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NETWORKS*
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Abstract. We contribute to a better understanding of the class of functions that can be repre-
sented by a neural network with ReLU activations and a given architecture. Using techniques from
mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical
counterbalance to the universal approximation theorems which suggest that a single hidden layer
is sufficient for learning any function. In particular, we investigate whether the class of exactly
representable functions strictly increases by adding more layers (with no restrictions on size). As
a by-product of our investigations, we settle an old conjecture about piecewise linear functions by
Wang and Sun [IEEE Trans. Inform. Theory, 51 (2005), pp. 4425--4431] in the affirmative. We also
present upper bounds on the sizes of neural networks required to represent functions with logarithmic
depth.

Key words. ReLU neural networks, expressivity, depth bounds, polyhedral methods, mixed-
integer optimization
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1. Introduction. A core problem in machine learning and statistics is the esti-
mation of an unknown data distribution with access to independent and identically
distributed samples from the distribution. It is well known that there is a tension
between the expressivity of the model chosen to approximate the distribution and
the number of samples needed to solve the problem with high confidence (or, equiva-
lently, the variance one has in one's estimate). This is referred to as the bias-variance
trade-off or the bias-complexity trade-off. Neural networks provide a way to turn this
bias-complexity knob in a controlled manner that has been studied for decades going
back to the idea of a perceptron by Rosenblatt [63]. This is done by modifying the ar-
chitecture of a neural network class of functions, in particular its size in terms of depth
and width. As one increases these parameters, the class of functions becomes more
expressive. In terms of the bias-variance trade-off, the ``bias"" decreases as the class
of functions becomes more expressive, but the ``variance"" or ``complexity"" increases.

So-called universal approximation theorems [5, 18, 41] show that even with a
single hidden layer, that is, when the depth of the architecture achieves its
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smallest possible value, one can essentially reduce the bias as much as one desires,
by increasing the width. Nevertheless, it can be advantageous both theoretically and
empirically to increase the depth because a substantial reduction in the size can be
achieved by this [6, 21, 47, 64, 70, 71, 76]. To get a better quantitative handle on
these trade-offs, it is important to understand what classes of functions are exactly
representable by neural networks with a certain architecture. The precise mathemat-
ical statements of universal approximation theorems show that single layer networks
can arbitrarily well approximate any continuous function (under some additional mild
hypotheses). While this suggests that single layer networks are good enough from a
learning perspective, from a mathematical perspective, one can ask the question if
the class of functions represented by single layer networks is a strict subset of the
class of functions represented by networks with two or more hidden layers. On the
question of size, one can ask for precise bounds on the required width of a network
with given depth to represent a certain class of functions. A better understanding
of the function classes exactly represented by different architectures has implications
not just for mathematical foundations, but also algorithmic and statistical learning
aspects of neural networks, as recent advances on the training complexity show [6, 11,
23, 28, 43]. The task of searching for the ``best"" function in a class can only benefit
from a better understanding of the nature of functions in that class. A motivating
question behind the results in this paper is to understand the hierarchy of function
classes exactly represented by neural networks of increasing depth.

We now introduce more precise notation and terminology to set the stage for our
investigations.

1.1. Notation and definitions. We write [n] := \{ 1,2, . . . , n\} for the set of
natural numbers up to n (without zero) and [n]0 := [n]\cup \{ 0\} for the same set including
zero. For any n\in \BbbN , let \sigma :\BbbR n \rightarrow \BbbR n be the componentwise rectifier function

\sigma (x) = (max\{ 0, x1\} ,max\{ 0, x2\} , . . . ,max\{ 0, xn\} ).
For any number of hidden layers k \in \BbbN , a (k+1)-layer feedforward neural network

with rectified linear units (ReLU NN or simply NN) is given by k affine transformations
T (\ell ) : \BbbR n\ell  - 1 \rightarrow \BbbR n\ell , x \mapsto \rightarrow A(\ell )x+ b(\ell ) for \ell \in [k], and a linear transformation T (k+1) :
\BbbR nk \rightarrow \BbbR nk+1 , x \mapsto \rightarrow A(k+1)x. It is said to compute or represent the function f :\BbbR n0 \rightarrow 
\BbbR nk+1 given by

f = T (k+1) \circ \sigma \circ T (k) \circ \sigma \circ \cdot \cdot \cdot \circ T (2) \circ \sigma \circ T (1).

The matrices A(\ell ) \in \BbbR n\ell \times n\ell  - 1 are called the weights and the vectors b(\ell ) \in \BbbR n\ell are
the biases of the \ell th layer. The number n\ell \in \BbbN is called the width of the \ell th layer.
The maximum width of all hidden layers max\ell \in [k] n\ell is called the width of the NN.

Further, we say that the NN has depth k+ 1 and size
\sum k

\ell =1 n\ell .
Often, NNs are represented as layered, directed, acyclic graphs where each di-

mension of each layer (including input layer \ell = 0 and output layer \ell = k + 1) is one
vertex, weights are arc labels, and biases are node labels. Then, the vertices are called
neurons.

For a given input x = x(0) \in \BbbR n0 , let y(\ell ) := T (\ell )(x(\ell  - 1)) \in \BbbR n\ell be the activation
vector and x(\ell ) := \sigma (y\ell ) \in \BbbR n\ell the output vector of the \ell th layer. Further, let y :=
y(k+1) = f(x) be the output of the NN. We also say that the ith component of each
of these vectors is the activation or the output of the ith neuron in the \ell th layer.

To illustrate the definition of NNs and how they compute functions, Figure 1
shows an NN with one hidden layer computing the maximum of two numbers.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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x1

x2

y

1
1

-1
1

-1
1

-1

Fig. 1. An NN with two input neurons, labeled x1 and x2, three hidden neurons, labeled with
the shape of the rectifier function, and one output neuron, labeled y. The arcs are labeled with their
weights and all biases are zero. The NN has depth 2, width 3, and size 3. It computes the function
x \mapsto \rightarrow y=max\{ 0, x1  - x2\} +max\{ 0, x2\}  - max\{ 0, - x2\} =max\{ 0, x1  - x2\} + x2 =max\{ x1, x2\} .

For k \in \BbbN , we define

ReLUn(k) := \{ f :\BbbR n \rightarrow \BbbR | f can be represented by a (k+ 1) -layer NN\} ,
CPWLn := \{ f :\BbbR n \rightarrow \BbbR | f is continuous and piecewise linear\} .

By definition, a continuous function f : \BbbR n \rightarrow \BbbR is piecewise linear in the case there
is a finite set of polyhedra whose union is \BbbR n, and f is affine linear over each such
polyhedron.

In order to analyze ReLUn(k), we use another function class defined as follows.
We call a function g a p-term max function if it can be expressed as the maximum of
p affine terms, that is, g(x) =max\{ \ell 1(x), . . . , \ell p(x)\} , where \ell i :\BbbR n \rightarrow \BbbR is affine linear
for i\in [p]. Note that this also includes max functions with less than p terms, as some
functions \ell i may coincide. Based on that, we define

MAXn(p) := \{ f :\BbbR n \rightarrow \BbbR | f is a linear combination of p -term max functions\} .

Note that Wang and Sun [75] call p-term max functions (p - 1)-order hinges and linear
combinations of those (p - 1)-order hinging hyperplanes.

If the input dimension n is not important for the context, we sometimes drop the
index and use ReLU(k) :=

\bigcup 
n\in \BbbN ReLUn(k) and MAX(p) :=

\bigcup 
n\in \BbbN MAXn(p) instead.

We will use the standard notations convA and coneA for the convex and conic
hulls of a set A \subseteq \BbbR n. For an in-depth treatment of polyhedra and (mixed-integer)
optimization, we refer to the book by Schrijver [65].

1.2. Representing piecewise linear functions with ReLU networks. It is
not hard to see that every function expressed by an ReLU network is continuous and
piecewise linear (CPWL) because it is composed of affine transformations and ReLU
functions, which are both CPWL. Based on a result by Wang and Sun [75], Arora et
al. [6] prove that the converse is true as well by showing that any CPWL function
can be represented with logarithmic depth.

Theorem 1.1 (Arora et al. [6]). If n \in \BbbN and k\ast := \lceil log2(n+ 1)\rceil , then it holds
that CPWLn =ReLUn(k

\ast ).

Since this result is the starting point for our paper, let us briefly sketch its proof.
For this purpose, we start with a simple special case of a CPWL function: the maxi-
mum of n numbers. Recall that one hidden layer suffices to compute the maximum of
two numbers; see Figure 1. Now one can easily stack this operation: in order to com-
pute the maximum of four numbers, we divide them into two pairs with two numbers
each, compute the maximum of each pair, and then the maximum of the two results.
This idea results in the NN depicted in Figure 2, which has two hidden layers.
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x1

x2

x3

x4

y

1

1

-1

1

1

-1

1

1

-1

1

-1

1

-1 1

-1

1

-11

-1

1

-1

Fig. 2. An NN to compute the maximum of four numbers that consists of three copies of the
NN in Figure 1. Note that no activiation function is applied at the two unlabeled middle vertices
(representing max\{ x1, x2\} and max\{ x3, x4\} ). Therefore, the linear transformations directly before
and after these vertices can be combined into a single one. Thus, the network has total depth three
(two hidden layers).

Repeating this procedure, one can compute the maximum of eight numbers with
three hidden layers, and, in general, the maximum of 2k numbers with k hidden layers.
Phrasing this the other way around, we obtain that the maximum of n numbers
can be computed with \lceil log2(n)\rceil hidden layers. Since NNs can easily form affine
combinations, this implies the following lemma.

Lemma 1.2 (Arora et al. [6]). If n,k \in \BbbN , then MAXn(2
k)\subseteq ReLUn(k).

The question of whether the depth of this construction is best possible is one of
the central open questions we attack in this paper.

In fact, the maximum function is not just a nice toy example, it is, in some sense,
the most difficult one of all CPWL function to represent for an ReLU NN. This is due
to a result by Wang and Sun [75] stating that every CPWL function defined on \BbbR n

can be written as linear combination of (n+ 1)-term max functions.

Theorem 1.3 (Wang and Sun [75]). If n\in \BbbN , then CPWLn =MAXn(n+ 1).

The proof given by Wang and Sun [75] is technically involved and we do not go
into details here. However, in section 4 we provide an alternative proof yielding a
slightly stronger result. This will be useful to bound the width of NNs representing
arbitrary CPWL functions.

Theorem 1.1 by Arora et al. [6] can now be deduced from combining Lemma 1.2
and Theorem 1.3: In fact, for k\ast = \lceil log2(n+ 1)\rceil , one obtains

CPWLn =MAXn(n+ 1)\subseteq ReLUn(k
\ast )\subseteq CPWLn

and thus equality in the whole chain of subset relations.

1.3. Our main conjecture. We wish to understand whether the logarithmic
depth bound in Theorem 1.1 by Arora et al. [6] is best possible or whether one can
do better. We believe it is indeed best possible and pose the following conjecture to
better understand the importance of depth in NNs.

Conjecture 1.4. For every n\in \BbbN , let k\ast := \lceil log2(n+ 1)\rceil . Then it holds that

(1.1) ReLUn(0)\subsetneq ReLUn(1)\subsetneq \cdot \cdot \cdot \subsetneq ReLUn(k
\ast  - 1)\subsetneq ReLUn(k

\ast ) =CPWLn.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Conjecture 1.4 claims that any additional layer up to k\ast hidden layers strictly
increases the set of representable functions. This would imply that the construction
by Arora et al. [6] is actually depth-minimal.

Observe that, in order to prove Conjecture 1.4, it is sufficient to find, for every
k\ast \in \BbbN , one function f \in ReLUn(k

\ast )\setminus ReLUn(k
\ast  - 1) with n= 2k

\ast  - 1. This also implies
all other strict inclusions ReLUn(i - 1)\subsetneq ReLUn(i) for i < k

\ast because ReLUn(i - 1) =
ReLUn(i) immediately implies that ReLUn(i - 1) =ReLUn(i

\prime ) for all i\prime \geq i - 1.
In fact, thanks to Theorem 1.3 by Wang and Sun [75], there is a canonical candi-

date for such a function, allowing us to reformulate the conjecture as follows.

Conjecture 1.5. For k \in \BbbN , n = 2k, the function fn(x) = max\{ 0, x1, . . . , xn\} 
cannot be represented with k hidden layers, that is, fn /\in ReLUn(k).

Proposition 1.6. Conjectures 1.4 and 1.5 are equivalent.

Proof. We argued above that Conjecture 1.5 implies Conjecture 1.4. For the
other direction, we prove the contraposition, that is, assuming that Conjecture 1.5 is
violated, we show that Conjecture 1.4 is violated as well. To this end, suppose there
is a k \in \BbbN , n = 2k, such that fn is representable with k hidden layers. We argue
that under this hypothesis, any (n+1)-term max function can be represented with k
hidden layers. To see this, observe that

max\{ \ell 1(x), . . . , \ell n+1(x)\} =max\{ 0, \ell 1(x) - \ell n+1(x), . . . , \ell n(x) - \ell n+1(x)\} + \ell n+1(x).

Modifying the first-layer weights of the NN computing fn such that input xi is re-
placed by the affine expression \ell i(x)  - \ell n+1(x), one obtains a k-hidden-layer NN
computing the function max\{ 0, \ell 1(x) - \ell n+1(x), . . . , \ell n(x) - \ell n+1(x)\} . Moreover, since
affine functions, in particular also \ell n+1(x), can easily be represented by k-hidden-layer
NNs, we obtain that any (n+1)-term maximum is in ReLUn(k). Using Theorem 1.3
by Wang and Sun [75], it follows that ReLUn(k) = CPWLn. In particular, since
k\ast := \lceil log2(n+1)\rceil = k+1, we obtain that Conjecture 1.4 must be violated as well.

It is known that Conjecture 1.5 holds for k = 1 [57], that is, the CPWL function
max\{ 0, x1, x2\} cannot be computed by a 2-layer NN. The reason for this is that the
set of breakpoints of a CPWL function computed by a 2-layer NN is always a union
of lines, while the set of breakpoints of max\{ 0, x1, x2\} is a union of three half-lines;
compare Figure 3 and the detailed proof by Mukherjee and Basu [57]. Moreover, in
subsequent work to the first version of this article, it was shown that the conjecture
is true for all k \in \BbbN if one only allows integer weights in the NN [31]. However, this
proof does not easily generalize to arbitrary, real-valued weights. Thus, the conjecture
remains open for all k\geq 2.

x1

0

x2

x1

x2

\cdot \cdot 
\cdot y

Fig. 3. Set of breakpoints of the function max\{ 0, x1, x2\} (left). This function cannot be com-
puted by a 2-layer NN (middle), since the set of breakpoints of any function computed by such an
NN is always a union of lines (right).
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1.4. Contribution and outline. In this paper, we present the following results
as partial progress towards resolving this conjecture.

In section 2, we resolve Conjecture 1.5 for k = 2, under a natural assumption on
the breakpoints of the function represented by any intermediate neuron. Intuitively,
the assumption states that no neuron introduces unexpected breakpoints compared
to the final function we want to represent. We call such NNs H-conforming; see
section 2 for a formal definition. We then provide a computer-based proof leveraging
techniques from mixed-integer programming for the following theorem.

Theorem 1.7. There does not exist an H-conforming 3-layer ReLU NN comput-
ing the function max\{ 0, x1, x2, x3, x4\} .

In the light of Lemma 1.2, stating that MAX(2k) \subseteq ReLU(k) for all k \in \BbbN , one
might ask whether the converse is true as well, that is, whether the classes MAX(2k)
and ReLU(k) are actually equal. This would not only provide a neat characterization
of ReLU(k), but also prove Conjecture 1.5 without any additional assumptions since
one can show that max\{ 0, x1, . . . , x2k\} is not contained in MAX(2k).

In fact, for k = 1, it is true that ReLU(1) = MAX(2), that is, a function is
computable with one hidden layer if and only if it is a linear combination of 2-term
max functions. However, in section 3, we show the following theorem.

Theorem 1.8. For every k\geq 2, the set ReLU(k) is a strict superset of MAX(2k).

To achieve this result, the key technical ingredient is the theory of polyhedral
complexes associated with CPWL functions. This way, we provide important insights
concerning the richness of the class ReLU(k). As a by-product, the results in section
3 imply that MAXn(n) is a strict subset of CPWLn = MAXn(n + 1), which was
conjectured by Wang and Sun [75] in 2005, but has been open since then.

So far, we have focused on understanding the smallest depth needed to express
CPWL functions using NNs with ReLU activations. In section 4, we complement
these results by upper bounds on the sizes of the networks needed for expressing
arbitrary CPWL functions. In particular, we show the following theorem.

Theorem 1.9. Let f : \BbbR n \rightarrow \BbbR be a CPWL function with p affine pieces.
Then f can be represented by an ReLU NN with depth \lceil log2(n + 1)\rceil + 1 and width
\scrO (p2n

2+3n+1).

We arrive at this result by introducing a novel application of recently established
interrelations between NNs and tropical geometry.

Theorem 1.9 improves upon a previous bound by He et al. [35] because it is
polynomial in p if n is regarded as a fixed constant, while the bounds in [35] are
exponential in p. In subsequent work to the first version of our article [36], it was
shown that the width of the network can be drastically decreased if one allows more
depth (in the order of log(p) instead of log(n)) [16].

Let us remark that there are different definitions of the number of pieces p of a
CPWL function f in the literature; compare the discussions in [16, 35] about pieces
versus linear components. Our bounds work with any of these definitions since they
apply to the smallest possible way to define p, called linear components in [16]: for our
purposes, p can be defined as the smallest number of affine functions such that, at each
point, f is equal to one of these affine functions. Since all other definitions of the num-
ber of pieces are at least that large, our bounds are valid for these definitions as well.

Finally, in section 5, we provide an outlook on how these interactions between
tropical geometry and NNs could possibly also be useful to provide a full,
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1003

unconditional proof of Conjecture 1.4 by means of polytope theory. This yields an-
other equivalent rephrasing of Conjecture 1.4 which is stated purely in the language
of basic operations on polytopes and does not involve NNs any more.

We conclude in section 6 with a discussion of further open research questions.

1.5. Further related work.
Depth versus size. Soon after the original universal approximation theorems [18,

41], concrete bounds were obtained on the number of neurons needed in the hidden
layer to achieve a certain level of accuracy. The literature on this is vast and we
refer to a small representative sample here [8, 9, 52, 53, 54, 61]. More recent research
has focused on how deeper networks can have exponentially or superexponentially
smaller size compared to shallower networks [6, 21, 32, 33, 47, 58, 62, 64, 70, 71, 73,
76]. See also [29] for another perspective on the relationship between expressivity and
architecture, and the references therein.

Mixed-integer optimization and machine learning. Over the past decade, a grow-
ing body of work has emerged that explores the interplay between mixed-integer
optimization and machine learning. On the one hand, researchers have attempted to
improve mixed-integer optimization algorithms by exploiting novel techniques from
machine learning [3, 13, 24, 34, 44, 45, 46, 48]; see also [10] for a recent survey. On the
flip side, mixed-integer optimization techniques have been used to analyze function
classes represented by NNs [4, 22, 66, 67, 68]. In section 2 below, we show another new
use of mixed-integer optimization tools for understanding function classes represented
by NNs.

Design of training algorithms. We believe that a better understanding of the
function classes represented exactly by a neural architecture also has benefits in terms
of understanding the complexity of the training problem. For instance, in work by
Arora et al. [6], an understanding of single layer ReLU networks enables the design
of a globally optimal algorithm for solving the empirical risk minimization problem,
that runs in polynomial time in the number of data points in fixed dimension. See
also [1, 11, 12, 14, 17, 19, 23, 25, 26, 27, 28, 43] for similar lines of work.

NNs and Tropical Geometry. A recent stream of research involves the interplay
between NNs and tropical geometry. The piecewise linear functions computed by
NNs can be seen as (tropical quotients of) tropical polynomials. Linear regions of
these functions correspond to vertices of so-called Newton polytopes associated with
these tropical polynomials. Applications of this correspondence include bounding the
number of linear regions of a NN [15, 55, 77] and understanding decision bound-
aries [2]. In section 4 we present a novel application of tropical concepts to under-
stand NNs. We refer to [51] for a recent survey of connections between machine
learning and tropical geometry, as well as to the textbooks by Maclagan and Sturm-
fels [50] and Joswig [42] for in-depth introductions to tropical geometry and tropical
combinatorics.

2. Conditional lower depth bounds via mixed-integer programming. In
this section, we provide a computer-aided proof that, under a natural, yet unproven
assumption, the function f(x) := max\{ 0, x1, x2, x3, x4\} cannot be represented by a
3-layer NN. It is worth noting that, to the best of our knowledge, no CPWL function
is known for which the nonexistence of a 3-layer NN can be proven without additional
assumptions. For ease of notation, we write x0 := 0.

We first prove that we may restrict ourselves to NNs without biases. This holds
true independent of our assumption, which we introduce afterwards.
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1004 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

Definition 2.1. A function g : \BbbR n \rightarrow \BbbR m is called positively homogeneous if it
satisfies g(\lambda x) = \lambda g(x) for all \lambda \geq 0.

Definition 2.2. For an NN given by transformations T (\ell )(x) =A(\ell )x+ b(\ell ), we
define the corresponding homogenized NN to be the NN given by \~T (\ell )(x) =A(\ell )x with
all biases set to zero.

Proposition 2.3. If an NN computes a positively homogeneous function, then
the corresponding homogenized NN computes the same function.

Proof. Let g : \BbbR n0 \rightarrow \BbbR nk+1 be the function computed by the original NN and \~g
the one computed by the homogenized NN. Further, for any 0\leq \ell \leq k, let

g(\ell ) = T (\ell +1) \circ \sigma \circ T (\ell ) \circ \cdot \cdot \cdot \circ T (2) \circ \sigma \circ T (1)

be the function computed by the subNN consisting of the first (\ell + 1)-layers and let
\~g(\ell ) be the function computed by the corresponding homogenized subNN. We first
show by induction on \ell that the norm of \| g(\ell )(x) - \~g(\ell )(x)\| is bounded by a global
constant that only depends on the parameters of the NN but not on x.

For \ell = 0, we have \| g(0)(x)  - \~g(0)(x)\| = \| b(1)\| =: C0, settling the induction
base. For the induction step, let \ell \geq 1 and assume that \| g(\ell  - 1)(x)  - \~g(\ell  - 1)(x)\| \leq 
C\ell  - 1, where C\ell  - 1 only depends on the parameters of the NN. Since a componentwise
application of the ReLU activation function has Lipschitz constant 1, this implies
\| (\sigma \circ g(\ell  - 1))(x) - (\sigma \circ \~g(\ell  - 1))(x)\| \leq C\ell  - 1. Using the spectral matrix norm \| A\| of a
matrix A, we obtain

\| g(\ell )(x) - \~g(\ell )(x)\| = \| b(\ell +1) +A(\ell +1)((\sigma \circ g(\ell  - 1))(x) - (\sigma \circ \~g(\ell  - 1))(x))\| 
\leq \| b(\ell +1)\| + \| A(\ell +1)\| \cdot C\ell  - 1 =:C\ell .

Since the right-hand side only depends on the NN parameters, the induction is com-
pleted.

Finally, we show that g = \~g. For the sake of contradiction, suppose that there
is an x \in \BbbR n0 with \| g(x)  - \~g(x)\| = \delta > 0. Let x\prime := Ck+1

\delta x; then, by the positive
homogeneity of g (by assumption) and \~g (by construction and because the ReLU
function is positively homogeneous), it follows that \| g(x\prime )  - \~g(x\prime )\| = Ck + 1 > Ck,
contradicting the property shown above. Thus, we have g= \~g.

Since f =max\{ 0, x1, x2, x3, x4\} is positively homogeneous, Proposition 2.3 implies
that, if there is a 3-layer NN computing f , then there also is one that has no biases.
Therefore, in the remainder of this section, we only consider NNs without biases and
assume implicitly that all considered CPWL functions are positively homogeneous.
In particular, any piece of such a CPWL function is linear and not only affine linear.

Observe that, for the function f , the only points of nondifferentiability (also
known as breakpoints) are at places where at least two of the five numbers x0 = 0, x1,
x2, x3, and x4 are equal. Hence, if some neuron of an NN computing f introduces
breakpoints at other places, these breakpoints must be canceled out by other neurons.
Therefore, we find it natural to work under the assumption that such breakpoints need
not be introduced at all in the first place.

To make this assumption formal, let Hij = \{ x \in \BbbR 4 | xi = xj\} for 0 \leq i < j \leq 4
be ten hyperplanes in \BbbR 4 and H =

\bigcup 
0\leq i<j\leq 4Hij be the corresponding hyperplane

arrangement. This is the intersection of the so-called braid arrangement in five di-
mensions with the hyperplane x0 = 0 [69]. The regions or cells of H are defined to
be the closures of the connected components of \BbbR 4 \setminus H. It is easy to see that these
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1005

regions are in one-to-one correspondence with the 5! = 120 possible orderings of the
five numbers x0 = 0, x1, x2, x3, and x4. More precisely, for a permutation \pi of the
five indices [4]0 = \{ 0,1,2,3,4\} , the corresponding region is the polyhedron

C\pi := \{ x\in \BbbR 4 | x\pi (0) \leq x\pi (1) \leq x\pi (2) \leq x\pi (3) \leq x\pi (4)\} .

Definition 2.4. We say that a (positively homogeneous) CPWL function g is
H-conforming, if it is linear within any of these regions of H, that is, if it only has
breakpoints where the relative ordering of the five values x0 = 0, x1, x2, x3, x4 changes.
Moreover, an NN is said to be H-conforming if the output of each neuron contained
in the NN is H-conforming.

See Figure 4 for an illustration of the definition in the (simpler) two-dimensional
case. Note that, by the definition, an NN is H-conforming if and only if all interme-
diate functions \sigma \circ T (\ell ) \circ \sigma \circ T (\ell  - 1) \circ \cdot \cdot \cdot \circ \sigma \circ T (1), \ell \in [k], are H-conforming.

As argued above, it is plausible that considering H-conforming NNs is enough to
prove Conjecture 1.4. In other words, we conjecture that, if there exists a 3-layer NN
computing the function f(x) =max\{ 0, x1, x2, x3, x4\} , then there also exists one that is
H-conforming. This motivates the following theorem, which we prove computer-aided
by means of mixed-integer programming.

Theorem 1.7. There does not exist an H-conforming 3-layer ReLU NN comput-
ing the function max\{ 0, x1, x2, x3, x4\} .

The remainder of this section is devoted to proving this theorem. The rough
outline of the proof is as follows. We first study some geometric properties of the
hyperplane arrangement H. This will show that each of the 120 cells of H is a
simplicial polyhedral cone spanned by 4 extreme rays. In total, there are 30 such
rays (because rays are used multiple times to span different cones). This implies that
each H-conforming function is uniquely determined by its values on the 30 rays and,
therefore, the set of H-conforming functions of type \BbbR 4 \rightarrow \BbbR is a 30-dimensional vector
space. We then use linear algebra to show that the space of functions generated by H-
conforming two-layer NNs is a 14-dimensional subspace. Moreover, with two hidden
layers, at least 29 of the 30 dimensions can be generated and f is not contained in this
29-dimensional subspace. So the remaining question is whether the 14 dimensions

x1 \geq 
x2 \geq 0

0 \geq x2

\geq x1
x1 \geq 0
\geq x2

x2 \geq 
0 \geq x1

x2 \geq x1

\geq 0

0 \geq 
x1 \geq x2

Fig. 4. A function is H-conforming if the set of breakpoints is a subset of the hyperplane ar-
rangement H. The arrangement H consists of all hyperplanes where two of the coordinates (possibly
including x0 = 0) are equal. Here, H is illustrated for the (simpler) two-dimensional case, where it
consists of three hyperplanes that divide the space into six cells.
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1006 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

producible with the first hidden layer can be combined in such a way that after
applying an ReLU activation in the second hidden layer, we do not end up within the
29-dimensional subspace. We model this question as a mixed-integer program (MIP).
Solving the MIP yields that we always end up within the 29-dimensional subspace,
implying that f cannot be represented by a 3-layer NN. This provides a computational
proof of Theorem 1.7.

Let us start with investigating the structure of the hyperplane arrangement H.
For readers familiar with the interplay between hyperplane arrangements and poly-
topes, it is worth noting that H is dual to a combinatorial equivalent of the 4-
dimensional permutahedron. Hence, what we are studying in the following are some
combinatorial properties of the permutahedron.

Recall that the regions of H are given by the 120 polyhedra

C\pi := \{ x\in \BbbR 4 | x\pi (0) \leq x\pi (1) \leq x\pi (2) \leq x\pi (3) \leq x\pi (4)\} \subseteq \BbbR 4

for each permutation \pi of [4]0, where x0 is used as a replacement for 0. With this
representation, one can see that C\pi is a pointed polyhedral cone (with the origin as
its only vertex) spanned by the four half-lines (also known as rays)

R\{ \pi (0)\} := \{ x\in \BbbR 4 | x\pi (0) \leq x\pi (1) = x\pi (2) = x\pi (3) = x\pi (4)\} ,
R\{ \pi (0),\pi (1)\} := \{ x\in \BbbR 4 | x\pi (0) = x\pi (1) \leq x\pi (2) = x\pi (3) = x\pi (4)\} ,

R\{ \pi (0),\pi (1),\pi (2)\} := \{ x\in \BbbR 4 | x\pi (0) = x\pi (1) = x\pi (2) \leq x\pi (3) = x\pi (4)\} ,
R\{ \pi (0),\pi (1),\pi (2),\pi (3)\} := \{ x\in \BbbR 4 | x\pi (0) = x\pi (1) = x\pi (2) = x\pi (3) \leq x\pi (4)\} .

Observe that these objects are indeed rays anchored at the origin because the
three equalities define a one-dimensional subspace of \BbbR 4 and the inequality cuts away
one of the two directions.

With that notation, we see that each of the 120 cells of H is a simplicial cone
spanned by four out of the 30 rays RS with \emptyset \subsetneq S \subsetneq [4]0. For each such set S,
denote its complement by \=S := [4]0 \setminus S. Let us use a generating vector rS \in \BbbR 4 for
each of these rays such that RS = conerS as follows: if 0 \in S, then rS := 1 \=S \in \BbbR 4,
otherwise rS := - 1S \in \BbbR 4, where for each S \subseteq [4], the vector 1S \in \BbbR 4 contains entries
1 at precisely those index positions that are contained in S and entries 0 elsewhere.
For example, r\{ 0,2,3\} = (1,0,0,1) \in \BbbR 4 and r\{ 1,4\} = ( - 1,0,0, - 1) \in \BbbR 4. Then, the
set R containing conic generators of all the 30 rays of H consists of the 30 vectors
R= (\{ 0,1\} 4 \cup \{ 0, - 1\} 4) \setminus \{ 0\} 4.

Let \scrS 30 be the space of all H-conforming CPWL functions of type \BbbR 4 \rightarrow \BbbR . We
show that \scrS 30 is a 30-dimensional vector space.

Lemma 2.5. The map g \mapsto \rightarrow (g(r))r\in R that evaluates a function g \in \scrS 30 at the
30 rays in R is an isomorphism between \scrS 30 and \BbbR 30. In particular, \scrS 30 is a 30-
dimensional vector space.

Proof. First note that \scrS 30 is closed under addition and scalar multiplication.
Therefore, it is a subspace of the vector space of continuous functions of type \BbbR 4 \rightarrow \BbbR 
and, thus, in particular, a vector space. We show that the map g \mapsto \rightarrow (g(r))r\in R is in
fact a vector space isomorphism. The map is obviously linear, so we only need to
show that it is a bijection. In order to do so, remember that \BbbR 4 is the union of the
5! = 120 simplicial cones C\pi . In particular, given the function values on the extreme
rays of these cones, there is a unique positively homogeneous, continuous continuation
that is linear within each of the 120 cones. This implies that the considered map is a
bijection between \scrS 30 and \BbbR 30.
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1007

The previous lemma also provides a canonical basis of the vector space \scrS 30: the
one consisting of all CPWL functions attaining value 1 at one ray r \in R and value 0
at all other rays. However, it turns out that for our purposes it is more convenient
to work with a different basis. To this end, let gM (x) =maxi\in M xi for each M \subseteq [4]0
with M /\in \{ \emptyset ,\{ 0\} \} . These 30 functions contain, among other functions, the four
(linear) coordinate projections g\{ i\} (x) = xi, i\in [4], and the function f(x) = g[4]0(x) =
max\{ 0, x1, x2, x3, x4\} .

Lemma 2.6. The 30 functions gM (x) =maxi\in M xi with \{ \emptyset ,\{ 0\} \} \not \ni M \subseteq [4]0 form
a basis of \scrS 30.

Proof. Evaluating the 30 functions gM at all 30 rays r \in R yields 30 vectors in
\BbbR 30. It can be easily verified (e.g., using a computer) that these vectors form a basis
of \BbbR 30. Thus, due to the isomorphism of Lemma 2.5, the functions gM form a basis
of \scrS 30.

Next, we focus on particular subspaces of \scrS 30 generated by only some of the 30
functions gM . We prove that they correspond to the spaces of functions computable
by H-conforming 2- and 3-layer NNs, respectively.

To do so, let \scrB 14 be the set of the 14 basis functions gM with \{ \emptyset ,\{ 0\} \} \not \ni M \subseteq [4]0
and | M | \leq 2. Let \scrS 14 be the 14-dimensional subspace spanned by \scrB 14. Similarly, let
\scrB 29 be the set of the 29 basis functions gM with \{ \emptyset ,\{ 0\} \} \not \ni M \subsetneq [4]0 (all but [4]0).
Let \scrS 29 be the 29-dimensional subspace spanned by \scrB 29.

Lemma 2.7. The space \scrS 14 consists of all functions computable by H-conforming
2-layer NNs.

Proof. Each function in \scrS 14 is a linear combination of 2-term max functions by
definition. Hence, by Lemma 1.2, it can be represented by a 2-layer NN.

Conversely, we show that any function representable by a 2-layer NN is indeed
contained in \scrS 14. It suffices to show that the output of every neuron in the first (and
only) hidden layer of an H-conforming ReLU NN is in \scrS 14 because the output of
a 2-layer NN is a linear combination of such outputs. Let a \in \BbbR 4 be the first-layer
weights of such a neuron, computing the function ga(x) := max\{ aTx,0\} , which has
the hyperplane \{ x \in \BbbR 4 | aTx = 0\} as breakpoints (or is constantly zero). Since
the NN must be H-conforming, this must be one of the ten hyperplanes xi = xj ,
0 \leq i < j \leq 4. Thus, ga(x) = max\{ \lambda (xi  - xj),0\} for some \lambda \in \BbbR . If \lambda \geq 0, it follows
that ga = \lambda g\{ i,j\}  - \lambda g\{ j\} \in \scrS 14, and if \lambda \leq 0, we obtain ga =  - \lambda g\{ i,j\} + \lambda g\{ i\} \in \scrS 14.
This concludes the proof.

For 3-layer NNs, an analogous statement can be made. However, only one direc-
tion can be easily seen.

Lemma 2.8. Any function in \scrS 29 can be represented by an H-conforming 3-layer
NN.

Proof. As in the previous lemma, each function in \scrS 29 is a linear combination of
4-term max functions by definition. Hence, by Lemma 1.2, it can be represented by
a 3-layer NN.

Our goal is to prove the converse as well: any H-conforming function represented
by a 3-layer NN is in \scrS 29. Since f(x) =max\{ 0, x1, x2, x3, x4\} is the 30th basis function,
which is linearly independent from \scrB 29 and thus not contained in \scrS 29, this implies
Theorem 1.7. To achieve this goal, we first provide another characterization of \scrS 29,
which can be seen as an orthogonal direction to \scrS 29 in \scrS 30. For a function g \in \scrS 30,
let
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1008 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

\phi (g) :=
\sum 

\emptyset \subsetneq S\subsetneq [4]0

( - 1)| S| g(rS)

be a linear map from \scrS 30 to \BbbR .

Lemma 2.9. A function g \in \scrS 30 is contained in \scrS 29 if and only if \phi (g) = 0.

Proof. Any g \in \scrS 30 can be represented as a unique linear combination of the 30
basis functions gM and is contained in \scrS 29 if and only if the coefficient of f = g[4]0 is
zero. One can easily check (with a computer) that \phi maps all functions in \scrB 29 to 0,
but not the 30th basis function f . Thus, g is contained in \scrS 29 if and only if it satisfies
\phi (g) = 0.

In order to make use of our assumption that the NN is H-conforming, we need
the following insight about when the property of being H-conforming is preserved
after applying an ReLU activation.

Lemma 2.10. Let g \in \scrS 30. The function h= \sigma \circ g is H-conforming (and thus in
\scrS 30 as well) if and only if there is no pair of sets \emptyset \subsetneq S \subsetneq S\prime \subsetneq [4]0 with g(rS) and
g(r

S
\prime ) being nonzero and having different signs.

Proof. The key observation to prove this lemma is the following: for two rays rS
and r

S
\prime , there exists a cell C of the hyperplane arrangement H for which both rS and

r
S
\prime are extreme rays if and only if S \subsetneq S\prime or S\prime \subsetneq S.
Hence, if there exists a pair of sets \emptyset \subsetneq S \subsetneq S\prime \subsetneq [4]0 with g(rS) and g(r

S
\prime )

being nonzero and having different signs, then the function g restricted to C is a
linear function with both strictly positive and strictly negative values. Therefore,
after applying the ReLU activation, the resulting function h has breakpoints within
C and is not H-conforming.

Conversely, if for each pair of sets \emptyset \subsetneq S \subsetneq S\prime \subsetneq [4]0, both g(rS) and g(r
S
\prime )

are either nonpositive or nonnegative, then g restricted to any cell C of H is either
nonpositive or nonnegative everywhere. In the first case, h restricted to that cell C
is the zero function, while in the second case, h coincides with g in C. In both cases,
h is linear within all cells and, thus, H-conforming.

Having collected all these lemmas, we are finally able to construct an MIP whose
solution proves that any function computed by an H-conforming 3-layer NN is in \scrS 29.
As in the proof of Lemma 2.7, it suffices to focus on the output of a single neuron in
the second hidden layer. Let h= \sigma \circ g be the output of such a neuron with g being its
input. Observe that, by construction, g is a function computed by a 2-layer NN and,
thus, by Lemma 2.7, a linear combination of the 14 functions in \scrB 14. The MIP contains
three types of variables, which we denote in bold to distinguish them from constants:

\bullet 14 continuous variables aM \in [ - 1,1], being the coefficients of the linear com-
bination of the basis of \scrS 14 forming g, that is, g =

\sum 
gM\in \scrB 14 aMgM (since

multiplying g and h with a nonzero scalar does not alter the containment of
h in \scrS 29, we may restrict the variables to [ - 1,1]);

\bullet 30 binary variables zS \in \{ 0,1\} for \emptyset \subsetneq S \subsetneq [4]0, determining whether the
considered neuron is strictly active at ray rS , that is, whether g(rS)> 0;

\bullet 30 continuous variables yS \in \BbbR for \emptyset \subsetneq S \subsetneq [4]0, representing the output of
the considered neuron at all rays, that is, yS = h(rS).

To ensure that these variables interact as expected, we need two types of con-
straints:

\bullet For each of the 30 rays rS , \emptyset \subsetneq S \subsetneq [4]0, the following constraints ensure
that zS and output yS are correctly calculated from the variables aM , that
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1009

is, zS = 1 if and only if g(rS) =
\sum 

gM\in \scrB 14 aMgM (rS) is positive, and yS =
max\{ 0, g(rS)\} . Also compare the references given in subsection 1.5 concerning
MIP models for ReLU units. Note that the restriction of the coefficients aM
to [ - 1,1] ensures that the absolute value of g(rS) is always bounded by 14,
allowing us to use 15 as a replacement for +\infty :

yS \geq 0,

yS \geq 
\sum 

gM\in \scrB 14

aMgM (rS),

yS \leq 15zS ,

yS \leq 
\sum 

gM\in \scrB 14

aMgM (rS) + 15(1 - zS).

(2.1)

Observe that these constraints ensure that one of the following two cases
occurs: if zS = 0, then the first and third line imply yS = 0 and the second
line implies that the incoming activation is in fact nonpositive. The fourth
line is always satisfied in that case. Otherwise, if zS = 1, then the second and
fourth line imply that yS equals the incoming activation and, in combination
with the first line, this has to be nonnegative. The third line is always satisfied
in that case. Hence, the set of constraints (2.1) correctly models the ReLU
activation function.

\bullet For each of the 150 pairs of sets \emptyset \subsetneq S \subsetneq S\prime \subsetneq [4]0, the following constraints
ensure that the property in Lemma 2.10 is satisfied. More precisely, if one of
the variables zS or z

S
\prime equals 1, then the ray of the other set has nonnegative

activation, that is, g(r
S
\prime )\geq 0 or g(rS)\geq 0, respectively:\sum 

gM\in \scrB 14

aMgM (rS)\geq 15(z
S
\prime  - 1),

\sum 
gM\in \scrB 14

aMgM (r
S
\prime )\geq 15(zS  - 1).

(2.2)

Observe that these constraints successfully prevent that the two rays rS and
r
S
\prime have nonzero activations with different signs. Conversely, if this is not

the case, then we can always satisfy constraints (2.2) by setting only those
variables zS to value 1 where the activation of ray rS is strictly positive.
(Note that, if the incoming activation is precisely zero, constraints (2.1) make
it possible to choose both values 0 or 1 for zS .) Hence, these constraints are
in fact appropriate to model H-conformity.

In the light of Lemma 2.9, the objective function of our MIP is to maximize \phi (h),
that is, the expression \sum 

\emptyset \subsetneq S\subsetneq [4]0

( - 1)| S| yS .

The MIP has a total of 30 binary and 44 continuous variables, as well as 420
inequality constraints. The next proposition formalizes how this MIP can be used to
check whether a 3-layer NN function can exist outside \scrS 29.

Proposition 2.11. There exists an H-conforming 3-layer NN computing a func-
tion not contained in \scrS 29 if and only if the objective value of the MIP defined above
is strictly positive.
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1010 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

Proof. For the first direction, assume that such an NN exists. Since its final
output is a linear combination of the outputs of the neurons in the second hidden
layer, one of these neurons must compute a function \~h = \sigma \circ \~g /\in \scrS 29 with \~g being
the input to that neuron. By Lemma 2.9, it follows that \phi (\~h) \not = 0. Moreover, we
can even assume without loss of generality that \phi (\~h) > 0, as we argue now. If this
is not the case, multiply all first-layer weights of the NN by  - 1 to obtain a new NN
computing function \^h instead of \~h. Observing that rS =  - r[4]0\setminus S for all rS \in R, we
obtain \^h(rS) = \~h( - rS) = \~h(r[4]0\setminus S) for all rS \in R. Plugging this into the definition of
\phi and using that the cardinalities of S and [4]0 \setminus S have different parity, we further
obtain \phi (\^h) = - \phi (\~h). Therefore, we can assume that \phi (\~h) was already positive in the
first place.

Using Lemma 2.7, the function \~g can be represented as a linear combination
\~g =

\sum 
gM\in \scrB 14 \~aMgM of the functions in \scrB 14. Let \alpha := maxM | \~aM | . Note that \alpha > 0

because otherwise \~g would be the zero function. Let us define modified functions g
and h from \~g and \~h as follows. Let aM := \~aM/\alpha \in [ - 1,1], g :=

\sum 
gM\in \scrB 14 aMgM , and

h := \sigma \circ g. Moreover, for all rays rS \in R, let yS := h(rS), as well as zS := 1 if yS > 0,
and zS := 0 otherwise.

It is easy to verify that the variables aM , yS , and zS defined that way satisfy
(2.1). Moreover, since the NN is H-conforming, they also satisfy (2.2). Finally, they
also yield a strictly positive objective function value since \phi (h) = \phi (\~h)/\alpha > 0.

For the reverse direction, assume that there exists an MIP solution consisting of
aM , yS , and zS , satisfying (2.1) and (2.2), and having a strictly positive objective
function value. Define the functions g :=

\sum 
gM\in \scrB 14 aMgM and h := \sigma \circ g. One

concludes from (2.1) that h(rS) = yS for all rays rS \in R. Lemma 2.7 implies that
g can be represented by a 2-layer NN. Thus, h can be represented by a 3-layer NN.
Moreover, constraints (2.2) guarantee that this NN is H-conforming. Finally, since
the MIP solution has a strictly positive objective function value, we obtain \phi (h)> 0,
implying that h /\in \scrS 29.

In order to use the MIP as part of a mathematical proof, we employed an MIP
solver that uses exact rational arithmetics without numerical errors, namely, the solver
by the Parma Polyhedral Library (PPL) [7]. We called the solver from a SageMath
(Version 9.0) [72] script on a machine with an Intel Core i7-8700 6-Core 64-bit CPU
and 15.5GB RAM, using the openSUSE Leap 15.2 Linux distribution. SageMath,
which natively includes the PPL solver, is published under the GPLv3 license. After
a total running time of almost 7 days (153 hours), we obtained optimal objective
function value zero. This makes it possible to prove Theorem 1.7.

Proof of Theorem 1.7. Since the MIP has optimal objective function value zero,
Proposition 2.11 implies that any function computed by an H-conforming 3-layer
NN is contained in \scrS 29. In particular, it is not possible to compute the function
f(x) =max\{ 0, x1, x2, x3, x4\} with an H-conforming 3-layer NN.

We remark that state-of-the-art MIP solver Gurobi (version 9.1.1) [30], which is
commercial but offers free academic licenses, is able to solve the same MIP within
less than a second, providing the same result. However, Gurobi does not employ
exact arithmetics, making it impossible to exclude numerical errors and use it as a
mathematical proof.

The SageMath code can be found on GitHub at
https://github.com/ChristophHertrich/relu-mip-depth-bound.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Additionally, the MIP can be found there as an .mps file, a standard format to
represent MIPs. This allows one to use any solver of choice to reproduce our result.

3. Going beyond linear combinations of max functions. In this section
we prove the following result, showing that NNs with k hidden layers can compute
more functions than only linear combinations of 2k-term max functions.

Theorem 1.8. For every k\geq 2, the set ReLU(k) is a strict superset of MAX(2k).

In order to prove this theorem, for each number of hidden layers k\geq 2, we provide
a specific function in ReLU(k) \setminus MAX(2k). The challenging part is to show that the
function is in fact not contained in MAX(2k).

Proposition 3.1. For any n\geq 3, the function f :\BbbR n \rightarrow \BbbR defined by

(3.1) f(x) =max\{ 0, x1, x2, . . . , xn - 3, max\{ xn - 2, xn - 1\} +max\{ 0, xn\} \} 

is not contained in MAX(n).

This means that f cannot be written as a linear combination of n-term max
functions, which proves a conjecture by [75] that MAXn(n) \subsetneq CPWLn, which has
been open since 2005. Previously, it was only known that linear combinations of
(n - 1)-term maxes are not sufficient to represent any CPWL function defined on \BbbR n,
that is, MAXn(n  - 1) \subsetneq CPWLn. Lu [49] provides a short analytical argument for
this fact.

Before we prove Proposition 3.1, we show that it implies Theorem 1.8.

Proof of Theorem 1.8. For k \geq 2, let n := 2k. By Proposition 3.1, function
f defined in (3.1) is not contained in MAX(2k). It remains to show that it can
be represented using an ReLU NN with k hidden layers. To see this, first observe
that any of the n/2 = 2k - 1 terms max\{ 0, x1\} , max\{ x2i, x2i+1\} for i \in [n/2 - 2], and
max\{ xn - 2, xn - 1\} +max\{ 0, xn\} can be expressed by a one-hidden-layer NN since all
these are (linear combinations of) 2-term max functions. Since f is the maximum of
these 2k - 1 terms, and since the maximum of 2k - 1 numbers can be computed with
k - 1 hidden layers (Lemma 1.2), this implies that f is in ReLU(k).

In order to prove Proposition 3.1, we need the concept of polyhedral complexes.
A polyhedral complex \scrP is a finite set of polyhedra such that each face of a polyhedron
in \scrP is also in \scrP , and for two polyhedra P,Q\in \scrP , their intersection P \cap Q is a common
face of P and Q (possibly the empty face). Given a polyhedral complex \scrP in \BbbR n and
an integer m \in [n], we let \scrP m denote the collection of all m-dimensional polyhedra
in \scrP .

For a convex CPWL function f , we define its underlying polyhedral complex as
follows: it is the unique polyhedral complex covering \BbbR n (i.e., each point in \BbbR n belongs
to some polyhedron in \scrP ) whose n-dimensional polyhedra coincide with the domains
of the (maximal) affine pieces of f . In particular, f is affine linear within each P \in \scrP ,
but not within any strict superset of a polyhedron in \scrP n.

Exploiting properties of polyhedral complexes associated with CPWL functions,
we prove the following proposition below.

Proposition 3.2. Let f0 :\BbbR n \rightarrow \BbbR be a convex CPWL function and let \scrP 0 be the
underlying polyhedral complex. If there exists a hyperplane H \subseteq \BbbR n such that the set

T :=
\bigcup \bigl\{ 

F \in \scrP n - 1
0

\bigm| \bigm| F \subseteq H
\bigr\} 

is nonempty and contains no line, then f0 cannot be expressed as a linear combination
of n-term maxima of affine linear functions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Again, before we proceed to the proof of Proposition 3.2, we show that it implies
Proposition 3.1.

Proof of Proposition 3.1. Observe that f (defined in (3.1)) has the alternate
representation

f(x) =max\{ 0, x1, x2, . . . , xn - 3, xn - 2, xn - 1, xn - 2 + xn, xn - 1 + xn\} 

as a maximum of n+ 2 terms. Let \scrP be its underlying polyhedral complex. Let the
hyperplane H be defined by x1 = 0.

Observe that any facet in \scrP n - 1 is a polyhedron defined by two of the n+2 terms
that are equal and at least as large as each of the remaining n terms. Hence, the only
facet that could possibly be contained in H is

F := \{ x\in \BbbR n | x1 = 0\geq x2, . . . , xn - 3, xn - 2, xn - 1, xn - 2 + xn, xn - 1 + xn\} .

Note that F is indeed an (n - 1)-dimensional facet in \scrP n - 1, because, for example,
a small ball around (0, - 1, . . . , - 1)\in \BbbR n intersected with H is contained in F .

Finally, we need to show that F is pointed, that is, it contains no line. A well-
known fact from polyhedral theory says if there is any line in F with direction d \in 
\BbbR n \setminus \{ 0\} , then d must satisfy the defining inequalities with equality. However, only
the zero vector does this. Hence, F cannot contain a line.

Therefore, when applying Proposition 3.2 to f with underlying polyhedral com-
plex \scrP and hyperplane H, we have T = F , which is nonempty and contains no line.
Hence, f cannot be written as a linear combination of n-term maxima.

The remainder of this section is devoted to proving Proposition 3.2. In order
to exploit properties of the underlying polyhedral complex of the considered CPWL
functions, we will first introduce some terminology, notation, and results related to
polyhedral complexes in \BbbR n for any n\geq 1.

Definition 3.3. Given an abelian group (G,+), we define \scrF n(G) as the family
of all functions \phi of the form \phi :\scrP n \rightarrow G, where \scrP is a polyhedral complex that covers
\BbbR n. We say that \scrP is the underlying polyhedral complex or the polyhedral complex
associated with \phi .

Just to give an intuition of the reason for this definition, let us mention that later
we will choose (G,+) to be the set of affine linear maps \BbbR n \rightarrow \BbbR with respect to the
standard operation of sum of functions. Moreover, given a convex CPWL function
f : \BbbR n \rightarrow \BbbR with underlying polyhedral complex \scrP , we will consider the following
function \phi \in \scrF n(G): for every P \in \scrP n, \phi (P ) will be the affine linear map that
coincides with f over P . It can be helpful, though not necessary, to keep this in mind
when reading the next definitions and observations.

It is useful to observe that the functions in \scrF n(G) can also be described in a
different way. Before explaining this, we need to define an ordering between the two
elements of each pair of opposite half-spaces. More precisely, let H be a hyperplane
in \BbbR n and let H \prime ,H \prime \prime be the two closed half-spaces delimited by H. We choose an
arbitrary rule to say thatH \prime ``precedes""H \prime \prime , which we write asH \prime \prec H \prime \prime .1 We can then
extend this ordering rule to those pairs of n-dimensional polyhedra of a polyhedral

1In case one wants to see such a rule explicitly, this is a possible way: fix an arbitrary \=x \in H.
We can say that H\prime \prec H\prime \prime if and only if \=x+ ei \in H\prime , where ei is the first vector in the standard basis
of \BbbR d that does not lie on H (i.e., e1, . . . , ei - 1 \in H and ei /\in H). Note that this definition does not
depend on the choice of \=x.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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complex in \BbbR n that share a facet. Specifically, given a polyhedral complex \scrP in \BbbR n,
let P \prime , P \prime \prime \in \scrP n be such that F := P \prime \cap P \prime \prime \in \scrP n - 1. Further, let H be the unique
hyperplane containing F . We say that P \prime \prec P \prime \prime if the half-space delimited by H and
containing P \prime precedes the half-space delimited by H and containing P \prime \prime .

We can now explain the alternate description of the functions in \scrF n(G), which is
based on the following notion.

Definition 3.4. Let \phi \in \scrF n(G) with associated polyhedral complex \scrP . The
facet-function associated with \phi is the function \psi : \scrP n - 1 \rightarrow G defined as follows:
given F \in \scrP n - 1, let P \prime , P \prime \prime be the two polyhedra in \scrP n such that F = P \prime \cap P \prime \prime , where
P \prime \prec P \prime \prime ; then we set \psi (F ) := \phi (P \prime ) - \phi (P \prime \prime ).

Although it will not be used, we observe that knowing \psi is sufficient to reconstruct
\phi up to an additive constant. This means that a function \phi \prime \in \scrF n(G) associated with
the same polyhedral complex \scrP has the same facet-function \psi if and only if there
exists g \in G such that \phi (P ) - \phi \prime (P ) = g for every P \in \scrP n. (However, it is not true
that every function \psi :\scrP n - 1 \rightarrow G is the facet-function of some function in \scrF n(G).)

We now introduce a sum operation over \scrF n(G).

Definition 3.5. Given p functions \phi 1, . . . , \phi p \in \scrF n(G), with associated polyhe-
dral complexes \scrP 1, . . . ,\scrP p, the sum \phi := \phi 1+ \cdot \cdot \cdot +\phi p is the function in \scrF n(G) defined
as follows:

\bullet the polyhedral complex associated with \phi is

\scrP := \{ P1 \cap \cdot \cdot \cdot \cap Pp | Pi \in \scrP i for every i\} ;

\bullet given P \in \scrP n, P can be uniquely obtained as P1 \cap \cdot \cdot \cdot \cap Pp, where Pi \in \scrP n
i for

every i; we then define

\phi (P ) =

p\sum 
i=1

\phi i(Pi).

The term ``sum"" is justified by the fact that when \scrP 1 = \cdot \cdot \cdot = \scrP p (and thus
\phi 1, . . . , \phi p have the same domain) we obtain the standard notion of the sum of func-
tions.

The next results shows how to compute the facet-function of a sum of functions
in \scrF n(G).

Observation 3.6. With the notation of Definition 3.5, let \psi 1, . . . ,\psi p be the facet-
functions associated with \phi 1, . . . , \phi p, and let \psi be the facet-function associated with
\phi . Given F \in \scrP n - 1, let I be the set of indices i \in \{ 1, . . . , p\} such that \scrP n - 1

i contains
a (unique) element Fi with F \subseteq Fi. Then

(3.2) \psi (F ) =
\sum 
i\in I

\psi i(Fi).

Proof. Let P \prime , P \prime \prime be the two polyhedra in \scrP n such that F = P \prime \cap P \prime \prime with
P \prime \prec P \prime \prime . We have P \prime = P \prime 

1 \cap \cdot \cdot \cdot \cap P \prime 
p and P \prime \prime = P \prime \prime 

1 \cap \cdot \cdot \cdot \cap P \prime \prime 
p for a unique choice

of P \prime 
i, P

\prime \prime 
i \in \scrP n

i for every i. Then

(3.3) \psi (F ) = \phi (P \prime ) - \phi (P \prime \prime ) =

p\sum 
i=1

(\phi i(P
\prime 
i) - \phi i(P

\prime \prime 
i)).

Now fix i\in [p]. Since F \subseteq P \prime 
i\cap P \prime \prime 

i, dim(P \prime 
i\cap P \prime \prime 

i)\geq n - 1. If dim(P \prime 
i\cap P \prime \prime 

i) = n - 1,
then Fi := P \prime 

i \cap P \prime \prime 
i \in \scrP n - 1

i and \phi i(P
\prime 
i)  - \phi i(P

\prime \prime 
i) = \psi i(Fi). Furthermore, i \in I

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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because F \subseteq Fi. If, to the contrary, dim(P \prime 
i\cap P \prime \prime 

i) = n, the fact that \scrP i is a polyhedral
complex implies that P \prime 

i = P \prime \prime 
i, and thus \phi i(P

\prime 
i) - \phi i(P

\prime \prime 
i) = 0. Moreover, in this

case i /\in I: this is because P \prime \cup P \prime \prime \subseteq P \prime 
i, which implies that the relative interior of

F is contained in the relative interior of P \prime 
i. With these observations, from (3.3) we

obtain (3.2).

Definition 3.7. Fix \phi \in \scrF n(G), with associated polyhedral complex \scrP . Let H be
a hyperplane in \BbbR n, and let H \prime ,H \prime \prime be the closed half-spaces delimited by H. Define
the polyhedral complex

\widehat \scrP = \{ P \cap H | P \in \scrP \} \cup \{ P \cap H \prime | P \in \scrP \} \cup \{ P \cap H \prime \prime | P \in \scrP \} .

The refinement of \phi with respect to H is the function \widehat \phi \in \scrF n(G) with associated
polyhedral complex \widehat \scrP defined as follows: given \widehat P \in \widehat \scrP n, \widehat \phi ( \widehat P ) := \phi (P ), where P is the
unique polyhedron in \scrP that contains \widehat P .

The next results shows how to compute the facet-function of a refinement.

Observation 3.8. With the notations of Definition 3.7, let \psi be the facet-function
associated with \phi . Then, the facet-function \widehat \psi associated with \widehat \phi is given by

\widehat \psi ( \widehat F ) =\Biggl\{ 
\psi (F ) if there exists a (unique) F \in \scrP n - 1 containing \widehat F ,
0 otherwise

for every \widehat F \in \widehat \scrP n - 1.

Proof. Let \widehat P \prime , \widehat P \prime \prime be the polyhedra in \widehat \scrP n such that \widehat F = \widehat P \prime \cap \widehat P \prime \prime with \widehat P \prime \prec \widehat P \prime \prime .
Further, let P \prime , P \prime \prime be the unique polyhedra in \scrP n that contain \widehat P \prime , \widehat P \prime \prime (respectively).
It might happen that P \prime = P \prime \prime .

If there is F \in \scrP n - 1 containing \widehat F , then the fact that \scrP is a polyhedral complex
implies that F = P \prime \cap P \prime \prime . Note that P \prime \not = P \prime \prime and P \prime \prec P \prime \prime in this case. Thus\widehat \psi ( \widehat F ) = \widehat \phi ( \widehat P \prime ) - \widehat \phi ( \widehat P \prime \prime ) = \phi (P \prime ) - \phi (P \prime \prime ) =\psi (F ).

Assume now that no element of \scrP n - 1 contains \widehat F . Then there exists P \in \scrP n

such that \widehat F = P \cap H and H intersects the interior of P . Note that P = P \prime = P \prime \prime 

in this case. Then \widehat P \prime = P \cap H \prime and \widehat P \prime \prime = P \cap H \prime \prime (or vice versa). It follows that\widehat \psi ( \widehat F ) = \widehat \phi ( \widehat P \prime ) - \widehat \phi ( \widehat P \prime \prime ) = \phi (P ) - \phi (P ) = 0.

We now prove that the operations of sum and refinement commute: the refinement
of a sum is the sum of the refinements.

Observation 3.9. Let p functions \phi 1, . . . , \phi p \in \scrF n(G) with associated polyhedral
complexes \scrP 1, . . . ,\scrP p, be given. Define \phi := \phi 1 + \cdot \cdot \cdot + \phi p. Let H be a hyperplane in

\BbbR n, and let H \prime ,H \prime \prime be the closed half-spaces delimited by H. Then \widehat \phi = \widehat \phi 1 + \cdot \cdot \cdot + \widehat \phi p.
Proof. Define \widetilde \phi := \widehat \phi 1 + \cdot \cdot \cdot + \widehat \phi p. It can be verified that \widehat \phi and \widetilde \phi are defined on

the same poyhedral complex, which we denote by \widehat P . We now fix \widehat P \in \widehat \scrP n and show
that \widehat \phi ( \widehat P ) = \widetilde \phi ( \widehat P ).

Since \widehat P \in \widehat \scrP n, it is n-dimensional and either contained in H \prime or H \prime \prime . Since
both cases are symmetric, let us focus on \widehat P \subseteq H \prime . This means, we can write it as\widehat P = P1 \cap \cdot \cdot \cdot \cap Pp \cap H \prime , where Pi \in \scrP n

i for every i. Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\widehat \phi ( \widehat P ) = \phi (P1 \cap \cdot \cdot \cdot \cap Pp) =

p\sum 
i=1

\phi i(Pi) =

p\sum 
i=1

\widehat \phi i(Pi \cap H \prime ) = \widetilde \phi (P1 \cap \cdot \cdot \cdot \cap Pp \cap H \prime ) = \widetilde \phi (P ),
where the first and third equations follow from the definition of refinement, while the
second and fourth equations follow from the definition of the sum.

The lineality space of a (nonempty) polyhedron P = \{ x\in \BbbR n | Ax\leq b\} is the null
space of the constraint matrix A. In other words, it is the set of vectors y \in \BbbR n such
that for every x \in P the whole line \{ x+ \lambda y | \lambda \in \BbbR \} is a subset of P . We say that
the lineality space of P is trivial if it contains only the zero vector, and nontrivial
otherwise.

Given a polyhedron P , it is well known that all nonempty faces of P share the
same lineality space. Therefore, given a polyhedral complex \scrP that covers \BbbR n, all
the nonempty polyhedra in \scrP share the same lineality space L. We will call L the
lineality space of \scrP .

Lemma 3.10. Given an abelian group (G,+), pick \phi 1, . . . , \phi p \in \scrF n(G) with as-
sociated polyhedral complexes \scrP 1, . . . ,\scrP p. Assume that for every i \in [p] the lineality
space of \scrP i is nontrivial. Define \phi := \phi 1 + \cdot \cdot \cdot + \phi p, \scrP as the underlying polyhedral
complex, and \psi as the facet-function of \phi . Then for every hyperplane H \subseteq \BbbR n, the set

S :=
\bigcup \bigl\{ 

F \in \scrP n - 1 | F \subseteq H, \psi (F ) \not = 0
\bigr\} 

is either empty or contains a line.

Proof. The proof is by induction on n. For n= 1, the assumptions imply that all
\scrP i are equal to \scrP , and each of these polyhedral complexes has \BbbR as its only nonempty
face. Since \scrP n - 1 is empty, no hyperplane H such that S \not = \emptyset can exist.

Now fix n \geq 2. Assume by contradiction that there exists a hyperplane H such
that S is nonempty and contains no line. Let \widehat \phi be the refinement of \phi with respect to
H, \widehat \scrP be the underlying polyhedral complex, and \widehat \psi be the associated facet-function.
Further, we define \scrQ := \{ P \cap H | P \in \widehat \scrP \} , which is a polyhedral complex that covers
H. Note that if H is identified with \BbbR n - 1 then we can think of \scrQ as a polyhedral
complex that covers \BbbR n - 1, and the restriction of \widehat \psi to \scrQ n - 1, which we denote by \phi \prime ,
can be seen as a function in \scrF n - 1(G). We will prove that \phi \prime does not satisfy the
lemma, contradicting the inductive hypothesis.

Since \phi = \phi 1 + \cdot \cdot \cdot + \phi p, by Observation 3.9 we have \widehat \phi = \widehat \phi 1 + \cdot \cdot \cdot + \widehat \phi p. Note that

for every i \in [p] the hyperplane H is covered by the elements of \widehat \scrP n - 1. This implies
that for every \widehat F \in \widehat \scrP n - 1 and i \in [p] there exists \widehat Fi \in \widehat \scrP n - 1

i such that \widehat F \subseteq \widehat Fi. Then,

by Observation 3.6, \widehat \psi ( \widehat F ) = \widehat \psi 1( \widehat F1) + \cdot \cdot \cdot + \widehat \psi p( \widehat Fp).

Now, additionally suppose that \widehat F is contained in H, that is, \widehat F \in \scrQ n - 1. Let i\in [p]
be such that the lineality space of \scrP i is not a subset of the linear space parallel to
H. Then no element of \scrP n - 1

i contains \widehat Fi. By Observation 3.8, \widehat \psi i( \widehat Fi) = 0. We then
conclude that

\widehat \psi ( \widehat F ) =\sum 
i\in J

\widehat \psi i( \widehat Fi) for every \widehat F \in \scrQ n - 1,

where J is the set of indices i such that the lineality space of \scrP i is a subset of the
linear space parallel to H. This means that

\phi \prime =
\sum 
i\in J

\phi \prime i,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
23

 to
 8

6.
13

8.
23

6.
62

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1016 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

where \phi \prime i is the restriction of \widehat \psi i to \scrQ n - 1
i with \scrQ i := \{ P \cap H | P \in \widehat \scrP i\} . Note that

for every i \in J the lineality space of \scrQ i is clearly nontrivial, as it coincides with the
lineality space of \scrP i.

Now pick any \widehat F \in \scrQ n - 1. Note that if there exists F \in \scrP n - 1 such that \widehat F \subseteq F ,
then \widehat F = F . It then follows from Observation 3.8 that\bigcup \Bigl\{ \widehat F \in \scrQ n - 1

\bigm| \bigm| \bigm| \widehat \psi ( \widehat F ) \not = 0
\Bigr\} 
= S.

In other words,

(3.4)
\bigcup \bigl\{ 

F \in \scrQ n - 1
\bigm| \bigm| \phi \prime (F ) \not = 0

\bigr\} 
= S.

Since S \not =H (as S contains no line), there exists a polyhedron F \in \scrQ n - 1 such that
F \subseteq S and F has a facet F0 which does not belong to any other polyhedron in \scrQ n - 1

contained in S. Then the facet-function \psi \prime associated with \phi \prime satisfies \psi \prime (F0) \not = 0.
Let H \prime be the (n - 2)-dimensional affine space containing F0. Then the set

S\prime :=
\bigcup \bigl\{ 

F \in \scrQ n - 2
\bigm| \bigm| F \subseteq H \prime , \psi \prime (F ) \not = 0

\bigr\} 
is nonempty, as F0 \subseteq S\prime . Furthermore, we claim that S\prime contains no line. To see why
this is true, take any F \in \scrQ n - 2 such that F \subseteq H \prime and \psi \prime (F ) \not = 0, and let F \prime , F \prime \prime be
the two polyhedra in \scrQ n - 1 having F as facet. Then \phi \prime (F \prime ) \not = \phi \prime (F \prime \prime ), and thus at
least one of these values (say \phi \prime (F \prime )) is nonzero. Then, by (3.4), F \prime \subseteq S, and thus
also F \subseteq S. This shows that S\prime \subseteq S and therefore S\prime contains no line.

We have shown that \phi \prime does not satisfy the lemma. This contradicts the inductive
assumption that the lemma holds in dimension n - 1.

Finally, we can use this lemma to prove Proposition 3.2.

Proof of Proposition 3.2. Assume for the sake of contradiction that

f0(x) =

p\sum 
i=1

\lambda imax\{ \ell i1(x), . . . , \ell in(x)\} for every x\in \BbbR n,

where p \in \BbbN , \lambda 1, . . . , \lambda p \in \BbbR and \ell ij : \BbbR n \rightarrow \BbbR is an affine linear function for every
i\in [p] and j \in [n]. Define fi(x) := \lambda imax\{ \ell i1(x), . . . , \ell in(x)\} for every i\in [p], which is
a CPWL function.

Fix any i\in [p] such that \lambda i \geq 0. Then fi is convex. Note that its epigraph

Ei := \{ (x, z)\in \BbbR n \times \BbbR | z \geq \ell ij(x) for j \in [n]\} 

is a polyhedron in \BbbR n+1 defined by n inequalities, and thus has nontrivial lineality
space. Furthermore, no line orthogonal to the x-space is contained in Ei. Since
the underlying polyhedral complex \scrP i of fi consists of the orthogonal projections of
the faces of Ei (excluding Ei itself) onto the x-space, this implies that \scrP i has also
nontrivial lineality space. (More precisely, the lineality space of \scrP i is the projection
of the lineality space of Ei.)

If \lambda i < 0, then fi is concave. By arguing as above on the convex function  - fi,
one obtains that the underlying polyhedral complex \scrP i again has nontrivial lineality
space. Thus this property holds for every i\in [p].

The set of affine linear functions \BbbR n \rightarrow \BbbR forms an abelian group (with respect to
the standard operation of sum of functions), which we denote by (G,+). For every
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1017

i\in [p]0, let \phi i be the function in \scrF n(G) with underlying polyhedral complex \scrP i defined
as follows: for every P \in \scrP n

i , \phi i(P ) is the affine linear function that coincides with fi
over P . Define \phi := \phi 1 + \cdot \cdot \cdot + \phi p and let \scrP be the underlying polyhedral complex.

Note that for every P \in \scrP n, \phi (P ) is precisely the affine linear function that
coincides with f0 within P . However, \scrP may not coincide with \scrP 0, as there might
exist P \prime , P \prime \prime \in \scrP d sharing a facet such that \phi (P \prime ) = \phi (P \prime \prime ); when this happens, f0
is affine linear over P \prime \cup P \prime \prime and therefore P \prime and P \prime \prime are merged together in \scrP 0.
Nonetheless, \scrP is a refinement of \scrP 0, i.e., for every P \in \scrP n

0 there exist P1, . . . , Pk \in \scrP n

(for some k\geq 1) such that P = P1 \cup \cdot \cdot \cdot \cup Pk. Moreover, \phi 0(P ) = \phi (P1) = \cdot \cdot \cdot = \phi (Pk).
Denoting by \psi the facet-function associated with \phi , this implies for a facet F \in \scrP n - 1

that \psi (F ) = 0 if and only if F is not a subset of any facet F \prime \in \scrP n - 1
0 .

Let H be a hyperplane as in the statement of the proposition. The above discus-
sion shows that

T =
\bigcup \bigl\{ 

F \in \scrP n - 1
0

\bigm| \bigm| F \subseteq H
\bigr\} 
=
\bigcup \bigl\{ 

F \in \scrP n - 1
\bigm| \bigm| F \subseteq H, \psi (F ) \not = 0

\bigr\} 
.

Using S := T , we obtain a contradiction to Lemma 3.10.

4. A width bound for NNs with small depth. While the proof of Theorem
1.1 by Arora et al. [6] shows that

CPWLn =ReLUn(\lceil log2(n+ 1)\rceil ),

it does not provide any bound on the width of the NN required to represent any
particular CPWL function. The purpose of this section is to prove that for fixed
dimension n, the required width for exact, depth-minimal representation of a CPWL
function can be polynomially bounded in the number p of affine pieces; specifically by
p\scrO (n2). This improves previous bounds by He et al. [35] and is closely related to works
that bound the number of linear pieces of an NN as a function of the size [55, 56,
60, 62]. It can also be seen as a counterpart, in the context of exact representations,
to quantitative universal approximation theorems that bound the number of neurons
required to achieve a certain approximation guarantee; see, e.g., [8, 9, 53, 54, 61].

4.1. The convex case. We first derive our result for the case of convex CPWL
functions and then use this to also prove the general nonconvex case. Our width
bound is a consequence of the following theorem about convex CPWL functions, for
which we are going to provide a geometric proof later.

Theorem 4.1. Let f(x) = max\{ aTi x+ bi | i \in [p]\} be a convex CPWL function
with p pieces defined on \BbbR n. Then f can be written as

f(x) =
\sum 

S\subseteq [p],
| S| \leq n+1

cS max\{ aTi x+ bi | i\in S\} 

with coefficients cS \in \BbbZ .

For the convex case, this yields a stronger version of Theorem 1.3, stating that
any (not necessarily convex) CPWL function can be written as a linear combination of
(n+1)-term maxima. Theorem 4.1 is stronger in the sense that it guarantees that all
pieces of the (n+1)-term maxima must be pieces of the original function. This makes
it possible to bound the total number of these (n+ 1)-term maxima and, therefore,
the size of an NN representing f , as we will see in the proof of the following theorem.
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1018 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

Theorem 4.2. Let f :\BbbR n \rightarrow \BbbR be a convex CPWL function with p affine pieces.
Then f can be represented by an ReLU NN with depth \lceil log2(n + 1)\rceil + 1 and width
\scrO (pn+1).

Proof. Using the representation of Theorem 4.1, we can construct an NN comput-
ing f by computing all the (n+1)-term max functions in parallel with the construction
of Lemma 1.2 (similarly to the proof by Arora et al. [6] to show Theorem 1.1). This
results in an NN with the claimed depth. Moreover, the width is at most a constant
times the number of these (n+1)-term max functions. This number can be bounded
in terms of the number of possible subsets S \subseteq [p] with | S| \leq n+ 1, which is at most
pn+1.

Before we present the proof of Theorem 4.1, we show how we can generalize its
consequences to the nonconvex case.

4.2. The general (nonconvex) case. It is a well-known fact that every CPWL
function can be expressed as a difference of two convex CPWL functions; see, e.g.,
[74, Theorem 1]. This allows us to derive the general case from the convex case. What
we need, however, is to bound the number of affine pieces of the two convex CPWL
functions in terms of the number of pieces of the original function. Therefore, we
consider a specific decomposition for which such bounds can easily be achieved.

Proposition 4.3. Let f : \BbbR n \rightarrow \BbbR be a CPWL function with p affine pieces.
Then, one can write f as f = g - h, where both g and h are convex CPWL functions
with at most p2n+1 pieces.

Proof. Suppose the p affine pieces of f are given by x \mapsto \rightarrow aTi x+ bi, i \in [p]. Define
the function h(x) :=

\sum 
1\leq i<j\leq pmax\{ aTi x + bi, a

T
j x + bj\} and let g := f + h. Then,

obviously, f = g - h. It remains to show that both g and h are convex CPWL functions
with at most p2n+1 pieces.

The convexity of h is clear by definition. Consider the
\bigl( 
p
2

\bigr) 
= p(p - 1)

2 < p2 hyper-
planes given by aTi x + bi = aTj x + bj , 1 \leq i < j \leq p. They divide \BbbR n into at most\bigl( 
p2

n

\bigr) 
+
\bigl( 

p2

n - 1

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
p2

0

\bigr) 
\leq p2n regions (compare [20, Theorem 1.3]) in each of which

h is affine. In particular, h has at most p2n \leq p2n+1 pieces.
Next, we show that g = f + h is convex. Intuitively, this holds because each

possible breaking hyperplane of f is made convex by adding h. To make this formal,
note that by the definition of convexity, it suffices to show that g is convex along each
affine line. For this purpose, consider an arbitrary line x(t) = ta+ b, t \in \BbbR , given by
a \in \BbbR n and b \in \BbbR . Let \~f(t) := f(x(t)), \~g(t) := g(x(t)), and \~h(t) := h(x(t)). We need
to show that \~g : \BbbR \rightarrow \BbbR is a convex function. Observe that \~f , \~g, and \~h are clearly
one-dimensional CPWL functions with the property \~g = \~f + \~h. Hence, it suffices
to show that \~g is locally convex around each of its breakpoints. Let t \in \BbbR be an
arbitrary breakpoint of \~g. If \~f is already locally convex around t, then the same holds
for \~g as well since \~h inherits convexity from h. Now suppose that t is a nonconvex
breakpoint of \~f . Then there exist two distinct pieces of f , indexed by i, j \in [p] with
i \not = j, such that \~f(t\prime ) =min\{ aTi x(t\prime ) + bi, a

T
j x(t

\prime ) + bj\} for all t\prime sufficiently close to t.

By construction, \~h(t\prime ) contains the summand max\{ aTi x(t\prime ) + bi, a
T
j x(t

\prime ) + bj\} . Thus,

adding this summand to \~f linearizes the nonconvex breakpoint of \~f , while adding all
the other summands preserves convexity. In total, \~g is locally convex around t, which
finishes the proof that g is a convex function.

Finally, observe that pieces of g = f + h are always intersections of pieces of f
and h, for which we have only p \cdot p2n = p2n+1 possibilities.
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1019

Having this, we may conclude the following.

Theorem 1.9. Let f : \BbbR n \rightarrow \BbbR be a CPWL function with p affine pieces.
Then f can be represented by an ReLU NN with depth \lceil log2(n + 1)\rceil + 1 and width
\scrO (p2n

2+3n+1).

Proof. Consider the decomposition f = g - h from Proposition 4.3. Using Theorem
4.2, we obtain that both g and h can be represented with the required depth \lceil log2(n+
1)\rceil + 1 and with width \scrO ((p2n+1)n+1) = \scrO (p2n

2+3n+1). Thus, the same holds true
for f .

4.3. Extended Newton polyhedra of convex CPWL functions. For our
proof of Theorem 4.1, we use a correspondence of convex CPWL functions with certain
polyhedra, which are known as (extended) Newton polyhedra in tropical geometry
[50]. These relations between tropical geometry and NNs have previously been applied
to investigate expressivity of NNs; compare our references in subsection 1.5.

In order to formalize this correspondence, let CCPWLn \subseteq CPWLn be the set
of convex CPWL functions of type \BbbR n \rightarrow \BbbR . For f(x) = max\{ aTi x + bi | i \in [p]\} in
CCPWLn, we define its so-called extended Newton polyhedron to be

\scrN (f) := conv(\{ (aTi , bi)T \in \BbbR n \times \BbbR | i\in [p]\} ) + cone(\{  - en+1\} )\subseteq \BbbR n+1,

where the ``+"" stands for Minkowski addition. We denote the set of all possible ex-
tended Newton polyhedra in \BbbR n+1 as Newtn. That is, Newtn is the set of (unbounded)
polyhedra in \BbbR n+1 that emerge from a polytope by adding the negative of the (n+1)st
unit vector  - en+1 as an extreme ray. Hence, a set P \subseteq \BbbR n+1 is an element of Newtn
if and only if P can be written as

P = conv(\{ (aTi , bi)T \in \BbbR n \times \BbbR | i\in [p]\} ) + cone(\{  - en+1\} ).

Conversely, for a polyhedron P \in Newtn of this form, let \scrF (P ) \in CCPWLn be the
function defined by \scrF (P )(x) =max\{ aTi x+ bi | i\in [p]\} .

There is an intuitive way of thinking about the extended Newton polyhedron P of
a convex CPWL function f : it consists of all hyperplane coefficients (aT , b)T \in \BbbR n\times \BbbR 
such that aTx+ b\leq f(x) for all x \in \BbbR n. This also explains why we add the extreme
ray  - en+1: decreasing b obviously maintains the property of aTx+ b being a lower
bound on the function f . Hence, if a point (aT , b)T belongs to the extended Newton
polyhedron P , then also all points (aT , b\prime )T with b\prime < b should belong to it. Thus,
 - en+1 should be contained in the recession cone of P .

In fact, there is a one-to-one correspondence between elements of CCPWLn and
Newtn, which is nicely compatible with some (functional and polyhedral) operations.
This correspondence has been studied before in tropical geometry [42, 50] and convex
geometry2 [40], as well as in NN literature [2, 15, 55, 77]. We summarize the key
findings about this correspondence relevant to our work in the following proposition.

Proposition 4.4. Let n\in \BbbN and f1, f2 \in CCPWLn. Then it holds that
(i) the functions \scrN : CCPWLn \rightarrow Newtn and \scrF : Newtn \rightarrow CCPWLn are well-

defined, that is, their output is independent of the representation of the input
by pieces or vertices, respectively;

(ii) \scrN and \scrF are bijections and inverse to each other;

2\scrN (f) is the negative of the epigraph of the convex conjugate of f .
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1020 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

(iii) \scrN (max\{ f1, f2\} ) = conv(\scrN (f1),\scrN (f2)) := conv(\scrN (f1)\cup \scrN (f2));
(iv) \scrN (f1+f2) =\scrN (f1)+\scrN (f2), where the + on the right-hand side is Minkowski

addition.

An algebraic way of phrasing this proposition is as follows: \scrN and \scrF are isomor-
phisms between the semirings (CCPWLn,max,+) and (Newtn, conv,+).

4.4. Proof of Theorem 4.1. The rough idea to prove Theorem 4.1 is as follows.
Suppose we have a p-term max function f with p \geq n + 2. By Proposition 4.4,
f corresponds to a polyhedron P \in Newtn with at least n+ 2 vertices. Applying a
classical result from discrete geometry known as Radon's theorem allows us to carefully
decompose P into a ``signed""3 Minkowski sum of polyhedra in Newtn whose vertices
are subsets of at most p - 1 out of the p vertices of P . Translating this back into the
world of CPWL functions by Proposition 4.4 yields that f can be written as a linear
combination of p\prime -term maxima with p\prime < p, where each of them involves a subset
of the p affine terms of f . We can then obtain Theorem 4.1 by iterating until every
occurring maximum expression involves at most n+ 1 terms.

We start with a proposition that will be useful for our proof of Theorem 4.1.
Although its statement is wellknown in the discrete geometry community, we include
a proof for the sake of completeness. To show the proposition, we make use of Radon's
theorem (compare [20, Theorem 4.1]), stating that any set of at least n+2 points in \BbbR n

can be partitioned into two nonempty subsets such that their convex hulls intersect.

Proposition 4.5. Given p > n+ 1 vectors zi = (aTi , bi)
T \in \BbbR n+1, i \in [p], there

exists a nonempty subset U \subsetneq [p] featuring the following property: there is no c\in \BbbR n+1

with cn+1 \geq 0 and \gamma \in \BbbR such that

cT zi >\gamma for all i\in U , and

cT zi \leq \gamma for all i\in [p] \setminus U .
(4.1)

Proof. Radon's theorem applied to the at least n+ 2 vectors ai, i \in [p], yields a
nonempty subset U \subsetneq [p] and coefficients \lambda i \in [0,1] with

\sum 
i\in U \lambda i =

\sum 
i\in [p]\setminus U \lambda i = 1

such that
\sum 

i\in U \lambda iai =
\sum 

i\in [p]\setminus U \lambda iai. Suppose that
\sum 

i\in U \lambda ibi \leq 
\sum 

i\in [p]\setminus U \lambda ibi without
loss of generality (otherwise exchange the roles of U and [p] \setminus U).

For any c and \gamma that satisfy (4.1) and cn+1 \geq 0 it follows that

\gamma < cT
\sum 
i\in U

\lambda izi \leq cT
\sum 

i\in [p]\setminus U

\lambda izi \leq \gamma ,

proving that no such c and \gamma can exist.

The following proposition is a crucial step in order to show that any convex CPWL
function with p > n+ 1 pieces can be expressed as an integer linear combination of
convex CPWL functions with at most p - 1 pieces.

Proposition 4.6. Let f(x) =max\{ aTi x+bi | i\in [p]\} be a convex CPWL function
defined on \BbbR n with p > n+ 1. Then there exist a subset U \subseteq [p] such that

(4.2)
\sum 

W\subseteq U,
| W | even

max\{ aTi x+ bi | i\in [p] \setminus W\} =
\sum 

W\subseteq U,
| W | odd

max\{ aTi x+ bi | i\in [p] \setminus W\} .

3Some polyhedra may occur with ``negative"" coefficents in that sum, meaning that they are
actually added to P instead of the other polyhedra. The corresponding CPWL functions will then
have negative coefficients in the linear combination representing f .
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1021

Proof. Consider the p > n+ 1 vectors zi := (aTi , bi)
T \in \BbbR n+1, i \in [p]. Choose U

according to Proposition 4.5. We show that this choice of U guarantees (4.2).
For W \subseteq U , let fW (x) = max\{ aTi x+ bi | i \in [p] \setminus W\} and consider its extended

Newton polyhedron PW = \scrN (fW ) = conv(\{ zi | i \in [p] \setminus W\} ) + cone(\{  - en+1\} ). By
Proposition 4.4, (4.2) is equivalent to

Peven :=
\sum 

W\subseteq U,
| W | even

PW =
\sum 

W\subseteq U,
| W | odd

PW =: Podd,

where the sums are Minkowski sums.
We show this equation by showing that for all vectors c\in \BbbR n+1 it holds that

(4.3) max\{ cTx | x\in Peven\} =max\{ cTx | x\in Podd\} .

Let c \in \BbbR n+1 be an arbitrary vector. If cn+1 < 0, both sides of (4.3) are infinite.
Hence, from now on, assume that cn+1 \geq 0. Then, both sides of (4.3) are finite since
 - en+1 is the only extreme ray of all involved polyhedra.

Due to our choice of U according to Proposition 4.5, there exists an index u \in U
such that

(4.4) cT zu \leq max
i\in [p]\setminus U

cT zi.

We define a bijection \varphi u between the even and the odd subsets of U as follows:

\varphi u(W ) :=

\biggl\{ 
W \cup \{ u\} if u /\in W,
W \setminus \{ u\} if u\in W.

That is, \varphi u changes the parity of W by adding or removing u. Considering the
corresponding polyhedra PW and P\varphi u(W ), this means that \varphi u adds or removes the
extreme point zu to or from PW . Due to (4.4) this does not change the optimal value
of maximizing in the c-direction over the polyhedra, that is,

max\{ cTx | x\in PW \} =max\{ cTx | x\in P\varphi u(W )\} .

Hence, we may conclude

max\{ cTx | x\in Peven\} =
\sum 

W\subseteq U,
| W | even

max\{ cTx | x\in PW \} 

=
\sum 

W\subseteq U,
| W | even

max\{ cTx | x\in P\varphi u(W )\} 

=
\sum 

W\subseteq U,
| W | odd

max\{ cTx | x\in PW \} 

=max\{ cTx | x\in Podd\} ,

which proves (4.3). Thus, the claim follows.

With the help of this result, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Let f(x) = max\{ aTi x + bi | i \in [p]\} be a convex CPWL
function defined on \BbbR n. Having a closer look at the statement of Proposition 4.6,
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D
ow

nl
oa

de
d 

07
/2

5/
23

 to
 8

6.
13

8.
23

6.
62

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1022 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

observe that only one term on the left-hand side of (4.2) contains all p affine combi-
nations aTi x+ bi. Putting all other maximum terms on the other side, we may write
f as an integer linear combination of maxima of at most p - 1 summands. Repeating
this procedure until we have eliminated all maximum terms with more than n + 1
summands yields the desired representation.

4.5. Potential approaches to show lower bounds on the width. In light
of the upper width bounds shown in this section, a natural question to ask is whether
meaningful lower bounds can also be achieved. This would mean constructing a family
of CPWL functions with p pieces defined on \BbbR n (with different values of p and n), for
which we can prove that a large width is required to represent these functions with
NNs of depth \lceil log2(n+ 1)\rceil + 1.

A trivial and not very satisfying answer follows, e.g., from [62] or [68]: for fixed
input dimension n, they show that a function computed by an NN with k hidden
layers and width w has at most \scrO (wkn) pieces. For our setting, this means that an
NN with logarithmic depth needs a width of at least \scrO (p1/(n logn)) to represent a
function with p pieces. This is, of course, very far away from our upper bounds.

Similar upper bounds on the number of pieces have been proven by many other
authors and are often used to show depth-width trade-offs [6, 55, 56, 60, 71]. However,
there is a good reason why all these results only give rise to very trivial lower bounds
for our setting: the focus is always on functions with considerably many pieces, which
then, consequently, need many neurons to be represented (with small depth). How-
ever, since the lower bounds we strive for depend on the number of pieces, we would
need to construct a family of functions with comparably few pieces that still need a
lot of neurons to be represented. In general, it seems to be a tough task to argue why
such functions should exist.

A different approach could leverage methods from complexity theory, in particu-
lar, from circuit complexity. NNs are basically arithmetic circuits with very special
operations allowed. In fact, they can be seen as a tropical variant of arithmetic cir-
cuits. Showing circuit lower bounds is a notoriously difficult task in complexity theory,
but maybe some conditional result (based on common conjectures similar to P \not = NP)
could be established.

We think that the question of whether our bounds are tight, or whether at least
some nontrivial lower bounds on the width for NNs with logarithmic depth can be
shown, is an exciting question for further research.

5. Understanding expressivity via Newton polytopes. In section 2, we
presented an MIP approach towards proving that deep NNs can strictly represent
more functions than shallow ones. However, even if we could prove that it is indeed
enough to consider H-conforming NNs, this approach would not generalize to deeper
networks due to computational limitations. Therefore, different ideas are needed
to prove Conjecture 1.4 in its full generality. In this section, we point out that
Newton polytopes of convex CPWL functions (similar to what we used in the previous
section) could also be a way of proving Conjecture 1.4. Using a homogenized version
of Proposition 4.4, we provide an equivalent formulation of Conjecture 1.4 that is
completely phrased in the language of discrete geometry.

Recall that, by Proposition 2.3, we may restrict ourselves to NNs without bi-
ases. In particular, all CPWL functions represented by such NNs, or parts of it,
are positively homogeneous. For the associated extended Newton polyhedra (com-
pare Proposition 4.4), this has the following consequence: all vertices (a, b) \in \BbbR n \times \BbbR 
lie in the hyperplane b = 0, that is, their (n + 1)st coordinate is 0. Therefore, the
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1023

extended Newton polyhedron of a positively homogeneous, convex CPWL function
f(x) = max\{ aTi x | i \in [p]\} is completely characterized by the so-called Newton poly-
tope, that is, the polytope conv(\{ ai | i\in [p]\} )\subseteq \BbbR n.

To make this formal, let CCPWLn be the set of all positively homogeneous, convex
CPWL functions of type \BbbR n \rightarrow \BbbR and let Newtn be the set of all convex polytopes in
\BbbR n. Moreover, for f(x) =max\{ aTi x | i\in [p]\} in CCPWLn, let

\scrN (f) := conv(\{ ai | i\in [p]\} )\in Newtn

be the associated Newton polytope of f and for P = conv(\{ ai | i\in [p]\} )\in Newtn let

\scrF (P )(x) =max\{ aTi x | i\in [p]\} 

be the so-called associated support function [39] of P in CCPWLn. With this notation,
we obtain the following variant of Proposition 4.4.

Proposition 5.1. Let n\in \BbbN and f1, f2 \in CCPWLn. Then it holds that
(i) the functions \scrN : CCPWLn \rightarrow Newtn and \scrF : Newtn \rightarrow CCPWLn are well-

defined, that is, their output is independent of the representation of the input
by pieces or vertices, respectively;

(ii) \scrN and \scrF are bijections and inverse to each other;
(iii) \scrN (max\{ f1, f2\} ) = conv(\scrN (f1),\scrN (f2)) := conv(\scrN (f1)\cup \scrN (f2));
(iv) \scrN (f1+f2) =\scrN (f1)+\scrN (f2), where the + on the right-hand side is Minkowski

addition.

In other words, \scrN and \scrF are isomorphisms between the semirings (CCPWLn,
max,+) and (Newtn, conv,+).

Next, we study which polytopes can appear as Newton polytopes of convex CPWL
functions computed by NNs with a certain depth; compare Zhang, Naitzat, and Lim
[77].

Before we apply the first ReLU activation, any function computed by an NN is
linear. Thus, the corresponding Newton polytope is a single point. Starting from
that, let us investigate a neuron in the first hidden layer. Here, the ReLU activation
function computes a maximum of a linear function and 0. Therefore, the Newton
polytope of the resulting function is the convex hull of two points, that is, a line
segment. After the first hidden layer, arbitrary many functions of this type can be
added up. For the corresponding Newton polytopes, this means that we take the
Minkowski sum of line segments, resulting in a so-called zonotope.

Now, this construction can be repeated layerwise, making use of Proposition
5.1: in each hidden layer, we can compute the maximum of two functions computed
by the previous layers, which translates to obtaining the new Newton polytope as
a convex hull of the union of the two original Newton polytopes. In addition, the
linear combinations between layers translate to scaling and taking Minkowski sums
of Newton polytopes.

This intuition motivates the following definition. Let Newt
(0)
n be the set of all

polytopes in \BbbR n that consist only of a single point. Then, for each k\geq 1, we recursively
define

Newt
(k)

n :=

\Biggl\{ 
p\sum 

i=1

conv(Pi,Qi)

\bigm| \bigm| \bigm| \bigm| Pi,Qi \in Newt
(k - 1)

n , p\in \BbbN 

\Biggr\} 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

5/
23

 to
 8

6.
13

8.
23

6.
62

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1024 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

x1

x2

y

Newt
(0)
n

points

line segments

Newt
(1)
n

zonotopes

conv(two zonotopes)

Newt
(2)
n

Fig. 5. Set of polytopes that can arise as Newton polytopes of convex CPWL functions computed
by (parts of) a 2-hidden-layer NN.

where the sum is a Minkowski sum of polytopes. A first, but not precisely accurate
interpretation is as follows: the set Newt

(k)
n contains the Newton polytopes of posi-

tively homogeneous, convex CPWL functions representable with a k-hidden-layer NN.
See Figure 5 for an illustration of the case k= 2.

Unfortunately, this interpretation is not accurate for the following reason: our
NNs are allowed to have negative weights, which cannot be fully captured by Min-
kowski sums as introduced above. Therefore, it might be possible that a k-hidden-layer
NN can compute a convex function with Newton polytope not in Newt

(k)
n . Luckily,

one can remedy this shortcoming, and even extend the interpretation to the non-
convex case, by representing the computed function as the difference of two convex
functions.

Theorem 5.2. A positively homogeneous (not necessarily convex) CPWL func-
tion can be computed by a k-hidden-layer NN if and only if it can be written as the
difference of two positively homogeneous, convex CPWL functions with Newton poly-
topes in Newt

(k)
n .

Proof. We use induction on k. For k = 0, the statement is clear since it holds
precisely for linear functions. For the induction step, suppose that, for some k \geq 1,
the equivalence is valid up to k - 1 hidden layers. We prove that it is also valid for k
hidden layers.

We need to show two directions. For the first direction, assume that f is an
arbitrary, positively homogeneous CPWL function that can be written as f = g  - h
with \scrN (g),\scrN (h) \in Newt

(k)
n . We need to show that a k-hidden-layer NN can com-

pute f . We show that this is even true for g and h and, hence, also for f . By
the definition of Newt

(k)
n , there exist a finite number p \in \BbbN and polytopes Pi,Qi \in 

Newt
(k - 1)
n , i \in [p], such that \scrN (g) =

\sum p
i=1 conv(Pi,Qi). By Proposition 5.1, we have

g =
\sum p

i=1max\{ \scrF (Pi),\scrF (Qi)\} . By induction, \scrF (Pi) and \scrF (Qi) can be computed by
NNs with k  - 1 hidden layers. Since the maximum terms can be computed with a
single hidden layer, in total a kth hidden layer is sufficient to compute g. An analo-
gous argument applies to h. Thus, f is computable with k hidden layers, completing
the first direction.

For the other direction, suppose that f is an arbitrary, positively homogeneous
CPWL function that can be computed by a k-hidden-layer NN. Let us separately
consider the nk neurons in the kth hidden layer of the NN. Let ai, i \in [nk], be the
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TOWARDS DEPTH LOWER BOUNDS FOR RELU NETWORKS 1025

weight of the connection from the ith neuron in that layer to the output. Without loss
of generality, we have ai \in \{ \pm 1\} , because otherwise we can normalize it and multiply
the weights of the incoming connections to the ith neuron with | ai| instead. Moreover,
let us assume that, by potential reordering, there is some m\leq nk such that ai = 1 for
i\leq m and ai = - 1 for i >m. With these assumptions, we can write

(5.1) f =

m\sum 
i=1

max\{ 0, fi\}  - 
nk\sum 

i=m+1

max\{ 0, fi\} ,

where each fi is computable by a (k - 1)-hidden-layer NN, namely, the subNN com-
puting the input to the ith neuron in the kth hidden layer.

By induction, we obtain fi = gi  - hi for some positively homogeneous, convex
functions gi, hi with \scrN (gi),\scrN (hi)\in Newt

(k - 1)
n . We then have

(5.2) max\{ 0, fi\} =max\{ gi, hi\}  - hi.

We define

g :=

m\sum 
i=1

max\{ gi, hi\} +
nk\sum 

i=m+1

hi

and

h :=

m\sum 
i=1

hi +

nk\sum 
i=m+1

max\{ gi, hi\} .

Note that g and h are convex by construction as a sum of convex functions and
that (5.1) and (5.2) imply f = g - h. Moreover, by Proposition 5.1,

\scrN (g) =

m\sum 
i=1

conv(\scrN (gi),\scrN (hi)) +

nk\sum 
i=m+1

conv(\scrN (hi),\scrN (hi))\in Newt(k)n

and

\scrN (h) =

m\sum 
i=1

conv(\scrN (hi),\scrN (hi)) +

nk\sum 
i=m+1

conv(\scrN (gi),\scrN (hi))\in Newt(k)n .

Hence, f can be represented as desired, completing the other direction also.

The power of Theorem 5.2 lies in the fact that it provides a purely geometric
characterization of the class ReLU(k). The classes of polytopes Newt

(k)
n are solely

defined by the two simple geometric operations Minkowski sum and convex hull of
the union. Therefore, understanding the class ReLU(k) is equivalent to understanding
what polytopes one can generate by iterative application of these geometric opera-
tions.

In particular, we can give yet another equivalent reformulation of our main conjec-
ture. To this end, let the simplex \Delta n := conv\{ 0, e1, . . . , en\} \subseteq \BbbR n denote the Newton
polytope of the function fn =max\{ 0, x1, . . . , xn\} for each n\in \BbbN .

Conjecture 5.3. For every k \in \BbbN , n= 2k, there does not exist a pair of polytopes
P,Q\in Newt

(k)
n with \Delta n +Q= P (Minkowski sum).

Theorem 5.4. Conjecture 5.3 is equivalent to Conjectures 1.4 and 1.5.
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1026 C. HERTRICH, A. BASU, M. DI SUMMA, AND M. SKUTELLA

Proof. By Proposition 1.6, it suffices to show equivalence between Conjectures
5.3 and 1.5. By Theorem 5.2, fn can be represented with k hidden layers if and only
if there are functions g and h with Newton polytopes in Newt

(k)
n satisfying fn+h= g.

By Proposition 5.1, this happens if and only if there are polytopes P,Q \in Newt
(k)
n

with \Delta n +Q= P .

It is particularly interesting to look at special cases with small k. For k= 1, the set
Newt

(1)
n is the set of all zonotopes. Hence, the (known) statement that max\{ 0, x1, x2\} 

cannot be computed with one hidden layer [57] is equivalent to the fact that the
Minkowski sum of a zonotope and a triangle can never be a zonotope.

The first open case is the case k = 2. An unconditional proof that two hidden
layers do not suffice to compute the maximum of five numbers is highly desired. In the
regime of Newton polytopes, this means to understand the class Newt

(2)
n . It consists

of finite Minkowski sums of polytopes that arise as the convex hull of the union of two
zonotopes. Hence, the major open question here is to classify this set of polytopes.

Finally, let us remark that there exists a generalization of the concept of polytopes,
known as virtual polytopes [59], that makes it possible to assign a Newton polytope to
nonconvex CPWL functions also. This makes use of the fact that every (nonconvex)
CPWL function is a difference of two convex ones. Consequently, a virtual polytope is
a formal Minkowski difference of two ordinary polytopes. Using this concept, Theorem
5.2 and Conjecture 5.3 can be phrased in a simpler way, replacing the pair of polytopes
with a single virtual polytope.

6. Future research. The most obvious and, at the same time, most exciting
open research question is to prove or disprove Conjecture 1.4 or, equivalently, Conjec-
ture 1.5 or Conjecture 5.3. The first step could be to prove that it is indeed enough
to consider H-conforming NNs. This is intuitive because every breakpoint introduced
at any place outside the hyperplanes Hij needs to be canceled out later. Therefore, it
is natural to assume that these breakpoints do not have to be introduced in the first
place. However, this intuition does not seem to be enough for a formal proof because
it could occur that additional breakpoints in intermediate steps, which are canceled
out later, also influence the behavior of the function at other places where we allow
breakpoints in the end.

Another step towards resolving our conjecture may be to find an alternative proof
of Theorem 1.7, not using H-conforming NNs. This might also be beneficial for gener-
alizing our techniques to more hidden layers, since, while theoretically possible, a di-
rect generalization of the MIP approach is infeasible due to computational limitations.
For example, it might be particularly promising to use a tropical approach as described
in section 5 and apply methods from polytope theory to prove Conjecture 5.3.

In light of our results from section 3, it would be desirable to provide a complete
characterization of the functions contained in ReLU(k). Another potential research
goal is improving our upper bounds on the width from section 4 and/or proving
matching lower bounds as discussed in subsection 4.5.

Some more interesting research directions are the following:
\bullet Establishing or strengthening our results for special classes of NNs like recur-

rent NNs (RNNs) or convolutional NNs (CNNs).
\bullet Using exact representation results to show more drastic depth-width trade-

offs compared to existing results in the literature.
\bullet Understanding how the class ReLU(k) changes when a polynomial upper

bound is imposed on the width of the NN; see related work by Vardi et al.
[73].
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\bullet Understanding which CPWL functions one can (exactly) represent with poly-
nomial size, without any restriction at all on the depth; see related work in
the context of combinatorial optimization [37, 38].
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