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Abstract. This paper extends the generalized Hausman test to detect non-
normality of the latent variable distribution in unidimensional IRT models for
binary data. To build the test, we consider the estimator obtained from the
two-parameter IRT model, that assumes normality of the latent variable, and
the estimator obtained under a semi-nonparametric framework, that allows
for a more flexible latent variable distribution. The behaviour of the test is eval-
uated through a simulation study. The results highlight the good performance
of the test in terms of both Type I error rates and power with many items and
large sample sizes.
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1 Introduction

One of the typical assumptions of latent variable models is the normal distribution
of the latent variables. As shown in Ma and Genton (2010), this assumption is not
always appropriate and misspecifying the form of the latent variable by assuming
normality can result in large biases in parameter estimates. Several methods, that
assume a different form for the latent variable, have been proposed within the gen-
eralized latent variable models (GLLVM) and Item Response Theory (IRT) frame-
work. Some examples are the semi-parametric (Ma and Genton, 2010), the empir-
ical histogram (Knott and Tzamourani, 2007), the Ramsey-curve (Woods, 2006) and
the semi-nonparametric (SNP) (Gallant and Nychka, 1987, Woods and Lin, 2009, Ir-
incheeva et al., 2012) methods.

Commonly information criteria are used to choose between a model where the
latent variables are normal and a model where they have a more complex shape
(Woods and Lin, 2009, Irincheeva et al., 2012). However, detecting non-normality of
the latent variables through a statistical test remains an open issue.

Hausman (1978) proposes a specification test to detect failure of the orthogo-
nality assumption in the regression model. The Hausman test can be applied also
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in other contexts, to detect different types of model misspecification. The idea of
the test is simple. It compares two different estimators that are consistent when the
model is correctly specified and one is also efficient. In presence of model misspeci-
fication, only the inefficient estimator is consistent. The efficiency assumption sim-
plifies the computation of the covariance matrix of the difference between the two
estimators. However, this matrix can fail to be positive definite under model mis-
specification or in presence of small sample sizes. A generalized version of the Haus-
man (GH) test has been proposed by White (1982). In this case none of the estimators
that result from different models need to be efficient and the covariance matrix in-
volved in the test is always positive definite.

As far as we know, in the IRT context the classic Hausman test has been used
only by Ranger and Much (2020) to detect misspecification of the item characteristic
functions and local dependencies among items. In generalized linear mixed mod-
els (GLMM) for clustered data, a robust version of the Hausman test, similar to the
one by White (1982), has been proposed by Bartolucci et al. (2017) when a discrete
distribution for the random effects is assumed.

The objective of this work is to extend the GH test to detect non-normality of the
latent variable distribution in unidimensional IRT models for binary data. To build
the test, we consider the estimators resulting from two different models and estima-
tion methods. The first model is the classical unidimensional IRT model for binary
data based on the normality assumption of the latent variable, where we estimate the
parameters using a maximum pairwise likelihood (PL) method. The PL method uses
information from bivariate-order margins and belongs to the family of composite
likelihood methods (Lindsay, 1988, Varin, 2008). It produces biased parameter esti-
mates when the latent variable is not normally distributed. The second model is the
unidimensional SNP-IRT model for binary data (Woods and Lin, 2009, Irincheeva
et al., 2012), and we estimate the parameters using the quasi-maximum likelihood
(ML) method. The choice of these estimators for the two models is motivated by the
following reasons. First, both methods are consistent when the latent variable is nor-
mally distributed. Moreover, the quasi-ML method for the SN PL model is consis-
tent also under different distribution assumptions of the latent variable (Gallant and
Tauchen, 1989, Irincheeva et al., 2012). These conditions on the consistency of the
parameter estimators are required to correctly apply the Generalized Hausman test
(White, 1982). Second, the maximum PL estimator is less efficient than the ML esti-
mator. This implies that, also under normality of the latent variable distribution, the
covariance matrix of the difference of the two estimators involved in the GH test is
different from zero. This allows us to avoid numerical problems in the computation
of the test.

The article is organized as follows. First, we review the classical and SNP-IRT
model for binary data. Second, we introduce the GH test to detect non-normality
of the latent variable distribution. Next, we present a Monte Carlo simulation study.
Finally, we present some concluding remarks.
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2 The classical and SNP-IRT model for binary data

Let us denote by y1, ..., yp a set of observed binary variables/items, by n the number
of individuals and by z the latent variable with density function h(z).

For the classical IRT model, the response category probability for the i -th indi-
vidual to the j -th item is modelled using a logistic model (measurement model)

P (yi j = 1|zi ) =πi j (zi ) = exp(α0 j +α1 j zi )

1+exp(α0 j +α1 j zi )
, (1)

where α0 j is the item intercept and α1 j the item slope. In this model h(z) = φ(z),
where φ(z) is the density of a standard normal.

For the SNP-IRT model, the response probability is the same as (1), where the
latent variable has a SNP parametrization

h(zi ) = P 2
L(zi )φ(zi ) PL(zi ) = ∑

0≤l≤L
ai z l

i , (2)

a0, ..., aL are the real coefficients of the polynomial PL(zi ) and L is the polynomial
degree.

In order for h(z) to be a density, the coefficients a0, ..., aL of PL(z) should be cho-
sen such that

∫
h(z)d z = 1. For this purpose, Gallant and Tauchen (1989) use a pro-

portionality constant 1/
∫

PL(z)2φ(z)d z and fix the constant term of the polynomial
equal to 1. Alternatively, Irincheeva et al. (2012) and Woods and Lin (2009) use the
parametrization proposed by Zhang and Davidian (2001), that imposes

1 =
∫

R
P 2

L(z)φ(z)d z = E {P 2
L(w)} = a′E(w̃ w̃ ′)a = a′Aa (3)

with w ∼ N (0,1), PL(w) = a′w̃ , w̃ = (1, w, w2, ..., wL). The matrix A is positive definite
by definition and A = B ′B , where B is a positive definite matrix.

If c = B a, equation (3) becomes c ′c = 1 and c = (c1, ...,cL+1)′. The elements of
c can be represented using a polar coordinate transformation as c1 = sinϕ1,c2 =
cosϕ1 sinϕ2, ...,cL = cosϕ1×cosϕL−1 sinϕL ,cL+1 = cosϕ1 cosϕ2×cosϕL−1 cosϕL , with
angles −π/2 <ϕt ≤π/2, t = 1, ...,L. The density of the latent variable in (2) can be ex-
pressed as

h(z|ϕ,L) = (a′z̃)2φ(z), (4)

where a can be obtained from c as a = B−1c, z̃ = (1, z, z2, ..., zL)′ andϕ= (ϕ1, ...,ϕL)′.
When L = 1, PL(z) = a0+a1z, a0 = sinϕ1, a1 = cosϕ1. When L = 0 the distribution

of the latent variable reduces to the normal one. In the following sections we indicate
with SN P1 the model for L = 1 and with SN P0 the model for L = 0.

2.1 Pairwise estimator for the SN P0 model

To implement the GH test, the parameters of the SN P0 model are estimated with
the pairwise method. The pairwise log-likelihood of the data, based on the bivariate
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marginal densities f (yi j , yi k ,θ), j ,k = 1, ..p and k > j , is

plSN P0 (y,θ) =
n∑

i=1

p∑
j=1

∑
k> j

ln f (yi j , yi k ,θ) =

=
n∑

i=1

p∑
j=1

∑
k> j

ln
∫ [

πi j (zi )yi j (1−πi j (zi ))1−yi j
][
πi k (zi )yi k (1−πi k (zi ))1−yi k

]
φ(zi )d zi .

(5)

The pairwise log-likelihood is maximized with respect to θ, that includes the item in-
tercepts and slopes. Under correct model specification, the maximum PL estimator
θ̃ converges in probability to the true parameter value θ0 and

θ̃
p−→ N (θ0, A−1(θ0)B(θ0)A−1(θ0)), (6)

where A(θ) = Ey

[
− ∂2plSN P0 (y,θ)

∂θ∂θ′
]

, B = var
[
∂plSN P0 (y,θ)

∂θ

]
and A(θ) ̸= B(θ) (Lindsay,

1988, Varin, 2008). These matrices can be estimated by their observed versions as

Â(θ) =−
n∑

i=1

∂2plSN P0 (yi ,θ)

∂θ∂θ′
(7)

and

B̂(θ) =
n∑

i=1

∂plSN P0 (y i ,θ)

∂θ

∂plSN P0 (y i ,θ)

∂θ′
. (8)

2.2 Quasi-ML estimator for the SN PL model

The parameters of the SN PL model, L > 0, are estimated with the quasi-ML method.
The log-likelihood of the data is

lSN PL (y,θ) =
n∑

i=1
ln f (yi ,θ) =

=
n∑

i=1
ln

∫ p∏
j=1

πi j (zi )yi j (1−πi j (zi ))1−yi j P 2
L(zi )exp

(
− 1

2
z ′

i zi

)
d zi .

(9)

The integral in the log-likelihood l (y,θ) is approximated with the Gauss-Hermite
quadrature, as in Woods and Lin (2009). The degree of the polynomial L is fixed and
is not estimated by maximum likelihood. The log-likelihood function is maximized
with respect to the unknown vector of parameter θ = (α0,α1,ϕ) as follows

(α̇0,α̇1,ϕ̂) = ar g maxθlSN PL (y,θ). (10)

For identifiability reasons, the item intercepts and slopes, that correspond to a latent
variable that has mean 0 and variance 1, are rescaled as (Irincheeva et al., 2012)

α̂0 j = α̇0 j + α̇1 j Ẽ(Z ) j = 1, ..., p (11)
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α̂1 j = α̇1 j

√
Ṽ (Z ) j = 1, ..., p, (12)

where Ẽ(Z ) and Ṽ (Z ) are found given ϕ̂ and the SNP density of z. The final quasi-
ML estimator is θ̂ = (α̂1,α̂0,ϕ̂). Under normal, multi-modal and asymmetric distri-
butions of the latent variables and if the regularity conditions A2-A6 of White (1982)
are satisfied,

θ̂
p−→ N (θ0∗, A−1(θ0∗)B(θ0∗)A−1(θ0∗)), (13)

whereθ′0∗ = (α′
00,α′

01,ϕ∗′).α00 andα01 are the true parameter values for the item in-
tercepts and slopes whileϕ∗ is the value ofϕ that minimizes the Kullback-Leibler in-
formation criterion (White, 1982, Gallant and Tauchen, 1989, Irincheeva et al., 2012).
A(θ) and B(θ) are the expected Hessian and cross-product matrices, respectively.
Their observed versions can be computed with the Delta method (Cramér, 1946) and
are defined similarly to (7) and (8), where plSN P0 (yi ,θ) is replaced by lSN PL (yi ,θ).

3 The Generalized Hausman Test

In this section we present the GH test, derived by White (1982), applied to detect
non-normality of the latent variable using the SNP-IRT model.

Let’s denote by η the sub-vector of θ′ = (α′
0,α′

1,ϕ′) that includes the item inter-
ceptsα0 and slopesα1. η has dimension 2p ×1, where p is the number of items.

Consider the maximum PL estimator θ̃SN P0 = η̃SN P0
of a classic IRT model where

the latent variable is normally distributed, that is the SN P0 model.

Consider the quasi-ML estimator θ̂
′
SN PL

= (η̂′SN PL ,ϕ̂
′
) of a SNP-IRT model with

L > 0, where the sub-vector of parameter ϕ̂ has dimension L × 1 and so θ̂SN PL has
dimension (2p+L)×1. Following White (1982), under normality of the latent variable

p
n(η̂SN PL

− η̃SN P0
)

d−→ N (0,S(η0,θ0∗)). (14)

An estimator of S(η0,θ0∗) is

Ŝ(η̃SN P0
, θ̂SN PL ) = Âηϕ(θ̂SN PL )−1B̂(θ̂SN PL )Âηϕ(θ̂SN PL )−1′ + Â(η̃SN P0

)−1B̂(η̃SN P0
)Â(η̃SN P0

)−1′−
− Âηϕ(θ̂SN PL )−1R̂(η̃SN P0

, θ̂SN PL )′ Â(η̃SN P0
)−1′ − Â(η̃SN P0

)−1R̂(η̃SN P0
, θ̂SN PL )Âηϕ(θ̂SN PL )−1′ ,

(15)

where the matrices Â(η̃SN P0
) and B̂(η̃SN P0

), defined in formulas (7) and (8), have

dimension 2p ×2p and are evaluated at η̃SN P0
. Â(θ̂SN PL ) and B̂(θ̂SN PL ) are the ob-

served Hessian and cross-product matrix of dimension (2p + L) × (2p + L) for the
SN PL model, evaluated at θ̂SN PL . The matrix Âηϕ(θ̂SN PL )−1 is obtained by deleting
the last L row from the matrix Â(θ̂SN PL )−1 and has dimension 2p × (2p +L). The ma-
trix R̂(η̃SN P0

, θ̂SN PL ) has dimension 2p × (2p +L) and can be computed as

R̂(ηSN P0
,θSN PL ) =

n∑
i=1

∂plSN P0 (y i ,η)

∂η

∂lSN PL (y i ,θ)

∂θ′
, (16)

where plSN P0 (y i ,η) is the pairwise log-likelihood for the individual i under the model
SN P0 and lSN PL (y i ,θ) is the log-likelihood for the individual i under the model SN PL .
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The matrix in (16) is evaluated at (η̃SN P0
, θ̂SN PL ). We choose the maximum PL and

the quasi-ML estimator for the two models to avoid that, under correct model spec-
ification, η̃SN P0

and η̂SN PL
converge to the same covariance matrix, producing a

Ŝ(η̃SN P0
, θ̂SN PL ) matrix in (15) with all entries close to 0.

Given the theoretical result in (14), the GH test is given by

G H = (η̂SN PL
− η̃SN P0

)′Ŝ(η̃SN P0
, θ̂SN PL )−1(η̂SN PL

− η̃SN P0
). (17)

Under normality of the latent variable, the GH test is asymptotically distributed as a
χ2

2p , where 2p are the degrees of freedom, i.e. the number of parameters in η.

However, the matrix Ŝ(η̃SN P0
, θ̂SN PL ) is often close to singularity and its inversion

in formula (17) is numerically unstable.
Given the theoretical result in (14) and the quadratic form (η̂SN PL

−η̃SN P0
)′(η̂SN PL

−
η̃SN P0

), we consider the following test statistic (Ranger and Much, 2020)

G HT = (η̂SN PL
− η̃SN P0

)′(η̂SN PL
− η̃SN P0

). (18)

Under normality of the latent variable

G HT ∼
d∑

l=1
λl z2

l , zl ∼ N (0,1), (19)

where d is the rank of S(η0,θ0∗) and λ1, ...,λd are its non-zero eigenvalues.
It is possible to approximate the distribution in (19) as follows (Welch, 1938,Yuan

and Bentler, 2010)
G HT ∼ aχ2

b . (20)

The quantity a and b are defined as

a =
∑d

l=1λ
2
l∑d

l=1λl

(21)

and

b = (
∑d

l=1λl )2∑d
l=1λ

2
l

. (22)

Since S(η0,θ0∗) can be consistently estimated by Ŝ(η̃SN P0
, θ̂SN PL ) defined in (15), a

and b can be consistently estimated substituting λ̂1, ..., λ̂d in (21) and (22), where d
is rank of Ŝ and λ̂1, ..., λ̂d are its non-zero eigenvalues.

4 Simulation Study

4.1 Simulation design

In this section we study the performance of the G HT test by a simulation study. The
estimation of the SNP-IRT model is computationally expensive. Moreover, as the de-
gree of the polynomial L increases (L > 1), the SN PL model becomes more sensitive
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to the choice of the initial values for all model parameters and the estimation results
can be less reliable. Furthermore, in the data generating models we assume the latent
variable distributed as mixtures of two normals, that can be well approximated with
L = 1, as highlighted in Irincheeva et al. (2012). Thus, to implement the G HT test,
we consider the SN P0 and the SN P1 models. The optimization of the SN P0 model
is obtained with direct maximization using the function “optim” of the software R
while, for the SN P1 model, the function “nlminb”, that makes use of the analytically
computed gradient and Hessian matrix. For the SN P1 model, initial values of the pa-
rameters α0 and α1 are the parameter estimates obtained with the SN P0 model. In
each data replication, for the ϕ1 parameter, we sample 10 initial values from a se-
quence of values equally spaced by 0.1 in the interval [−π

2 ; π2 ], i.e. the domain of ϕ1,
including the SN P0 model as a subcase. Among the estimated SN P1 models in each
data replication, we select the one that corresponds to the maximum value of the
log-likelihood function. All matrices involved in the G HT test are computed numer-
ically with the “NumDeriv” R package. Although assuming a SNP distribution for the
latent variable is more computationally demanding than assuming the normal dis-
tribution, it has the great advantage that it is very flexible and produces accurate
estimates in many situations.

We consider the following simulation conditions: number of items (p = 4,10,20)
× sample size (n = 500,1000)× test statistic (G HT ). In all the simulation scenarios,
R = 500 replications are considered and α = 0.05. Non-valid statistics, for example
negative statistics, are excluded from the analysis. The Type I error rates and power

of the G HT test are computed as p̂ =∑Nv
l=1

I (G HTl
≥c)

Nv
, where Nv is the number of valid

statistics out of the number of replications, I is an indicator function, G HTl is the
value of the G HT test statistic evaluated in the l-th replication. c is the theoretical
asymptotic critical value corresponding to the (1−α)th percentile of the aχ2

b distri-
bution for the G HT test, where a and b are computed as in (21) and (22). The confi-

dence interval (CI) of each rate p̂ is computed as p̂ ± z(1− α
2 )

√
α(1−α)

Nv
.

To evaluate the performance of the G HT test, we consider three scenarios (SC),
corresponding to three different distribution assumptions for the latent variable z in
the data generating models. The general model is

log i t (πi j ) =α0 j +α1 j zi i = 1, ...,n j = 1,2, ..., p

z ∼ h(z)
(23)

Item intercepts are randomly generated in the interval [-0.8; 1.12] while the item
slopes in the interval [0.5; 1.5].

To study the Type I error rates of the G HT test we consider the following scenario:

A z ∼ N (0,1)

To study the power of the G HT test we consider the following two scenarios:

B z ∼ 0.1N (−2,0.25)+0.9N (2,1),
where z has an overall mean equal to 1.6 and variance equal to 2.365.

C z ∼ 0.7N (−1.5,0.6)+0.3N (1.5,0.5),
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where z has an overall mean equal to -0.6 and variance equal to 2.217.
Under the distributional assumptions of the two scenarios B and C, the estimates
of the quasi-ML parameters of the SN P1 model are nearly unbiased (see the re-
sults on the bias of the parameters in scenario B reported in Irincheeva et al.,
2012) while the maximum PL parameter estimates of the SN P0 model are largely
biased with respect to the true parameter values. This should result in a good
G HT test performance in terms of power.

4.2 Results

Table 1 reports the Type I error rates, mean and standard deviation of the theoreti-
cal(T) and empirical(E) distribution of the G HT test for scenario A.

Table 1. Type I error rates, mean and standard deviation of the theoretical(T) and empirical(E)
distribution of the G HT test for scenario A, p = 4,10,20, n = 500,1000

p n Distribution Mean SD α

4 500 TD 2.01 2.00 0.050
ED 1.61 1.81 0.016

1000 TD 2.12 2.06 0.050
ED 2.54 2.93 0.086

10 500 TD 3.44 2.62 0.050
ED 2.89 2.64 0.018

1000 TD 3.21 2.54 0.050
ED 3.00 2.97 0.044

20 500 TD 3.48 2.64 0.050
ED 3.44 3.15 0.056

1000 TD 3.52 2.65 0.050
ED 3.63 3.12 0.060

Note 1: Values in boldface indicate that the nominal level α is not included in their
confidence interval

Overall, the G HT test has good performance in terms of Type I error rates when
the sample size is large and in general with many items. Moreover, the empirical dis-
tribution of the G HT test approaches the theoretical one as the number of items and
the sample size increase. Small differences can be found in terms of empirical and
theoretical standard deviations, while the means of the two distributions are very
similar under most conditions. Despite the good performance of the test with many
items and large sample size in terms of Type I error rates, we observe an inconsis-
tent pattern of results with 4 items and all sample sizes. In general, the estimation
of the model parameters and the related information matrices, on which the G HT

test is based, is less accurate on small data sets. Indeed, few items and small sample
sizes carry out less information than more items and large sample sizes. We should
consider larger sample sizes to obtain Type I error rates of the G HT test close to the
nominal level α for 4 items, while n = 1000 is sufficient for 10 items and n = 500 for
20 items.
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Table 2 presents the power of the G HT test for scenarios B and C.

Table 2. Empirical power of the G HT test for scenarios B and C, p = 4,10,20, n = 500,1000

SC p n power
B 4 500 0.53

1000 0.86
10 500 0.924

1000 0.998
20 500 0.99

1000 0.998
C 4 500 0.796

1000 0.92
10 500 1

1000 1
20 500 0.986

1000 1

The power of the G HT test is high when the sample size is large and with 10 and
20 items. Moreover, it increases with the number of items and the sample size.

5 Conclusion

In this work, we extended the GH test to detect non-normality of the latent variable
distribution in unidimensional IRT models for binary data. The GH test was obtained
as the difference between the estimators of the classic IRT model for binary data and
the SNP-IRT model, that allows for a more flexible shape of the latent variable distri-
bution. To avoid the inversion of the covariance matrix of the difference between the
parameter estimates, we considered an alternative form of this test, that we called
G HT test, and we evaluated its performance by means of a small simulation study.

The simulation study highlights that the G HT test has good performance in terms
of Type I error rates with many items and in particular for large sample sizes. For
what concerns the power, the G HT test has good performance with many items and
large sample sizes. However, these are preliminary results. Further studies should in-
clude other distributions of the latent variables. Indeed, it would be interesting to
study the behaviour of this test when the SNP approach performs less well in recov-
ering the distribution of the latent variable, for example when it is skewed (Monroe,
2014). Moreover, the G HT test presented in this work could be applied to IRT models
for polytomous data, assuming the SNP representation of the latent variable distri-
bution. Since these models involve a higher number of parameters, the additional
issue, compared to binary data, could be the computational cost of the estimation
process (Bartholomew et al., 2011).

The GH test could also be applied to detect other types of model violations, as lo-
cal dependence or violation of the item characteristic function. In these cases, other
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types of estimators consistent under model misspecification should be considered
in order to apply the test.
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