36 (2021), Issue 4, 408-429, DOI: 10.1080/02697459.2020.1859199 bp, "Energy Outlook", 2020 https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html Coffel, Ethan D., Radley M. Horton and Alex de Sherbinin, "Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century", *Environ. Res. Lett.* 13 (2018): 01400, https://iopscience.iop.org/article/10.1088/1748-9326/aaa00e Daoudi, Mohamed, and Abdoul Jelil Niang, "Flood Risk and Vulnerability of Jeddah City, Saudi Arabia", *Intechopen* (2019), DOI: 10.57772/intechopen.82073, https://www.intechopen.com/books/recent-advances-in-flood-risk-management/flood-risk-and-vulnerability-of-jeddah-city-saudi-arabia Doyle, Alister, "Climate change brings cyclone risk to Persian Gulf: study", *Reuters*, 31 August 2015, https://www.reuters.com/article/us-climatechange-cyclones/climatechange-brings-cyclone-risk-to-persian-gulf-study-idUKKCN0R010E20150831 El-Zein, Abbas, Samer Jabbour, BelginTekce, Huda Zurayk, Iman Nuwayhid, Marwan Khawaja, Tariq Tell, Yusuf AlMooji, Jocelyn De-Jong, NasserYassin, Dennis Hogan, "Health and ecological sustainability in the Arab world: a matter of survival", *The Lancet*, Vol. 383, Issue 9915, 1–7 February 2014, pp. 458-476, doi: 10.1016/S0140-6736(13)62338-7 Ghazaly, Salim, Roger Rabbat and Ahmed Mokhtar, "How GCC countries can ensure their food security", *Gulf Business*, 8 August 2020 https://gulfbusiness.com/how-gcc-countries-can-ensure-their-food-security/ Hereher, Mohamed E., "Vulnerability assessment of the Saudi Arabian Red Sea coast to climate change", *Environmental Earth Sciences*, Vol. 75 (30), (2016), DOI: 10.1007/s12665-020-09113-0 Hereher, Mohamed E., "Assessment of Climate Change Impacts on Sea Surface Temperatures and Sea Level Rise—The Arabian Gulf", *Climate*, 8(4), (2020), p. 50, doi: 10.3390/cli8040050 Hereher, Mohamed E., Talal Al-Awadhi, Salim Al-Hatrushi, Yassine Charabi, Shawky Mansour, Noura Al-Nasiri, Youssef Sherief, Ahmed El-Kenawy, "Assessment of the coastal vulnerability to sea level rise: Sultanate of Oman", *Environ Earth Sci* 79, 369 (2020). https://doi-org.gate3.library.lse.ac.uk/10.1007/s12665-020-09113-0 Herzog, Isaac, "Next stop: Making UAE-Israel relations extraordinary", *Khaleej Times*, 27 October 2021, https://www.khaleejtimes.com/opinion/next-stop-making-uae-israel-relations-extraordinary IMF, Middle East and Central Asia Department Research Department, "The Future of Oil and Fiscal Sustainability in the GCC Region", Report No. 20/01 (2020), https://www.imf.org/en/Publications/Departmental-Papers-Policy-Papers/Issues/2020/01/31/The-Future-of-Oil-and-Fiscal-Sustainability-in-the-GCC-Region-48934 Intergovernmental Oceanographic Commission website, http://www.ioctsunami.org/index.php?option=com_content&view=article&id=72&Itemid=70&lang=e International Energy Agency, "World Energy Outlook, 2020", https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf International Renewable Energy Agency (IRENA), "Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5oC climate goal", Abu Dhabi (2020), https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction IPCC (Intergovernmental Panel on Climate Change), "Summary for Policymakers", in "Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press Kabbani, Nader, and Nejla Ben Mimoune, "Economic diversification in the Gulf: Time to redouble efforts", Brookings Institute, 31 January 2021, https://www.brookings.edu/research/economic-diversification-in-the-gulf-time-to-redouble-efforts/#footref-6 Krampera, Tomas, "Water in the GCC", The Euro-Gulf Information Centre, February 17, 2021, https://www.egic.info/water-in-the-gcc Luomi, Mari, "Gulf States' Climate Change Policies Amid a Global Pandemic", Arab Gulf States Institute in Washington, 25 September 2020, https://agsiw.org/wp-content/uploads/2020/09/Luomi Climate-Change Online-1.pdf Mahmoud, Mohammed, "Cyclone Shaheen: A reminder of the Arabian Peninsula's vulnerability to extreme weather events", *MEI (Middle East Institute)*, 8 October 2021, https://www.mei.edu/publications/cyclone-shaheen-reminder-arabian-peninsulas-vulnerability-extreme-weather-events Medetsky, Anatoly, and Megan Durisin, "Exports of Russian wheat dry up, stoking food security concerns", Al-Jazeera, 26 April 2020, https://www.aljazeera.com/economy/2020/4/26/exports-of-russian-wheat-dry-up-stoking-food-security-concerns MEED, "Oman's Duqm development plans take shape", 9 April 2021, https://www.offshore-technology.com/comment/dugm-development-plans/ Mojib, Imran, "DoE launches recycled water policy to fulfil future needs", Gulf Today, 29 June 2019, https://www.gulftoday.ae/news/2019/06/29/doe-launches-recycled-water-policy-to-fulfil-future-needs Murakami, Hiroyuki, Gabriel A. Vecchi and Seth Underwood, "Increasing frequency of extremely severe cyclonic storms over the Arabian Sea", *Nature Climate Change* 7, (2017): 885–889, https://doi-org.gate3.library.lse.ac.uk/10.1038/s41558-017-0008-6 OPEC, "World Oil Outlook", 2021, https://www.opec.org/opec_web/en/publications/340.htm Pal, Jeremy S., and Elfatih A.B. Eltahir, "Future temperature in southwest Asia projected to exceed a threshold for human adaptability", *Nature Clim Change* 6 (2016), 197–200, https://doi-org.gate3.library.lse.ac.uk/10.1038/nclimate2833 Pirani, Sanaa I., and Hassan A. Arafat, "Interplay of food security, agriculture and tourism within GCC countries", *Global Food Security*, 9 (2016), 1-9, https://www.sciencedirect.com/science/article/pii/S2211912415300377 Roser, Max, Hannah Ritchie and Esteban Ortiz-Ospina, "World Population Growth" (first published in 2013; most recent substantial revision in May 2019), Our World in Data website, https://ourworldindata.org/world-population-growth "Sadeem: A Saudi Technology to warn of floods and landslides before they occur", *EmTech MENA*, 9 December 2019, https://emtechmena.com/sadeem-a-saudi-technology-to-warn-of-floods-and-landslides-before-they-occur/ Schneider, Bastian, Gösta Hoffmann and Klaus Reicherter, "Scenario-based tsunami risk assessment using a static flooding approach and high-resolution digital elevation data: An example from Muscat in Oman", *Global and Planetary Change*, 139, (2016), pp. 183-194, https://www-sciencedirect-com.gate3.library.lse.ac.uk/science/article/pii/S0921818116300613 State of Qatar, Ministry of Environment, "Intended Nationally Determined Contributions (INDCs) Report", 19 November 2015, https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Qatar%20First/Qatar%2 OINDCs%20Report%20-English.pdf State of Qatar, Ministry of Municipality and Environment, "Nationally Determined Contribution", August 2021 https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Qatar%20First/Qatar%2 ONDC.pdf UAE government website, "Climate Change", https://u.ae/en/information-and-services/environment-and-energy/climate-change/climate-change UNDP (United Nations Development Programme), "Climate Change and Labour: Impacts of Heat in the Workplace", (2016), https://www.ilo.org/wcmsp5/groups/public/--ed emp/---gjp/documents/publication/wcms 476194.pdf United States Environmental Protection Agency (EPA) website, "Heat Island Effect", https://www.epa.gov/heatislands Verner, Dorte, David Treguer, John Redwood, Jens Christensen, Rachael McDonnell, Christine Elbert, Yasuo Konishi and Saad Belghazi "Climate Variability, Drought, and Drought Management in Moroco's Agricultural Sector", World Bank Group, 5 November 2018, DOI: 10.1596/30603 Wellesley, Laura, "How Qatar's Food System Has Adapted to the Blockade", Chatham House Expert Comment, 14 November 2019, https://www.chathamhouse.org/2019/11/how-qatars-food-system-has-adapted-blockade Xiaoxu Wu, Yongmei Lu, Sen Zhou, Lifan Chen and Bing Xu, "Impact of climate change on human infectious diseases: Empirical evidence and human adaptation", *Environment International*, 86, (2016), pp. 14–23. DOI: 10.1016/j.envint.2015.09.007