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ABSTRACT

We propose a robust methodology for estimating production frontiers with multi-
dimensional input via a two-step nonparametric regression, in which we estimate the
level and shape of the frontier before shifting it to an appropriate position. Our main
contribution is to derive a novel frontier estimation method under a variety of flex-
ible models which is robust to the presence of outliers and possesses some inherent
advantages over traditional frontier estimators. Our approach may be viewed as a sim-
plification, yet a generalization, of those proposed by Martins-Filho and Yao (2007)
and Martins-Filho et al. (2013), who estimate frontier surfaces in three steps. In par-
ticular, outliers, as well as commonly seen shape constraints of the frontier surfaces,
such as concavity and monotonicity, can be straightforwardly handled by our esti-
mation procedure. We show consistency and asymptotic distributional theory of our
resulting estimators under standard assumptions in the multi-dimensional input set-
ting. The competitive finite-sample performances of our estimators are highlighted in
both simulation studies and empirical data analysis.

Keywords: concavity, local polynomial smoothing, monotonicity, outlier detection,
shape-constrained regression.

1. INTRODUCTION

Estimation of production frontiers, and therefore efficiency, has motivated a wide and
growing literature during the last decades. Mathematically, the problem can be stated
as follows. Let x ∈ Rp+ be some inputs (represented in row vector form) used to produce

output y ∈ R+. A production set is defined as Ω = {(x, y) ∈ Rp+1
+ | x can produce y},

whereas the production frontier associated with Ω is defined as ρ(x) = sup{y ∈ R+ |
(x, y) ∈ Ω} for all x ∈ Rp+. For any given (x0, y0) ∈ Ω, the efficiency is measured by
the ratio between y0 and ρ(x0). Our aim is to obtain, from a given random sample
{(Xi, Yi), i = 1, ..., n}, nonparametric frontier estimators which can readily deal with
multiple inputs and are reasonably robust to the presence of outliers. By referring to
the presence of outliers, we mean the potential existence of a few observations which lie
outside Ω.
In this manuscript, we restrict ourselves to the deterministic approach for the frontier

estimation problem. This approach relies on the assumption that all observations, with
perhaps the exception of a few outliers, lie in the production set. Two popular methods
in the literature of deterministic frontier estimation are the Free Disposal Hull (FDH)
estimator introduced by Deprins et al. (1984) and Data Envelopment Analysis (DEA)
represented by Charnes et al. (1978). These methodologies are applied in many subse-
quent pieces of work, such as Seifford (1996), Daraio and Simar (2007), Simar and Wilson
(2013) and Kneip et al. (2015). See also Badunenko et al. (2012). Outlier detection and
treatment techniques under these approaches can be found in Simar (2003), Johnson and
McGinnis (2008) and Khezrimotlagha et al. (2008), among others. An alternative mod-
elling approach is the so-called Stochastic Frontier Analysis (SFA), introduced by Aigner
et al. (1977) and Meeusen and van Den Broeck (1977). For a comprehensive overview,
see Parmeter and Kumbhakar (2014), for example. Papadopoulos and Parmeter (2022)
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extensively describe quantile methods for SFA robust analyses. See also Parmeter and
Racine (2013) where additional constraints are imposed.
Moving away from FDH and DEA in the context of deterministic frontier estimation,

Martins-Filho and Yao (2007) proposed a deterministic production frontier model and a
nonparametric production frontier estimator called NP3S1. They assumed the efficiency
score across different observations to have constant mean and variance, and proposed an
estimation procedure that consists of three steps. The first step estimates a conditional
mean of the output with respect to the inputs using the local linear kernel method. The
second step follows Fan and Yao (1998) and again uses the local linear kernel approach
to estimate the conditional variance of the output with respect to the inputs. The third
and final step gives an original estimator to their proposed production frontier model.
A possible drawback in the second step of NP3S estimator is that it allows for a neg-

ative estimate of the variance. To overcome this problem, Martins-Filho et al. (2013)
propose to use the local exponential kernel estimator to estimate conditional volatility
functions, ensuring its non-negativity. This estimator uses an exponential functional at
the minimization problem that characterizes kernel regressions for estimating nonnega-
tive conditional variance (see Ziegelmann (2002)). We call this frontier estimator NPE,
standing for NonParametric Exponential.

Considering NP3S and NPE, we believe some improvements are desirable, as summa-
rized below:
(i) These estimators are characterized by an estimation procedure in three steps. The

first two steps capture the shape of the frontier and the third step is responsible
for locating the estimated frontier. It is important to emphasize that the second
step of NP3S and NPE is based on a regression that has as regressand squared
residuals from the first step. This feature is sometimes undesirable, since multiple
choices of tuning parameters are needed.

(ii) Two constant conditional moment conditions on the random variable that repre-
sents efficiency are required, which might potentially be viewed as restrictive.

(iii) Their methods are solely based on the local linear kernel estimators, making it
not straightforward to incorporate some commonly seen or well accepted shape
constraints of the frontiers.

(iv) The estimation accuracy of the frontier using these procedures can be severely
affected by the existence of a few outliers.

In this work, to address the first two issues, we eliminate the second step of NP3S
and NPE estimators, thus estimating the frontier in just two steps. In doing so, we also
manage to relax the condition of requiring constant mean and variance for the efficiency
scores in Martins-Filho and Yao (2007) to just requiring a constant mean. Not only is
this of theoretical interest, we also believe that this relaxation is of practical relevance.
For instance, it is plausible that the efficiency scores of larger companies tend to be
more concentrated as compared to those of the smaller ones, as in many industries,
the spectrum of the larger firms often tends to be more homogeneous than that of the
smaller ones.
In addition, to address the third issue, we advocate that our estimation framework

go beyond the use of the local linear kernel method of Fan (1992). Constrained re-
gression methods, such as those enforcing concavity, monotonicity and/or additivity
(c.f. Groeneboom et al. (2001b), Mammen and Yu (2007), Chen and Samworth (2016),
among others) can be used. As most of the frontiers do follow certain shapes, imposing
shape constraints is natural and usually helps improving the interpretability of the esti-
mator. Besides, in comparison to kernel-based estimators, shape-constrained approach

1In this paper, we call the estimator proposed by Martins-Filho and Yao (2007) as NP3S, standing for
NonParametric estimation in 3 Steps.
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does not rely on, or is sensitive to, the careful choice of tuning parameters such as
the bandwidth and seems to enjoy better finite-sample performance in many different
settings.

Finally, to handle with the fourth issue, we extend this framework to allow the presence
of outliers using a quantile-based approach in the second step. These outliers, for one
reason or another, should perhaps not have been included in the production set for the
analysis. This could arise when there are a few firms behaving significantly different from
others in their cohort (so estimating the production set for this analysis based on these
observations could be problematic2), or very rarely there are perhaps typos in the data
recording process. In the asymptotic regime, it also implies that there is a vanishing
proportion of outliers, because otherwise identifiability of the frontier could potentially
become an issue. Here we propose to invoke the (100αn)%-quantile to estimate the
frontier, where αn ∈ (0, 1) is a number chosen close to one to guarantee there is no actual
effect on extra shifting the estimated frontier curve upwards or downwards. A more-
involved iterative procedure, that could further improve its finite-sample performance,
is also outlined.

To summarise this manuscript’s main contribution to the literature, our proposed
robust two-step approach (which will be, for simplicity, called NP2S, standing for Ro-
bust NonParametric estimation in 2 Steps) could easily incorporate nonparametric
estimators other than local linear to enforce certain shape-constraints, and allows for
the presence of outliers. In addition, we also comprehensively investigate the theoretical
properties of our approach beyond the one-dimensional setting (i.e. p > 1), which is the
main focus of Martins-Filho and Yao (2007) and compare the numerical performance
with existing benchmarks such as those by Fang et al. (2022).

We note that similar ideas based on the two-step estimation have also been explored
independently by Wang and Yang (2020) in the context of additive models using splines,
and by Fang et al. (2022) using quantile regression (their estimator is implemented and
used for comparison purposes in our numerical experiments). In comparison to their
work, we believe that our work contributes and extends to the literature in the following
ways. First, on the theoretical front, we provide both the asymptotic distributional the-
ory and the results regarding the minimaxity of the problem, and make more thorough
comparisons with the original NP3S. Second, we investigate models that are not nec-
essarily additive, being more flexible in terms of the shape constraints we incorporate.
Third, in terms of methodology, we also establish that robust frontier estimation can be
achieved via locating the (100αn)%-quantile frontier with αn → 1 as n → ∞. Finally,
we also provide theory of our proposed robust procedure in the presence of outliers.

The remaining of this paper is composed as follows. In Section 2, we briefly review the
model originally proposed by Martins-Filho and Yao (2007) and present our new esti-
mation process. Section 3 discusses the asymptotic properties of our estimators, as well
as the minimax convergence rates. A Monte Carlo study comparing different estimators
and an empirical example are presented in Section 4, which is followed by the conclu-
sion and final comments in Section 5. All the proofs are deferred to the supplementary
materials.

2If one were able to identify relevant environmental variables, which changed the production set
depending on their values, then conditional frontier modelling would be a good alternative (see Daraio
and Simar (2005), for example.)
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2. ROBUST NONPARAMETRIC FRONTIER ESTIMATION IN TWO STEPS

2.1. The model

We start by presenting the model setup developed by Martins-Filho and Yao (2007). Our
interest lies in estimating the frontier from a set of observed firms, i.e. given a random
sample of production units {(Xi, Yi)}ni=1 that share a technology Ω, obtaining estimates
of the frontier ρ. By extension we are also interested in constructing efficiency ranks
and relative performance of production units. To see this, let (Xi, Yi) ∈ Ω characterize
the performance of a production unit and define 0 ≤ Ri ≡ Yi/ρ(Xi) ≤ 1 to be this
unit’s (inverse) Farrell output efficiency measure. Ri can then be estimated based on
the estimates of ρ.
Our frontier regression model consists of a multiplicative regression. Primitive as-

sumptions take place on (Xi, Ri) and the properties of Yi arise from a suitable regres-
sion function. It is typically assumed that {(X, R), (X1, R1), (X2, R2), . . .} is a sequence
of (p + 1)−dimensional independent and identically distributed random vectors with a
common density. Yi then follows

Yi = ρ(Xi)Ri (2.1)

where Ri is an unobserved random variable and Xi is an observed random vector in Rp+.
In this context, Yi is the output, ρ is the production frontier, Xi are the inputs and Ri
is the efficiency with values in [0, 1]. The closer Ri is to 1, the closer are the observed
output and the frontier. On the contrary, Yi being far from ρ(Xi) implies low efficiency
and a small value for Ri. There is no specification of the density of Ri, however the
following moment restriction is assumed for all x:

E(Ri|Xi = x) ≡ µR; where 0 < µR < 1. (2.2)

In addition, we write

Var(Ri|Xi = x) ≡ σ2
R(x).

Note that the facts that Ri ∈ [0, 1] and 0 < µR < 1 imply by construction that 0 <
σ2
R(x) < µR < 1, as the variance is majorized by that of a Bernoulli random variable

with the probability of success being µR.
The unknown quantity µR and the function σR locate the production frontier. For

example, if a random sample of a population is far from the true frontier, efficiency is
low hence the corresponding µR and σR are small. Furthermore, we note that the NP3S
estimator requires the additional constant second moment assumption of Var(Ri|Xi =
x) ≡ σ2

R.

2.2. The estimation procedures

2.2.1. Frontier estimation without outliers To characterize our estimating procedure,
we first rewrite equation (2.1) as

Yi = ρ(Xi)Ri = µR ρ(Xi) + ρ(Xi)σR(Xi)
(Ri − µR)

σR(Xi)
.

Hence,

Yi = m(Xi) + σ(Xi)ϵi, (2.3)

where ϵi = (Ri − µR)/σR(Xi), m(x) = µR ρ(x) and σ(x) = ρ(x)σR(x). Given the
conditional moment restriction (2.2) on Ri we have that E(ϵi|Xi) = 0. In addition, by
definition, Var(ϵi|Xi) = 1. As such, E(Yi|Xi) = m(Xi) and Var(Yi|Xi) = σ2(Xi).
The main idea is based on the observation thatm(x) ≡ µR ρ(x). Therefore, estimating
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m leads to m̂(x) = µRρ̂(x), since µR does not depend on x. We thus get from m̂ an
estimator of ρ, but perhaps with a wrong multiplicative constant. Then, if we have an
estimator for µR, we can propose to estimate the frontier as ρ̂(x) = m̂(x)/µ̂R. With this
in mind, we propose to estimate ρ in two simple steps.

In the first step, we propose to estimate µR by

µ̂R =

(
max
1≤i≤n

Yi
m̃(Xi)

)−1

,

where m̃ is a pilot estimator of m. We will specify and discuss the choice of m̃ in
Section 2.4. Intuitively, this estimator works because it is generally assumed that there
exists at least one observed production unit in the domain that is efficient, or at least
close enough to being efficient.
The second step involves a multivariate nonparametric estimator with regressand Yi

and regressor vector Xi for i = 1, . . . , n. Any reasonable nonparametric methods could
be used here. We mention some examples in the next subsection, and study their asymp-
totic properties in Section 3. In particular, apart from the local linear kernel method
of Fan (1992), we are also interested in incorporating the commonly seen shape con-
straints of the frontier surfaces, such as concavity and monotonicity into our estimation
procedure. Therefore, recent developed nonparametric shape-constrained methods are
also considered in this context. Importantly, these methods are typically free of tuning
parameters. Here we denote the resulting estimator by m̂.

After these two steps the proposed estimator for the frontier at x ∈ Rp is given by
ρ̂(x) = m̂(x)/µ̂R. Furthermore, when it becomes evident that the function σ is not
constant, then one could consider including an additional step when observations are
weighted based on the estimated heteroskedasticity from the previous iteration, which
might further improve the efficiency and utilize the additional information from the
additive error term.

2.2.2. Robust frontier estimation (in the presence of outliers) In the presence of out-
liers in the data, we propose modify the previous estimation procedure as follows.
In the first step, we estimate µR by the sample αn-quantile of the ratios

{
Yi/m̃(xi), i =

1, . . . , n
}
and denote this estimator by µ̌R. Typically we would choose αn to be close

to 1 (theory dictates that αn → 1 as n → ∞), and shall discuss its choice together
with the choice of other tuning parameters in Section 2.4. In addition, the second step
remains unchanged and the frontier can be estimated by our robust frontier estimator
as ρ̂R(x) = m̂(x)/µ̌R, as before. Finally, we remark that an optional re-estimation
procedure could be performed where we first eliminate all the observations that lie above
the estimated frontier (i.e. those with Yi > ρ̂R(Xi)) from the data and then repeat the
previous estimation steps again with αn = 1.
Note that this new procedure works even under the scenario where there is no outlier.

Some theoretical results regarding this will be presented in Section 3.

2.3. Examples of nonparametric estimators in the second step

2.3.1. Local polynomial kernel (NP2S-LP) We use the multivariate local polynomial
kernel to estimate m nonparametrically. Suppose that the polynomial degree is q ∈ N.
Borrowing notation from Masry (1996), for any x = (x1, . . . , xp) and k = (k1, . . . , kp) ∈
Np, let |k| =

∑p
j=1 kj and xk = xk11 ×· · ·×xkpp . Write hn ∈ Rp+ as the bandwidth vector.

For notational convenience, we will assume hn = (hn, . . . , hn) in the remaining of our
manuscript.
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Now for any x ∈ Rp+ we obtain m̂(x) ≡ m̂(x;hn) ≡ b̂(0,...,0) with

{b̂k}k:0≤|k|≤q = argmin{bk}k:0≤|k|≤q

n∑
i=1

(
Yi −

∑
0≤|k|≤q

bk(Xi − x)k
)2
Khn (Xi − x) ,

where K : Rp → R is a kernel, with Kh(u) = (1/h)pK(u/h) for any h > 0.
When q = 1, the above definition becomes the local linear kernel, where m̂(x) ≡

m̂(x;hn) ≡ α̂ for any x with

(α̂, β̂) = argminα,β

n∑
i=1

(Yi − α− (Xi − x)β⊤)2Khn (Xi − x) .

We call the corresponding frontier estimator NP2S-LL.

2.3.2. Concave regression (NP2S-CR) If it is known a priori that the frontier is con-
cave (which is common due to the law of diminishing returns), then we could estimate
m using the least squares concave regression (Lim and Glynn (2012); Seijo and Sen
(2011)). More specifically, we let

m̂ ∈ argminf∈FConc

n∑
i=1

(Yi − f(Xi))
2,

where FConc = {f : Rp → R|f is concave}. Here we use “∈” because the minimiser is
typically not unique (but its values are uniquely determined over {Xi}ni=1). Alternatively,
we could restate the problem as the following Quadratic Program (QP):

minimize a1,...,an,b1,...,bn

n∑
i=1

(Yi − ai)
2

s.t. aj + ⟨bj ,Xi −Xj⟩ ≥ ai; for every i, j ∈ {1, . . . , n} with i ̸= j,

where ⟨·, ·⟩ denotes the standard inner product. We then take

m̂(x) = min
j=1,...,n

{aj + ⟨bj ,x−Xj⟩}.

2.3.3. (Univariate) S-shaped regression (NP2S-SS) For p = 1, we now define the class
of S-shaped functions as follows:

FS =
{
f : R → R | f is increasing; there exists b ∈ [−∞,∞] s.t.

f is convex over (−∞, b], f is concave over [b,∞)
}
.

We remark that S-shape could be useful and preferred for the modelling of production
when firms experience increasing returns to scale followed by decreasing returns to scale
along their expansion paths. In addition, note that in the above definition we allow b, the
inflection point of f , to be taken as ±∞ so that this class contains and generalises both
the class of (increasing) convex and concave functions (i.e., when b = ∞ and b = −∞
respectively).
Suppose that m ∈ FS (with unknown location of the inflection point), then we could

estimate it using the least squares shape-constrained regression estimator

m̂ ∈ argminf∈FS

n∑
i=1

(Yi − f(Xi))
2.

See Feng et al. (2022a) for a detailed description of this estimator and its theoretical
properties in depth, as well as Feng et al. (2022b) for its computation software.
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2.3.4. Additive isotone regression (NP2S-AI) One way to alleviate the curse of dimen-
sionality in the multivariate nonparametric estimation (i.e. where p > 1) is to impose
additivity on m. See, for instance, Stone (1986). Here a function f : Rp → R is additive
if for any x = (x1, . . . , xp) ∈ Rp, one can write

f(x) = c0 + f1(x1) + · · ·+ fp(xp),

where c0 ∈ R is a constant, f1, . . . , fp are univariate functions. For the purpose of
identifiability solely, it is also assumed that

∫
fj(xj)ν(dx) = 0 for j = 1, . . . , p with

some absolutely continuous measure ν. In the context of frontier estimation, typically we
could assume that f1, . . . , fp are monotonically increasing. Therefore, we could estimate
m via the least squares additive isotone regression estimator Mammen and Yu (2007),
defined as

m̂ ∈ argminf∈FAddIn

n∑
i=1

(Yi − f(Xi))
2,

where

FAddIn =
{
f : Rp → R|f(x) = c0 + f1(x1) + · · ·+ fp(xp) for all x = (x1, . . . , xp);

f1, . . . , fp are increasing
}
.

However, as pointed out by Fang et al. (2022), the additivity constraint could be
inappropriate if there are interactions between inputs, or if one wants to have ∂f/∂xj
to depend on all the components of x rather than a single input. If that is the case,
one could also consider applying variable transformation as an attempt to restore the
additivity, e.g. log-transform for the output in the Cobb–Douglas model. See also Sun
et al. (2011) who address the resulting biases caused by approximating log production.
Finally, we remark that if one has reasons to believe that each of f1, . . . , fp follow

different shape constraints (e.g., some of the fj ’s are increasing while the others are
concave or even S-shaped), we could replace FAddIn in the above by the appropriate
alternatives, and use the approach of Chen and Samworth (2016) to estimate m.

2.4. Choosing the pilot estimator and the tuning parameters

2.4.1. The pilot estimator We now specify our choice of m̃ for different estimators.

• For NP2S-LL, NP2S-CR and NP2S-SS, we could take m̃ as the local polynomial
kernel estimator with q = 2 or q = 3 and the corresponding bandwidth vector gn =
(gn, . . . , gn) ∈ Rp+. The theoretical requirements for the kernel and the bandwidths
are discussed in Section 3.

• For NP2S-AI, to take into account the additive structure, we could take m̃ as the
estimator proposed by Horowitz and Mammen (2004).

We remark that our choices above are largely motivated by the convenience of theo-
retical development (and especially the asymptotic distributional theory) presented in
Section 3. In practice, we would recommend taking m̃ = m̂ instead as a much more
universal choice, which offers similar or sometimes better numerical performance as we
experienced in our simulation experiments. We then let

µ̂∗
R =

(
max

{i: Xi∈S}

Yi
m̂(Xi)

)−1

,

for the standard version of our estimator and

µ̌∗
R =

(
Qαn

{
Yi

m̂(Xi)

∣∣∣ i : Xi ∈ S
})−1

,
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for the robust version, where Qαn
(z1, . . . , zn) returns the αn-quantile of given samples

{z1, . . . , zn}, and where S can be taken as any reasonably-sized compact set that is
contained in the interior of the support of X for NP2S-CR and NP2S-AI, or Rp for
NP2S-LP and R for NP2S-SS. Indeed, in practice, one might simply prefer to use a
universally trimmed set S on which to compute the aforementioned quantities, in order
to account for potentially variable or sub-optimal performance of certain nonparametric
estimators, especially close to the boundaries.

2.4.2. αn for robust frontier estimation Here we outline several different strategies for
the choice of αn.

• From a theoretical perspective, we could take some αn satisfying 1−αn = o(n−4/(p+4)).
See Section 3 for more details.

• If we have prior knowledge on the number of outliers (i.e. those with Ri > 1) in
the dataset, denoted by no, then we could simply use αn = 1− no/n.

• A more practical approach is to inspect the estimated density function of the
(scaled) efficiency scores ĝn based on {Yi/m̃(Xi)} using the kernel density estima-
tor, then find the lowest r∗n where ĝn(r) remains small (say, of O(n−1/2)) for all
r > r∗n, either visually or numerically, and finally take αn = |{i : Yi/m̃(Xi) ≤
r∗n}|/n. Here | · | gives the cardinality of a set.

• The approach of Fang et al. (2022) could also be used, where they identify as out-
liers those observations with estimated efficiency scores that fall out of the adjusted
inter-quartile range, AIQR, which is given by AIQR = [Q0.25 − 1.5IQR,Q0.75 +
1.5IQR], where IQR = Q0.75−Q0.25, with Q0.25 and Q0.75 being, respectively, the
first and third quartile.

3. THEORY

3.1. General assumptions

To discuss the asymptotic properties of the proposed estimators, here we list our as-
sumptions in scenarios both with and without outliers.

3.1.1. Without the presence of outliers
Assumption A1

{(Xi, Ri)}ni=1 is an independent and identically distributed (i.i.d.) sequence with
each distributed as (X, R) with density f . fX(x) and fR(r) denote the common
marginal densities of X and R respectively, and fR|X(r;x) denotes the common
conditional density of R given X. Finally, denote FR as the cumulative distribution
function corresponding to fR.

Assumption A2
1 The support of fX, denoted as Θ, is a compact and convex subset of ×pj=1(0,∞).
Here ×pj=1(0,∞) denotes the Cartesian product of the intervals (0,∞). In addition,
fX is Lipschitz continuous with infx∈Θ fX(x) > 0.

2 0 ≤ R ≤ 1. Moreover, there exists some δ > 0 and some cR > 0 such that
infx∈Θ, fR|X(r;x) is bounded from below by the linear curve cR(1 − r) over r ∈
(1− δ, 1].

Assumption A3
Yi = ρ(Xi)Ri, for i = 1, . . . , n.

Assumption A4
1 For every x ∈ Θ, E(R|X = x) = µR > 0.
2 σ2

R(x) = Var(R|X = x), which is continuous with respect to every x ∈ Θ. In
addition, infx∈Θ σ

2
R(x) > 0.
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Assumptions A1, A3 and A4 imply that {(Xi, Yi)}ni=1 forms an independent and
identically distributed (i.i.d.) sequence of random variables with some joint density.
Assumption A2.2 essentially requires that the density of (R|X) does not decay to 0 too
slowly at its right boundary. We remark that it is sufficient but not necessary, and is
stated in such a way for easy interpretation. This particular assumption implies that∣∣∣1 − (maxi=1,...,nRi)

−1
∣∣∣ = Op(n

−1/2) and 1 − maxi=1,...,nRi = Op(n
−1/2), which are

the actual equations we use in the proofs, and in general cannot be weaken further
without affecting the speed at which information about the frontier can be gathered.
This assumption is crucial because it also makes sure that the estimation error in µ̂R does
not contribute to the asymptotic distribution of the frontier estimator, thus simplifies
our analysis.
Comparing with Martins-Filho and Yao (2007) and Martins-Filho et al. (2013), we

do not have to assume a constant σ2
R(x). Furthermore, we avoid dealing with regres-

sands that are themselves residuals from a first stage nonparametric regression, due to
the elimination of the second step in their estimation procedure. Consequently, asymp-
totic properties are easier to obtain. In addition, our assumptions here are weaker than
requiring X and R to be independent.
Next, we impose a smoothness condition on the frontier function ρ. We say that a

function ρ : Θ → R (with Θ ⊂ Rp) has smoothness index s and constant L if ρ is
⌊s⌋ times differentiable and all its partial derivatives of order π with |π|1 = ⌊s⌋ satisfy
|ρ(π)(x)− ρ(π)(x′)| ≤ L∥x− x′∥s−⌊s⌋ for all x,x′ ∈ Θ.
Assumption A5

The true frontier ρ : Θ → R is a s-smooth function with s > 2 and constant L > 0.
Moreover, infx∈Θ ρ(x) > 0.

In essence, this assumption requires ρ to be at least twice-differentiable. Although
here we focus on s > 2 in the development of our theory, many of our results also have
analogous versions for other restrictions on s.

For the pilot estimator for NP2S-LP, NP2S-SS and NP2S-CR using local polynomial,
we make additional requirements on the kernel and its bandwidth vector.
Assumption A6a

1 K(x) : Rp → R is a symmetric density function with bounded support Sp ⊂ Rp
satisfying:
(a)

∫
x⊤xK(x)dx = Ip, where Ip is the p × p identity matrix (N.B. recall that

here x is represented in the row vector form).
(b) K(x) is bounded and Lipschitz continuous for all x ∈ Sp.
(c) infx∈Sp

K(x) > 0.

2 The bandwidth gn = (gn, . . . , gn) with gn ≍ n−γ and γ ∈
((

2min(s, 3)+p
)−1

, (4+

p)−1
)
.

Note that symmetry of the kernel also implies that Sp is symmetric, and
∫
xK(x)dx = 0.

For the pilot estimator for NP2S-AI using the method of Horowitz and Mammen
(2004), we require the assumptions therein, i.e.
Assumption A6b

Assumptions A1 – A7 of Horowitz and Mammen (2004) hold.3

3.1.2. In the presence of outliers In the presence of outliers, Assumption A3 shall be
replaced by the following, where | · | gives the cardinal number (or size) of a set.

3More precisely, minor modifications of the assumptions of Horowitz and Mammen (2004) are required,
as they took the support of X to be [−1, 1]p without loss of generality, which would need to be changed
to the smallest rectangle containing Θ. These assumptions are not reproduced here in the interest of
space.
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Assumption A3∗

There exists a constant κ ∈ (0, 1) and a set Mn ⊂ {1, 2, . . . , n} with |Mn| ≤ nκ.
For non-outliers (i.e. i ∈ {1, 2, . . . , n}\Mn), Yi = ρ(Xi)Ri, whereas for the outliers,
lim infn→∞ mini∈Mn

Yi/ρ(Xi) > 1 and lim supn→∞ maxi∈Mn
Yi <∞.

Here we assume that the number of outliers can grow with the number of observations,
n, at a certain rate to be specified later. This includes the situation where the number
of outliers is zero or at a fixed number (which also covers Assumption A3). In addition,
we assume that the implied efficiency scores of all the outliers, which could be either
random or deterministic, are strictly bounded away from and above 1, with their output
values bounded from above. These assumptions could be relaxed but would result in
more complex theoretical statements, which we shall not pursue in this manuscript.

3.2. Asymptotic characterization

Now we are in the position to establish the uniform consistency and asymptotic distri-
bution of the frontier estimator and robust frontier estimator using different estimating
procedures.

3.2.1. Local polynomial kernel

The case of q = 1 First, we study the behaviour of the local linear kernel estimator
(i.e. the degree of polynomials, q = 1). For the frontier estimation, we have the following
result:

Theorem 3.1. Suppose that Assumptions A1 – A5 and A6a hold. Let q = 1 and take
hn = chn

−1/(p+4) for some ch > 0. Then,

sup
x∈Θ

|ρ̂(x)− ρ(x)| p−→ 0,

as n→ ∞. In addition, for every x ∈ int(Θ) (i.e. the interior of Θ),

n2/(p+4) {ρ̂(x)− ρ(x)} d−→ N

(
c2h{∆ρ(x)}/2,

σ2(x)

cphµ
2
RfX(x)

∫
Sp

K2(u)du

)
, (3.4)

as n→ ∞, where ∆ρ(x) =
∑p
j=1

∂2ρ
∂x2

j
(xj) is the Laplacian of ρ at x = (x1, . . . , xp).

For the robust frontier estimator, a similar result is given as follows:

Corollary 3.1. Under the assumptions and conditions stated in Theorem 3.1 but re-
placing Assumption A3 by A3∗. In addition, let κ ∈ (0, 2/(p+4)) and take αn such that

1−αn = o(n−4/(p+4)) which also satisfies n(1−αn) ≥ nκ. Then, supx∈Θ |ρ̂R(x)−ρ(x)|
p−→

0 as n→ ∞, and for every x ∈ int(Θ)

n2/(p+4) {ρ̂R(x)− ρ(x)} d−→ N

(
c2h{∆ρ(x)}/2,

σ2(x)

cphµ
2
RfX(x)

∫
Sp

K2(u)du

)
.

Minimax lower bounds In this part, we investigate the difficulty of the frontier
estimation problem (without outliers) from a minimax perspective.
Let Ψ be the class of models satisfying Assumptions A1–A5 with a common Θ (i.e. the

support ofX) and universal constants (e.g. ρ’s smoothness index s and the corresponding
constant L). For any ψ ∈ Ψ, let ρψ be the corresponding frontier. Then we have the
following result.
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Theorem 3.2. Under Assumptions A1–A5, for any x ∈ int(Θ) , we have that

inf
ρ̂

sup
ψ∈Ψ

Eψ
{
ρ̂(x)− ρψ(x)

}2 ≥ C(n log n)−2s/(p+2s)

for some C > 0 and for any sufficiently large n.

Since we only restrict ourselves to s > 2 in our assumptions, the above rate for the
mean-squared loss lower bounds is essentially n−4/(4+p) in the worst case (i.e. by taking
s close to 2 and dropping the logarithm factor). As such, our proposed frontier using
NP2S-LL can be viewed as rate-optimal estimators from a minimax perspective.

The case of q = 2, 3 and beyond Note that there is a bias term in Theorem 3.1
and Corollary 3.1, unless ∆ρ(x) = 0. This bias term could be eliminated by using local
polynomial of degree q ≥ 2 and choosing a bandwidth of smaller order. In the following,
we first focus on the case of q = 2, 3, and then explain why using q ≥ 4 provides no
further improvement for s ∈ (2, 3).
Borrowing additional notation from Masry (1996), we let Ni =

(
i+p−1
p−1

)
be the number

of distinct p-tuples k with |k| = i. We arrange these p-tuples (i.e. Ni of them in total)
as a sequence in a lexicographical order (e.g. with (i, 0, . . . , 0) being the first item and
(0, . . . , 0, i) being the last item) and let g−1

i denote this one-to-one (i.e. tuple to index)
map. In addition, let

M =

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 Γ =

Γ0,0 Γ0,1 Γ0,2

Γ1,0 Γ1,1 Γ1,2

Γ2,0 Γ2,1 Γ2,2


where Mi,j and Γi,j are Ni ×Nj dimensional matrices whose (l,m) element are∫
Sp

u{gi(l)+gj(m)}K(u)du and
∫
Sp

u{gi(l)+gj(m)}K2(u)du, respectively.

Theorem 3.3. Suppose that Assumptions A1 – A5 and A6a hold. In addition, let q = 2
or q = 3 and take hn = chn

−η for some ch > 0 and η ∈
(
(6 + p)−1, (4 + p)−1

)
with

η > γ. Then, for every x ∈ int(Θ) (i.e. the interior of Θ), as n→ ∞,

n(1−ηp)/2 {ρ̂(x)− ρ(x)} d−→ N

(
0,

σ2(x)

cphµ
2
RfX(x)

[
M−1ΓM−1

]
(1,1)

)
,

where [·](i,j) denotes the (i, j)-th entry of a given matrix.

Corollary 3.2. Under the assumptions and conditions stated in Theorem 3.3 but re-
placing Assumption A3 by A3∗. In addition, let κ ∈ (0, (1 − ηp)/2) and take αn such
that 1−αn = o(nηp−1) and n(1−αn) ≥ nκ. Then, the conclusion given in Theorem 3.3
also holds for ρ̂R.

As a special case, when p = 1, let ϕi,j =
∫
uiKj(u)du, then we have that[

M−1ΓM−1
]
(1,1)

=
ϕ24,1 + 2ϕ32,1ϕ4,1ϕ2,2 + ϕ4,2ϕ

4
2,1

(ϕ4,1 − ϕ22,1)
2

.

Picking higher order polynomials (i.e. q > 3) will increase the value of
[
M−1ΓM−1

]
(1,1)

,

and thus the mean squared estimation error, if we keep everything else unchanged. See
also Fan and Gijbels (1996). Consequently, here we chose not to further pursue the use
of higher order polynomials.
Finally, we note that with s ∈ (2, 3) by picking the bandwidth at an appropri-

ate order, the mean squared error of NP2S-LP (with q ≥ 1), E[{ρ̂(x) − ρ(x)}2] or
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E[{ρ̂R(x)− ρ(x)}2], would converge at a rate close to n−s/(2s+p), which appears faster
than that of NP2S-LL. However, this would require additional precise knowledge about
the smoothness index s, which could be challenging in practice, even with univariate
input. As such, we would suggest using NP2S-LL if the number of observations is mod-
erate.

A comparison between NP2S-LL and NP3S Now we compare the asymptotic
biases and variances of the estimators NP2S-LL and NP3S for the frontier estimation.
Here we focus on the case of p = 1 without any outliers, because theoretical results from
Martins-Filho and Yao (2007) are stated only for the univariate input with no outliers.
Additionally, we assume that Var(Ri|Xi = x) ≡ σ2

R (as required by NP3S).
First, we compare the ratio between two asymptotic variances (AVARs). Using The-

orem 2 of Martins-Filho and Yao (2007) and the results presented in equation (3.4) we
have that for the same bandwidth hn,

AVARNP2S−LL

AVARNP3S
=

4σ2
R

µ2
R(µ4(x)− 1)

,

where µ4(x) = E(ϵ4i |Xi = x) with ϵi = (Ri − µR)/σR being the standardised noise. It is
clear that the ratio above becomes smaller as µR increases, σR decreases, or the kurtosis
of Ri increases. As an example, suppose that (Ri|Xi) follows a symmetric Beta(α, α)
distribution for some α > 0. Then after some calculation we could derive that

AVARNP2S−LL

AVARNP3S
=

2α+ 3

α(2α+ 1)
,

i.e. this ratio is smaller than 1 if α > 3/2.
Second, we take into account the bias term and compare the ratio between the asymp-

totic mean squared errors (AMSEs) of two estimators at x. Here different oracle band-
widths apply to NP2S-LL and NP3S. If these bandwidths are chosen in the optimal
manner (i.e. minimizing the corresponding AMSE), then it can be shown that

AMSENP2S−LL

AMSENP3S
=

{
4σ2

R

µ2
R(µ4(x)− 1)

}4/5 ∣∣∣∣1 + {ρ(1)(x)}2

ρ(x)ρ(2)(x)

∣∣∣∣−2/5

. (3.5)

Hence a combination of larger µR, smaller σR and positive curvature of the frontier ρ at
x tend to lead to better performance of NP2S-LL as compared to that of NP3S. Once
again, we note that picking the oracle bandwidths could be quite challenging in practice,
especially for NP3S, which has a more complicated estimation procedure as compared
with NP2S-LL. Interestingly, our experience from numerical experiments suggests that
NP2S-LL could offer better finite-sample performance than NP3S even in the settings
where the ratio displayed in (3.5) would have indicated otherwise.

3.3. Other nonparametric estimators (with shape constraints)

3.3.1. Concave regression We now investigate the asymptotic properties of frontier
estimation using NP2S-CR. Here we focus on the case of p = 1, in which we derive
the asymptotic distributional theory largely based on Groeneboom et al. (2001b) and
Ghosal and Sen (2017) . We then study the more general case of p > 1 and briefly discuss
the estimation consistency.
First, we introduce the “invelope” process studied in Groeneboom et al. (2001a) and

Groeneboom et al. (2001b), which is closely related to the integrated Brownian motion.
It will later appear in the pointwise limiting distribution of ρ̂. Let X(t) = W (t) + 4t3,
where W (t) is a standard two-sided Brownian motion starting from 0 (i.e. W (0) = 0),
and let Y be the integral of X satisfying Y (0) = 0. Then according to Groeneboom
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et al. (2001a), there exists an almost surely uniquely defined random continuous function
H : R → R satisfying the following:
(I) H(t) ≥ Y (t) for every t ∈ R;
(II) H has a convex second derivative, and with probability 1, is three times differen-

tiable at t = 0;
(III)

∫
R
{H(t)− Y (t)}dH(3)(t) = 0.

Here H(j) represents the j-th derivative of H.
For this part only, to simplify our analysis (mainly in the characterization of asymp-

totic distribution), we shall use the following random design (in additional to Assump-
tion A1), where we assume that the input random variable X is drawn from a uniform
distribution over [a, b].
Assumption A1+.

p = 1 and X is drawn from a uniform distribution over [a, b].

Theorem 3.4. Suppose Assumptions A1+, A1 - A5 and A6a hold. In addition, assume
that ρ is concave with supx∈[a,b] ρ

(2)(x) < 0. Then, for any x ∈ (a, b), we have that

n2/5
(
ρ̂(x)− ρ(x)

)
d−→

{
(b− a)2/5

(
ρ(2)(x)σ4(x)

24µ4
R

)1/5
}
H(2)(0),

as n→ ∞, where H is the invelope process defined as before.

Corollary 3.3. Under the assumptions and conditions stated in Theorem 3.4 but re-
placing Assumption A3 by A3∗. In addition, let κ ∈ (0, 2/5) and take αn such that
1−αn = o(n−4/5) with n(1−αn) ≥ nκ. Then, the conclusion given in Theorem 3.4 also
holds for ρ̂R.

If p > 1, we could still show that ρ̂ and ρ̂R are consistent under their respective
settings.

Theorem 3.5. Suppose that Assumptions A1–A5, A6a hold and ρ is concave. Then for

any x ∈ int(Θ), ρ̂(x)
p−→ ρ(x) as n→ ∞. Similarly, when Assumption A3 is replaced by

A3∗, for any x ∈ int(Θ), ρ̂R(x)
p−→ ρ(x) as n→ ∞.

In fact, for the purpose of establishing consistency, we are able to relax Assumption
A5 to only requiring infx∈Θ ρ(x) > 0 (i.e. dropping the smoothness condition on ρ).
On the other hand, deriving the convergence rate and pointwise asymptotic distribution
for p > 1 is beyond the scope of this manuscript. To our best knowledge, it is still an
actively-researched open problem in the regression setting (even with i.i.d. Gaussian
noise). However, we would also like to point the readers to Han and Wellner (2016) who
show that a variant of the least square convex regression estimator is sub-optimal in
terms of the global convergence rate when p ≥ 4.

3.3.2. (Univariate) S-shaped regression (NP2S-SS) The asymptotic results based on
the (univariate) S-shaped regression could also be derived, which turn out to be very
similar to those presented in Theorem 3.4 and Corollary 3.3 (except for the frontier at
precisely the inflection point). For completeness, we state the results below.

Theorem 3.6. Suppose Assumptions A1+, A1 - A5 and A6a hold. In addition, assume
that ρ is S-shaped with a unique inflection point at c∗ ∈ (a, b) and ρ(2)(x) ̸= 0 for
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x ∈ [a, b]\{c∗}. Then, for any x ∈ (a, b)\{c∗}, we have that

n2/5
(
ρ̂(x)− ρ(x)

)
d−→

{
(b− a)2/5

(
ρ(2)(x)σ4(x)

24µ4
R

)1/5
}
H(2)(0),

as n→ ∞, where H is the invelope process defined as before.

Corollary 3.4. Under the assumptions and conditions stated in Theorem 3.6 but re-
placing Assumption A3 by A3∗. In addition, let κ ∈ (0, 2/5) and take αn such that
1−αn = o(n−4/5) with n(1−αn) ≥ nκ. Then, the conclusion given in Theorem 3.6 also
holds for ρ̂R.

As a final remark for this part, we note that to our knowledge the asymptotic dis-
tribution at the inflection point remains an open problem in the literature, even in the
fixed design regression setting.

3.3.3. Additive isotone regression We now give the asymptotic properties of frontier
and robust frontier estimators using NP2S-AI.
Some additional notation is required to handle the case of p > 1. LetX = (X1, . . . , Xp).

We denote fXj as the marginal density function of Xj for j = 1, . . . , p. In addition, the
conditional variance of the unstandardized error (i.e. in Equation (2.3)) given Xj = u,
Var{ρ(X)R|Xj = u}, is denoted by σ2

j (u).
Assumption A7

1 ρ is a differentiable and additive increasing function over Θ. Moreover, write x =
(x1, . . . , xp),

inf
x∈Θ

min
j=1,...,p

∂ρ

∂xj
(x) > 0,

2 For every j = 1, . . . , p, σ2
j (xj) is continuous for any xj in the interior of the support

of fXj .

Theorem 3.7. Suppose that Assumptions A1–A5, A7 and A6b hold. Then, for any
x ∈ int(Θ),

n1/3
(
ρ̂(x)− ρ(x)

)
d−→ 1

µ
2/3
R

p∑
j=1


(
σ2
j (xj)

∂ρ
∂xj

(x)

2fXj (xj)

)1/3

Gj

 ,

as n→ ∞. Here G1, . . . , Gp
i.i.d.∼ G, where G is the distribution of the slope of the greatest

convex minorant of W (t) + t2 at t = 0, with W being a two-sided standard Brownian
motion.

Corollary 3.5. Under the assumptions and conditions stated in Theorem 3.7 but re-
placing Assumption A3 by A3∗. In addition, let κ ∈ (0, 1/3) and use αn such that
1−αn = o(n−2/3) and n(1−αn) ≥ nκ. Then, the conclusion given in Theorem 3.7 also
holds for ρ̂R.

Here as a special case, when p = 1, the result from Theorem 3.7 can be simplified to

n1/3
(
ρ̂(x)− ρ(x)

)
d−→
(
σ2(x)ρ(1)(x)

2µ2
RfX(x)

)1/3

G,

as n→ ∞, where σ and ρ are defined as previously, and where G is still the distribution
of the slope of the greatest convex minorant of W (t) + t2 at t = 0, with W being a
two-sided standard Brownian motion.
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Note that in Theorem 3.7, Assumption 5 can be weakened to only requiring the
the true frontier to have smoothness index of s = 1. Consequently, when p = 1, the
convergence rate of n−1/3 stated here is slower than n−2/5 given in Theorem 3.1, as less
restrictive smoothness assumption is required using tools based on isotone regression.
In fact, the canonical (additive) isotone regression estimator would appear piecewise
constant, and thus discontinuous; in practice, if additional smoothness assumption is
warranted, one could apply post-smoothing methods, such as Mammen (1991), to further
improve its finite-sample performance.
It is also worth noting that even with multiple inputs, both |ρ̂(x)−ρ(x)| and |ρ̂R(x)−

ρ(x)| are of Op(n
−1/3), which is free of p, the dimension of X. In other words, the

assumption of additivity allows us to effectively circumvent the curse of dimensionality.
See also Stone (1986).

4. NUMERICAL EXPERIMENTS

4.1. Simulation Study

4.1.1. Settings We conduct a simulation study to evaluate the finite-sample properties
of the estimators discussed in Sections 2 and 3. We consider the following data generating
processes (DGPs) with either univariate or bivariate inputs:
(i) p = 1. Random samples are generated from Yi = ρ(Xi)Ri for i = 1, . . . , n with

ρ(x) =
√
x.

{(Xi, Ri)}ni=1 are i.i.d. pairs with Xi ∼ U[0,1] and independent of Ri ∼ Beta(a, b).
Note that here ρ is concave and increasing.

(ii) p = 2. Random samples are generated from Yi = ρ(Xi1, Xi2)Ri for i = 1, . . . , n
with

ρ(x1, x2) =
√
x1 +

√
x2.

{(Xi, Ri)}ni=1 are i.i.d. pairs with Xi = (Xi1, Xi2) ∼ U[0,1]×[0,1] and independent
of Ri ∼ Beta(a, b). Here ρ is additive with concave and increasing individual
components.

(iii) p = 2. As in the second DGP, random samples are generated from Yi = ρ(Xi1, Xi2)Ri
for i = 1, . . . , n. Nevertheless, here the frontier is non-additive, assuming the fol-
lowing Cobb–Douglas-type frontier function

ρ(x1, x2) =
√
x1 ×

√
x2.

{(Xi, Ri)}ni=1 are again i.i.d. pairs with Xi = (Xi1, Xi2) ∼ U[0,1]×[0,1] and inde-
pendent of Ri ∼ Beta(a, b).

Two sample sizes n = 200, 400 are used as well as two different choices of the pair
(a, b) for the Beta distribution: (2, 2) and (4, 2).

To examine the performance of our robust estimators, we also consider the same set-
tings with outliers for DGPs (i) and (ii), where we randomly select 1% of the previously
generated observations and increase their corresponding efficiency scores to 1.5.
Each experiment involves 500 Monte Carlo replicates. Here the variance of R is taken

as constant (by assuming R and X to be independent) in order to facilitate fair com-
parison between different estimators.

4.1.2. Estimators We compare our proposal to NP3S (Nonparametric in 3 Steps by
Martins-Filho and Yao (2007)) and NPE (Nonparametric Exponential by Martins-Filho
et al. (2013)) estimators, as well as to the three estimators by Fang et al. (2022): UQS (Un-
constrained Quantile Spline), MCQS (Monotone Constrained Quantile Spline) and MCCQS

(Monotone and Concave Constrained Quantile Spline). Hereafter we use the following
abbreviations for the proposed variations of our 2-step estimators:
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• LL for NP2S with local linear estimator;
• AI for NP2S with additive increasing regression;
• ACR for NP2S with additive concave regression;
• CNA for NP2S with concave non-additive regression with multi-dimensional input.

When p = 1, in NP2S-LL, we use the bandwidth with value hn = chn
−1/5 for ch =

1.5

√
V̂ar({Xi}ni=1). We have also experimented other selection rules such as those in

Ruppert et al. (1995) and Fan and Gijbels (1995), but do not see much improvement.
In addition, as advocated in Section 2.4, we bypass the pilot estimator in our sim-

ulation and take µ̂R =
(
max{i: Xi∈S} Yi/m̂(Xi)

)−1
with S = R+ for LL, and S =[

Q0.1({Xi}ni=1), Q0.9({Xi}ni=1)
]
for all the shape-constraint based approaches, where re-

calling that Qα({zi}ni=1) is the sample α-quantile based on {z1, . . . , zn}. When p = 2,
similar implementation for the bandwidth of LL is used, and we take S = R2

+ for LL

and S =
[
Q0.1({Xi1}ni=1), Q0.9({Xi1}ni=1)

]
×
[
Q0.1({Xi2}ni=1), Q0.9({Xi2}ni=1)

]
for the

other approaches.
Finally, in terms of the robust version of our procedure, for sake of comparison, in

our numerical experiments, we pick αn using the outlier detection scheme proposed
by Fang et al. (2022), where they identify as outliers those observations of Yi/m̂(Xi)
that fall out of the adjusted inter-quartile range, AIQR, which is given by AIQR =
[Q0.25 − 1.5IQR,Q0.75 + 1.5IQR]. Here IQR = Q0.75 −Q0.25 and Q0.25 and Q0.75 are,
respectively, the first and third quartile of the estimated efficiency scores.

4.1.3. Results For performance comparison, we report the distributions of the rooted
mean squared errors (RMSE) of all the estimators, given as n−1

∑n
i=1{ρ̃(Xi)− ρ(Xi)}2

(where ρ̃ represents the respective estimators) via the boxplots in Figures 1 to 4 for
DGPs (i), (ii) and (iii) with Beta(2, 2) and Beta(4, 2) distributions.
In Figure 1 we illustrate that, regardless the sample size (200 or 400) and the dimension

(univariate or bivariate), the errors keep the same relative structures among the different
estimators. Hence, for brevity, in the next figure we only report results based on the
sample size 200. We can also see that, for these concave and additive concave frontier
shapes, our proposal, under its several variants, produces better results when compared
to the five benchmark approaches. The ACR has the best overall performance.
Figure 2 reports results when outliers are intentionally included in the data, either for

the univariate or bivariate case (DGPs (i) and (ii)). We use this plot to show the effect
that outliers can cause on the frontier estimators. Going from the left panel plots, where
non-robust estimators are used, to the right panel plots, where the robust versions are
implemented, we see a very sharp reduction in the errors, making it clear how relevant the
robust versions are. Furthermore, we can noticeably see that all our estimators present
homogeneously superior or at least similar performance compared to the benchmarks.
On Figure 3, we explore what the effect of outliers and the effect of increasing the

number of outliers (along with the sample size) are on the frontier estimators. For the
univariate case, in the top two rows of Figure 3, our proposals are superior, especially LL

and ACR. Panels in the bottom two rows of Figure 3 show a bit more balanced situation,
although our proposals still perform slightly better than, or at least comparable to the
benchmarks.
Finally, Figure 4 shows the results when a Cobb–Douglas function is used as the

DGP, that is, our DGP (iii). We only illustrate the non-outliers case. Here we see that,
in terms of the median of the errors, CNA performs best, followed by NP3S, NPE and LL,
which present similar overall results. These findings are in line with our expectation, as
in this case, the true frontier is concave but not additive, so the model is misspecified
for ACR and those by Fang et al. (2022). The better performance from CNA confirms the
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usefulness of shape-constrained approach over kernel-based methods when the model is
correctly or nearly-correctly specified.

4.2. An empirical application

In our empirical application we use theMilk producers dataset Bogetoft and Otto (2020),
available in the R package Benchmarking with DEA and SFA. The data set is composed
by n = 108 observations, and here we estimate the production frontier using output
of milk per cow as the response variable, and energy expenses per cow and veterinary
expenses per cow as our two covariates. Here we use the additive concave (i.e. ACR)
model for our estimation. The additive structure facilitates interpretation, while the
(increasing and) concave constraint is used to reflect the plausible diseconomies of scale
in milk production.
Figure 5 shows the two estimated additive components using the ACR model for three

different αn-levels, 1, 0.99 and 0.98. Here the concave shapes of the curves are reasonably
robust against different choices of αn-levels for the individual estimated components.
That is, assuming having 0%, 1% or 2% of the outliers does not change substantially
the contributions either from energy expenses per cow or from veterinary expenses per
cow to estimate the production frontier measured in terms of output of milk per cow.

In Figure 6 we present the estimated frontier surfaces, also via the ACR model, for
the three different αn-levels, 1, 0.99 and 0.98. Similar conclusions to those from Figure 5
can be drawn here. There are little changes in the overall shape of the surfaces over
the different choices of αn, which is concave but highly non-linear. The yellow points,
which are the only ones above the estimated frontier surface, are those associated with
the outliers. One of those on the top right side of the figure can be clearly seen, whereas
two can be identified at the bottom part. As we decrease the value of αn, the estimated
frontier surface becomes lower.
Finally, we remark that the outlier detection criterion of Fang et al. (2022) is also

implemented, but with no outliers detected, so the estimated frontier remains the same
as in the case with αn = 1.

5. CONCLUSION

In this paper we propose a robust methodology for estimating production frontiers with
multi-dimensional input via a two-step nonparametric regression. We present a frontier
estimation framework under a variety of flexible models which can both accommodate
commonly seen shape constraints of the frontier surfaces and be robust to the pres-
ence of outliers. Monte Carlo simulations and empirical data analysis illustrate the good
performance and finite properties of our proposed methods. Possible future extensions
include, but are not limited to, testing strategies for different shape constraints, auto-
matic selection of those constraints, testing the constant mean (or variance) assumption
on the efficiency scores, handling of a large number of predictors in the high-dimensional
setting, and handling outliers in the inputs.
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Figure 1. Boxplots of the rooted mean square errors for different estimators under dif-
ferent DGPs (with no outliers) as specified in the title of each panel. Larger sample size
is used in all the panels on the right.
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Figure 2. Boxplots of the rooted mean square error for different estimators different
DGPs (with outliers) as specified in the title of each panel. In the panels on the left,
the existence of outliers has not been taken into account in the (standard) estimation
procedure, while in the panels on the right, the robust estimators are used.
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Figure 3. Boxplots of the rooted mean square error for different estimators different
DGPs (with outliers) as specified in the title of each panel. The number of outliers is
also increased in all the panels on the right.
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Figure 4. Boxplots of the rooted mean square error for different estimators different
DGPs (Cobb–Douglas with no outliers) as specified in the title of each panel. A larger
number of observations (and outliers) in the panels on the right.
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Figure 5. Milk producers dataset. Estimated additive components of the frontier using
the ACR model for three different αn-levels, 100%, 99% and 98%. Note that the above
plots do not reflect the actual levels of the estimated frontiers because the constants of
the additive functions are not included here.
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Outliers, which are the only points above the estimated curve, are printed in yellow.
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S1. PROOFS

Proof of Theorem 3.1:
First, we focus on the uniform consistency and asymptotic distribution of m̂(x). Since

Θ is bounded, supx∈Θ |ρ(x)| < ∞. As such, supx∈Θ σ(x) < ∞. Moreover, in its rep-
resentation in (2.3), the noise ϵi has bounded q-moment for any q ∈ N. Based on our
assumptions, it follows from Proposition 7 of Fan and Guerre (2016) that

sup
x∈Θ

|m̂(x)−m(x)| p−→ 0.

as n → ∞. This also implies with arbitarily high probability, supx∈Θ |m̂(x)| is bounded
above by a constant (that does not depend on n). Moreover, for any x ∈ int(Θ), a careful
application of Theorem 4 of Masry (1996) entails that√

nhpn
[
{m̂(x)−m(x)} − h2

n{∆m(x)}/2
]
d−→ N

(
0,

∫
Sp

K2(u)du σ2(x)/fX(x)
)

as n → ∞. After rearranging the terms, we get that

n2/(p+4) {m̂(x)−m(x)} d−→ N

(
c2h{∆m(x)}/2, σ2(x)

cphfX(x)

∫
Sp

K2(u)du

)
.

Second, we establish the convergence rate of |µ̂R − µR|. Note that by Proposition 7 of
Fan and Guerre (2016) again, we have that for the pilot estimator supx∈Θ |m̃(x)−m(x)| =
op(n

−2/(p+4)). Since m(x) is strictly bounded away from zero over Θ, this also implies
that

sup
x∈Θ

∣∣∣∣m̃(x)

m(x)
− 1

∣∣∣∣ = op(n
−2/(p+4)) and sup

x∈Θ

∣∣∣∣m(x)

m̃(x)
− 1

∣∣∣∣ = op(n
−2/(p+4)).

In addition, our Assumption A2.2 entails that 1−maxi=1,...,nRi = Op(n
−1/2), as n → ∞.

On the one hand,

µ̂R =

(
max
1≤i≤n

Yi
m̃(Xi)

)−1

=

(
max
1≤i≤n

Riρ(Xi)

m̃(Xi)

)−1

=

(
max
1≤i≤n

Rim(Xi)

µRm̃(Xi)

)−1

≥ µRmin
x∈Θ

m̃(x)

m(x)
≥ µR

{
1− op(n

−2/(p+4))
}
.



S2 Chen, Torrent and Ziegelmann

On the other hand,

µ̂R =

(
max
1≤i≤n

Yi
m̃(Xi)

)−1

=

(
max
1≤i≤n

Ri m(Xi)

µR m̃(Xi)

)−1

≤ µR

(
max
1≤i≤n

Ri

)−1 m̃(Xi∗)

m(Xi∗)
≤ µR

{
1 +Op(n

−1/2) + op(n
−2/(p+4))

}
,

where i∗ = argmax1≤i≤nRi. Consequently, |µ̂R−µR| = op(n
−2/(p+4)). Here we have also

used Assumption A2.2 to establish the fact that
∣∣∣1− (max1≤i≤nRi

)−1
∣∣∣ = Op(n

−1/2).

Third, to show the uniform consistency of ρ̂, we note that

sup
x∈Θ

|ρ̂(x)−ρ(x)| = sup
x∈Θ

∣∣∣∣m̂(x)

µ̂R
− m(x)

µR

∣∣∣∣ ≤ sup
x∈Θ

∣∣∣∣m̂(x)

µR
− m(x)

µR

∣∣∣∣+sup
x∈Θ

∣∣∣∣m̂(x)
(µ̂R − µR)

µ̂RµR

∣∣∣∣ p−→ 0,

as n → ∞. Similarly, we also have that

n2/(p+4)
(
ρ̂(x)− ρ(x)

)
= n2/(p+4)

(m̂(x)

µ̂R
− m(x)

µR

)
=

n2/(p+4)
(
m̂(x)−m(x)

)
µR

+
m̂(x)

µ̂RµR

{
n2/(p+4)(µ̂R − µR)

}
=

n2/(p+4)
(
m̂(x)−m(x)

)
µR

+ op(1)

d−→ N

(
c2h{∆ρ(x)}/2, σ2(x)

cphµ
2
RfX(x)

∫
Sp

K2(u)du

)
,

where we also used the fact that ∆ρ(x) = ∆m(x)/µR. 2

Proof of Corollary 3.1:

First, we verify that as n → ∞, the asymptotic characterizations of m̂(x) and m̃(x)
stated in the proof of Theorem 3.1 remain unchanged. For the sake of brevity, below
we show this for m̂(x). Let m̂(x) be the estimator based on the observations {Xi, Yi}ni=1

with |Mn| outliers, and let m̂U (x) be the estimator based on the same set of observations
but with all |Mn| outliers replaced by the non-outliers in the output (generated by the
original DGP with i.i.d. observations using the same input values). Abusing the notation
in this part of the proof only, we denote the corresponding non-outliers in the output as
Y o
i for i ∈ M. By the linearity of the local linear estimator, it is easy to see that for any

x, m̂(x)− m̂U (x) equals the first element of

An :=

( ∑
i∈Mn

(1,Xi − x)Khn
(Xi − x) (Yi − Y o

i )

)(
n∑
i=1

(1,Xi − x)⊤(1,Xi − x)Khn
(Xi − x)

)−1

.
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Now rewrite An := Bn × Cn, where

Bn : =
1

nhpn

( ∑
i∈Mn

(1,Xi − x)Khn (Xi − x) (Yi − Y o
i )

)
,

Cn : =

(
1

nhpn

n∑
i=1

(1,Xi − x)⊤(1,Xi − x)Khn (Xi − x)

)−1

.

By Lemma 5 of Fan and Guerre (2016), we have that the largest eigenvalue of Cn is
bounded from above (i.e. of Op(1)). In addition, as |Mn| ≤ nκ, and with the values of
outliers bounded (so supi∈Mn

|Y o
i −Yi| < ∞), we conclude that |Bn| is of Op( n

κ

nhp
n
), which

is op(n
−2/(p+4)) based on our assumptions. Consequently, An is also op(n

−2/(p+4)), and
therefore

n2/(p+4)(m̂(x)− m̂U (x)) = op(1).

Next, recall that µ̌R is the sample αn-quantile of the ratios
{
Yi/m̃(xi), i = 1, . . . , n

}
with 1− αn = o(n−4/(4+p)) and n(1− αn) ≥ |Mn|. Since for all i ∈ {1, . . . , n}\Mn

Yi
m̃(xi)

=
Riρ(xi)

m̃(xi)
= RiµR

m(xi)

m̃(xi)
= RiµR(1 + op(n

−2/(p+4))),

we have that

µ̌ = Qαn

({ Yi
m̃(xi)

∣∣∣i = 1 . . . , n
})

= µRQαn
({Ri|i = 1 . . . , n})(1 + op(n

−2/(p+4))),

whereQα(·) returns the sample αn-quantile of a given set, and where abusing the notation
slightly, we continue to define Ri = Yi/ρ(xi) even for the outliers (i.e. this would lead to
Ri > 1 for i ∈ Mn). Therefore,

µ̌ ≤ µRQ1−Mn/n({Ri|i = 1 . . . , n})(1 + op(n
−2/(p+4)))

= µRQ1({Ri|i ∈ {1 . . . , n}\Mn})(1 + op(n
−2/(p+4)))

= µR(1 +Op(n
−1/2))(1 + op(n

−2/(p+4))) = µR(1 + op(n
−2/(p+4))).

On the other hand, due to Assumption A2.2, theory of empirical quantile dictates that

Qαn
({Ri|i = 1 . . . , n}) ≥ Qαn

({Ri|i ∈ {1 . . . , n}\Mn}) = 1−Op((1−αn)
1/2) = 1−op(n

−2/(p+4)).

Thus,

µ̌ ≥ µR(1− op(n
−2/(p+4)))(1 + op(n

−2/(p+4))) = µR(1 + op(n
−2/(p+4)).

Putting things together, we have that |µ̌R − µR| = op(n
−2/(p+4)).

Since ρ̂R(x) = m̂(x)/µ̌R, the remaining of the proof regarding the consistency and
asymptotic distribution of ρ̂R can be established via an application of the Slutsky’s
theorem as shown in the proof of Theorem 3.1, thus is omitted here.

2

Proof of Theorem 3.2:
The proof is based on Le Cam’s method. See Yu (1997) for an overview.
Without loss of generality, here we assume that Θ = [1/2, 3/2]p and focus on the

estimator at x0 = (1, . . . , 1). For our purpose, it suffices to consider two greatly simplified
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model candidates in Ψ, denoted by P1 and P2. In both models, X is independent of R, X
is uniformly distributed, and R has the triangular density function fR(r) = 2−4|1/2−r|
for r ∈ [0, 1] and 0 elsewhere. However, two models are different in the frontier at x0 by
a positive δ. More specifically, in P1, ρ

P1(x) ≡ ρP1(x1, . . . , xp) = x1 + . . .+ xp, while in
P2,

ρP2(x) = ρP1(x) +
(
δ1/s − δ−1/s∥x− x0∥22

)s
+
,

where (z)+ = max(z, 0). One could verify that both ρP1 and ρP2 are s-smooth. Moreover,
in these models, the ratio between the frontier ρ(·) and the mean function m(·) is always
2 over the entire Θ.
We now provide an upper bound on the Total Variation (TV) distance between Pn1

and Pn2 . Note that

∥Pn1 − Pn2 ∥2TV ≤ 2− 2{1− dhel(P1,P2)
2}n,

where dhel is the Hellinger distance. To bound dhel(P1,P2) from below, we focus on
X ∈ S∗, where S∗ = {x : ∥x−x0∥22 ≤ δ2/s}, as ρP1(x) = ρP2(x) for all x /∈ S∗. It follows
from some algebraic manipulations that

dhel(P1,P2)
2 =

∫
S∗

∫ ρP2 (x)

0

(√
fR(y/ρP2(x))/ρP2(x)−

√
fR(y/ρP1(x))/ρP1(x)

)2
dyfx(x)dx

≤
∫
S∗

∫ ρP1 (x)/2

0

( 2

ρP1(x)
− 2

ρP2(x)

)2
ydydx

+

∫
S∗

∫ ρP1 (x)

ρP1 (x)/2

16{ρP2(x)− ρP1(x)}2

{ρP1(x)}4
1

fR(y/ρP2(x))/ρP2(x)
dydx

+

∫
S∗

∫ ρP2 (x)

ρP1 (x)

4

{ρP2(x)}2
(ρP2(x)− y)dydx

≤ Vol(S∗)δ2
(

inf
x∈S∗

ρP1(x)
)−2

/2

+ 64Vol(S∗)δ2
(

inf
x∈S∗

ρP1(x)
)−4(

inf
x∈S∗

ρP2(x)
)−2

log


(
supx∈S∗ ρP2(x)

)2
2δ infx∈S∗ ρP1(x)


+ 2Vol(S∗)δ2

(
inf

x∈S∗
ρP2(x)

)−2

for sufficiently small δ. Here we used the fact that by construction√
fR(y/ρP2(x))/ρP2(x)−

√
fR(y/ρP1(x))/ρP1(x) =

{ (
2

ρP1 (x)
− 2

ρP2 (x)

)√
y, for y ∈ [0, ρP1(x)/2];

2
ρP2 (x)

√
ρP2(x)− y, for y ∈ [ρP1(x), ρP2(x)];

and

sup
0≤y≤ρP2 (x)

∣∣∣fR(y/ρP2(x))/ρP2(x)− fR(y/ρ
P1(x))/ρP1(x)

∣∣∣ = ( 4

{ρP1(x)}2
− 4

{ρP2(x)}2
)ρP1(x)

2

≤ 4

{ρP1(x)}2
(ρP2(x)− ρP1(x)),

and applied |
√
b−

√
a|2 ≤ |b− a|2/a for a, b > 0.
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Since the volume of a p-dimensional ball with radius r is π
p
2

Γ( p
2+1)

rp, by taking r = δ1/s,

we have that

dhel(P1,P2)
2 ≤ C ′δ2+p/s log

(
1

δ

)
for any sufficiently small δ > 0 and for some constant C ′ > 0. Consequently, by picking
δ = (n log n/c′)−s/(2s+p) for some c′ ∈ (0, log(4/3)/C ′], we see that

2− 2{1− dhel(P1,P2)
2}n ≤ 2− 2

{
1− C ′c′

n log n

s

2s+ p
(log n+ log log n− log c′)

}n
≤ 2− 2

{
1− C ′c′

n log n

1

2
2 log n

}n
→ 2− 2e−C

′c′ ≤ 1/2.

Consequently, for all sufficiently large n, ∥Pn1 − Pn2 ∥2TV ≤ 1/2.
Finally, it follows from Le Cam’s two-point method that for all sufficiently large n,

inf
ρ̂

sup
ψ∈Ψ

Eψ
{
ρ̂(x0)− ρψ(x0)

}2 ≥ |ρP1(x0)− ρP2(x0)|2

8
(1− ∥Pn1 − Pn2 ∥TV)

≥ (n log n/c′)−2s/(2s+p)

8

(
1−

√
1/2
)
≡ C1(n log n)−2s/(2s+p).

2

Proof of Theorem 3.3:
The proof of Theorem 3.3 is similar to that of Theorem 3.1. Here we focus on the main

differences. Following Masry (1996) and Gu et al. (2015), we have that√
nhpn

[
{m̂(x)−m(x)} − Bias(hn)

]
d−→ N

(
0,

σ2(x)

fX(x)

[
M−1ΓM−1

]
(1,1)

)
Here the bias term is of order Op(h

min(s,3)
n ). See also Theorem 1 and Proposition 3 of Fan

and Guerre (2016). This means that
√
nhpn Bias(hn) = Op(n

1/2−ηp/2−ηmin(s,3)) = op(1),
because η > (p+ 2s)−1 and η > (p+ 6)−1. Consequently, we have that√

nhpn
[
{m̂(x)−m(x)}

]
d−→ N

(
0,

σ2(x)

fX(x)

[
M−1ΓM−1

]
(1,1)

)
Moreover, Proposition 7 of Fan and Guerre (2016) implies that supx∈Θ |m̃(x)−m(x)| =
op(n

(ηp−1)/2), and thus |µ̂R − µR| = op(n
(ηp−1)/2) (using the argument in the second

stage of proof of Theorem 3.1).The final result can then be derived by using the Slutsky’s
theorem together with simple algebraic manipulations.

2

Proof of Theorem 3.4:
First, it follows from Theorem 3.1 of Seijo and Sen (2011) that for any δ > 0,

sup
x∈[a+δ,b−δ]

|m̂(x)−m(x)| p−→ 0,
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as n → ∞. Note that this could also be derived by following Theorem 3.3 of Groeneboom
et al. (2001), but with a small modification to deal with the fact that here σ(x) is not
constant (so {σ(Xi)ϵi}i in Equation (2.3) are not identically distributed).
Second, we derive the asymptotic distribution of m̂(x). Note that since the (unstan-

dardized) errors {σ(Xi)ϵi}ni=1 in Equation (2.3) are not identically distributed, Theorem
4.2 of Ghosal and Sen (2017) could not be directly applied (N.B. see also Theorem 6.3
of Groeneboom et al. (2001) for the fixed design regression setting). However, under our
settings, the errors are still independent with bounded variance (both from above and
from below). Moreover, σ(x) is continuous in a neighbourhood of x (i.e. locally “close
to” a constant function). Therefore, it can be checked that the conclusion of Theorem
4.2 of Ghosal and Sen (2017) remains valid, with minimum modification needed in their
proof. More precisely, by temporarily requiring b − a = 1 (and with x ∈ [a, b] fixed),
the process Y loc

n (t) defined on Page 236 of Ghosal and Sen (2017) (or Pages 1692–1694

of Groeneboom et al. (2001)) still converges to σ(x)
∫ t
0
W (s)ds +m(2)(x)t4/24. Now by

scaling, we have that

n2/5{m̂(x)−m(x)} d−→
(σ4(x)m(2)(x)(b− a)2

24

)1/5
H(2)(0)

Next, using the argument presented in the proof of Theorem 3.1, together with the
fact that p = 1, we see that µ̂R − µR = op(n

−2/5).
It now follows that

n2/5
(
ρ̂(x)− ρ(x)

)
= n2/5

(m̂(x)

µ̂R
− m(x)

µR

)
=

n2/5
(
m̂(x)−m(x)

)
µR

+
m̂(x)

µ̂RµR

{
n2/5(µ̂R − µR)

}
=

n2/5
(
m̂(x)−m(x)

)
µR

+ op(1),

where we also used the fact that |m̂(x)| is bounded in probability for any fixed x ∈ (a, b).
The proof is then completed via an application of the Slutsky’s theorem and by noting

that m(2) = µRρ
(2). 2

Proof of Theorem 3.5:
In this random design, it follows from Theorem 1 of Lim and Glynn (2012) that for

any Θ∗ ⊂ int(Θ),

sup
x∈Θ∗

|m̂(x)−m(x)| p−→ 0,

In addition, similar to the proof of Theorem 3.1, we derive that µ̂R
p−→ µR. Consequently,

the Slutsky’s theorem entails that ρ̂(x)
p−→ ρ(x).

2

Proof of Theorem 3.6: The proof of this result is very similar to that of Theorem 3.4.
For the sake of brevity, we only highlight the differences here.
To start off with, one could show that

sup
x∈[a+δ]∪[c∗−δ,c∗+δ]∪[b−δ]

|m̂(x)−m(x)| p−→ 0,
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as n → ∞, where c∗ is the unique inflection point. This could be derived by following
Proposition 2 of Feng et al. (2022), but with a small modification to deal with the
fact that here σ(x) is not constant (so {σ(Xi)ϵi}i in Equation (2.3) are not identically
distributed). Afterwards, with regard to the asymptotic distribution of m̂(x)−m(x), for
any x < c∗ one could view the problem locally as a convex regression problem, while for
any x > c∗ one could view the problem locally as a concave regression problem. To give
more details, note that the assumption of non-zero m′′(x) except at x = c∗ implies that
m(x) has no constant (or even linear) part over [a, b], so the monotonicity constraint
would never be active locally in the interior of the open intervals (a, c∗) and (c∗, b). The
final steps are the same as those in the proof of Theorem 3.1, which involves showing
µ̂R − µR = op(n

−2/5) and applying Slutsky’s theorem.

Proof of Theorem 3.7:
First, we study the asymptotic behaviour of m̂ at x = (x1, . . . , xp). In particular, our

aim is to show that

n1/3
(
m̂(x)−m(x)

)
d−→

p∑
j=1


(
σ2
j (xj)

∂m
∂xj

(x)

2fXj (xj)

)1/3

Gj

 .

Both m and m̂ are additive, i.e. m(x) =
∑p
j=1 mj(xj) + c and m̂(x) =

∑p
j=1 m̂j(xj) + ĉ.

Without loss of generality, we assume that both satisfy the identifiability condition∫
m1(z1)fX(z)dz = · · ·

∫
mp(zp)fX(z)dz =

∫
m̂1(z1)fX(z)dz = · · · =

∫
m̂p(zp)fX(z)dz = 0,

where z = (z1, . . . , zp). Denote by m̂OR
j the oracle estimator of mj given that all other

mj (j ̸= i) are known. More precisely, the pair (m̂OR
j , ĉOR

j ) is the minimizer of

n∑
i=1

(
Yi −

∑
l ̸=j

ml(Xil)− µj(Xij)− b
)2

with respect to a monotone increasing function µj that fulfill the identifiability condition
of
∫
µj(zj)fX(z)dz = 0 and a constant b. Here Xi = (Xi1, . . . ,Xip) for i = 1, . . . , n. Also

note that
n∑
i=1

(
Yi −

∑
l ̸=j

ml(Xil)− µj(Xij)− b
)2

=

n∑
i=1

(
mj(Xij) + c+ σ(Xi)ϵi − µj(Xij)− b

)2
.

Since (m̂OR
j , ĉOR

j ) is the minimizer, we must have that the sum of all the observed Yi’s
equals the sum of the fitted ones, which amounts to

n∑
i=1

(
mj(Xij) + c+ σ(Xi)ϵi

)
=

n∑
i=1

(
m̂OR
j (Xij) + ĉOR

j

)
.

Therefore,∣∣ĉOR
j −c

∣∣ = ∣∣∣∣ 1n
n∑
i=1

(
mj(Xij)−m̂OR

j (Xij)+σ(Xi)ϵi

)∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑
i=1

σ(Xi)ϵi

∣∣∣∣+∣∣∣∣ 1n
n∑
i=1

(
mj(Xij)−m̂OR

j (Xij)
)∣∣∣∣.

Central limit theorem implies that 1
n

∑n
i=1 σ(Xi)ϵi = Op(n

−1/2). Now for any j =
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1, . . . , p, let F̂Xj be the empirical distribution of {Xij}ni=1 and FXj be the cumulative
distribution function with respect to the marginal density function fXj , then

1

n

n∑
i=1

(
m̂OR
j (Xij)−mj(Xij)

)
=

∫
zj

(
m̂OR
j (zj)−mj(zj)

)
dF̂Xj (zj)

=

∫
zj

(
m̂OR
j (zj)−mj(zj)

)
fXj (zj)dzj

+

∫
zj

(
m̂OR
j (zj)−mj(zj)

)
d(F̂Xj − FXj )(zj)

= (I) + (II).

Here (I) = 0 by the identifiability condition of the additive model. For (II), note that
m̂OR
j (·)−mj(·) is the difference between two monotone functions with range at most of

O(1) because {ϵi}i has bounded support. In addition, it is defined on the support of FXj ,
which is again bounded. Thus by standard empirical process theory (see e.g. van der Vaart
and Wellner (1996)), we have that (II) = Op(n

−1/2). Consequently, ĉOR
j − c = op(n

−1/3).
Following the well-known properties of the isotone least squares estimator (specifically,

the max-min representation and its localization; see for example Robertson et al. (1988)),
we have with probability tending to 1 as n → ∞ that

m̂OR
j (xj) + (ĉOR

j − c) = max
u≤xj

min
xj≤v

∑
i:u≤Xij≤v{mj(Xij) + σ(Xi)ϵi}

#{i : u ≤ Xij ≤ v}

= max
xj−en≤u≤xj

min
xj≤v≤xj+en

∑
i:u≤Xij≤v{mj(Xij) + σ(Xi)ϵi}

#{i : u ≤ Xij ≤ v}

where en = n−β for any β ∈ (0, 1/3), and where #{·} denotes the number of elements of
a set. Furthermore, we let dn = n−α with α ∈ (1/3, 4/9) and define

m̂OR−
j (xj) = max

xj−en≤u≤xj−dn
min

xj≤v≤xj+en

∑
i:u≤Xij≤v{mj(Xij) + σ(Xi)ϵi}

#{i : u ≤ Xij ≤ v}
.

It follows that |m̂OR−
j (xj) − m̂OR

j (xj)| = op(n
−1/3). In essence, this means that the

max-min characterization in m̂OR
j (xj) could be well approximated using u, v outside

[xj − dn, xj ]. Also note that we dropped the term (ĉOR
j − c) in the definition of m̂OR−

j

as it turns out to be negligible (i.e. of order op(n
−1/3)). For simplicity, we shall just take

α = 7/18 and β = 7/24 in the remaining of the proof.
Observe that m̂OR

1 (x1), . . . , m̂
OR
p (xp) are not jointly independent, so our next task is

to modify the oracle estimators further to make them independent. To do this, define

Sx,j =
{
i
∣∣∣Xij ∈ [xj − en, xj + en];Xil /∈ [xl − en, xl + en] for every l ∈ {1, . . . , p}\{j}

}
.

It is easy to check that Sx,1, . . . ,Sx,p are disjoint and independent sets. Then define

m̂OR∗
j (xj) = max

xj−en≤u≤xj−dn
min

xj≤v≤xj+en

∑
{i∈Sx,j |u≤Xij≤v}{mj(Xij) + σ(Xi)ϵi}

#{i ∈ Sx,j |u ≤ Xij ≤ v}
.

It follows that m̂OR∗
1 (x1), . . . , m̂

OR∗
p (xp) are independent.

For each j = 1, . . . , p, denote by Dx,j(u, v) = {i : u ≤ Xij ≤ v, i /∈ Sx,j}. Note that for
xj−en ≤ u and v ≤ xj+en, #{Dx,j(u, v)} = Op(e

2
n). This bound is tight in a sense that
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there exists some c > 0 such that P
(
#{Dx,j(u, v)} ≥ ce2n

)
→ 1 as n → ∞. Therefore,

|m̂OR∗
j (xj)− m̂OR−

j (xj)| ≤ sup
xj−en≤u≤xj−dn
xj≤v≤xj+en

#{Dx,j(u, v)}
#{i ∈ Sx,j |u ≤ Xij ≤ v}

× sup
xj−en≤u≤xj−dn
xj≤v≤xj+en

∑
i:u≤Xij≤v{mj(Xij)−mj(xj) + σ(Xi)ϵi}

#{i : u ≤ Xij ≤ v}

+ sup
xj−en≤u≤xj−dn
xj≤v≤xj+en

∑
i∈Dx,j(u,v)

{mj(Xij)−mj(xj) + σ(Xi)ϵi}
#{i ∈ Sx,j |u ≤ Xij ≤ v}

≤ Op

( e2nn
dnn

)
Op

(max(e2nn, (enn)
1/2)

dnn

)
+Op

(max(e3nn, (e
2
nn)

1/2)

dnn

)
= op(n

−1/3).

Consequently, |m̂OR∗
j (xj) − m̂OR

j (xj)| = op(n
−1/3), so n1/3

(
m̂OR∗
j (xj) − mj(xj)

) d→(
σ2
j (xj)

∂m
∂xj

(x)

2fXj (xj)

)1/3

G, where G is the distribution of the slope of the greatest convex mino-

rant ofW (t)+t2 at t = 0. Moreover, by the independence among m̂OR∗
1 (x1), . . . , m̂

OR∗
p (xp),

we have that

n1/3
(
m̂OR∗

1 (x1)−m1(x1), . . . , m̂
OR∗
p (xp)−mj(xp)

)
d→

(σ2
1(x1)

∂m
∂x1

(x)

2fX1(x1)

)1/3

G1 . . . ,

(
σ2
p(xp)

∂m
∂xp

(x)

2fXp(xp)

)1/3

Gp

 ,

where G1, . . . , Gp
i.i.d.∼ G.

Theorem 1 of Mammen and Yu (2007) states that |m̂j(xj) − m̂OR
j (xj)| = op(n

−1/3)
for j = 1, . . . , p. This, combined with the last displayed equation, as well as the fact that
|m̂OR∗

j (xj)− m̂OR
j (xj)| = op(n

−1/3), entails that

n1/3

 p∑
j=1

m̂j(xj)−
∑

mj(xj)

 d→
p∑
j=1


(
σ2
j (xj)

∂m
∂xj

(x)

2fXj (xj)

)1/3

Gj


To complete our analysis for the quantity m̂(x) −m(x), we now study the difference

between the constants ĉ and c. Since ĉ (together with m̂1, . . . , m̂p) minimises the residual
sum of squares, we have that

∣∣ĉ− c
∣∣ =

∣∣∣∣∣∣ 1n
n∑
i=1


p∑
j=1

(
mj(Xij)− m̂j(Xij)

)
+ σ(Xi)ϵi


∣∣∣∣∣∣

≤

∣∣∣∣∣ 1n
n∑
i=1

σ(Xi)ϵi

∣∣∣∣∣+
p∑
j=1

∣∣∣∣∣ 1n
n∑
i=1

(
mj(Xij)− m̂j(Xij)

)∣∣∣∣∣ .
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We proceed as before by noting that 1
n

∑n
i=1 σ(Xi)ϵi = Op(n

−1/2). Furthermore,

1

n

n∑
i=1

(
m̂j(Xij)−mj(Xij)

)
=

∫
zj

(
m̂j(zj)−mj(zj)

)
dF̂Xj (zj)

=

∫
zj

(
m̂j(zj)−mj(zj)

)
fXj (zj) +

∫
zj

(
m̂j(zj)−mj(zj)

)
d(F̂Xj − FXj )(zj)

= (I) + (II) = 0 +Op(n
−1/2),

where the last line follows from the identifiability condition and empirical process theory
(the detailed steps of which were explained in earlier part of the proof). Consequently,
ĉ− c = op(n

−1/3), and thus

n1/3
(
m̂(x)−m(x)

)
d−→

p∑
j=1


(
σ2
j (xj)

∂m
∂xj

(x)

2fXj (xj)

)1/3

Gi

 .

This completes the first part of our proof.
Second, we study the convergence rate of |µ̂R−µR|. Under Assumption A6b, Horowitz

and Mammen (2004) entails that supzj |m̃j(zj)−mj(zj)| = Op((log n)
1/2n−2/5) for every

j = 1, . . . , p. Therefore, supx∈Θ |m̃(x)−m(x)| = op(n
−1/3). Using the argument similar

to that mentioned in the second stage of Theorem 3.1’s proof, it is straightforward to
check that |µ̂R − µR| = op(n

−1/3).
Finally, the proof is completed via an application of the Slutsky’s theorem, and by

noting that ∂m
∂xj

= µR
∂ρ
∂xj

.
2

Proofs of Corollary 3.2 – Corollary 3.5:
The proofs of Corollaries 3.2 – 3.5 are similar to that of Corollary 3.1, so are omitted

for brevity.
2
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