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Abstract. We investigate the appearance of the square of a Hamilton cycle in the
model of randomly perturbed graphs, which is, for a given α ∈ (0,1), the union of any
n-vertex graph with minimum degree αn and the binomial random graph G(n, p). This
is known when α > 1/2 and we determine the exact perturbed threshold probability in
all the remaining cases, i.e., for each α ≤ 1/2. We demonstrate that, as α ranges over
the interval (0,1), the threshold performs a countably infinite number of ‘jumps’. Our
result has implications on the perturbed threshold for 2-universality, where we also fully
address all open cases.

1. Introduction

In extremal graph theory, the square of a Hamilton cycle often serves as a good concrete
but reasonably complex special case when results about the appearance of a more general
class of structures are still out of reach. Here, a Hamilton cycle is a cycle through all
the vertices of a graph and the square of a graph H is obtained from H by adding edges
between all vertices of distance two in H.

For example, a well-known conjecture by Pósa from the 1960s (see [12]) states that
any n-vertex graph G of minimum degree at least 2n/3 contains the square of a Hamilton
cycle. This was solved in the 1990s for large n by Komlós, Sarközy and Szemerédi [21],
demonstrating the power of the then new and by now celebrated Blow-Up Lemma. Only
more than 10 years later the analogous problem was settled for a more general class of
spanning subgraphs [9], using the result for squares of Hamilton cycles as a fundamental
stepping stone.

In random graphs, on the other hand, the threshold for the containment of the square
of a Hamilton cycle was determined only very recently and, surprisingly, this proved to
be much harder than the corresponding problem for higher powers of Hamilton cycles
(see also Section 1.1). Here, the model of random graphs considered is the binomial
random graph G(n, p), which is a graph on n vertices in which each pair forms an edge
with probability p independently of other pairs. By a simple first moment calculation the
threshold for the appearance of a copy of the square of a Hamilton cycle is at least n−1/2.

∗ Department of Mathematics, London School of Economics, London, WC2A 2AE, UK.
E-mail: {j.boettcher|j.skokan}@lse.ac.uk.

† Institute of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany.
OP is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
project ID: 390685689). Part of this research was conducted while OP was a visiting fellow at the London
School of Economics and supported by the Deutsche Forschungsgemeinschaft (DFG, Grant PA 3513/1-
1).
E-mail: parczyk@mi.fu-berlin.de.
♮ Department of Mathematics, University College London, London WC1E 6BT, UK.

This research was conducted while AS was a PhD student at the London School of Economics.
E-mail: a.sgueglia@ucl.ac.uk.

§ Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.



Resolving a conjecture of Kühn and Osthus [24] and improving on results of Nenadov and
Škorić [26] and of Fischer, Škorić, Steger and Trujić [14], it was only recently proved that
n−1/2 is indeed the threshold by Kahn, Narayanan and Park [20], using tools from the
pioneering work of Frankston, Kahn, Narayanan and Park [15] on fractional expectation-
thresholds.

In this paper our focus is on a combination of these two themes. We consider the
question when the square of a Hamilton cycle appears in the randomly perturbed graph
model and completely settle this. The randomly perturbed graph Gα ∪G(n, p), a model
introduced by Bohman, Frieze and Martin [5], is a graph obtained by taking a determin-
istic graph Gα on n vertices with minimum degree at least αn and adding the edges of
a random graph G(n, p) on the same vertex set. In this model, which received a large
amount of attention recently (see also Section 1.1), one is interested in determining the
behaviour of the threshold for a given graph property in dependence of α. More precisely,
we say that p̂α(n) is the perturbed threshold for a property P and a fixed α ∈ [0,1) if
there are constants C > c > 0 such that for any p ≥ Cp̂α and for any sequence of n-vertex
graphs (Gα,n)n∈N with δ(Gα,n) ≥ αn we have limn→∞ P(Gα,n ∪G(n, p) ∈ P) = 1, and for
any p ≤ cp̂α there exists a sequence of n-vertex graphs (Gα,n)n∈N with δ(Gα,n) ≥ αn such

that limn→∞ P(Gα,n ∪G(n, p) ∈ P) = 0.
For α = 0 the perturbed threshold is simply the usual threshold for purely random

graphs and the perturbed threshold is 0 for any α such that all graphs with minimum
degree αn are in P. In this sense, randomly perturbed graphs interpolate between ques-
tions from extremal graph theory and questions concerning random graphs. For small
p̂α (and hence relatively large α) there are some analogies to the concept of smoothed
analysis in the theory of algorithms (see, e.g., [31]), and for small α one asks how much
random graph theory results are influenced by the fact that in a random graph there may
be vertices with relatively few neighbours. But in general one would like to determine
the evolution of the perturbed threshold for the whole range of α, which has so far only
been achieved for very few properties.

This paper contributes to this line of research by determining the perturbed threshold
for the containment of squares of Hamilton cycles for 0 < α ≤ 1

2 , which answers a question
of Antoniuk, Dudek, Reiher, Ruciński and Schacht [3] in a strong form. In the range
α ∈ (12 , 23) the perturbed threshold for squares of Hamilton cycles was determined by
Dudek, Reiher, Ruciński and Schacht [11], as we discuss in more detail in Section 1.1.
The case α = 0, on the other hand, is the purely random graph case addressed in [20] and
the range α ≥ 2

3 is the purely extremal scenario addressed in [21]. Therefore, our result
completely settles the question of determining the perturbed threshold for the square of
a Hamilton cycle for the whole range of α.

Theorem 1.1 (Square of a Hamilton cycle). The perturbed threshold p̂α(n) for the con-
tainment of the square of a Hamilton cycle is

p̂α(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if α ≥ 2
3 ,

n−1 if α ∈ [12 , 23) ,
n−(k−1)/(2k−3) if α ∈ ( 1

k+1 ,
1
k) for k ≥ 2 ,

n−(k−1)/(2k−3)(logn)1/(2k−3) if α = 1
k+1 for k ≥ 2 ,

n−1/2 if α = 0 .
In other words, as long as α ∈ (13 , 23) it suffices to add a linear number of random edges

to the deterministic graph Gα for enforcing the square of a Hamilton cycle, and for α ≤ 1
3

the perturbed threshold p̂α(n) exhibits ‘jumps’ at α = 1
k+1 for each integer k ≥ 2, where an
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extra log-factor is needed for α precisely equal to 1
k+1 . A similar ‘jumping’ phenomenon

for the perturbed threshold has been already observed for other subgraph containment
problems: for Kr-factors in [16] and for Cℓ-factors in [7]. However, Theorem 1.1 is to the
best of our knowledge the first result exhibiting a countably infinite number of ‘jumps’.
Moreover, for α tending to zero, the threshold p̂α(n) tends to n−1/2, which is precisely
the threshold for the square of a Hamilton cycle in G(n, p) alone as discussed above.
Since the square of a Hamilton cycle on n vertices contains each n-vertex graph with

maximum degree two as a subgraph, as a corollary to Theorem 1.1 we also get the
following result, establishing the perturbed threshold for 2-universality for all α. Here,
we say that a graph is r-universal if it contains all graphs of maximum degree at most r.

Theorem 1.2 (2-universality). The perturbed threshold p̂α(n) for 2-universality is

p̂α(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if α ≥ 2
3 ,

n−1 if α ∈ (13 , 23) ,
n−1 logn if α = 1

3 ,

n−2/3 if α ∈ (0, 13) ,
n−2/3(logn)1/3 if α = 0 .

The range 1
3 ≤ α < 2

3 is a corollary of our Theorem 1.1, while the remaining cases follow
from known results. For α = 0, this is due to Ferber, Kronenberg and Luh [13], for α ≥ 2

3

to Aigner and Brandt [1], and for α ∈ (0, 13) to [27]. The result in the range α ∈ [13 , 23)
significantly strengthens one of our results from [8], where the same result was established
for the containment of a triangle factor only.

Observe that the perturbed threshold for the containment of the square of a Hamilton
cycle and the perturbed threshold for 2-universality differ for α < 1

3 . This is due to the
fact that in this regime the structure of the deterministic graph Gα may force us to find
many copies of the square of a short path in G(n, p) if we want to find the square of a
Hamilton cycle in Gα ∪G(n, p) (see Section 3.2 for more details).

1.1. Related work. As indicated before, there has recently been a wealth of results on
properties of randomly perturbed graphs. Let us close our introduction by briefly review-
ing those concerning the containment of r-th powers of Hamilton cycles. Analogously to
the square, the r-th power of a graph H is obtained from H by adding edges between all
vertices of distance at most r in H.

We start with the case r = 1. Here, the case α ≥ 1
2 is the classical Theorem of Dirac [10],

which asserts that each n-vertex graph with minimum degree at least 1
2n has a Hamilton

cycle, hence no random edges are required. The case α = 0 is treated by a famous result of
Pósa [28], which shows that in G(n, p) the threshold for the containment of a Hamilton
cycle is n−1 logn. For α between these two extremes, Bohman, Frieze and Martin [5]
determined the perturbed threshold. They proved that for any α ∈ (0, 12), the randomly
perturbed graph Gα ∪G(n, p) a.a.s. has a Hamilton cycle for p ≥ C/n with C sufficiently
large, and that this is optimal because for making the complete bipartite graph Kαn,(1−α)n
Hamiltonian we need a linear number of edges.

Turning to r ≥ 2, proving a conjecture of Seymour [30] for large n, Komlós, Sarközy
and Szemerédi [22] showed that any large n-vertex graph G with minimum degree δ(G) ≥
r

r+1n contains the r-th power of a Hamilton cycle, thus establishing that the perturbed
threshold is 0 for α ≥ r

r+1 . In G(n, p) alone, i.e. when α = 0, the threshold for the
containment of th r-th power of a Hamilton cycle is n−1/r. This follows from a much
more general result of Riordan [29] for r ≥ 3 and from [20] for r = 2. The perturbed
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threshold behaves differently for any α > 0, as was shown in [6], where it is proved that
in Gα ∪ G(n, p) for any α ∈ (0,1) there exists η > 0 such that the perturbed threshold
for the containment of the r-th power of a Hamilton cycle is at most n−1/r−η, and it was
asked what the optimal η here is. In this paper we answer this question in the case r = 2.

More is known for α ≥ r
r+1 . In this regime, where Gα alone contains the r-th power of

a Hamilton cycle, Dudek, Reiher, Ruciński, and Schacht [11] showed that adding a linear
number of random edges suffices to enforce an (r + 1)-st power of a Hamilton cycle. This
was improved by Nenadov and Trujić [25] who showed that one can indeed enforce the
(2r + 1)-st power of a Hamilton cycle with these parameters. When α > 1

2 , even higher
powers of Hamilton cycles have been studied by Antoniuk, Dudek, Reiher, Ruciński and
Schacht [3], who proved that in many cases the perturbed threshold is guided by the
largest clique required from G(n, p).
For certain values of α and r ≥ 3, the perturbed threshold is not yet precisely known for

Kr+1-factors (see, e.g., [8] for more details). This suggests that determining the behaviour
of the perturbed threshold in the entire range of α for the r-th power of a Hamilton cycle
for r > 2 may be challenging. We discuss this further for r = 3 in Section 8.

Organisation. The rest of the paper is organised as follows. In the next section we
introduce some fundamental tools, which we will apply in our proofs. Then in Section 3
we discuss a more general stability version of our main result and provide an overview
of our proofs, together with the lower bound constructions and some auxiliary lemmas.
In Section 4 and 5, we prove the extremal case and the non-extremal case of our main
result, respectively. In Section 6 we prove a technical lemma that is used in Section 7
to prove the auxiliary lemmas. We then finish with some concluding remarks and open
problems in Section 8. A few standard proofs are postponed to Appendix A.

Notation. For numbers a, b, c, we write a = b± c for b− c ≤ a ≤ b+ c. Moreover, for non-
negative a,b we write 0 < a≪ b, when we require a ≤ f(b) for some function f ∶R>0 ↦ R>0.
We will only use this to improve readability and in addition to the precise dependencies
of the constants. Moreover, for an event A = A(n) depending on n ∈ N, we say that A
happens asymptotically almost surely (a.a.s.) if P[A]→ 1 as n→∞.
We use standard graph theory notation. For a graph G on vertex set V and two disjoint

sets A, B ⊆ V , we let G[A] be the subgraph of G induced by A, G[A,B] be the bipartite
subgraph of G induced by sets A and B, e(A) be the number of edges with both endpoints
in A and e(A,B) be the number of edges with one endpoint in A and the other one in B.
More generally, given pairwise-disjoint sets U1, . . . , Uh ⊆ V , we let G[U1, . . . , Uh] be the
induced h-partite subgraph ⋃1≤i<j≤hG[Ui, Uj] of G. Given an integer r ≥ 1, we denote by
Gr the r-power of G, i.e. the graph obtained from G by adding edges between all vertices
of distance at most r in G. We denote the k-vertex path by Pk and the n-vertex cycle by
Cn. Given a subset W ⊆ V (G) and v ∈ V (G) ∖W , the notation NG(v,W ) stands for the
neighbourhood of v in W in the graph G and we denote its size by degG(v,W ), where
we may omit the index G when the graph is clear from the context. The 1-density of G

is defined by m1(G) =max{ e(F )
v(F )−1 ∶ F ⊆ G with v(F ) ≥ 2}.

Moreover, given p ∈ [0,1], an integer k ≥ 1 and k pairwise-disjoint sets of vertices
V1, . . . , Vk, we denote by G(V1, . . . , Vk, p) the random k-partite graph with parts V1, . . . , Vk,
where each pair of vertices in two different parts forms an edge with probability p, inde-
pendently of other pairs. Further, we denote by G(V1, p) the random graph on V1, where
each pair of vertices in V1 forms an edge with probability p, independently of other pairs.

Moreover, we denote by
Ð→
G(n, p) denote the binomial random directed graph on vertex
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set [n], where each tuple (u, v) ∈ [n]2 with u /= v is a directed edge with probability p
independently of all other choices.

Given a copy F of the square of a path on k vertices P 2
k , we let v1, v2, . . . , vk be an

ordering of the vertices of F such that its edges are precisely vivj, for each i, j with
1 ≤ ∣i − j∣ ≤ 2. We call (v2, v1) and (vk−1, vk) the end-tuples of F , we refer to vi as the
i-th vertex of F and we refer to F as the square of the path v1, v2, . . . , vk. The choice
of taking (v2, v1) rather than (v1, v2) as end-tuple is intentional. This is to ensure that
for both the end-tuples (v2, v1) and (vk−1, vk), it is always the second vertex, i.e. v1 and
vk respectively, that is an endpoint of the path v1, v2, . . . , vk. For simplicity we will talk
about tuples (u, v) from a set V , when implicitly meaning from V 2.
Finally, given s ≥ 1 and sets V1, . . . , Vs, when we say that a tuple belongs to ∏s

i=1 V
k
i , we

mean that the tuple belongs to V k
1 × ⋅ ⋅ ⋅ ×V k

s , i.e. it is of the form (vi,j ∶ 1 ≤ i ≤ s,1 ≤ j ≤ k)
with vi,j ∈ Vi for i = 1, . . . , s and j = 1, . . . , k.

2. Tools

We will repeatedly use the following concentration inequality due to Chernoff (see
e.g. [18, Corollaries 2.3 and 2.4] and [17]).

Lemma 2.1 (Chernoff’s inequality). Let X be the sum of independent Bernoulli random
variables, then for any δ ∈ (0,1) we have

P [∣X −E[X]∣ ≥ δE[X]] ≤ 2 exp(−δ
2

3
E[X])

and for any k ≥ 7 ⋅E[X] we have P[X > k] ≤ exp(−k). More precisely, if p is the success
probability and there are n summands we get

P [X ≤ E[X] − δn] ≤ exp(−D(p − δ∣∣p)n) ,
where D(x∣∣y) = x log(xy ) + (1 − x) log(1−x1−y ) is the relative entropy.

2.1. Subgraphs in random graphs. The following lemma is well-known and follows
from a standard application of Janson’s inequality (Lemma A.1).

Lemma 2.2. For any graph F and any δ > 0, there exists C > 0 such that the following
holds for p ≥ Cn−1/m1(F ). In the random graph G(n, p) a.a.s. any set of δn vertices
contains a copy of F .

Note that m1(Pk) = 1 and m1(P 2
k ) = 2k−3

k−1 and, therefore, the bounds on p given by
Lemma 2.2 for the containment of a copy of Pk and P 2

k in any linear sized set are p ≥ C/n
and p ≥ Cn−(k−1)/(2k−3), respectively. In a breakthrough result Johansson, Kahn and
Vu [19] determined the threshold for covering all vertices of G(n, p) with pairwise vertex-
disjoint copies of F , for any strictly 1-balanced graph F , i.e. those graphs with 1-density
strictly larger than that of any proper subgraph. We state their result below.

Theorem 2.3 (Johansson, Kahn and Vu [19]). Let F be a graph such that m1(F ′) <
m1(F ) for all F ′ ⊆ F with F ′ /= F and v(F ′) ≥ 2. Then there exists C > 0 such that
a.a.s. in G(n, p) there are ⌊n/v(F )⌋ pairwise vertex-disjoint copies of F , provided that
p ≥ C(logn)1/e(F )n−1/m1(F ).

Often we will need to find combinations of squares of paths in G(n, p) whose vertices
must satisfy some additional constraints; for that, we will use the following lemma.

Lemma 2.4. For all integers s ≥ 1 and k ≥ 2, and any 0 < η ≤ 1, there exists C > 0 such
that the following holds for p ≥ Cn−(k−1)/(2k−3). Let V be a vertex set of size n, V1, . . . , Vs
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not necessarily disjoint subsets of V and H be a collection of pairwise distinct tuples from
∏s

i=1 V
k
i . Then a.a.s. revealing Γ = G(n, p) on V gives the following. For any choice of

Wi ⊆ Vi with i = 1, . . . , s such that H ′ =H ∩∏s
i=1W

k
i has size at least ηnsk, there is a tuple

(vi,j ∶ 1 ≤ i ≤ s,1 ≤ j ≤ k) in H ′ with pairwise distinct vertices vi,j ∈ Wi for i = 1, . . . , s,
j = 1, . . . , k, such that in Γ for i = 1, . . . , s we have the square of a path on vi,1, . . . , vi,k
and for i = 1, . . . , s − 1 we have the edge vi,kvi+1,1.

Observe that the structure we get from Lemma 2.4 in G(n, p) is given by s copies of
the square of a path on k vertices and s−1 additional edges joining two consecutive such
copies. Moreover when k = 2 the structure is simply a path on 2s vertices. In applications,
we will often define several collections of tuples Hj ⊆ ∏s

i=1 V
k
j,i for j = 1, . . . ,m and apply

Lemma 2.4 to H = ⋃m
j=1Hj, where it is implicit that we apply it with Vi = ⋃m

j=1 Vj,i. Also,
we stress that, for a fixed H and a typical revealed G(n, p), the conclusion of the lemma
holds for any large enough subset of the form H ∩∏s

i=1W
k
i with Wi ⊆ Vi. In particular,

we will be able to claim the existence of a tuple in each subcollection Hj, again provided
they have the right size. The proof of this lemma is standard, uses Janson’s inequality
and is given in Appendix A.

Recall that
Ð→
G(n, p) denotes the binomial random directed graph on vertex set [n],

where each tuple (u, v) ∈ [n]2 with u /= v is a directed edge with probability p indepen-
dently of all other choices. The next theorem will allow us to find a directed Hamilton

cycle in
Ð→
G(n, p).

Theorem 2.5 (Angluin and Valiant [2]). There exists C > 0 such that for p ≥ C logn/n
a.a.s.

Ð→
G(n, p) has a directed Hamilton cycle.

2.2. Regularity. We will use Szemerédi’s Regularity Lemma [32] and some of its con-
sequences. Before stating these, we introduce the relevant terminology. The density of a
pair (A,B) of disjoint sets of vertices is defined by

d(A,B) = e(A,B)
∣A∣ ⋅ ∣B∣

and the pair (A,B) is called ε-regular, if for all sets X ⊆ A and Y ⊆ B with ∣X ∣ ≥ ε∣A∣
and ∣Y ∣ ≥ ε∣B∣ we have ∣d(A,B) − d(X,Y )∣ ≤ ε.
We will use the following well known result, that follows from definitions.

Lemma 2.6 (Minimum Degree Lemma). Let (A,B) be an ε-regular pair with d(A,B) = d.
Then, for every Y ⊆ B with ∣Y ∣ ≥ ε∣B∣, the number of vertices from A with degree into Y
less than (d − ε)∣Y ∣ is at most ε∣A∣.

With d ∈ [0,1], a pair (A,B) is called (ε, d)-super-regular if, for all sets X ⊆ A and
Y ⊆ B with ∣X ∣ ≥ ε∣A∣ and ∣Y ∣ ≥ ε∣B∣, we have d(X,Y ) ≥ d and deg(a) ≥ d∣B∣ for all a ∈ A
and deg(b) ≥ d∣A∣ for all b ∈ B.

The following result is also well known and follows from the definition of super-
regularity and Lemma 2.6.

Lemma 2.7 (Super-regular Pair Lemma). Let (A,B) be an ε-regular pair with d(A,B) =
d. Then there exists A′ ⊆ A and B′ ⊆ B with ∣A′∣ ≥ (1 − ε)∣A∣ and ∣B′∣ ≥ (1 − ε)∣B∣ such
that (A′,B′) is a (2ε, d − 3ε)-super-regular pair.

We will use the following well known degree form of the regularity lemma that can be
derived from the original version [32].
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Lemma 2.8 (Degree form of Szemerédi’s Regularity Lemma [23]). For every ε > 0 and
integer t0 there exists an integer T > t0 such that for any graph G on at least T vertices
and d ∈ [0,1] there is a partition of V (G) into t0 < t+1 ≤ T sets V0, . . . , Vt and a subgraph
G′ of G such that

(P1) ∣Vi∣ = ∣Vj ∣ for all 1 ≤ i, j ≤ t and ∣V0∣ ≤ ε∣V (G)∣,
(P2) degG′(v) ≥ degG(v) − (d + ε)∣V (G)∣ for all v ∈ V (G),
(P3) the set Vi is independent in G′ for 1 ≤ i ≤ t,
(P4) for 1 ≤ i < j ≤ t the pair (Vi, Vj) is ε-regular in G′ and has density either 0 or at

least d.

The sets V1, . . . , Vt are also called clusters and we refer to V0 as the set of exceptional
vertices. A partition V0, . . . , Vt which satisfies (P1)–(P4) is called an (ε, d)-regular parti-
tion of G. Given this partition, we define the (ε, d)-reduced graph R for G, that is, the
graph on vertex set [t], in which ij is an edge if and only if (Vi, Vj) is an ε-regular pair
in G′ and has density at least d.

2.3. Squares of paths in randomly perturbed graphs. We also need the following
result that allows us to find multiple copies of the square of a short path in randomly
perturbed graphs.

Lemma 2.9. For all integers k ≥ 2 and t ≥ 1, there exist C,γ > 0 such that the following
holds for any 0 ≤ m ≤ γn and any n-vertex graph G of minimum degree δ(G) ≥ m and
maximum degree ∆(G) ≤ γn. For p ≥ C(logn)1/(2k−3)n−(k−1)/(2k−3), a.a.s. the perturbed
graph G ∪G(n, p) contains tm + t pairwise vertex-disjoint copies of the square of a path
on k + 1 vertices.

The case k = 2 and t = 1 was already covered in [8, Theorem 2.4]. The general proof is
similar and is given in Appendix A.

3. Proof overview

In this section we will sketch the proof of Theorem 1.1 and discuss a more general
stability version of it. As already explained in the introduction, the cases α = 0 and α ≥ 1

2

follow from known results. Moreover, the case α = 1
2 will follow from the monotonicity

of the perturbed threshold, once we will have determined the perturbed threshold in the
range α < 1

2 . Therefore from now on, we can fix an integer k ≥ 2 and assume α ∈ [ 1
k+1 ,

1
k
).

We start by discussing the idea of our embedding strategy and explaining how this leads
to the threshold probabilities given in Theorem 1.1. We then turn to the arguments for the
lower bound on p̂α and afterwards split the upper bound into two theorems (Theorems 3.4
and 3.5) depending on the structure of the dense graph Gα: an extremal case and a non-
extremal one. Here, Theorem 3.5 provides a stability version of Theorem 1.1.

3.1. Strategy. We recall that, given the square of the path v1, v2, . . . , vk, we define its
end-tuples as (v2, v1) and (vk−1, vk). Let G be any n-vertex graph with minimum degree
αn and α ∈ [ 1

k+1 ,
1
k
). Our goal is to find the square of a Hamilton cycle C2

n in the
perturbed graph G ∪ G(n, p) and therefore we will use a decomposition of E(C2

n) into
‘deterministic edges’ (to be embedded to G) and ‘random edges’ (to be embedded to
G(n, p)). To get the square of a path we would like vertex disjoint copies F1, . . . , Ft of P 2

k

in the random graph G(n, p) such that the following holds. For each i = 1, . . . , t− 1, if we
denote by (yi, xi) and (ui,wi) the end-tuples of Fi, then wixi+1 is also an edge in G(n, p).
Moreover, there exist t − 1 additional vertices v1, . . . , vt−1 such that, for i = 1, . . . , t − 1,
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w3

u3

y3

x3

v2

w2

u2

y2

x2

v1

w1

u1

y1

x1

Figure 1. The square of a path with end-tuples (y1, x1) and (u3,w3) with our decom-
position into random (dashed blue) and deterministic (black) edges for k = 4 and t = 3.

all four edges viui, viwi, vixi+1, viyi+1 are edges in G. This gives the square of a path on
t(k + 1) − 1 vertices with edges from G ∪G(n, p) (c.f. Figure 1).

Note that by requiring the edge wtx1 from G(n, p) and adding another vertex vt joined
to ut,wt, x1, y1 in G, we get the square of a cycle on t(k + 1) vertices. However for
divisibility reasons this may not cover all n vertices. Hence in order to find the square of
a Hamilton cycle and for some additional technical reasons, our proof(s) will allow some
of F1, . . . , Ft to be the squares of paths of different lengths.

This decomposition of C2
n already justifies the probabilities that appear in Theorem 1.1:

indeed, n−(k−1)/(2k−3) is the threshold in G(n, p) for a linear number of copies of P 2
k (this

follows from Lemma 2.2), while n−(k−1)/(2k−3)(logn)1/(2k−3) is the threshold in G(n, p) for
the existence of a P 2

k -factor (this follows from Theorem 2.3).

3.2. Lower bounds. For any α ∈ (0,1/2), let Hα be the complete bipartite n-vertex
graph with vertex classes A and B of size αn and (1 − α)n, respectively. The following
two propositions provide lower bounds on p̂α for α ∈ ( 1

k+1 ,
1
k) and α = 1

k+1 . Their proofs
are standard and we only give a sketch.

Proposition 3.1. Let α ∈ ( 1
k+1 ,

1
k). Then there exists 0 < c < 1 such that Hα ∪G(n, p)

a.a.s. does not contain a copy of C2
n, provided p ≤ cn−(k−1)/(2k−3).

Sketch of the proof of Proposition 3.1. Let 1/(k + 1) < α < 1/k, take 0 < c < (1/k − α)/2
and observe that in B there are a.a.s. at most 2cn copies of P 2

k (by an upper tail bound
on the distribution of small subgraphs [33]). Assume for a contradiction that there is an
embedding of C2

n into Hα ∪G(n, p). Then Hα ∪G(n, p) must contain n/k vertex-disjoint
copies of P 2

k and only at most ∣A∣ = αn of them have a vertex in A. Therefore there must
be at least n/k −αn > 2cn copies of P 2

k in B, where the inequality follows from the choice
of c. This gives a contradiction. □

When α = 1
k+1 , an additional log-factor is needed, which essentially comes from the

fact that we need a P 2
k -factor in G(n, p). For example, suppose k = 2 and consider

H1/3 ∪G(n, p). Observe that H1/3 contains an independent set B of size 2n/3 and, in the
range of p of our interest, a.a.s. G(n, p)[B] contains few triangles. Therefore, in order for
a copy of C2

n to appear in H1/3∪G(n, p), there has to be a perfect matching in G(n, p)[B].

Proposition 3.2. Let α = 1
k+1 . Then Hα ∪G(n, p) a.a.s. does not contain a copy of C2

n,
provided p ≤ 1

4kn
−(k−1)/(2k−3)(logn)1/(2k−3).

Sketch of the proof of Proposition 3.2. Let c = 1/(4k). A.a.s. (by the first moment method)
B contains at most n1−2c copies of P 2

k+1 and a.a.s. (by the second moment method) at
least n1−c vertices from B are not contained in any copy of P 2

k within B. Assume for a
contradiction that there is an embedding of C2

n into Hα ∪ G(n, p). Then Hα ∪ G(n, p)
must contain a P 2

k+1-factor. Since ∣B∣ = k∣A∣, the average size of the intersection of a copy
of P 2

k+1 in such a factor with B would be k. However, given the restrictions above, it is
8



not possible to cover the vertices of G(n, p)[B] with a family of squares of paths whose
average size is k. This gives a contradiction. □

3.3. Proof of Theorem 1.1 and stability. As mentioned before, for the proof of
Theorem 1.1 we distinguish between an extremal case, when the deterministic graph G
is close to H1/(k+1), i.e. the complete bipartite n-vertex graph with vertex classes of size
1

k+1n and k
k+1n, and a non-extremal case. It turns out that the additional (logn)1/(2k−3)-

term in the perturbed threshold at α = 1
k+1 is only necessary in the extremal case. The

next definition formalises what we mean by close.

Definition 3.3 ((α,β)-stable). For α,β > 0 we say that an n-vertex graph G is (α,β)-
stable if there exists a partition of V (G) into two sets A and B of sizes ∣A∣ = (α ± β)n
and ∣B∣ = (1−α ± β)n such that the minimum degree of the bipartite subgraph G[A,B] is
at least 1

4αn, all but at most βn vertices from A have degree at least ∣B∣ − βn into B, all
but at most βn vertices from B have degree at least ∣A∣ − βn into A and G[B] contains
at most βn2 edges.

The following theorem treats the extremal case of Theorem 1.1.

Theorem 3.4 (Extremal Theorem). For every k ≥ 2 there exist β > 0 and C > 0 such
that the following holds. Let G be any n-vertex graph with minimum degree at least 1

k+1n
that is ( 1

k+1 , β)-stable. Then G ∪G(n, p) a.a.s. contains the square of a Hamilton cycle,
provided that p ≥ Cn−(k−1)/(2k−3)(logn)1/(2k−3).

When the graph G is not stable, the (logn)1/(2k−3)-term is not needed and the next
theorem provides a stability version of Theorem 1.1.

Theorem 3.5 (Stability Theorem). For every k ≥ 2 and every 0 < β < 1
6k , there exist

γ > 0 and C > 0 such that the following holds. Let G be any n-vertex graph with minimum
degree at least ( 1

k+1 − γ)n that is not ( 1
k+1 , β)-stable. Then G∪G(n, p) a.a.s. contains the

square of a Hamilton cycle, provided that p ≥ Cn−(k−1)/(2k−3).

We sketch the ideas for the proof of these two theorems in the following two subsections.
Together with the lower bounds provided in Propositions 3.1 and 3.2, Theorem 3.4 and 3.5
imply Theorem 1.1 for α ∈ [ 1

k+1 ,
1
k) with k ≥ 2. Indeed, fix k ≥ 2, let β0 > 0 be given by

Theorem 3.4 and take β = min{β0,
1
6k}. Let G be any n-vertex graph with minimum

degree at least 1
k+1n. The upper bound on the threshold for α = 1

k+1 then follows from
Theorem 3.4 or 3.5, depending on whether G is ( 1

k+1 , β)-stable or not. When α ∈ ( 1
k+1 ,

1
k),

then, with β = 1
5
( 1
k − α) > 0, the upper bound on the threshold follows from Theorem 3.5,

since an n-vertex graph with minimum degree αn is not ( 1
k+1 , β)-stable.

3.4. Overview of the proof of Theorem 3.4. For the extremal case, suppose that G
is an n-vertex (α,β)-stable graph with α = 1

k+1 and let p ≥ C(logn)1/(2k−3)n−(k−1)/(2k−3).
The definition of stability (Definition 3.3) gives a partition A ∪B of V (G) in which the
size of B is roughly k times the size of A, the minimum degree of G[A,B] is at least αn/4
and all but few vertices of A (B, respectively) are adjacent to all but few vertices of B
(A, respectively). Our proof will follow three steps.

In the first step, we would like to embed copies Fi of P 2
k into B and vertices vi into A,

following the decomposition described above. However, this is only possible if ∣B∣ = k∣A∣
and, therefore, we first embed squares of short paths of different lengths to ensure this
divisibility condition in the remainder. We find a family F1 of copies of squares of paths
with end-tuples in B, such that after removing the vertices V1 = ⋃F ∈F1

V (F ) , we are
left with two sets A1 = A ∖ V1 and B1 = B ∖ V1 with ∣B1∣ = k(∣A1∣ − ∣F1∣). Note that
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we construct the family F1 in such a way that we have ∣B1∣ = k(∣A1∣ − ∣F1∣) rather than
∣B1∣ = k∣A1∣, because each square path in F1 still needs to be connected into the final
square of a Hamilton cycle, and for each of these connections we shall use one vertex in
A1. The precise way we find F1 depends on the sizes of A and B, but in all cases we
will ensure that the vertices in the end-tuples of each F ∈ F1 are neighbours of all but
few vertices of A. When ∣B∣ > k

k+1n, the family F1 consists of copies of P 2
k+1 inside of

B. Its existence is guaranteed by Lemma 2.9 using the minimum degree of G[B]. When
∣B∣ ≤ k

k+1n, the family F1 consists of copies of P 2
2k+3 with all vertices in B, except the

(k + 1)-st and (k + 3)-rd, that belong to A.
Our second step is to cover the vertices in A1 and B1 that do not have a high degree to

the other part. For this we will find another family F2 of copies of squares of paths with
end-tuples in B. For any vertex v in A1 with small degree into B1, we find a copy of P 2

2k+1
with v being the (k+1)-st vertex and all the remaining vertices belonging to B1. Similarly,
for any vertex v in B1 with small degree into A1, we find a copy of P 2

3k+2 consisting of
three copies of P 2

k in B connected by edges and two vertices from A1, where v is in the
middle copy of P 2

k . We need that v is in the middle copy, because then we can again
ensure that the end-tuples of each F ∈ F2 see all but few vertices of A. Moreover, with
V2 = ⋃F ∈F2

V (F ) and A2 = A1 ∖ V2 and B2 = B1 ∖ V2, we have ∣B2∣ = k(∣A2∣ − ∣F1∣ − ∣F2∣).
At this point, each of the vertices in A2 (B2, respectively) is adjacent to all but few

vertices of B2 (A2, respectively) and we kept the divisibility condition intact. In the third
step, we let F3 be pairwise disjoint random copies of P 2

k covering B2, which is possible
by Theorem 2.3 with our p and because ∣B2∣ is divisible by k.

We let F = F1 ∪ F2 ∪ F3 and, for each F ∈ F , denote its end-tuples by (yF , xF ) and
(uF ,wF ). We now reveal additional edges of G(n, p) and encode their presence in an
auxiliary directed graph T on vertex set F as follows. There is a directed edge (F,F ′)
if and only if the edge wFxF ′ appears in G(n, p). It is easy to see that all directed edges
in T are revealed with probability p independently of all others and, therefore, we can

find a directed Hamilton cycle
Ð→
C in T with Theorem 2.5. We finally match to each edge

(F,F ′) of Ð→C a vertex v ∈ A2 such that uF ,wF , xF ′ , yF ′ are all neighbours of v in the graph
G. Owing to the high minimum degree conditions, that this is possible easily follows
from Hall’s matching theorem. Thus we get the square of a Hamilton cycle, as wanted.

3.5. Overview of the proof of Theorem 3.5. Assume that G is not ( 1
k+1 , β)-stable

and let p ≥ Cn−(k−1)/(2k−3). Then we apply the regularity lemma to G and we use the
following lemma on its reduced graph R.

Lemma 3.6 (Lemma 4.4 in [8]). For any integer k ≥ 2 and 0 < β < 1
12 , there exists d > 0

such that the following holds for any 0 < ε < d/4, 4β ≤ α ≤ 1
3 and t ≥ 10

d . Let G be an
n vertex graph with minimum degree δ(G) ≥ (α − 1

2d)n that is not (α,β)-stable and let
R be the (ε, d)-reduced graph for some (ε, d)-regular partition V0, . . . , Vt of G. Then R
contains a matching M of size (α + 2kd)t.

In fact, [8, Lemma 4.4] is weaker as, under the same assumptions, it gives a matching
of size (α + 2d)t, but Lemma 3.6 follows from a straightforward adaptation of its proof,
which in turn builds on ideas from [4]. With Lemma 3.6, it is not hard to show that the
reduced graph R can be vertex-partitioned into copies of stars K1,k and matching edges
K1,1, such that the number of stars is not too large. For each such star and matching edge,
we would like to cover their clusters with the square of a Hamilton path and then connect
these square paths, while covering the exceptional vertices, in order to get the square of
a Hamilton cycle. However, since we want to avoid the additional log-term in the edge
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density of the random graph, for this strategy to work in the randomly perturbed graph,
we need that in each star the centre cluster is larger than the other clusters. Moreover,
to ensure that we can connect the squares of Hamilton paths, we need to setup some
connections between the stars and matching edges.

Therefore, we first remove some vertices from the leaf clusters of each star to make
it unbalanced and ensure that all pairs are super-regular. Then we label the stars and
matching edges arbitrarily asQ1, . . . ,Qs, and for i = 1, . . . , s find a copy Fi of P 2

6 to connect
Qi and Qi+1 (where we identify the index s + 1 with 1 and the index 0 with s). More
precisely, for each star Qi, one end-tuple of Fi−1 and one of Fi belong to the centre cluster
of Qi. Moreover, for each matching edge Qi, each of its two clusters contains exactly one
end-tuple, one from Fi−1 and the other from Fi. We will refer to these squares of paths
as the connecting (squares of) paths. Let V0 be the set of vertices no longer contained
in any of the stars or matching edges. We cover each v ∈ V0 by appending v to one of
the connecting paths. Here we use that any vertex v ∈ V0 has degree at least ( 1

k+1 − α)n
and, as we do not have too many stars, the vertex v has also many neighbours in clusters
which are not centres of stars. This is crucial, because it allows us to ensure that the
relations between the sizes of the sets in any star are suitable for an application of the
following lemma, which is the main technical ingredient in the proof.

Lemma 3.7 (Star Cover Lemma). For any k ≥ 2 and any 0 < δ′ ≤ d < 1 there exist
δ0, δ1, ε > 0 with δ′ ≥ δ0 > 2δ1 > ε and C > 0 such that the following holds. Let V,U1, . . . , Uk

be pairwise disjoint sets such that ∣V ∣ = n + 4, (1 − δ0)n ≤ ∣U1∣ = ⋅ ⋅ ⋅ = ∣Uk∣ ≤ (1 − δ1)n and
n− ∣U1∣ ≡ −1 (mod 3k−1). Suppose that (V,Ui) are (ε, d)-super-regular pairs with respect
to a graph G for each i = 1, . . . , k, and (x,x′) and (y, y′) are two tuples from V such that
both tuples have 1

2d
2n common neighbours in Ui for each i = 1, . . . , k. Furthermore, let

G(V, p) and G(U1, . . . , Uk, p) be random graphs with p ≥ Cn−(k−1)/(2k−3).
Then a.a.s. there exists the square of a Hamilton path in G[V,U1, . . . , Uk] ∪G(V, p) ∪

G(U1, . . . , Uk, p) ∪ {xx′, yy′} covering V ∪U1 ∪ ⋅ ⋅ ⋅ ∪Uk with end-tuples (x,x′) and (y, y′).

This implies that for any star Qi we can connect the end-tuples of Fi−1 and Fi which
belong to the centre cluster of Qi, while covering all vertices in the clusters of Qi. We
emphasise again that, to avoid log-terms, it is crucial that the centre cluster is larger
than the leaf clusters. Similarly for the matching edges we use the following lemma.

Lemma 3.8 (Pair Cover Lemma). For any 0 < d < 1 there exist ε > 0 and C > 0 such
that the following holds for sets U,V with ∣V ∣ = n and 3

4n ≤ ∣U ∣ ≤ n. Let (U,V ) be an
(ε, d)-super-regular pair with respect to a graph G and (x,x′) and (y, y′) be tuples from V
and U , respectively, such that the vertices from the tuples have 1

2d
2n common neighbours

in U and V , respectively. If G(U, p), G(V, p) are random graphs with p ≥ Cn−1, then
a.a.s. there exists the square of a Hamilton path in G[U,V ]∪G(U, p)∪G(V, p)∪{xx′, yy′}
covering U ∪ V with end-tuples (x,x′) and (y, y′).

Together this gives the square of a Hamilton cycle in G ∪ G(n, p). We will give the
proof of Lemma 3.7 and 3.8 in Section 7.

4. Proof of Theorem 3.4

Proof of Theorem 3.4. Given an integer k ≥ 2, we let C2 and 0 < γ ≤ 1 be given by
Lemma 2.9 for input k and t = k + 1. We let C4 be given by Theorem 2.5 and set
C = 4C2 + 8kC4 + 8. Next, we let 0 < β ≤ 1

100k3γ. Given n, let 0 ≤ a ≤ k be such that
n = (k + 1)⌊ n

k+1⌋ + a and p ≥ C(logn)1/(2k−3)n−(k−1)(2k−3). We reveal a subgraph of G(n, p)
11



in four rounds Gi ∼ G(n, 14p) for i = 1,2,3,4. By Lemma 2.2 and a union bound over all
graphs on at most 4k vertices, we can a.a.s. assume that

G1 contains a copy of the graph F in any vertex-set of size at least βn, (1)

where F is any graph on at most 4k vertices with m1(F ) ≤m1(P 2
k ) = 2k−3

k−1 .
Let G be an n-vertex graph with minimum degree at least 1

k+1n that is ( 1
k+1 , β)-stable.

Then there exists a partition of V (G) into A and B that satisfies Definition 3.3. As out-
lined in Section 3.4 our proof will consist of three steps. We will successively build parts
of the square of a Hamilton cycle, first covering some vertices to balance the partition,
then covering vertices of low degree to the other side and, then, covering the remaining
vertices. Finally we will connect these parts into the square of a Hamilton cycle.

Balancing the partition. Our goal is to find a family F1 of pairwise disjoint copies
of squares of paths with end-tuples in B, such that each end-tuple has at least ∣A∣−8k2βn
common neighbours in A and the size of the set V1 = ⋃F ∈F1

V (F ) is smaller than 3k2βn.
Moreover, we will guarantee that after removing the vertices of V1 we are left with two
sets

A1 = A ∖ V1 and B1 = B ∖ V1 such that ∣B1∣ = k(∣A1∣ − ∣F1∣) . (2)

We distinguish between the cases ∣A∣ = ⌊ n
k+1⌋ +m with 1 ≤ m ≤ βn and ∣A∣ = ⌊ n

k+1⌋ −m
with 0 ≤ m ≤ βn. Suppose first that ∣A∣ = ⌊ n

k+1⌋ +m for some 1 ≤ m ≤ βn. In this case
we want ∣F1∣ = m and the family F1 will consist of m − 1 copies of P 2

3k+2 and one copy
of P 2

3k+2+a, such that for each of these m copies, exactly three vertices are in A, both
end-tuples are in B and each end-tuple has at least ∣A∣ − 2βn common neighbours in A.

We can do this greedily in G ∪G1. Assume that during this process we have to find a
copy of P 2

3k+2 or P 2
3k+2+a, i.e. a copy of P 2

3k+b for some 2 ≤ b ≤ k + 2, such that the above
conditions are satisfied. There are three vertices v1, v2 and v3 in P 2

3k+b, such that none of
them is in an end-tuple of P 2

3k+b, they do not induce a triangle in P 2
3k+b and the subgraph

H = P 2
3k+b∖{v1, v2, v3} satisfies m1(H) ≤m1(P 2

k ) (see Figure 2). We can avoid an induced
triangle because there are at least 3k + b − 4 ≥ 4 vertices to choose from that are not in
end-tuples, and guarantee the bound on the density because, when distributing the three
vertices evenly, the longest square of a path in H has at most ⌈(3k+ b−3)/4⌉ ≤ k vertices.
We remark that we can always ask {v1, v2, v3} to be an independent set in P 2

3k+b when
k > 2.

v3

v2v1

Figure 2. Subgraph H (dashed blue) obtained from P 2
3k+b after removing three vertices

v1, v2, v3 (red) for b = k + 2 and k = 3. The 1-density of H is the same as P 2
k .

Then we find a copy of P 2
3k+b by embedding the vertices v1, v2, v3 in A and the other

vertices in B in the following way. Let A′ ⊆ A be the set of vertices of A that have
degree at least ∣B∣ − βn into B and have not yet been covered, and observe that ∣A′∣ ≥
∣A∣ − βn − 3∣F1∣ ≥ βn. Then, since m1(P3) = 1 ≤m1(P 2

k ) and given (1), the random graph
G1[A′] contains a path on three vertices u1, u2, u3. Next, let B′ ⊆ B be the set of vertices
of B that have degree at least ∣A∣ − βn into A, are common neighbours of u1, u2, u3 and
have not yet been covered, and observe that ∣B′∣ ≥ ∣B∣−βn−3βn−(3k+k+2−3)∣F1∣ ≥ βn.
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Since m1(H) =m1(P 2
k ), using again (1), the random graph G1[B′] contains a copy of H,

that together with the vertices u1, u2, u3 and some edges from G gives a copy of P 2
3k+b.

In particular, since each vertex in the end-tuples of P 2
3k+b is embedded in B′, then, by

definition of B′, each end-tuple has at least ∣A∣ − 2βn common neighbours in A. In view
of (2), we get that ∣A1∣ = ⌊ n

k+1⌋ − 2m,

∣B1∣ = n − ∣A∣ − (3k − 1)m − a = k ⌊
n

k + 1⌋ − 3km = k(∣A1∣ − ∣F1∣) ,

and ∣V1∣ = (m − 1)(3k + 2) + 3k + 2 + a ≤ (4k + 3)m ≤ 3k2βn.
Now suppose that ∣A∣ = ⌊ n

k+1⌋ −m for some 0 ≤ m ≤ βn. In this case, the family F1

will consist of some copies of P 2
k+1 and some copies of P 2

2k+1, such that, for each copy,
all vertices are in B and each end-tuple has at least ∣A∣ − 8k2βn common neighbours in
A; in particular, we do no touch the set A. We start from F1 = ∅ and let B⋆ = {v ∈
B ∶ deg(v,B) ≥ 4k2βn} be the set of vertices in B with high degree to B in G. Since
by Definition 3.3 we have e(G[B]) ≤ βn2, then ∣B⋆∣ ≤ n

2k2 . Moreover if v ∈ B ∖B⋆, then
deg(v,A) ≥ δ(G) − deg(v,B) ≥ n

k+1 − 4k2βn ≥ ∣A∣ − 4k2βn. With m0 = max{m − ∣B⋆∣,0},
we have δ(G[B ∖B⋆]) ≥m0, as

δ(G[B ∖B⋆]) ≥ n

k + 1 − ∣A∣ − ∣B
⋆∣ = n

k + 1 − ⌊
n

k + 1⌋ +m − ∣B
⋆∣ ≥m − ∣B⋆∣ .

Moreover, by definition of B⋆, we have ∆(G[B ∖ B⋆]) ≤ 4k2βn ≤ γ∣B ∖ B⋆∣, where the
last inequality follows from the choice of β and ∣B ∖B⋆∣ ≥ ( k

k+1 − 1
2k2 )n. Therefore we can

use Lemma 2.9 with parameters k and t = k + 1 and we a.a.s. find (k + 1)m0 + a pairwise
disjoint copies of P 2

k+1 in (G ∪G2)[B ∖B⋆], which we add to F1. All the vertices of such
copies belong to B ∖ B⋆ and thus in particular each end-tuple has at least ∣A∣ − 8k2βn
common neighbours in A.

Next we want to find m −m0 ≤ min{∣B⋆∣,m} copies of P 2
2k+1 in B disjoint from any

graph already in F1. First observe that the graph H obtained by taking the disjoint union
of two copies of P 2

k with the addition of the edge between the last vertex of the first copy
and the first vertex of the second copy satisfies m1(H) ≤ m1(P 2

k ). The graph H will be
embedded in G1 and we will turn that into an embedding of P 2

2k+1, by adding a vertex
and four edges of G. We can again do this greedily in G ∪G1. First we remove vertices
from B⋆ such that ∣B⋆∣ = m −m0 ≤ m ≤ βn. Then we let B′ be the set of vertices in B
with less than ∣A∣−βn neighbours in A and note that ∣B′∣ ≤ βn. We then pick a vertex w
from B⋆ not yet covered and denote by Nw the set of neighbours of w in B ∖ (B⋆ ∪B′)
in the graph G, that have not yet been covered. Then

∣Nw∣ ≥ 4k2βn − ∣B′∣ − ∣B⋆∣ − ((k + 1)m0 + a)(k + 1) − (m −m0)(2k + 1 − 1) ≥ βn ,

where we use that any P 2
2k+1 from F1 has exactly one vertex in B⋆. Therefore, since

m1(H) ≤ m1(P 2
k ) and using (1), the random graph G1[Nw] contains a copy of this H,

that together with w and four edges from G, gives a copy of P 2
2k+1 as desired. The end-

tuples of this copy belong to B ∖B′ and thus each of them has at least ∣A∣−2βn common
neighbours in A. Once this is done, in view of (2), we indeed get ∣A1∣ = ∣A∣ = ⌊ 1

k+1n⌋ −m,

∣B1∣ = n − ∣A∣ − (k + 1)((k + 1)m0 + a) − (2k + 1)(m −m0)

= k (⌊ n

k + 1⌋ − a − 2m − km0) = k(∣A1∣ − ∣F1∣) ,

and ∣V1∣ = ((k + 1)m0 + a)(k + 1) + (m −m0)(2k + 1) ≤ (k + 1)2m + k(k + 1) ≤ 3k2βn. This
finishes the first step of our proof.
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Covering low degree vertices. In this step the goal is to find a family F2 of pairwise
disjoint copies of P 2

2k+1 and P 2
3k+2 that cover all vertices from A (respectively B) that do

not have high degree to B (respectively A) and such that, for each copy, each end-tuple
is in B and has at least ∣A∣− 16k2βn common neighbours in A. We will do this such that
after removing V2 = ⋃F ∈F2

V (F ) we are left with two sets

A2 = A1 ∖ V2 and B2 = B1 ∖ V2 such that ∣B2∣ = k(∣A2∣ − ∣F1∣ − ∣F2∣) . (3)

We let A′ = {v ∈ A1 ∶ deg(v,B) ≤ ∣B∣ − βn}, B′ = {v ∈ B1 ∶ deg(v,A) ≤ ∣A∣ − 8k2βn} and
note that ∣A′∣ ≤ βn and ∣B′∣ ≤ βn. Let F2 = ∅. We start by taking care of the vertices in
A′ and we cover each of them with a copy of P 2

2k+1 with all other vertices in B1 ∖B′. For
u ∈ A′, let Nu be the set of neighbours of u in B1 ∖B′ in G that are not yet covered by
any graph in F2 and observe that

∣Nu∣ ≥ deg(u,B) − ∣B ∖B1∣ − ∣B′∣ − 2k∣F2∣ ≥ n
4(k+1) − 3k2βn − βn − 2kβn ≥ βn ,

where we used that deg(u,B) ≥ n
4(k+1) as G is ( 1

k+1 , β)-stable (see Definition 3.3). Note

that the graph H obtained by taking the union of two copies of P 2
k with the addition of

an edge between two end-vertices satisfies m1(H) ≤ m1(P 2
k ). Therefore, using (1), the

random graph G1[Nu] contains a copy of H and together with u and four edges of G, this
gives the desired copy of P 2

2k+1. Both end-tuples of this copy of P 2
2k+1 belong to B1 ∖B′

and, thus, have at least ∣A∣−16k2βn common neighbours in A. We add this copy of P 2
2k+1

to F2 and we continue until we cover all vertices of A′.
Now we cover each vertex from B′ with a copy of P 2

3k+2, where each copy uses one
vertex from B′, two vertices from A1 ∖A′ and the other 3k − 1 vertices from B1 ∖B′. Let
w ∈ B′ and u1, u2 ∈ A1 ∖A′ be vertices not yet covered. We denote by Nw the subset of
B1∖B′ which contains the common neighbours of w,u1, u2 in G that are not yet covered.
Observe that the definitions of A′ and B′ give

∣Nw∣ ≥ (δ(G) − deg(w,A)) − (∣B∣ − deg(u1,B)) − (∣B∣ − deg(u2,B))+
− ∣B ∖B1∣ − 3k∣B′∣ − 2k∣A′∣

≥ n
k+1 − (∣A∣ − 8k2βn) − βn − βn − 3k2βn − 3kβn − 2kβn ≥ βn .

Similarly as above, using (1), the random graph G1[Nw] contains a copy of a graph H
on 3k − 1 vertices, that together with w,u1, u2 and some edges from G, gives a copy of
P 2
3k+2. The end-tuples of the copy of P 2

3k+2 belong to B1 ∖ B′ and, thus, have at least
∣A∣ − 16k2βn common neighbours in A. We add the copy of P 2

3k+2 to F2 and repeat until
all of B′ is covered. We then get (3), because of (2) and since for each graph added to
F2 the ratio of vertices removed from A1 and B1 is one to 2k or two to 3k. Moreover, we
have deg(v,B2) ≥ ∣B2∣−βn for v ∈ A2, deg(v,A2) ≥ ∣A2∣−8k2βn for v ∈ B2 and ∣V2∣ ≤ 6kβn,
which implies ∣A2∣ ≥ ∣A∣ − ∣V1∣ − ∣V2∣ ≥ n

2(k+1) .

Covering everything and connecting. In this step we first cover B2 with copies
of P 2

k . Then, using the uncovered vertices in A2, we connect all the copies of squares of
paths found so far, to get the square of a Hamilton cycle. Observe that after the cleaning
steps, k divides ∣B2∣ by (3) and thus Theorem 2.3 implies that a.a.s the random graph
G3[B2] has a P 2

k -factor. We denote the family of such copies of P 2
k by F3 and observe

that (3) implies ∣F3∣ = ∣A2∣ − ∣F1∣ − ∣F2∣.
We let F = F1∪F2∪F3 be the family of all the squares of paths that we have constructed

and, for each F ∈ F , denote the end-tuples of F by (yF , xF ) and (uF ,wF ). Recall that
the end-tuples are defined such that xF and wF is the first resp. last vertex of the path.
Note that by construction, each pair xF , yF and uF ,wF has at least ∣A2∣−16k2βn common
neighbours in A2. We now reveal the edges of G4 and construct an auxiliary directed
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graph T on vertex set F as follows. Given any two F,F ′ ∈ F , there is a directed edge
(F,F ′) if and only if the edge wFxF ′ appears in G4. Since all directed edges in T are

revealed with probability 1
4p independently of all others, T is distributed as

Ð→
G(∣F ∣, 14p).

Then, as ∣F ∣ ≥ 1
2kn and 1

4p ≥ C4
log ∣F ∣
∣F ∣ , there a.a.s. is a directed Hamilton cycle

Ð→
C in T by

Theorem 2.5.
In order to get the desired square of a Hamilton path, it remains to match the edges

(F,F ′) of Ð→C to the vertices v ∈ A2 such that uF ,wF , xF ′ , yF ′ are all neighbours of v in the

graph G. Observe indeed that ∣E(Ð→C )∣ = ∣F1∣+ ∣F2∣+ ∣F3∣ = ∣A2∣, the cycle
Ð→
C gives a cyclic

ordering of the squares of paths in F , and between consecutive copies (F,F ′) we have the
edge wFxF ′ (by definition of the graph T ) and the matching will give a unique vertex v
incident to uF ,wF , xF ′ and yF ′ . For that we define the following auxiliary bipartite graph

B with classes E(Ð→C ) and A2. There is an edge between (F,F ′) ∈ E(Ð→C ) and v ∈ A2 if and
only if uF ,wF , xF ′ , yF ′ are all neighbours of v in the graph G. The existence of a perfect
matching in B easily follows from Hall’s condition, as the minimum degree of B is large:

by the choice of β and the lower bound on ∣A2∣, the degree of (F,F ′) ∈ E(Ð→C ) in B is at
least ∣A2∣ − 32k2βn ≥ 1

2 ∣A2∣ and the degree of v ∈ A2 in B is at least ∣A2∣ − 4βn ≥ 1
2 ∣A2∣.

This finishes the proof. □

5. Proof of Theorem 3.5

Proof of Theorem 3.5. Let k ≥ 2 and 0 < β < 1
6k . We obtain d > 0 from Lemma 3.6 with

input k and β, and let γ = 1
k−1d and 0 < δ′ < 2−12(k − 1)−2d2k2 . Next we obtain δ0, δ, ε′ > 0

and C1 from the Star Cover Lemma (Lemma 3.7) with input k, δ′ and 1
2d such that

δ′ ≥ δ0 > 2δ > ε′ (δ plays the role of δ1 in the lemma). We additionally assume that ε′

is small enough for the Pair Cover Lemma (Lemma 3.8) with input 1
2d and also obtain

C2 from this. Then we let 0 < ε < 1
8ε
′. The constant dependencies can be summarised as

follows:

ε≪ ε′ ≪ δ ≪ δ0 ≪ δ′ ≪ d≪ β < 1

6k
.

We now apply Lemma 2.8 with input ε and t0 = 1
10d, and get T . Further, let the following

parameters be given by Lemma 2.4: C3 for input 3 (in place of s), 2 (in place of k)
and δ(kT )−6 (in place of η); C4 for input 2k, k and δ(kT )−2k2 ; C5 for input 4, 2 and
δ(kT )−8; and C6 for input 1, 2 and δ(kT )−2. Then let C be large enough such that
with p ≥ Cn−(k−1)/(2k−3) the random graph G(n, p) contains the union ⋃6

i=1Gi, where
G1 ∼ G(n,C1 ⋅ 2(k − 1)Tn−(k−1)/(2k−3)), G2 ∼ G(n,C2 ⋅ 2(k − 1)Tn−1), G3 ∼ G(n,C3n−1),
G4 ∼ G(n,C4n−(k−1)/(2k−3)), G5 ∼ G(n,C5n−1) and G6 ∼ G(n,C6n−1).
Let G be an n-vertex graph with vertex set V and minimum degree δ(G) ≥ ( 1

k+1 − γ)n
that is not ( 1

k+1 , β)-stable. We apply the Regularity Lemma (Lemma 2.8) to G and
get a subgraph G′ of G, a constant t with 3 < t + 1 ≤ T and an (ε, d)-regular partition
V ′0 , . . . , V

′
t of V , satisfying (P1)–(P4). Consider the (ε, d)-reduced graph R for G and

observe δ(R) ≥ ( 1
k+1 −2d)t, as, otherwise, in G′ there would be a vertex of degree at most

( 1
k+1−2d)tnt +εn < ( 1

k+1−γ)n−(d+ε)n in contradiction to (P2). As outlined in Section 3.5,
the proof will consist of four steps. We will cover the reduced graph with copies of stars
isomorphic to K1,k and K1,1, connect those stars with the squares of short paths, cover
the exceptional vertices and, finally, cover the whole graph with the square of a Hamilton
path.

Covering R with stars. We start by covering the vertices of R with vertex-disjoint
stars, each with at most k leaves; then we will turn this into a cover with copies of stars
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isomorphic to K1,k and K1,1. We let M1 be a largest matching in R and, with Lemma 3.6,

we get that ∣M1∣ ≥ ( 1
k+1 + 2kd) t since G is not ( 1

k+1 , β)-stable. By the maximality of M1,
the remaining vertices X1 = V (R) ∖ V (M1) form an independent set in R; moreover
only one endpoint of each edge in M1 can be adjacent to more than one vertex from X1

and the endpoints of each edge in M1 cannot have different neighbours in X1. For each
i = 2, . . . , k, we greedily pick a maximal matching Mi between Xi−1 and V (M1) and we
set Xi = Xi−1 ∖ V (Mi). Observe that, using the properties coming from the maximality
of M1 outlined above, the matching Mi covers at least min{∣Xi−1∣, δ(R)} vertices of Xi−1.
Since 2∣M1∣+ (k − 1)δ(R) ≥ t, we have Xk = ∅ and the union ⋃k

i=1Mi covers all vertices of
R with stars, each isomorphic to one of K1,1, . . . ,K1,k. Moreover note that the number

of K1,k is at most ∣Mk∣ ≤ t − 2∣M1∣ − (k − 2)δ(R) ≤ ( 1
k+1 − 2kd) t.

For simplicity we only want to work with stars isomorphic to K1,k and K1,1. To obtain
this, we split each cluster V arbitrarily into k − 1 parts V 1, . . . , V k−1 of the same size,
where we move at most t(k − 1) vertices to V ′0 for divisibility reasons. Note that from
any (ε, d)-regular pair we get (k − 1)2 pairs that are (kε, d − ε)-regular. We denote this
new partition by V0 = V ′0 , V1, . . . , Vt′ with t′ = t(k − 1) and denote the reduced graph for
this partition by R′. We now show that we can cover R′ with copies of stars isomorphic
to K1,k and K1,1. Any copy of K1,1 or K1,k in R immediately gives k − 1 copies of K1,1

or K1,k in R′, respectively. Moreover given any copy V,U1, . . . , Ui of K1,i in R, with V
being the center cluster and 2 ≤ i ≤ k − 1, we find i − 1 copies of K1,k and k − i copies of
K1,1 in R′ in the following way. For each j = 1, . . . , i − 1, the clusters V j, U1

j , . . . , U
k−1
j , U j

i

give a copy of K1,k in R′ and, for each j = i, . . . , k − 1, the clusters V j, U j
i give a copy of

K1,1 in R′. Therefore, we have covered the vertices of R′ with a collection K of copies
of K1,k and K1,1. We remark that we can still upper bound the number of copies of
K1,k in K as follows. Since each copy of K1,i in the original cover gives i − 1 copies of
K1,k in K, we get the largest number of copies of K1,k in K when the total number of
stars in the original cover is minimal. The original cover of R had at most ( 1

k+1 − 2kd)t
copies of K1,k and the remaining t − (k + 1)( 1

k+1 − 2kd)t = 2k(k + 1)dt vertices can give

at most 2k(k+1)dt
k = 2(k + 1)dt copies of K1,k−1. Therefore the collection K has at most

(k − 1)( 1
k+1 − 2kd)t + (k − 2)2(k + 1)dt = ( 1

k+1 − 4d
k−1)t′ copies of K1,k. We let n0 = ∣V1∣ =

⌊∣V ′1 ∣/(k − 1)⌋ be the size of the clusters in R′ and observe that (1 − 2ε)n/t′ ≤ n0 ≤ n/t′.
For convenience we relabel the clusters as follows. We let I ⊆ [t′] be the set of indices

of those clusters of R′ that are the centre cluster in a copy of K1,k in K and, for i ∈ I, we
denote by Ui,1, . . . , Ui,k the clusters of R′ that, together with Vi, create a copy of K1,k in
K. Then we let J ⊆ [t′] be any set of indices with the following property: each index in
J corresponds to a cluster of a copy of K1,1 in K and, for each copy of K1,1 in K, exactly
one of its clusters has its index in J . Moreover, for each i ∈ J , we let Ui,1 be the cluster
of R′ that, together with Vi, creates a copy of K1,1 in K.

We would like to apply the Star Cover Lemma (Lemma 3.7) and the Pair Cover Lemma
(Lemma 3.8) to the clusters corresponding to the copies of K1,k and K1,1, respectively.
However we first need to make each regular pair super-regular and unbalance some of the
clusters to allow an application of Lemma 3.7. For that we arbitrarily move δn0+4(1−δ)
vertices from each cluster Ui,j with i ∈ I and j = 1, . . . , k to V0. Observe this ensures
that ∣Ui,k∣ ≤ (1 − δ)(∣Vi∣ − 4). Next we repeatedly use the Super-regular Pair Lemma
(Lemma 2.7) and move at most k2εn0 vertices from each cluster to V0, to ensure that
all edges of R′ within a copy of K1,k or K1,1 from K are (2kε, d − 4kε)-super-regular.
When doing this we can ensure that for each i ∈ I all clusters Vi have the same size
and that for j = 1, . . . , k all clusters Ui,j have the same size, except the cluster Ui,1 that
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has two more vertices than other Ui,j. Additionally, we can ensure that for each i ∈ J ,
the clusters Vi and Ui,1 have the same size. Moreover, by moving only at most 3k − 2
additional vertices from each Ui,j to V0 (which do not harm the bounds above), we can
ensure that for i ∈ I we have ∣Vi∣ − 4 − ∣Ui,k∣ ≡ −1 (mod 3k − 1), again in view of a later
application of the Star Cover Lemma (Lemma 3.7). Note that at this point we have
∣V0∣ ≤ εn + t(k − 1) + t′δn0 + t′k2εn0 + t′3k ≤ 2δn.
Connecting the stars. In this step, we fix an arbitrary cyclic ordering of the copies

of K1,k and K1,1, and we connect each consecutive pair using the square of a short path.
For the rest of the proof, we will refer to these (squares of) short paths as the connecting
paths. We first explain the connection between two copies of K1,k and assume without
loss of generality that 1,2 ∈ I; when at least one of the copies is K1,1, the connection is
similar and will be explained later. We use the square of a path on six vertices with end-
tuples within V1 and V2, such that, again in view of the Star Cover Lemma (Lemma 3.7),
the end-tuples have many common neighbours into the other clusters U1,j and U2,j for
j = 1, . . . , k, respectively. Recall that both U1,1 and U2,1 contain two more vertices than
other leaf clusters, one of which will be used for this connection.

x1x2 y1 y2

z1 z2

V1 V2

U1,1

U1,2

U1,3

U1,4

U2,1

U2,2

U2,3

U2,4

Figure 3. Construction of the square of a path with end-tuples (x1, x2) and (y1, y2)
that connects two copies of K1,k in the cluster graph R′. The dashed blue edges come
from the random graph and the black edges from the deterministic graph.

We want to find x1, x2 ∈ V1, z2 ∈ U2,1, z1 ∈ U1,1 and y1, y2 ∈ V2 such that the following
holds (see Figure 3):

(A1) the tuples (x1, x2) and (y1, y2) have at least 3
4d

2n0 common neighbours in each of
U1,1, . . . , U1,k and U2,1, . . . , U2,k in the graph G, respectively;

(A2) x1z1, x2z1, y1z2 and y2z2 are edges of G;
(A3) x2, x1, z2, z1, y1, y2 is a path in G3.

For that we use Lemma 2.4 on the following collection H of tuples. We pick subsets X
in V1, Y in V2, Z1 in U1,1 and Z2 in U1,2, all of size n0/3, and we let H be the set of those
tuples (x2, x1, z2, z1, y1, y2) ∈ X ×X × Z2 × Z1 × Y × Y which satisfy the properties (A1)
and (A2). Note that H contains enough tuples for an application of Lemma 2.4. Indeed,
with Lemma 2.6, we get that all but at most 2kεn0 vertices x1 ∈ X have degree at least
(d − 6kε)∣Z1∣ and then, fixing any such x1, all but at most 4k2εn0 vertices x2 ∈ X have
at least 3

4d
2n0 common neighbours in U1,1, . . . , U1,k with x1 and at least 1

4d
2n0 common

neighbours in Z1 with x1 with respect to G and similarly for Y with U2,1, . . . , U2,k and
Z2. Therefore, H has size at least d42−12n6

0 ≥ δ(kT )−6n6. Now we reveal the edges of
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G3[X ∪Z2∪Z1∪Y ] and with Lemma 2.4 and given the choice of C3, we a.a.s. find a tuple
(x2, x1, z2, z1, y1, y2) ∈ H satisfying the property (A3) as well. This will give the desired
connecting square of a path. We then remove the vertices z1 and z2 from U1,1 and U2,1,
respectively.

Given an arbitrary cycling ordering of the indices from I and J , we use this construc-
tion to connect all neighbouring pairs (i, j). If i, j ∈ I we proceed as described above for
the pair (1,2); if i ∈ J , we let Ui,1 take the role of all U1,1, . . . , U1,k; and if j ∈ J , we let Uj,1

take the role of V2 and Vj the role of all U2,1, . . . , U2,k. As we pick sets X, Y , Z1 and Z2 of
size n0/3 and each cluster is involved in at most two distinct connections, we can choose
disjoint sets for each connection and avoid clashes. Therefore each edge of G3 is revealed
at most once and, as there are at most t′ connections, we a.a.s. get all the desired edges
of G3. Observe that the choices done so far are needed for a later application of the Star
Cover Lemma (Lemma 3.7) and the Pair Cover Lemma (Lemma 3.8). Indeed, for i ∈ I,
there are two end-tuples of connecting paths in Vi and, for i ∈ J , there is one end-tuple
of a connecting path in each of Vi and Ui,1; moreover, for i ∈ I, since Ui,1 is involved in
exactly two connections, during this construction we removed exactly two vertices from
Ui,1 and now all Ui,j have the same size for j = 1, . . . , k.
Covering V0. In the next step we cover all vertices of V0 by extending the connecting

paths that we have already constructed and we recall that ∣V0∣ ≤ 2δn. It is crucial for the
rest of the argument (in particular for the applications of the Star Cover Lemma and the
Pair Cover Lemma) that the conditions on the relation between the sizes of the clusters
are still satisfied and that the end-tuples remain in the same clusters, i.e. if we extend
the square of a path with one end-tuple in a cluster Vi, then the extended path needs to
have the new end-tuple in the same cluster Vi. We will again make use of Lemma 2.4,
with a suitable collection of tuples H. Before giving a precise description, we refer to
Figure 4 and illustrate the extension when k = 3 and we want to cover a vertex v ∈ V0 by
extending the square of a connecting path with end-tuple (x1, x2) in the centre cluster Vi

of a copy of K1,3. We will find 24 additional vertices as drawn in Figure 4, where we stress
the following conditions. The vertices v3,1, . . . , v3,6 are all neighbours of v in G (which
will be guaranteed by the minimum degree condition), the blue edges are random edges
(which will be guaranteed by Lemma 2.4), while the black edges are from the graph G
(which will be guaranteed by regularity). Thus we extend the connecting path with one
end-tuple (x1, x2) in Vi to a longer connecting path with end-tuple (x′1, x′2) still in Vi, by
appending the square of a path containing v and with end-tuples (x2, x1) and (x′1, x′2)
(recall this is consistent with the way we defined end-tuples). Moreover, since six new
vertices have been covered from each cluster, the relation between their sizes still holds.

We will now give the details of these constructions and we start by defining the col-
lections of tuples we will use for the applications of Lemma 2.4. For i ∈ I, we let H1,i be

the set of those tuples in ∏k
j=1(Uk

i,j × Uk
i,j) such that the 2k2 vertices in each tuple have

at least 1
2d

2k2n0 common neighbours in Vi in G. Then we let H1 = ⋃i∈IH1,i. Similarly,
for j ∈ J , we let H2,j be the set of those tuples in V 8

j ∪ U8
j,1 such that the 8 vertices in

each tuple have at least 1
2d

8n0 common neighbours in the other set in G. Then we let
H2 = ⋃j∈J H2,j. Moreover, for i ∈ I, we let H3,i be the set of those tuples in V 2

i such that
the 2 vertices in each tuple have at least 3

4d
2n0 common neighbours in each of the sets

Ui,j for j = 1, . . . , k. For j ∈ J , we let H3,j be the set of those tuples in V 2
j ∪U2

j,1 such that

the 2 vertices in each tuple have at least 3
4d

2n0 common neighbours in the other set in
G. Then we let H3 = ⋃i∈IH3,i ∪⋃j∈J H3,j. With the constants specified in the beginning
of the proof for obtaining C4, C5 and C6, we apply Lemma 2.4 to H1 with the random
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v
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v2,1
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v2,5

v2,6

v3,1
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v1,3
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Figure 4. Covering one vertex v ∈ V0 by the square of a path for a copy of K1,k in
K for k = 3. We keep the position of the end-tuples in Vi and the sizes of the clusters
balanced. The edges within the clusters (dashed blue) come from the random graph and
the edges between the clusters (black) come from regularity.

graph G4, to H2 with G5 and to H3 with G6. Given the choice of the constant C done at
the beginning, we can a.a.s. assume that

G4, G5 and G6 are all in the good event of Lemma 2.4 for the application above. (4)

Now we explain how we cover the vertices of V0 and we show that suitable subsets
of H1, H2 and H3 are large enough for Lemma 2.4, i.e. larger than δ(kT )−sknsk where
sk = 2k2,8,2, respectively.
Given a vertex v ∈ V0, we insist that the neighbours of v that we use to cover v do

not come from any of the centre clusters Vi with i ∈ I, because in this case we could
not ensure to use the same number of vertices from each cluster in the copy of K1,k and
we would unbalance the star, creating issues for a later application of the Star Cover
Lemma (Lemma 3.7). Observe that, as we have ∣V0 ∪ (⋃i∈I Vi)∣ ≤ 2δn + ( 1

k+1 − 4kd)t′n0 ≤
( 1
k+1−γ)n− 2d

k−1n, every vertex in G has at least 2d
k−1n neighbours outside of V0∪(⋃i∈I Vi) in

the graphG. Moreover, for each vertex v ∈ V0, we will use at most max{2k(k+1),22} ≤ 6k2

vertices outside of V0. During the process of covering V0, we let V ∗ ⊆ V0 be the set
of vertices of V0 already covered and W be the set of vertices outside of V0 that we
already used to cover V ∗; at the beginning V ∗ = ∅ and W = ∅. Note that we have
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∣W ∣ ≤ 6k2∣V ∗∣ ≤ 12k2δn. Then we let T ⊆ I ∪ J be the set of those indices i ∈ I ∪ J such

that Ui,1 intersects W in at least
√
δn0 vertices and note that the bound on ∣W ∣ implies

that ∣T ∣ ≤ 12k2
√
δt′. We recall that at the beginning of the process for each i ∈ I all

the clusters Ui,j had the same size for j = 1, . . . , k. Similarly, for each i ∈ J the clusters
Vi and Ui,1 had the same size as well. Since throughout the process we always cover
the same number of vertices in each cluster of a copy of K1,1 or K1,k, if i /∈ T , then W

intersects each cluster of the copy corresponding to the index i in less then
√
δn0 vertices.

Moreover, notice that as each v ∈ V0 has at least
2d
k−1n neighbours outside of V0∪(⋃i∈I Vi),

there are at least d
k−1t

′ clusters that are not the centre cluster of a copy of K1,k and such

that v has at least d
k−1n0 neighbours in it. Therefore, for every v ∈ V0 ∖ V ∗ there exists

i(v) ∈ (I∪J )∖T and some j(v) such that v has at least d
k−1n0 neighbours in Ui(v),j(v)∖W

with respect to G.
Fix any v ∈ V0 ∖V ∗ and let i = i(v). We start discussing the case i ∈ I; the case i ∈ J is

conceptually simpler and will be treated afterwards. We recall that, since we removed the
vertices z used for the connecting paths, all the leaf clusters Ui,j for j = 1, . . . , k have the
same size and thus, without loss of generality, we can assume j(v) = k. Let (x1, x2) and
(y1, y2) be the end-tuples in Vi of the connecting paths found in the previous step and
recall that x1 and x2 have at least

3
4d

2n0 common neighbours in Ui,j for each j = 1, . . . , k.
We will extend the square of the connecting path with end-tuple (x1, x2), without using
neither y1 nor y2. Moreover, we will make sure that the new end-tuple (x′1, x′2) belongs to
Vi and that x′1 and x′2 have at least

3
4d

2n0 common neighbours in Ui,j for each j = 1, . . . , k.
Let Z1 be the set (NG(x1, Ui,1) ∩ NG(x2, Ui,1)) ∖W , let Zj be the set Ui,j ∖W for

j = 2, . . . , k − 1 and let Zk be the set NG(v,Ui,k) ∖W . Observe that ∣Z1∣ ≥ 1
2d

2n0 since

x1 and x2 have at least 3
4d

2n0 common neighbours in Ui,1, ∣Zj ∣ ≥ (1 −
√
δ)n0 ≥ dn0 for

j = 2, . . . , k − 1 and ∣Zk∣ ≥ d
k−1n0 by the choice of i = i(v). Using the regularity properties,

analogously as above, it is easy to see that there are at least δ(kT )−2k2n2k2 tuples in

∏k
j=1(Zk

j × Zk
j ) such that the 2k2 vertices in each tuple have at least 1

2d
2k2n0 common

neighbours in Vi in G. These tuples are in H1,i ⊆H1 as well and thus (4) guarantees that

we find one of such tuples (vj,j′ ∶ 1 ≤ j ≤ k,1 ≤ j′ ≤ 2k) in ∏k
j=1(Zk

j × Zk
j ) where vj,j′ ∈ Zj,

such that in G4 we have the square of a path on vj,1, . . . , vj,k, the square of a path on
vj,k+1, . . . , vj,2k and the edges vj,kvj,k+1 and vj,2kvj+1,1. Note that we applied Lemma 2.4
with s = 2k and Ui,j as W2j−1 and W2j for j = 1, . . . , k, but then relabelled the vertices to
achieve the outcome above.

Let Z ⊆ Vi ∖ (W ∪ {y1, y2}) be the common neighbourhood of the vertices vj,j′ with
1 ≤ j ≤ k and 1 ≤ j′ ≤ 2k in Vi, and observe ∣Z ∣ ≥ 1

4d
2k2n0. Again using regularity, there

are at least δ(kT )−2n2 tuples in Z2 ∩H3 and, therefore, (4) guarantees that there is a
tuple (x′1, x′2) ∈ Z2∩H3 such that x′1x

′
2 is an edge of G6 and x′1 and x′2 have at least

3
4d

2n0

common neighbours in each Ui,j for j = 1, . . . , k. We then greedily pick additional 2(k−1)
vertices v1,w1, . . . , vk−1,wk−1 in Z and we claim that

x1, x2, v1,1, . . . , v1,k, v1, v1,k+1, . . . , v1,2k,w1,

v2,1, . . . , v2,k, v2, . . . ,wk−1, vk,1, . . . , vk,k, v, vk,k+1, . . . , vk,2k, x
′
1, x

′
2

is the square of a path with end-tuples (x2, x1) and (x′1, x′2) that contains v. Indeed, x1

and x2 are common neighbours of v1,1 and v1,2, while x′1 and x′2 are common neighbours
of vk,2k−1 and vk,2k; moreover the vertex v is a common neighbour of vk,k−1, vk,k, vk,k+1 and
vk,k+2, the vertex vj is a common neighbour of vj,k−1, vj,k, vj,k+1 and vj,k+2, and the vertex
wj is a common neighbour of vj,2k−1, vj,2k, vj+1,1 and vj+1,2. This fills the gaps left after
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the initial construction above where we used Lemma 2.4 with the graph G4. We now add
v to V ∗ and all other used vertices vj,j′ for 1 ≤ j ≤ k and 1 ≤ j′ ≤ 2k, vi,wi for 1 ≤ i ≤ k−1,
and x1 and x2 to W . Note we do not add x′1 and x′2 to W as (x′1, x′2) is the end-tuple of
the extended square of a path. Observe that we used 2k(k + 1) vertices to cover v and
that we covered exactly 2k vertices from each cluster of the copy of K1,k.

v

x1

x2

x11

x15

x17

x21

x12

x14

x18

x20

x5

x24 x25

x3

x7

x9

x4

x6

x10

x13
x16
x19

x22 x23

x1

x2

x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25

x4 x6 x10 x12 x14 x16 x18 x20 x22 x24v

Figure 5. Covering one vertex v ∈ V0 by the square of a path for a copy of K1,1 in
K. We keep the position of the end-tuples in Vi and the sizes of the clusters balanced.
The edges within the clusters (dashed blue) come from the random graph and the edges
between the clusters (green and black) come from regularity.

Now we move to the construction for the case i = i(v) ∈ J . We will use always the
same construction regardless of the value of k as illustrated in Figure 5 in a similar way
as Figure 4 earlier. By assumption we have j(v) = 1 and thus ∣NG(v,Ui,1 ∖W )∣ ≥ d

k−1n0.
Let (x1, x2) ∈ V 2

i and (y1, y2) ∈ U2
i,1 be the end-tuples of the connecting paths found

in the previous step and recall that x1 and x2 have at least 3
4d

2n0 common neighbours
in Ui,1. We will extend the square of the connecting path ending in (x1, x2), without
using neither y1 nor y2, by constructing the square of a path on pairwise distinct vertices
x1, x2, . . . , x24, x25, where x8 = v. Moreover, we will make sure that the new end-tuple
(x24, x25) belongs to Vi, and that x24 and x25 have at least 3

4d
2n0 common neighbours in

Ui,1. Let Z3 = Z4 be the common neighbourhood of x1 and x2 in Ui,1 ∖ (W ∪ {y1, y2})
and Z6 = Z7 = Z9 = Z10 be the neighbourhood of v in Ui,1 ∖ (W ∪ {y1, y2}). Note that
∣Z3∣ ≥ 1

2d
2n0 and ∣Z6∣ ≥ d

k−1n0 − 2. Using regularity, it is easy to see that for at least
δ(kT )−8n8 tuples in Z3 ×Z4 ×Z6 ×Z7 ×Z9 ×Z10 ×Ui,1 ×Ui,1 the common neighbourhood
of their vertices in Vi has size at least 1

2d
8n0 (where we added the set Ui,1 twice only for

the following application of Lemma 2.4). Thus (4) guarantees we find a path in G5 on
six vertices x3, x4, x6, x7, x9, x10 (we ignore the two vertices in Ui,1) with xj ∈ Zj and such
that the set Z of the common neighbours of x3, x4, x6, x7, x9, x10 in Vi ∖ (W ∪ {x1, x2})
has size at least ∣Z ∣ ≥ 1

4d
8n0. We let x5 be any vertex of Z. Again using regularity, there

are at least δ(kT )−8n8 tuples in (Z ∖{x5})8 such that the eight vertices in the tuple have
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at least 1
2d

8n0 common neighbours in Ui,1. These tuples are in H2 as well and thus (4)
guarantees we find in G5 a path on eight vertices x11, x12, x14, x15, x17, x18, x20, x21 such
that these eight vertices belong to Z ∖ {x5} and the set Z ′ of their common neighbours
in Ui,1 ∖ (W ∪ {y1, y2, x3, x4, x5, x6, x7, x9, x10}) has size ∣Z ′∣ ≥ 1

4d
8n0. We let x13, x16 and

x19 be any three vertices of Z ′. Again with (4), we find an edge x22x23 of G6 such
that x22, x23 ∈ Z ′ ∖ {x13, x16, x19} and their common neighbourhood Z ′′ in Vi ∖ (W ∪
{y1, y2, x1, x2, x5, x11, x12, x14, x15, x17, x18, x20, x21}) has size at least 1

2d
2n0. With another

application of (4) we find an edge x24x25 of G6 such that x24, x25 ∈ Z ′′ and they have at
least 3

4d
2n0 common neighbours in Ui,1. This gives the square of a path on the vertices

x1, . . . , x7, v, x9, . . . , x25. We add v to V ∗ and x1, . . . , x7, x9, . . . , x23 to W ; note we do not
remove of x24 and x25 as (x24, x25) is the end-tuple of the extended square of a path.
Note that we used 22 vertices to cover v and that we covered exactly 11 vertices from
each cluster Vi and Ui,1.
We keep covering the vertices of V0 in this way until V ∗ = V0, then we remove the

vertices in W from the clusters.
Completing the square of the Hamilton cycle. Before finishing the proof, we

summarise what we have done so far and, abusing notation, we still denotes the clusters
by Vi, Ui,1, . . . , Ui,k for i ∈ I and Vi, Ui,1 for i ∈ J , even if we removed several vertices
from them in the previous steps of the proof while connecting stars and covering V0. We
have covered all vertices of G, except those that are still in the clusters of a copy of K1,1

or K1,k, with the squares of short paths with the following properties. Their end-tuples
belong to some Vi with i ∈ I, or some Vj or some Uj,1 with j ∈ J . Moreover, for each i ∈ I,
the cluster Vi contains exactly two of such tuples, say (x1, x2) and (y1, y2), such that x1

and x2 have at least 3
4d

2n0 −
√
δn0 ≥ 1

2d
2n0 common neighbours in Ui,j for j = 1, . . . , k,

and the same holds for y1 and y2. Additionally, for each j ∈ J , the clusters Vj and Uj,1

contain exactly one such tuple each, say (x1, x2) and (y1, y2) respectively, such that x1

and x2 have at least
1
2d

2n0 common neighbours in Uj,1, and y1 and y2 have at least
1
2d

2n0

common neighbours in Vj. Therefore, it remains to cover the clusters by extending the
squares of paths we already have.

Let i ∈ I. Note that we still have that ∣Ui,1∣ = ⋅ ⋅ ⋅ = ∣Ui,k∣ and ∣Vi∣ − 4 − ∣Ui,k∣ ≡ −1
(mod 3k − 1) for i ∈ I. Recall that we removed δn0 + 4(1 − δ) vertices from each Ui,j

at the beginning. Moreover, while making the regular pairs super-regular and during
the previous step, we removed the same number of vertices from each cluster of a copy
of K1,k and at most 2

√
δn0 vertices from each. Therefore, using that 2δ < δ0, we get

∣Ui,j ∣ ≥ (1 − δ0)(∣Vi∣ − 4) for j = 1, . . . , k. Note that also ∣Ui,k∣ ≤ (1 − δ)(∣Vi∣ − 4) still
holds. In addition, observe that (Vi, Ui,j) is (ε′, d2)-super-regular. Now let (x1, x2) and
(y1, y2) be the two end-tuples in Vi of connecting paths and recall they both have at least
1
2d

2n0 common neighbours in Ui,j for each j = 1, . . . , k. We apply the Star Cover Lemma
(Lemma 3.7) with the random graph G1 to Vi, Ui,1, . . . , Ui,k and get the square of a path
with end-tuples (x2, x1) and (y2, y1), covering all vertices in Vi ∪Ui,1 ∪ ⋅ ⋅ ⋅ ∪Ui,k.
For i ∈ J we proceed similarly. We have ∣Vi∣ = ∣Ui,1∣ and two end-tuples (x1, x2) in Vi

and (y1, y2) in Ui,1 of connecting paths. Since x1 and x2 have at least 1
2d

2n0 common
neighbours in Ui,1, and y1 and y2 have at least 1

2d
2n0 common neighbours in Vi, we can

apply the Pair Cover Lemma (Lemma 3.8) with the random graph G2 to Vi, Ui,1, and get
the square of a path with end-tuples (x2, x1) and (y2, y1), covering all vertices in Vi∪Ui,1.
This completes the square of a Hamilton cycle covering all vertices of G and finishes

the proof. □
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6. Regularity in auxiliary graphs

The aim of this section is to prove the main technical lemma behind the Star Cover
Lemma (Lemma 3.7), whose proof is provided in Section 7. In Lemma 3.7, we have to
find the square of a Hamilton path (subject to additional conditions), where we can use
both deterministic and random edges. Here we look at the edges coming from the random
graph and show that we can find many disjoint copies of the square of a short path in the
random graph, with some additional properties with respect to the deterministic graph,
which guarantee we can then nicely connect them and build the desired structure. We
state a more general version of the result we need for Lemma 3.7, as we believe it might
be of independent interest and helpful in other problems of similar flavour. Before stating
the lemma we introduce some definitions.

Definition 6.1 (H-transversal family). Let H be a graph and set h = ∣V (H)∣. Let
V,U1, . . . , Uh be disjoint sets of vertices and G be a graph on vertex set V ∪U1 ∪ ⋅ ⋅ ⋅ ∪Uh.
A family H of pairwise vertex-disjoint copies of H in G[U1, . . . , Uh] is said to be a H-
transversal family if, in addition, there exists a labelling v1, . . . , vh of the vertices of H
such that, for each copy H ∈ H, the vertex vi is embedded into Ui for each i = 1, . . . , h.
With H being a H-transversal family in G, we define the following auxiliary bipartite

graph TG(H, V ).
Definition 6.2 (Auxiliary graph TG(H, V )). We define TG(H, V ) to be the bipartite graph
with partition classes H and V , where the edge between H ∈ H and v ∈ V appears if and
only if all vertices of H are incident to v in G.

We prove the following general lemma, which was already proved in the case when
H =K2 in [8, Lemma 8.1].

Lemma 6.3. Let H be a graph on h vertices. For any d, δ, ε′ > 0 with 2δ ≤ d there exist
ε,C > 0 such that the following holds. Let V,U1, . . . , Uh be pairwise disjoint sets with
∣V ∣ = n and ∣Ui∣ =m = (1± 1

2)n for i = 1, . . . , h such that (V,Ui) is (ε, d)-super-regular with
respect to a graph G for i = 1, . . . , h. Furthermore, suppose that p ≥ Cn−1/m1(H).

Then a.a.s. there exists an H-transversal family H ⊆ G(U1, . . . , Uh, p) of size ∣H∣ ≥
(1 − δ)m such that the pair (H, V ) is (ε′, dh+12−h−3)-super-regular with respect to the
auxiliary graph TG(H, V ).
The lemma shows that not only there is a large H-transversal family H, but that we

can additionally require that (H, V ) is a super-regular pair in TG(H, V ). The proof of
Lemma 3.7 will use the special case of H being the square of a path on k vertices.
Before giving a proof of Lemma 6.3, we introduce an auxiliary h-partite h-uniform

hypergraph F = FG,V (U1, . . . , Uh) to encode the potential tuples in U1 × ⋅ ⋅ ⋅ × Uh that we
would like to use for building the copies of H for the family H.
Definition 6.4 (Auxiliary hypergraph F ). Let h ≥ 1 be an integer, V,U1, . . . , Uh be
pairwise disjoint sets with ∣V ∣ = n and ∣Ui∣ = m = (1 ± 1

2)n for i = 1, . . . , h. We define
F = FG,V (U1, . . . , Uh)1 to be the h-partite h-uniform hypergraph on U1 × ⋅ ⋅ ⋅ × Uh where a
tuple (u1, . . . , uh) ∈ U1×⋅ ⋅ ⋅×Uh is an edge of F if and only if the vertices u1, . . . , uh have at
least 1

2d
hn common neighbours in the set V in the graph G, i.e. ∣⋂h

i=1NG(ui, V )∣ ≥ 1
2d

hn.
Similarly, given a set X ⊆ V , we call an edge (u1, . . . , uh) ∈ E(F ) good for X if and

only if there are at least 1
2d

h∣X ∣ vertices in X that are incident to all of u1, . . . , uh in G.
We denote by FX the spanning subgraph of F with edges that are good for X.

1We remark that the definition of F depends on d as well. However, as this will always be clear from
the context, we omit writing d explicitly in FG,V (U1, . . . , Uh).
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However, we can only use those copies of H which actually do appear in the random
graph. In order to encode that, we define the random spanning subgraph F̃ of F as
follows.

Definition 6.5 (Auxiliary hypergraph F̃ ). Let H be a graph on h vertices. Let V,U1, . . . , Uh

be pairwise disjoint sets and F be the hypergraph defined in Definition 6.4. After revealing
the edges of the random h-partite graph G(U1, . . . , Uh, p), we denote by F̃ the (random)
spanning subhypergraph of F formed by those edges (u1, . . . , uh) of F for which the ver-
tices u1, . . . , uh give a copy of H in the revealed random graph G(U1, . . . , Uh, p). We will
say that F̃ is supported by G(U1, . . . , Uh, p).

We remark that if (u1, . . . , uh) ∈ U1×⋅ ⋅ ⋅×Uh is an edge of F̃ , then the vertices u1, . . . , uh

give a copy of H in G(U1, . . . , Uh, p) and have at least 1
2d

hn common neighbours in the
set V in the graph G. We state some additional properties of F below.

Lemma 6.6. Let H be a graph on h vertices. Let 0 < d < 1 and ε ≤ min{12dh−1, d(1 −
2−1/h)}. Let G be a graph on vertex set V ∪U1 ∪ ⋅ ⋅ ⋅ ∪Uh with ∣V ∣ = n and ∣U1∣ = ⋅ ⋅ ⋅ = ∣Uh∣ =
m = (1± 1

2)n, and assume (V,Ui) is a (ε, d)-super-regular pair with respect to G for each
i = 1, . . . , h. Let F = FG,V (U1, . . . , Uh) be the hypergraph defined in Definition 6.4. Then
the following holds:

(i) The minimum degree of F is at least (1 − hε)mh−1.
(ii) If ∣X ∣ ≥ 2εnd1−h, all but at most εm vertices from each Ui have degree at least
(1 − hε)mh−1 in FX .

Moreover the subgraph F̃ keeps roughly the expected number of edges of F .

Lemma 6.7. For any graph H on h ≥ 2 vertices and any δ > 0 there exist ε > 0 and C > 0
such that the following holds for p ≥ Cn−1/m1(H). Let V,U1, . . . , Uh be pairwise disjoint
sets with ∣V ∣ = n and ∣Ui∣ =m = (1 ± 1

2)n for i = 1, . . . , h, and F = FG,V (U1, . . . , Uh) be the
hypergraph defined in Definition 6.4. Then a.a.s. for any sets U ′i ⊆ Ui of size at least δm

for i = 1, . . . , h, we have that F̃ ′ = F̃ [U ′1, . . . , U ′h] satisfies

e(F̃ ′) = (1 ±
√
ε)

h

∏
i=1
∣U ′i ∣pe(H). (5)

Moreover, if ∣X ∣ ≥ 2εnd1−h, then with probability at least 1 − e−n, for any choice of

U ′1, . . . , U
′
h as above and with F̃ ′X = F̃X[U ′1, . . . , U ′h], we have

e(F̃ ′X) ≥ (1 −
√
ε)

h

∏
i=1
∣U ′i ∣pe(H). (6)

We remark that we will show a more general version of Lemma 6.7. Indeed our proof
will only use that F satisfies (i) and that FX satisfies (ii) for all X with ∣X ∣ ≥ 2εnd1−h.
Thus (5) holds for any h-partite h-uniform hypergraph F on partition classes U1, . . . , Uh

of size m = (1 ± 1
2)n with minimum degree (1 − hε)mh−1. Similarly (6) holds for all

subgraphs FX of such F , such that all but εm vertices in each class have degree at least
(1 − hε)mh−1 in FX .

The proof of Lemma 6.6 relies on a standard application of the regularity method and
that of Lemma 6.7 follows from an application of Chebyshev’s and Janson’s inequalities.
Therefore we postpone them to Appendix A and we now turn to the main proof of this
section.
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Proof of Lemma 6.3. Given a graph H on h ≥ 2 vertices and d, δ, ε′ > 0 with 2δ ≤ d,
suppose that

ε≪ η ≪ γ ≪ d, δ, ε′

are positive real numbers such that

γ ≤ ε′(1−δ)
2 , η log( 1η) ≤ 1

4γ, ε ≤min{12ηdh−1, d(1 − 2−1/h), 1
142γ

2} ,

where additionally we require that ε is small enough for Lemma 6.7 with input H and δ.
Furthermore, let C > 0 be large enough for Lemma 6.7 with the same input.

Given n, let V,U1, . . . , Uh be sets of size ∣V ∣ = n and ∣Uj ∣ = m = (1 ± 1
2)n for j =

1, . . . , h such that (V,Uj) is (ε, d)-super-regular with respect to a graph G for j = 1, . . . , h.
To find the family H we will now reveal edges of G(U1, . . . , Uh, p) with probability p ≥
Cn−1/m1(H) and consider the spanning subgraph F̃ of F = FG,V (U1, . . . , Uh) as defined in
Definitions 6.4 and 6.5. Let X ⊆ V be of size ηn. With Lemma 6.7, we can assume that
for all U ′j ⊆ Uj of size δm for j = 1, . . . , h we have that (5) and (6) hold, where the latter
holds for all X as above by a union bound.

Using a random greedy process we now choose a family of transversal copies H of H of
size (1 − δ)m in F̃ as follows. Having chosen copies H1, . . . ,Ht ∈ F̃ with t < (1 − δ)m, we
pick Ht+1 uniformly at random from all edges of F̃ that do not share an endpoint with
any of H1, . . . ,Ht. This is possible since by (5) there is always an edge in F̃ [U ′1, . . . , U ′h]
for any subsets U ′j ⊆ U of size at least δm for j = 1, . . . , h, and thus a transversal copy of
H in G(U1, . . . , Uh, p). For i = 1, . . . , t, we denote the i-th chosen copy of H for H by Hi,
by Hi the history H1, . . . ,Hi, and let H0 be empty. It remains to show that a.a.s. (H, V )
is (ε′,2−h−3dh+1)-super-regular with respect to the auxiliary graph T = TG(H, V ).
Observe that any H ∈ H has ∣NT (H)∣ ≥ 1

2d
hn ≥ dh+12−h−3∣V ∣ by construction. Moreover

for any v ∈ V we have ∣NT (v)∣ ≥ 2−h−3dh+1m; this can be shown as follows. Consider
the first 1

2dm chosen copies, then for i = 1, . . . , 12dm, by (5), there are at most (1 +√
ε)∏h

j=1 ∣Uj ∣pe(H) available copies to chose Hi from. On the other hand, as long as

i < 1
2dm, the vertex v has at least 1

2dm ≥ δm neighbours U ′j ⊆ Uj for j = 1, . . . , h that are

not covered by the edges inHi−1. Therefore, by (5) there are at least (1−√ε)∏h
j=1 ∣U ′j ∣pe(H)

choices for Hi such that Hi ∈ NT (v).
Hence, for i = 1, . . . , 12dn, we get

P[Hi ∈ NT (v)∣Hi−1] ≥
(1 −√ε)∏h

j=1 ∣U ′j ∣pe(H)

(1 +√ε)∏h
j=1 ∣Uj ∣pe(H)

≥
(1 −√ε)(12d)h
(1 +√ε) ≥ 2−h−1dh.

As this holds independently of the history of the process, this process dominates a bino-
mial distribution with parameters 1

2dm and 2−h−1dh. Therefore, even though the events
are not mutually independent, we can use Chernoff’s inequality (Lemma 2.1) to infer
that ∣NT (v)∣ ≥ 2−h−3dh+1m with probability at least 1−n−2. Then, by applying the union
bound over all v ∈ V , we obtain that a.a.s. ∣NT (v)∣ ≥ 2−h−3dh+1m ≥ 2−h−3dh+1∣H∣ for all
v ∈ V .

Next let X ⊆ V be any subset with ∣X ∣ = ηn and let t = (1 − δ)m. For i = 0, 1, . . . , t − 1,
we obtain from (5) that there are at most (1+√ε)∏h

j=1 ∣U ′j ∣pe(H) edges in F̃ ∖Hi available

for choosing Hi+1, of which, by (6), at least (1 −√ε)∏h
j=1 ∣U ′j ∣pe(H) are in F̃X . Then

P [Hi good for X ∣Hi−1] ≥
(1 −√ε)∏h

j=1 ∣U ′j ∣pe(H)

(1 +√ε)∏h
j=1 ∣U ′j ∣pe(H)

≥ (1 − 2
√
ε).
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Again, as the lower bound on the probability holds independently of the history of the
process, this process dominates a binomial distribution with parameters (1 − δ)m and
(1 − 2√ε). We let BX ⊆ H be the copies in H that are not good for X and deduce

E[∣BX ∣] ≤ (1 − δ)m2
√
ε ≤ 2
√
εm .

Then we get from Chernoff’s inequality (Lemma 2.1) that, since γm ≥ 14√εm ≥ 7E[∣BX ∣],
we have

P [∣BX ∣ > γm] ≤ exp (−γm) .
There are at most ( nηn) ≤ ( eη)

ηn
≤ exp(η log( 1η)n) ≤ exp(12γm) choices for X and, thus,

with the union bound over all these choices, we obtain that a.a.s. there are at most γm
bad copies in H for any X ⊆ V with ∣X ∣ = ηn.

Fix a choice of H such that there are at most γm bad copies for any X ⊆ V with
∣X ∣ = ηn. Then for any set X ′ ⊆ V and H′ ⊆ H with ∣X ′∣ ≥ ε′n and ∣H′∣ ≥ ε′∣H∣ we find

eT (H′,X ′) ≥ (∣H′∣ − γm)
dhηn

2

∣X ′∣
2ηn
≥ dh

8
∣H′∣∣X ′∣

by partitioning X ′ into pairwise disjoint sets of size ηn. This implies that a.a.s. the pair
(H, V ) is (ε′, dh+12−h−3)-super-regular with respect to TG(H, V ). □

7. Proof of auxiliary lemmas

In this section we prove the Star Cover Lemma (Lemma 3.7) and then derive the Pair
Cover Lemma (Lemma 3.8). Throughout the section we denote the square of a path on
k vertices by H(k) and we list their vertices as u1, . . . , uk, meaning that the edges of the
square are uiuj for each 1 ≤ ∣i− j∣ ≤ 2. We start with a short overview of our argument for
the proof of Lemma 3.7, where we want to find the square of a Hamilton path covering
V,U1, . . . , Uk and with end-tuples (x,x′) and (y, y′). Our proof will follow four steps,
with the decomposition of this square of a Hamilton path in random and deterministic
edges being outlined in Figure 6.

y′

yx

x′

Hx Hx′ Hy′ Hy. . . . . . . . . . . . . . . . . .

Segment 1 Segment 3

Segment 2

Figure 6. The square of a Hamilton path with end-tuples (x,x′) and (y, y′) in
Lemma 3.7 and its decomposition into edges from G (black) and from G(n, p) (dashed
blue). Each dotted Hx,Hx′ ,Hy′ ,Hy stands for a copy of P 2

k with edges all from G(n, p).
Segment 1 and 3 (resp. segment 2) are realised through several copies of the structure
in Figure 8 (resp. Figure 7).

To ensure that (x,x′) and (y, y′) are the end-tuples of the square of the path, we will
first find copies Hx and Hy of H(k) that are connected to the tuples (x,x′) and (y, y′)
(c.f. Figure 6). Moreover, with Lemma 6.3, we will find a large family H of transversal
copies of H(k) in U1, . . . , Uk (c.f. Definition 6.1) such that (H, V ) is super-regular with
respect to the auxiliary graph TG(H, V ) (c.f. Definition 6.2). In particular, this will
guarantee that most pairs (H,H ′) ∈ H2 have many common neighbours in V in the graph
G.
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The next step is to find random edges between the copies in H. For that we will
consider a directed auxiliary graph F with vertex set H where, given H,H ′ ∈ H, with
H on u1, . . . , uk and H ′ on u′1, . . . , u

′
k, the pair (H,H ′) is an edge of F if and only if

uku′1 is a random edge and V (H) ∪ V (H ′) have many common neighbours in V in the
graph G. This will allow us to connect H to H ′ with a random edge, while also giving
many choices for vertices from V to turn this into the square of a path on 2k + 1 vertices
(c.f. Figure 7). We will use a random greedy procedure to find a long directed path D
in F that covers most of H, which is possible by the properties of H and our choice of
p ≥ Cn−1. Additionally, we can guarantee that we will later be able to extend this into
the square of a path using any subset of vertices V ′ ⊆ V of the right size. We denote the
first and last copy of the path D by H ′x and H ′y, respectively.

v

H H ′

Figure 7. Connecting two copies
H and H ′ of P 2

k , using one ver-
tex v ∈ V (red), edges from G(n, p)
(dashed blue) and edges from G
(black).

z

H H ′

Figure 8. Absorbing a vertex z ∈
Z ⊆ U1 ∪ ⋅ ⋅ ⋅ ∪ Uk, using two copies
H and H ′ of P 2

k , four vertices from
V (red), edges from G(n, p) (dashed
blue) and edges from G (black).

In the next step, we take care of the set Z of those vertices in U1 ∪ ⋅ ⋅ ⋅ ∪Uk that are not
covered by any copy of H(k) from H. We will absorb each vertex z ∈ Z into the square
of a short path, using four vertices from V , two copies of H(k) in H ∖ V (D) and random
edges within V (c.f. Figure 8). In fact, we will be able to do that simultaneously for each
vertex in Z, by constructing two squares of paths, one from Hx to H ′x and one from H ′y
to Hy, which contain all vertices of Z and all copies of H(k) in H ∖ V (D).

In the final step, we will find a perfect matching between the edges (H,H ′) ofD and the
remaining vertices of V , while making sure that the sizes of the two sets we want to match
are the same. A vertex v ∈ V can be matched to (H,H ′) if and only if uk, uk−1, u′1, u

′
2 are

neighbours of v in G (with the labelling of the vertices of H,H ′ as above). This matching
will close the gap between the two copies H and H ′ for each edge (H,H ′) of D with a
vertex v from V . This will give the square of a path from H ′x to H ′y and, together with
the other pieces from Hx to H ′x and from Hy to H ′y, we will get the square of a Hamilton
path with the correct end-tuples. Ultimately, the shape of this square of the path is as
illustrated in Figure 6, where the segments between Hx and Hx′ and between Hy′ and Hy

(resp. between Hx′ and Hy′) are obtained by repeatedly inserting Figure 8 (resp. Figure 7)
several times. We will now turn to the details of the argument.

Proof of Lemma 3.7. Given an integer k ≥ 2, let H(k) be the square of a path on k
vertices and observe that m1(H(k)) = 2k−3

k−1 . Given 0 < δ′ ≤ d ≤ 1, let δ1, δ0, ε′ > 0 with
2δ1 < δ0 < min{δ′, d3k+32−5k−22} and ε′ < δ81. Let C2.2 be given by Lemma 2.2 for input
2δ1 and F , where F is the path on four vertices. Then let ε6.3 and C6.3 be given by
Lemma 6.3 for input H(k), d/2, ε′ and ε′/2, where ε′ plays the role of δ in the statement
of Lemma 6.3. Let ε6.7 and C6.7 be given by Lemma 6.7 with inputH(k) and δ0. Finally let
ε < min{ε6.3/2, ε6.7, ε′/4} and C = max{C2.2,2C6.3,2C6.7,48ε′−1δ−1}. Observe that ε < 2δ1,
as required. The constant dependencies can be summarised as follows:

ε≪ ε′ ≪ δ1 ≪ δ0 ≪ δ′ ≤ d .
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Let G be a graph on V ∪U1 ∪ ⋅ ⋅ ⋅ ∪Uk, where V,U1, . . . , Uk are pairwise disjoint sets of
size ∣V ∣ = n + 4 and (1 − δ0)n ≤ ∣Ui∣ = m ≤ (1 − δ1)n for i = 1, . . . , k such that n −m ≡ −1
(mod 3k − 1). Suppose that (V,Ui) is a (ε, d)-super-regular pair for i = 1, . . . , k. Further
let (x,x′) and (y, y′) be two tuples from V such that both tuples have d2m/2 common
neighbours in Ui for i = 1, . . . , k in the graph G. Let δ be such that m = (1 − δ)n + 1 and
observe that δ1 ≤ δ ≤ δ0+1/n and that the divisibility condition on n−m implies that δn ≡ 0
(mod 3k − 1). For later convenience, we define m0 = (1 − 3k

3k−1δ)n− 1, t = (1 − 4k
3k−1δ)n+ 1

and s = k
3k−1δn. Since δn ≡ 0 (mod 3k − 1), we observe that m0, t and s are positive

integers. Moreover, we have that

m0 − t = s − 2 , (7)

(1 − δ)n − 1 −m0 =
s

k
, (8)

n − 4s = t − 1 . (9)

We reveal random edges in three rounds G1 ∼ G(U1, . . . , Uk,
1
2p), G2 ∼ G(U1, . . . , Uk,

1
2p)

and G3 ∼ G(V, p), where p ≥ Cn−(k−1)/(2k−3). Moreover we assume that a.a.s. the events
of Lemma 2.2 and 6.7 hold in G3 and G1, respectively.

Finding transversal copies of H(k). We start by ensuring that (x,x′) and (y, y′)
can be the end-tuples of the square of a path. Fix i = 1, . . . , k. Recall that each of
the tuples (x,x′) and (y, y′) has d2m/2 common neighbours in Ui. Thus we can pick
disjoint sets Ui,x, Ui,y ⊆ Ui of size d2m/4 such that Ui,x and Ui,y are in the common

neighbourhoods of (x,x′) and (y, y′) in Ui, respectively. Let F and F̃ be the hypergraphs
defined in Definition 6.4 and 6.5, and with H(k) and F̃ supported by G1. Then, as we
assumed that Lemma 6.7 holds in G1, we find an edge in F̃ [U1,x, . . . , Uk,x] and an edge

in F̃ [U1,y, . . . , Uk,y]. Given the definition of F̃ , these edges correspond to copies of H(k)

in G1 and we denote them by Hx = (x1, . . . , xk) and Hy = (y1, . . . , yk).
For i = 1, . . . , k, let U ′i = Ui ∖ {xi, yi} and observe that ∣U ′i ∣ = (1 − δ)n − 1 and (U ′i , V ) is
(2ε, d/2)-super-regular. Then we apply Lemma 6.3 with G2[U ′1, . . . , U ′k] to a.a.s. obtain a
family H of transversal copies of H(k), of size ∣H∣ ≥ (1− ε′)(m− 2) ≥ (1− 3k

3k−1δ)n− 1 =m0

and such that the pair (H, V ) is (ε′/2, dk+12−2k−4)-super-regular with respect to TG(H, V ),
where TG(H, V ) is the graph defined in Definition 6.2. By removing some copies of H(k),
we can assume that ∣H∣ =m0 and still have that the pair (H, V ) is (ε′, dk+12−2k−5)-super-
regular with respect to TG(H, V ).
Building the directed path D. Ultimately we want to find a directed path D, that

has some of the copies of H(k) in H as vertices. As we later would like to connect two
copies of H(k) by one random edge and a vertex from V to get the square of a path on
2k+1 vertices (c.f. Figure 7), we want them to appear consecutively in D only if all their
vertices have enough common neighbours in V in the graph G. We encode this condition
in the auxiliary graph F ∗ with vertex set H and where, given H,H ′ ∈ H, the edge HH ′

is in F ∗ if and only if the vertices in V (H) ∪ V (H ′) have at least d2k+22−4k−8n common
neighbours in V in the graph G.

Claim 7.1. The minimum degree of F ∗ is at least (1 − 2ε′)m0.

Proof of Claim 7.1. Any copy of H ∈ H has degree at least dk+12−2k−4n into V in the
graph TG(H, V ). Then, by super-regularity in TG(H, V ), all but 2ε′m0 copies of H ′ ∈ H
have at least d2k+22−4k−8n common neighbours with H. This implies that H has degree
(1 − 2ε′)m0 in F ∗. ◻
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For a set X ⊆ V , we call an edge HH ′ ∈ E(F ∗) good for X if there is at least one vertex
v ∈ X that is incident to H and H ′ in TG(H, V ). We denote the subgraph of F ∗ with
edges that are good for X by F ∗X .

Claim 7.2. If ∣X ∣ ≥ d−k−122k+5ε′n, then all but at most ε′n vertices of H have degree at
least (1 − 4ε′)m0 in F ∗X .

Proof of Claim 7.2. By super-regularity, all but at most ε′n copies H ∈ H have degree
at least dk+12−2k−5∣X ∣ ≥ ε′n into X in the graph TG(H, V ). Fixing any H ∈ H with this
property, all but at most ε′m0 copies H ′ ∈ H ∖ {H} have at least one common neighbour
with H in X. From Claim 7.1 we know that δ(F ∗) ≥ (1 − 2ε′)m0 and, therefore, all but
at most ε′n vertices from H have degree at least (1 − 4ε′)m0 in F ∗X . ◻

We now define an auxiliary directed graph F̄ on vertex set H as follows. Given any H
and H ′ ∈ H with H = u1, . . . , uk and H ′ = u′1, . . . , u′k, the pair (H,H ′) is a directed edge of
F̄ if and only if HH ′ is an edge of F ∗ (which means that H and H ′ have many common
neighbours in V in G) and uku′1 is an edge of G2. As G2 ∼ G(U1, . . . , Uk,

1
2p), observe

that F̄ is a random directed graph, which, for each edge HH ′ of F ⋆, contains each of
the directed edges (H,H ′) and (H ′,H) with probability p/2, independently of each other
and of all other edges. Therefore, given an edge HH ′ of F ⋆, we can talk about revealing
(H,H ′) where, actually, we reveal the edge uku′1 in G2. If indeed uku′1 is an edge of G2,
then we say that the edge (H,H ′) is successful, as it belongs to F̄ .
We recall that we want to find a long directed path D in F̄ (see Claim 7.3 below), whose

edges satisfy additional properties (see Claim 7.4 below). For this we will use a random
greedy process that explores F̄ using a depth-first search algorithm. We do not reveal all
the edges of F̄ at the beginning, but, at each step of the algorithm, we only reveal those
edges that are relevant for that step. In each step, the algorithm maintains a directed path
H1, . . . ,Hr in F̄ and a set B consisting of the vertices inH∖{H1, . . . ,Hr} whose neighbours
have already been all revealed (we call them “dead-ends”). Additionally, we keep track
of the vertices which have already been visited at least twice (due to backtracking of the
algorithm) and denote their set by A, for which we note that ∣A∣ ≤ ∣B∣. We initialise r = 0,
A = ∅ and B = ∅.

The algorithm proceeds as follows. If r = 0, then we choose an arbitrary vertex H1 ∈
H ∖B and increase r by one. If r > 0, we let H′ = H ∖ ({H1, . . . ,Hr} ∪B) be the vertices
that have not been used and that are not “dead-ends”. If Hr /∈ A, then, for all edges
HrH ′ in F ∗ with H ′ ∈ H′, we reveal the directed edge (Hr,H ′) in F̄ with probability p/2
independently of all other such edges. If possible, we pick one neighbour uniformly at
random among all those that are successful, denote it by Hr+1 and increase r by one. If
none of them is successful, we add Hr to B, Hr−1 to A and decrease r by one. If Hr ∈ A,
then all the directed edges of the form (Hr,H ′) with HrH ′ ∈ E(F ∗) and H ′ ∈ H′ have
already been revealed earlier in F̄ . If there is such an edge (Hr,H ′) in F̄ , we let Hr+1 =H ′
and increase r by one. Otherwise, we add Hr to B, Hr−1 to A and decrease r by one.
The algorithm stops if r = (1 − 4k

3k−1δ)n + 1 or when ∣B∣ ≥ ε′n, whichever happens first.
We claim that the algorithm terminates and the latter does not happen. We remark that
while the algorithm picks one neighbour uniformly at random among all those that are
successful, the next claim would hold even if the choice of the neighbour was arbitrary.

Claim 7.3. A.a.s. the graph F̄ contains a directed path D on t vertices (with t being
(1 − 4k

3k−1δ)n + 1, as defined above).

Proof of Claim 7.3. First, we observe that the algorithm terminates. Indeed, if ∣B∣ < ε′n
then ∣H′∣ ≥ ∣H∣ − t − ∣B∣ > 2ε′m0 and with Claim 7.1 there is at least one edge of F ∗ from

29



Hr to H′. Secondly, we claim that a.a.s. ∣B∣ < ε′n. Assume that at some point we have
∣B∣ = ε′n and r < t = (1 − 4k

3k−1δ)n + 1. Since at least ∣H∣ − r − ∣B∣ ≥ δn/4 vertices of H are
not covered by the path or a vertex from B, we can pick a set H′ of exactly δn/4 of them.
This implies that all edges from B to H′ that are in F ∗ have been revealed but none was
successful to be present in F̄ . However, with Claim 7.1, the expected number of edges
in F̄ from B to H′ with ∣B∣ = ε′n and ∣H′∣ = 1

4δn is 1
8pε

′δn2 and by Chernoff’s inequality
(Lemma 2.1) the probability that none of the edges in F ∗ from B to H′ appears in F̄
is at most 2 exp(− 1

24ε
′pδn2) ≤ 2 exp(−2n). A union bound over the at most 22n choices

for B and H′ implies that the probability that there exist B and H′ as above is o(1).
Therefore the process stops when r = t and we obtain a directed path D on t vertices in
F̄ . ◻

Preparing the final matching. The previous claim already guarantees a long di-
rected path D on t vertices, but to finish the proof later we need an additional property
of D. An edge of D corresponds to an edge HH ′ of F ∗ and, for each of them, there
are many choices for a vertex v ∈ V that turns this into the square of a path on 2k + 1
vertices. We will need to do this simultaneously for all edges of D in the last step of the
proof. However, before the last step, we have to cover the leftover of U1 ∪ ⋅ ⋅ ⋅ ∪Uk and H,
which will be possible by using some vertices of V . This will leave a subset V ′ ⊆ V of
size t − 1 to match to the edges of D in the last step, where we remark that the path D
has exactly t − 1 edges. We now show that this is possible for any subset V ′ ⊆ V of size
t − 1. We encode this task as follows. Given a vertex v ∈ V , we define Fv to be the set of
all pairs (H,H ′) ∈ H2 such that both H and H ′ are adjacent to v in TG(H, V ); note that
this means that v is adjacent to all vertices in V (H) ∪ V (H ′) in the graph G. Then we
define an auxiliary bipartite graph FD with partition E(D) and V , where for e ∈ E(D)
and v ∈ V , the pair ev is an edge of FD if and only if e ∈ Fv.

Claim 7.4. Assume that D has t − 1 edges. Then a.a.s. for any V ′ ⊆ V of size t − 1 the
graph FD[V ′,E(D)] contains a perfect matching.

Proof of Claim 7.4. We denote by D the event that we have a directed path D with t− 1
edges and assume that D holds. It suffices to show that a.a.s. for each X ⊆ V of size at
most t − 1 we have ∣⋃v∈X NFD

(v)∣ ≥ ∣X ∣. The claim follows then by Hall’s condition. Let
X ⊆ V of size at most t − 1 be given.
First suppose that ∣X ∣ > (1 − dk+22−4k−9)n and let e = (H,H ′) be any edge of D.

Since HH ′ is in particular an edge of F ∗, the vertices V (H) ∪ V (H ′) have at least
d2k+22−4k−8n common neighbours in V . As ∣V ∖V ′∣ ≤ 2δn ≤ d2k+22−4k−9n, e has a neighbour
in X with respect to FD. Since this is true for any edge e of D, we conclude that
∣⋃v∈X NFD

(v)∣ = t − 1 ≥ ∣X ∣.
Secondly, suppose that ∣X ∣ < δn. Here it suffices to show that for any v ∈ V we have
∣NFD

(v)∣ ≥ δn. Fix any v ∈ V and let ℓ = dk+12−2k−7n. As the pair (H, V ) is (ε′, dk+12−2k−5)-
super-regular with respect to TG(H, V ), we have that v has degree at least dk+12−2k−5m0

into H with respect to TG(H, V ). Consider any point during the first ℓ steps of the
algorithm, where H1, . . . ,Hr is the current path and Hr is not (yet) in A. This last
assumption is crucial for the rest of the proof as it implies that the next vertex Hr+1
is chosen uniformly at random between the neighbours of Hr. We denote by M the
history of the algorithm until this point. Now we will look into the next two steps of the
algorithm and estimate the probability that two vertices Hr+1 and Hr+2 are added to the
path and the edge (Hr+1,Hr+2) is in Fv.
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We write Hr,Hr+1 /∈ B for the event that both Hr and Hr+1 do not get added to B
after two steps of the algorithm. Since P[D] = 1 (this follows from Claim 7.3) and

P[(Hr+1,Hr+2) ∈ Fv∧Hr,Hr+1 /∈ B∣M∧D] ≥ P[(Hr+1,Hr+2) ∈ Fv∧Hr,Hr+1 /∈ B∣M]−o(1) ,

we do not need to condition on D in the following calculation.
We first bound the probability that Hr gets added to B after one step. For that we note

that, with Claim 7.1, in each of the first ℓ steps we have at least (1 − 2ε′)m0 − ℓ ≥ δn/3
neighbours of Hr in F ⋆ that are still available. Then P[Hr ∈ B∣M] ≤ (1 − p

2)δn/3 ≤
exp(−1

6pδn) ≤ ε′. Therefore P[Hr,Hr+1 /∈ B∣M] ≥ (1 − ε′)2. Next, we want to bound the
number of valid choices for Hr+1 in H′ that are neighbours of v in TG(H, V ). From the
neighbours of v in TG(H, V ), we have to exclude those H ′ such that HrH ′ is not an edge
of F ∗ and those H ′ that are currently “dead-ends”: in the first case their number is at
most 2ε′m0 by Claim 7.1, in the second case their number is at most ∣B∣ ≤ ε′n. Therefore
there are at least dk+12−2k−5m0 − 2ε′m0 − ε′n − ℓ ≥ dk+12−2k−6m0 valid choices for Hr+1 in
H′ that are neighbours of v in TG(H, V ). Repeating the same argument in the next step
of the algorithm, there are at least dk+12−2k−6m0 valid choices for Hr+2 in H′ that are
neighbours of v in TG(H, V ). In particular for such choices of Hr+1 and Hr+2, the edge
(Hr+1,Hr+2) is in Fv.
If Hr (resp. Hr+1) is not in B, then the vertex Hr+1 (resp. Hr+2) is chosen uniformly at

random from the at most ∣H∣ =m0 available possibilities as we revealed the edges of F̄ in
each step separately. Therefore, together with the bound on P[Hr,Hr+1 /∈ B∣M], we get

P[(Hr+1,Hr+2) ∈ Fv ∧Hr,Hr+1 /∈ B∣M] ≥ (1 − ε′)2
(dk+12−2k−6m0)2

m2
0

≥ d2k+22−4k−13 .

Crucially, this lower bound holds independently of the history M. As among the first
ℓ steps we can have at most ε′n many steps in which Hr ∈ A and as the same lower
bound holds when we additionally condition on D, this process dominates a binomial
distribution with parameters ℓ−ε′n and d2k+22−4k−13n. Therefore, even though the events
are not mutually independent, we can use Chernoff’s inequality (Lemma 2.1) to infer
that with probability at least 1−n−2 at least d3k+32−5k−21n of these edges are in Fv. Some
of these edges might not appear in the final path D, because of the “dead-ends” and
the backtracking of the algorithm, but their number is at most ε′n. Thus we get that
∣NFD

(v)∣ ≥ d3k+32−5k−21n − ε′n ≥ δn with probability at least 1 − n−2. By applying the
union bound over all v ∈ V , we obtain that a.a.s. ∣NFD

(v)∣ ≥ δn for all v ∈ V , as desired.
Finally, assume that δn ≤ ∣X ∣ ≤ (1 − dk+22−4k−9)n. Here it suffices to show that, for

any X ⊆ V with ∣X ∣ = δn, we have ∣⋃v∈X NFD
(v)∣ ≥ (1 − dk+22−4k−9)n. We use a similar

argument as above, but this time we need to give more precise estimates. Consider any
step of the algorithm where the current path is H1, . . . ,Hr for some r < t − 1, again with
Hr /∈ A, and denote by M the history of the algorithm until this point. As before we
do not need to worry about conditioning on D. We want to bound the number of valid
choices for Hr+1 in H′ that are neighbours of some v ∈ X in TG(H, V ). With Claim 7.1,
there are at least m0−2ε′m0−ε′n−r choices for Hr+1 ∈ H′ such that HrHr+1 is an edge of
F ∗ and Hr+1 /∈ B (i.e. Hr+1 is not currently a “dead-end”). Using Claim 7.2, for at least
m0 − r − 4ε′n of these choices, Hr+1 has degree at least (1− 4ε′)m0 in F ∗X . Then there are
at least m0 − r − 4ε′m0 − ε′n ≥m0 − r − 5ε′n choices for Hr+2, such that (Hr+1,Hr+2) is in
⋃v∈X Fv.
On the other hand, there are at most (m0 − r) choices for each of Hr+1 and Hr+2 and,

as above, we have at least (1−2ε′)m0−r−ε′n ≥ δn/3 available neighbours of Hr and Hr+1
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and P[Hr,Hr+1 /∈ B∣M] ≥ (1 − ε′)2. Using that m0 − r ≥ δn/3 we get

P [(Hr+1,Hr+2) ∈ ⋃
v∈X
Fv ∧Hr,Hr+1 /∈ B∣M] ≥

(1 − ε′)2(m0 − r − 5ε′n)2
(m0 − r)2

≥ 1 − 5ε
′

δ
.

Again, as the lower bound holds independently of the historyM and as there are at most
ε′n steps with Hr ∈ A when we additionally condition on D, this process dominates a
binomial distribution with parameters t− 1− ε′n and 1− 5 ε′

δ . Therefore, the number Y of

these edges that are in ⋃v∈X Fv is in expectation at least (t − 1 − ε′n)(1 − 5 ε′

δ ) ≥ (1 − δ)t
and, using the more precise version of Chernoff’s inequality (Lemma 2.1) where δ − 5 ε′

δ

plays the role of δ, we get that

P [Y < (1 − 2δ)t] ≤ P [Y ≤ E[Y ] − (δ − 5ε
′

δ
) (t − 1 − ε′n)]

≤ exp(−D ((1 − δ)∣∣1 − 5ε
′

δ
) (t − 1 − ε′n))

≤ exp(−δ (log ( δ
2

5ε′
) − 2) (t − 1 − ε′n))

≤ exp(−δ log ( 1
ε′
) 1
2
t) .

There are at most ( nδn) ≤ ( eδ)δn ≤ exp(δ log(1δ )n) ≤ exp(δ log( 1ε′ )14t) choices for X and,
thus, with the union bound over all these choices, we obtain that a.a.s. for every X ⊆ V
with ∣X ∣ = δn at least (1 − 2δ)t of the edges are in ⋃v∈X Fv. At most ε′n of these edges
ultimately do not belong to D and putting this together we a.a.s. have

∣ ⋃
x∈X

NFD
(x)∣ ≥ (1 − 2δ)t − ε′n ≥ (1 − 4δ)n ≥ (1 − dk+22−4k−9)n

for any X ⊆ V with ∣X ∣ = δn, as wanted. ◻

Let D be the directed path in F ∗ given by Claim 7.3 and assume that the assertion of
Claim 7.4 also holds. We denote the first vertex of D by H ′x and the last by H ′y. Before
dealing with the next step, we summarise what we have so far. We have several copies of
H(k): Hx, Hy and those in H. The vertices x and x′ (resp. y and y′) are adjacent in G to
all vertices of Hx (resp. Hy), and thus (x,x′) and (y, y′) can be end-tuples of the square
of a Hamilton path we want to construct. Moreover, we have an ordering (given by the
directed path D) of t copies of H(k) in H, such that if H = u1, . . . , uk and H = u′1, . . . , u′k
appear consecutively, then uku′1 is an edge of the random graph and all their vertices
u1, . . . , uk, u′1, . . . , u

′
k have many common neighbours in V in the graph G.

Covering the left-over vertices from U1 ∪ ⋅ ⋅ ⋅ ∪Uk. Let H′ be the copies of H(k) in
H not used for the path D and observe that ∣H′∣ = ∣H ∖ V (D)∣ =m0 − t = s − 2, where the
last equality follows from (7). Further observe that the number of vertices in Ui not in
any copy of H(k) in H is ∣Ui∣ − 2 − ∣H∣ = (1 − δ)n −m0 = s

k , where the last equality follows
from (8). Therefore we have exactly s vertices in total in U1 ∪ ⋅ ⋅ ⋅ ∪ Uk to absorb; let Z
be the set of these vertices. We want to cover the s vertices in Z with the square of two
paths connecting Hx to H ′x and H ′y to Hy respectively, while using all copies of H(k) in
H′ and exactly 4s vertices from V (c.f. Figure 8).
We start from connecting Hx to H ′x, while absorbing two vertices of Z. We pick H ′ ∈ H′

and zx, z′x ∈ Z such that the vertices in Hx ∪ {zx} ∪H ′ and H ′ ∪ {z′x} ∪H ′x each have at
least 2δn common neighbours in V . This is possible by using Claim 7.1 and the regularity
property of G. Then, as we assumed that Lemma 2.2 holds in G3, there is a path on four
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vertices within each of these two sets of 2δn vertices, that gives the desired connection
(c.f. Figure 8).

Now we connect H ′y to Hy, while absorbing the other s− 2 vertices of Z ∖ {zx, z′x}. Let
H ′1 =Hy, H ′s−1 =H ′y and H ′2, . . . ,H

′
s−2 be a labelling of the remaining s−3 copies of H(k) in

H′ ∖ {H ′} such that for j = 1, . . . , s− 2 we have that all vertices in V (Hj)∪V (Hj+1) have
at least d2k+22−4k−8n common neighbours in V in G. This is possible by Dirac’s Theorem
and because, by Claim 7.1, for each H ∈ H′ ∪ {Hy,H ′y} all but 6 ε′

δ s choices H ′ ∈ H′ are
such that the vertices V (H) ∪ V (H ′) have d2k+22−4k−8n common neighbours.

Next, we want to find a labelling z1, . . . , zs−2 of the vertices from Z ′ = Z ∖ {zx, z′x} such
that for j = 1, . . . , s − 2 the vertices V (Hj) ∪ {zj} ∪ V (Hj+1) have at least 2δn common
neighbours in V . This again follows easily from Hall’s condition for perfect matchings
and because, by Claim 7.1, for each j = 1, . . . , s − 2 all but 6ε′s/δ choices z ∈ Z are
such that V (Hj)∪V (Hj+1)∪{z} have 2δn common neighbours and, similarly, vice versa.
Then by Lemma 2.2, a.a.s. we can greedily choose a path on four vertices in the common
neighbourhood of the vertices from V (Hj)∪V (Hj+1)∪ {zj} in V for j = 1, . . . , s− 2, with
all the edges coming from the random graph G3. This again gives the desired connection
(c.f. Figure 8).

This completes the square of two paths from Hx to H ′x and from H ′y to Hy. These two
cover exactly 4s vertices of V . Therefore, there are precisely ∣V ∣ − 4 − 4s = n − 4s = t − 1
vertices of V ∖ {x,x′, y, y′} not yet covered by the square of a path, where we used (9);
we let V ′ be the set of such vertices. Observe that ∣V ′∣ = t − 1 = ∣E(D)∣.

Finishing the square of a path. We finish the proof by constructing the square
of a path with H ′x and H ′y at the ends using precisely the vertices of V ′ and the copies

of H(k) that are vertices of V (D). For this we use that by Claim 7.4 there is a perfect
matching in FD[V ′,E(D)]. For i = 1, . . . , t − 1, let vi be the vertex of V matched to the
edge (Hi,Hi+1) ∈ E(D) in FD. With Hi = u1, . . . , uk and Hi+1 = u′1, . . . , u′k, we then have
that vi is incident to uk−1uk, u′1, u

′
2 by definition of FD. This completes the construction of

the square of the path with H ′x to H ′y at the ends. By adding the two connections found
above from Hx to H ′x and from H ′y to Hy and the initial tuples (x,x′) and (y, y′), we get
the square of a Hamilton path with end-tuples (x,x′) and (y, y′) as desired (c.f. Figure 6).
This finishes the proof of the lemma. □

We end this section by giving the proof of Lemma 3.8, that follows from Lemma 3.7,
once we split appropriately the super-regular regular pair (U,V ) into two copies of super-
regular K1,2, both suitable for an application of Lemma 3.7 with k = 2.
Proof of Lemma 3.8. Let 0 < d < 1, choose δ′ with 0 < δ′ ≤ 1

8d and apply Lemma 3.7
with k = 2, δ′ and 1

8d to obtain δ0, δ, ε′ with δ′ ≥ δ0 > 2δ > ε′ > 0 and C ′ > 0. Then let
0 < ε ≤ 1

8ε
′, C ≥ 4C ′ and p ≥ Cn−1. Next let U and V be vertex-sets of size ∣V ∣ = n and

3n/4 ≤ ∣U ∣ = m ≤ n and assume that (U,V ) is an (ε, d)-super-regular pair. Let (x,x′)
and (y, y′) be tuples from V and U , respectively, such that they have 1

2d
2n common

neighbours into the other set. We will reveal G(V, p) and G(U, p) both in two rounds as
G1,G3 ∼ G(V, 12p), and G2,G4 ∼ G(U, 12p).

We partition V into V1, U2, W2 and U into V2, U1, W1 such that for i = 1,2 the pairs
(Ui, Vi) and (Wi, Vi) are (ε′, 18d)-super-regular pairs and (1−δ0)∣Vi∣ ≤ ∣Ui∣ = ∣Wi∣ ≤ (1−δ)∣Vi∣.
Additionally, we require that (x,x′) is in V1 and that (y, y′) is in V2 and that they have
at least 1

2(d8)2n common neighbours in U1, W1 and in U2, W2, respectively. To obtain
this we split the sets according to the following random distribution. We put any vertex
of V into each of U2 and W2 with probability q1 and into V1 with probability 1 − 2q1.
Similarly, we put any vertex of U into each of U1 and W1 with probability q2 and into
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V2 with probability 1 − 2q2. We choose q1 and q2 such that the expected sizes satisfy for
i = 1,2

E[∣Ui∣] = E[∣Wi∣] = (1 −
δ0 + δ
2
)E[∣Vi∣].

This is possible since such conditions give a linear system of two equations in two un-
knowns q1 and q2 and, as 3n/4 ≤ m ≤ n, the solution satisfies 1/7 ≤ q1, q2 ≤ 3/7. Then by
Chernoff’s inequality (Lemma 2.1) and with n large enough there exists a partition such
that for i = 1,2 we have that ∣Wi∣, ∣Ui∣ and ∣Vi∣ are all within ±n2/3 of their expectation
and the minimum degree within both pairs (Ui, Vi) and (Wi, Vi) is at least a d/4-fraction
of the other set. For i = 1,2 we redistribute o(n) vertices between Ui and Wi and move
at most one vertex from or to Vi to obtain

(1 − δ0)∣Vi∣ ≤ ∣Ui∣ = ∣Wi∣ ≤ (1 − δ)∣Vi∣
with minimum degree within both pairs (Ui, Vi) and (Wi, Vi) at least a d/8-fraction of the
other set. Moreover, for i = 1,2, we can ensure that with ni = ∣Vi∣−4 we have ni− ∣Ui∣ ≡ −1
(mod 5).

From this we get that for i = 1,2 the pairs (Ui, Vi) and (Wi, Vi) are (ε′, 18d)-super-
regular. With G1 and G2 we reveal random edges within V1 and V2 with probability p/2
to find tuples (z, z′) in V1 and (w,w′) in V2 such that together they give a copy of K4

and (z, z′) and (w,w′) have at least 1
2(d8)2n common neighbours in U1, W1 and in U2,

W2, respectively. Then we use Lemma 3.7 and G3, G4 with Cn−1 ≥ C ′min{∣V1∣, ∣V2∣}−1
to a.a.s. find the square of a Hamilton path on Vi, Ui, Wi for i = 1,2 with end-tuples
(x,x′), (z, z′) and (y, y′), (w,w′), respectively. Together with the edges between (z, z′)
and (w,w′) this gives the square of a Hamilton path covering U and V with end-tuples
(x,x′) and (y, y′). □

8. Concluding remarks

We determined the exact perturbed threshold for the containment of the square of a
Hamilton cycle in randomly perturbed graphs. As already pointed out in Section 1.1,
much less is known for larger powers of Hamilton cycles and it would be interesting to
investigate them further. In this section we discuss the perturbed threshold p̂α(n) for the
containment of the third power of a Hamilton cycle.

Recall from Section 1.1 that p̂α(n) is already known for α = 0 and 1/2 < α ≤ 1: we have
p̂α(n) = n−1/3 for α = 0, p̂α(n) = n−1 for 1/2 < α < 3/4, and p̂α(n) = 0 for α ≥ 3/4. For
0 < α < 1/2, it is only known that there exists η > 0 such that p̂α(n) ≤ n−1/3−η.
We observe that we can obtain natural lower bounds by determining the sparsest

possible structure that remains for G(n, p) after mapping the third power of a Hamilton
cycle into the complete bipartite graph Hα with parts of size αn and (1 − α)n. When
α = 1/4, this structure is essentially the square of a Hamilton cycle on 3n/4 and is
obtained by mapping every fourth vertex of the third power of a Hamilton cycle into the
smaller part of H1/4. Therefore, in order for H1/4 ∪ G(n, p) to contain the third power
of a Hamilton cycle, we need G(n, p) to contain the square of a Hamilton cycle on 3n/4
vertices. This gives p̂1/4(n) ≥ n−1/2 and we believe this is actually tight.

Conjecture 8.1. The perturbed threshold p̂α(n) for the containment of the third power
of a Hamilton cycle satisfies p̂1/4(n) = n−1/2.

However, as discussed in the introduction, finding the square of a Hamilton cycle at
this probability is a particularly challenging problem and, additionally, it is not possible
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to first embed small parts arbitrarily and then connect them, as we do in the proof of
our main result.

For each of the ranges 0 < α < 1/4 and 1/4 < α < 1/2, it is not clear whether to expect a
similar ‘jumping’ behaviour as the one proved for the square of a Hamilton cycle in the
range 0 < α < 1/2. We can obtain natural lower bounds similarly as we did for α = 1/4.
Again, the sparsest structure that remains for G(n, p) is obtained essentially by mapping
every 1/α-th vertex of C3

n into the smaller part of Hα. However, in contrast to Section 3.2,
the threshold for the appearance of this structure in G(n, p) is not determined by the
second or third power of a short path. For example, when α = 1/5, by doing as described
above and mapping every fifth vertex of C3

n into the smaller part of Hα, we are left with
copies of P 3

4 , which are connected by three edges, cyclically. By a first moment argument,
the threshold for this structure inG(n, p) is at least n−4/9 and thus p̂1/5(n) ≥ n−4/9, which is
larger than the threshold for a P 3

4 -factor in G(n, p). More generally, we get for 0 ≤ α ≤ 1/4
that p̂α(n) ≥ n−(1−α)/(3−6α), and for 1/4 ≤ α ≤ 1/2 that p̂α(n) ≥ n−(1−α)/(5/2−4α). Note that
these lower bounds match the already known value of p̂α(n) for α = 0 and coincide for
α = 1/4, in support of Conjecture 8.1. Moreover, if it is tight, this ‘continuous’ perturbed
threshold would be an exciting new behaviour.

Question 8.2. Does the perturbed threshold p̂α(n) for the containment of the third power
of a Hamilton cycle satisfy

p̂α(n) = {
n−(1−α)/(3−6α) if α ∈ [0, 14) ,
n−(1−α)/(5/2−4α) if α ∈ [14 , 12] ?

For neither of the two ranges of α this lower bound seems to be attainable with our
approach, because at this probability there is no small structure that we can find and then
connect into the third power of a Hamilton cycle. Taking again the example of α = 1/5, our
lower bound for the perturbed threshold is at n−4/9, but at this probability it is not possible
to first find the copies of P 3

4 arbitrarily and then connect them. However we believe our
methods can give the following. We map every ninth and tenth vertex of C3

n into the
smaller part of H1/5, which leaves copies of P 3

8 connected by single edges, cyclically. We
expect that it is possible to extend our argument to this set-up, but this would only imply
p̂1/5(n) ≤ n−7/18. More generally, we believe we can show that p̂α(n) ≤ n−(2k−1)/(6k−6) for
α ∈ ( 1

k+1 ,
1
k
) and k ≥ 4, which is the threshold for the containment of linearly many

copies of P 3
2k in G(n, p). Similarly, we believe we can show that p̂α(n) ≤ n−(3k−1)/(6k−3) for

α ∈ ( k+1
4k+1 ,

k
4k−3) and k ≥ 1, which is the threshold for the containment of linearly many

copies of P 2
3k in G(n, p). This would improve on the bounds obtained in [6], but it is still

far from the lower bounds discussed above. Note that the latter bound tends to n−1/2, as
k tends to infinity (and thus α tends to 1

4), supporting again Conjecture 8.1.
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Appendix A. Supplementary proofs

In this section we will prove Lemmas 2.4, 2.9, 6.6 and 6.7. The proof of Lemma 2.9
generalises the argument in [8, Theorem 2.4], and the proof of Lemma 6.6 only requires
basic regularity type arguments. The remaining two lemmas concern random graphs and
their proofs are based on Janson’s inequality (see e.g. [18, Theorem 2.18]).

Lemma A.1 (Janson’s inequality). Let p ∈ (0,1) and consider a family {Hi}i∈I of sub-
graphs of the complete graph on the vertex set [n] = {1, . . . , n}. For each i ∈ I, let Xi

denote the indicator random variable for the event that Hi ⊆ G(n, p) and, write Hi ∼ Hj

for each ordered pair (i, j) ∈ I ×I with i ≠ j if E(Hi)∩E(Hj) /= ∅. Then, for X = ∑i∈IXi,
E[X] = ∑i∈I p

e(Hi),

∆[X] = ∑
Hi∼Hj

E[XiXj] = ∑
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj)

and any 0 < γ < 1 we have

P[X ≤ (1 − γ)E[X]] ≤ exp(− γ2E[X]2
2(E[X] +∆[X])) .

Proof of Lemma 2.4. Let s ≥ 1 and k ≥ 2 be integers and 0 < η ≤ 1. Moreover let
C ≥ 26(sk)2skη−2 and p ≥ Cn−(k−1)/(2k−3).
Let V be a vertex set of size n, Vi be a subset of V for i = 1, . . . , s and H be a collection

of pairwise distinct tuples from ∏s
i=1 V

k
i . Let Wi ⊆ Vi for each i = 1, . . . , s and assume

H ′ = H ∩∏s
i=1W

k
i has size at least ηnsk. Since the number of tuples from ∏s

i=1 V
k
i which

contain a vertex more than once is O (nsk−1), there are at least η
2n

sk tuples of H ′ such
that their vertices are pairwise distinct. We restrict our analysis to the set of those tuples,
which, abusing notation, we still denote by H ′.
For each tuple (vi,j ∶ 1 ≤ i ≤ s,1 ≤ j ≤ k) in H ′, we consider the graph with vertex set

V and the following edges. For i = 1, . . . , s we have the square of the path on vi,1, . . . , vi,k
and for i = 1, . . . , s−1 we have the edge vi,kvi+1,1. This gives a family {Hi}i∈[∣H′∣] of graphs
with vertex set V and, using the same notation as in Lemma A.1, a collection of random
variables {Xi}i∈[∣H′∣]. Note that for each i = 1, . . . , s, we have e(Hi) = s(2k − 3) + (s − 1) =
2s(k − 1) − 1 and thus, for X = ∑i∈[∣H′∣]Xi, we have E[X] = ∣H ′∣p2s(k−1)−1 ≥

√
Cn. To

compute the quantity ∆[X] = ∑Hi∼Hj
pe(Hi)+e(Hj)−e(Hi∩Hj), we split the sum according to

the number of vertices in the intersection E(Hi ∩Hj). Suppose Hi and Hj intersect in m
vertices. Then 2 ≤m ≤ sk − 1 and the largest size ẽ(m) of the intersection E(Hi ∩Hj) is

ẽ(m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m
k (2k − 3) + m

k − 1, if m ≡ 0 (mod k)
⌊mk ⌋(2k − 3) + ⌊mk ⌋, if m ≡ 1 (mod k)
⌊mk ⌋(2k − 3) + ⌊mk ⌋ + 2 (m − k⌊mk ⌋) − 3, otherwise.

In particular, observing that ẽ(m) = 2m − 3 if m < k (as m ≥ 2 we are in the third case)
and ẽ(m) ≤ 2m−2m

k −1 if m ≥ k (the inequality follows from ⌊mk ⌋ ≥ m
k −1), we can conclude
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that p−ẽ(m)n−m ≤ C−1n−1 for each 2 ≤m ≤ sk − 1. Therefore,

∆[X] ≤
sk−1
∑
m=2

m!(sk
m
)
2

n2sk−mp[2s(k−1)−1]+[2s(k−1)−1]−ẽ(m) ≤
sk−1
∑
m=2
(sk)2mn2sk−m

∣H ′∣2 E2[X]p−ẽ(m)

≤ 4(sk)2sk−2η−2
sk−1
∑
m=2

E2[X]p−ẽ(m)n−m ≤ 4(sk)2sk−1η−2C−1E2[X]n−1 ≤ 1
8s
−1E2[X]n−1,

where in the first inequality we used that there are at most m!(skm)
2
n2sk−m choices for Hi

and Hj intersecting in m vertices, in the second we used E[X] = ∣H ′∣p2s(k−1)−1 ≥
√
Cn,

and in the third we used nsk/∣H ′∣ ≤ 2/η. Then with Lemma A.1 applied with γ = 2−1/2,
we get that the probability that none of the graphs of the family {Hi}i∈[∣H′∣] appears in
G(n, p) is bounded from above by

exp(− E2[X]
4(E[X] +∆[X])) ≤ exp (−

1
8 min{E[X],E2[X]/∆[X]})

≤ exp (−1
8 min{

√
Cn,8sn}) ≤ exp(−sn) .

We can conclude with a union bound over the at most 2sn choices for the s subsets Wi

with i = 1, . . . , s that the lemma holds. □

Proof of Lemma 2.9. Let k ≥ 2 and t ≥ 1 be integers. For k = 2 the result follows from
the proof of [8, Theorem 2.4] with slight modifications, so we can assume k ≥ 3. We let
0 < γ < (16kt)−1 and C ≥ 2k+9kt. Further let p ≥ C(logn)1/(2k−3)n−(k−1)/(2k−3), 0 ≤m ≤ γn,
and let G be an n-vertex graph with vertex set V , minimum degree δ(G) ≥ m and
maximum degree ∆(G) ≤ γn.

We distinguish two cases. If m ≤ (logn)2/(2k−3)n(2k−4)/(2k−3), we only need Janson’s
inequality and we will greedily find tm + t copies of P 2

k+1, using only edges from the
random graph G(n, p). Let V ′ ⊆ V be the set of vertices used in this greedy construction.
As long as we have not found tm + t copies of P 2

k+1, we have ∣V ′∣ ≤ (tm + t)(k + 1) and
thus ∣V ∖V ′∣ ≥ n/2. We let {Hi}i∈I be the family of copies of P 2

k+1 with vertices in V ∖V ′
and note ∣I ∣ ≥ 2−k−2nk+1. Then, using the notation of Lemma A.1, we observe that the
expected number of these copies appearing as subgraphs of G(n, p) is

E[X] = ∣I ∣p2k−1 ≥ 2−k−2nk+1p2k−1 ≥ C(logn)(2k−1)/(2k−3)n(2k−4)/(2k−3) ≥ 32ktm logn .

On the other hand, we have

∆[X] = ∑
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj) ≤
k

∑
r=2

O(n2(k+1)−rp2(2k−1)−(2r−3))

≤ E2[X]
k

∑
r=2

O (p3−2rn−r) ≤ E2[X]o (n−1) ,

where in the first inequality we split the sum according to the value of r = v(Hi∩Hj) and
used that then e(Hi∩Hj) ≤ 2r−3. Then with Lemma A.1 we get that the probability that
there is no copy of P 2

k+1 is bounded from above by exp(−E[X]/8) ≤ n−4ktm. We conclude

with a union bound over the at most ( n
(k+1)(tm+t)) ≤ n3ktm possible choices for V ′ that we

can a.a.s. find tm + t copies of P 2
k+1 in G(n, p).

For m ≥ (logn)2/(2k−3)n(2k−4)/(2k−3) we need to use the edges of G. We will find copies
of P 2

k+1, where all edges incident to one vertex come from G and the remaining edges
come from G(n, p), where we will need to distinguish between k = 3 and k ≥ 4. First, we
greedily obtain a spanning bipartite subgraph G′ ⊆ G of minimum degree δ(G′) ≥m/2 by
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taking a partition of V (G) into sets A and B such that eG(A,B) is maximised and letting
G′ = G[A,B]. Indeed, a vertex of degree less than m/2 can be moved to the other class to
increase eG(A,B). W.l.o.g. we assume ∣B∣ ≥ n/2 ≥ ∣A∣. Moreover, we have ∣A∣ ≥ m/(4γ),
as otherwise with e(A,B) ≥ nm/4 there is a vertex of degree at least γn, a contradiction.

Then we observe that given any sets A′ ⊆ A and B′ ⊆ B such that ∣A′∣ ≤ m/(16γ) and
∣B′∣ ≤ n/4, we also have e(A ∖A′,B ∖B′) ≥ nm/16. Otherwise, from e(A,B ∖B′) ≥ ∣B ∖
B′∣m/2 ≥ nm/8, it would follow that e(A′,B∖B′) ≥ nm/16 and thus, since ∣A′∣ ≤m/(16γ),
we would have a vertex of degree at least γn in A′, a contradiction to the maximum degree
of G.

We will greedily find tm + t copies of P 2
k+1 with one vertex in A and k vertices in

B. Let A′ ⊆ A and B′ ⊆ B be the set of vertices used in this greedy construction. As
long as we have not found tm + t copies of P 2

k+1, we have ∣A′∣ ≤ tm + t ≤ m/(16γ) and
∣B′∣ ≤ k(tm+t) ≤ n/4, and thus e(A∖A′,B∖B′) ≥ nm/16. Therefore, using that ∣A∣ ≤ n/2,
there is a vertex v ∈ A ∖A′ with degree at least m/8 into B ∖B′. We let B∗ be a set of
m/8 neighbours of v in B ∖B′.

When k = 3, we will find a path on three vertices in B∗ in the random graph, which
will give, together with the three edges of G between v and those vertices, a copy of P 2

4 .
We argue as follows. If such a path does not appear, then there are less than m edges
of G(n, p) in B∗. However the expected number of random edges within B∗ is at least

p(m/82 ) ≥ 8ktm logn and therefore, by Lemma 2.1, with probability at least 1 − n−4ktm
there are more than m edges of G(n, p) in B∗. We conclude by union bound over the at
most

( ∣A∣
tm + t)(

∣B∣
k(tm + t)) ≤ n

3ktm

choices for A′ and B′.
For k ≥ 4 we let B1, . . . ,B4 be pairwise disjoint sets of size m/32 in B∗. Moreover,

we let B5, . . . ,Bk be pairwise disjoint sets of size n/(4k) in B ∖ B′, each disjoint from
B1, . . . ,B4. This is possible as ∣B ∖B′∣ ≥ n/4.

Claim A.2. With probability at least 1−n−ω(m) there exists vertices b1, . . . , bk with bi ∈ Bi

for i = 1, . . . , k such that in G(n, p) we have the edges bibi+1 for i = 1, . . . , k − 1 and bibi+2
for i = 3, . . . , k − 2.

Observe that, together with v and the edges vbi for i = 1, . . . ,4, this gives a copy of
P 2
k+1 with vertices b1, b2, v, b3, . . . , vk. As there are at most nO(m) choices for A′ and B′,

by a union bound and Claim A.2, we a.a.s. find tm+ t copies of P 2
k+1. It remains to prove

the claim.

Proof of Claim A.2. We denote by {Hi}i∈I the graphs on k vertices b1, . . . , bk with bi ∈ Bi

for i = 1, . . . , k and edges bibi+1 for i = 1, . . . , k−1 and bibi+2 for i = 3, . . . , k−2. Then, using
the notation of Lemma A.1, the expected number of those graphs appearing in G(n, p) is

E[X] = ∣I ∣p2k−5 ≥ Ω(m4nk−4p2k−5)

≥ Ω(m(logn)
6

2k−3+
2k−5
2k−3n(k−4)+

3(2k−4)
2k−3 −

(2k−5)(k−1)
2k−3 ) = ω(m logn) ,
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where we used the bounds on the sizes of the sets Bi for i = 1, . . . , k in the first inequality
and the bounds on m and p in the second inequality. On the other hand we get

∆[X] = ∑
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj) ≤∑
r,s

O(m8−rn2k−8−sp2(2k−5)−(2s+min{2r−3,r−1}))

≤ E2[X]∑
r,s

O(m−rn−sp−2s−min{2r−3,r−1}) ≤ E2[X]O(n−2p−1) ≤ E2[X]o(n−1) ,

where we split the sum according to the value of r and s, with 0 ≤ r ≤ 4, 0 ≤ s ≤ k − 4
and 2 ≤ r + s ≤ k − 1, where r and s are the number of common vertices of Hi and Hj in
B1, . . . ,B4 and B5, . . . ,Bk, respectively. In the first inequality we used that e(Hi ∩Hj) ≤
2s+min{2r−3, r−1}, and in the third inequality we used that O(m−rn−sp−2s−min{2r−3,r−1}))
is maximised for r = 0 and s = 2 with the given bounds on m and p. The claim follows
by Lemma A.1, as in the application above. ◻

□

Proof of Lemma 6.6. To prove (i), without loss of generality, it suffices to show that the
degree of every vertex in U1 is at least (1 − hε)mh−1. Fix any u1 ∈ U1 and set N1 =
NG(u1, V ). Notice that since (V,U1) is (ε, d)-super-regular, we have ∣N1∣ ≥ d∣V ∣ ≥ ε∣V ∣.
Since (V,U2) is (ε, d)-super-regular, there are at least (1 − ε)m vertices u2 ∈ U2 such
that the set N2 = NG(u2,N1) of neighbours of u2 in N1 has size at least (d − ε)∣N1∣ ≥
(d − ε)d∣V ∣ ≥ ε∣V ∣. Continuing in the same way, by applying Lemma 2.6 to the (ε, d)-
super-regular pair (V,Uj) for j = 3, . . . , h, we get that there are at least ((1 − ε)m)j−1
choices of (u2, . . . , uj) ∈ U2 × ⋅ ⋅ ⋅ × Uj such that the vertices u1, u2, . . . , uj have at least
(d − ε)j−1∣N1∣ ≥ (d − ε)j−1d∣V ∣ ≥ (d − ε)h−1d∣V ∣ ≥ ε∣V ∣ common neighbours in the set V .
Since (d − ε)h−1∣N1∣ ≥ 1

2d
hn and ((1 − ε)m)h−1 ≥ (1 − hε)mh−1, the first part of the lemma

follows.
Without loss of generality, it suffices to prove (ii) for U1. If ∣X ∣ ≥ 2εnd1−h, then, by

applying Lemma 2.6, for all but at most εm vertices u1 ∈ U1, the set N1 = N(u1,X) of
neighbours of u1 inX is of size at least (d−ε)∣X ∣. Fix any such u1 and proceed in the same
way as in the proof of (i). We get that there are at least ((1 − ε)m)h−1 ≥ (1 − hε)mh−1

choices of (u2, . . . , uh) ∈ U2 × ⋅ ⋅ ⋅ × Uh such that the vertices u1, u2, . . . , uh have at least
(d − ε)h−1∣N1∣ ≥ (d − ε)h∣X ∣ ≥ 1

2d
h∣X ∣ common neighbours in the set X, and the second

part of the lemma follows. □

Proof of Lemma 6.7. Given any graph H on h ≥ 2 vertices and any δ > 0, we fix ε > 0
with ε < 2−4h−24h−8δ4h, δ′ = 2−3h−1ε1/4 and C large enough for the inequalities indicated
below to hold. Observe that the maximum degree of F is mh−1 and, by Lemma 6.6(i),
the minimum degree of F is at least (1 − hε)mh−1. Therefore

E[e(F̃ )] = e(F )pe(H) = (1 ± hε)mhpe(H)

and

Var[e(F̃ )] = Oh,δ

⎛
⎝ ∑
H′⊆H,e(H′)>0

m2v(H)−v(H′) (p2e(H)−e(H′) − p2e(H))
⎞
⎠

= Oh,δ

⎛
⎝
E[e(F̃ )]2 ∑

H′⊆H,e(H′)>0
m−v(H

′)p−e(H
′)⎞
⎠

= Oh,δ

⎛
⎝
E[e(F̃ )]2 ∑

H′⊆H,e(H′)>0
n−v(H

′)p−e(H
′)⎞
⎠
= Oh,δ (E[e(F̃ )]2C−1n−1) ,
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where we used that n−v(H
′)p−e(H

′) ≤ C−e(H
′)n−v(H

′)+e(H′)/m1(H) ≤ C−e(H
′)n−1 in the last

step. Using Chebyshev’s inequality, we have

P[e(F̃ ) /= (1 ± ε)E[e(F̃ )]] = Oh,δ,ε (
Var[e(F̃ )]
E[e(F̃ )]2

) = Oh,δ,ε(C−1n−1) ,

and thus a.a.s.

e(F̃ ) = (1 ± ε)E[e(F̃ )] = (1 ± ε)(1 ± hε)mhpe(H). (10)

Similarly as above, given U ′i ⊆ U ′i of size at least δm for i = 1, . . . , h, we have

E[e(F̃ ′)] = e(F ′)pe(H) = (1 ± h ε
δ)

h

∏
i=1
∣U ′i ∣pe(H) = Ωh,δ,ε(nhpe(H)) = Ωh,δ,ε(Cn)

and ∆[e(F̃ ′)] = Oh,δ,ε(E[e(F̃ ′)]2C−1n−1). Then with Lemma A.1 we have

P[e(F̃ ′) < (1 − ε)E[e(F̃ ′)]] ≤ exp(− ε2E[e(F̃ ′)]2
2∆[e(F̃ ′)] + 2E[e(F̃ ′)]

) ≤ exp(−hn) ,

where the last inequality holds for large enough C. We conclude with a union bound that
a.a.s.

e(F̃ ′) ≥ (1 − ε)E[e(F̃ ′)] ≥ (1 − ε)(1 − h ε
δ)

h

∏
i=1
∣U ′i ∣pe(H) ≥ (1 −

√
ε)

h

∏
i=1
∣U ′i ∣pe(H) (11)

for all choices of U ′i ⊆ U ′i of size at least δm for i = 1, . . . , h and using the choice of ε. This
proves the lower bound of (5). Note that (10) and (11) hold also with δ replaced by δ′.

Next we upper bound e(F̃ ′) by taking e(F̃ ) and subtracting those edges of F̃ that are
not in F̃ ′, i.e. the edges that contain at least one vertex vi that belongs to U ∖ U ′i . We
only need a lower bound on their number and we will see that it is enough to lower bound
those for which ∣Ui ∖ U ′i ∣ ≥ δ′m (which can be done using (11)), and simply ignore the
others. For this we let J ⊆ [h] be the set of those indices j ∈ [h] such that ∣U ′j ∣ ≤ (1−δ′)m,
and for any ∅ ≠ I ⊆ J we let FI be the subgraph of F induced by the sets Ui ∖ U ′i for

i ∈ I and U ′i for i /∈ I. If J = ∅, then the inequality e(F̃ ′) ≤ e(F̃ ) already gives the desired

upper bound on e(F̃ ′). Otherwise, using (10) and (11), we get

e(F̃ ′) ≤ e(F̃ ) − ∑
∅≠I⊆J

e(F̃I) ≤ (1 + ε)E[e(F̃ )] − ∑
∅≠I⊆J

(1 − ε)E[e(F̃I)] ,

that we can further upper bound by

(1 + ε)(1 + hε)
h

∏
i=1
∣Ui∣pe(H) − ∑

∅≠I⊆J
[(1 − ε)(1 − h ε

δ′ )∏
i∈I
∣Ui ∖U ′i ∣∏

i/∈I
∣U ′i ∣pe(H)]

≤∏
j/∈J
∣Uj ∣∏

j∈J
∣U ′j ∣pe(H) + 2hε

h

∏
i=1
∣Ui∣pe(H) + 2h

ε

δ′
∑
∅≠I⊆J

(∏
i∈I
∣Ui ∖U ′i ∣∏

i/∈I
∣U ′i ∣pe(H))

≤ (1 − δ′)∣J ∣−h
h

∏
i=1
∣U ′i ∣pe(H) + 2hεδ−h

h

∏
i=1
∣U ′i ∣pe(H) + 2h

ε

δ′
2∣J ∣δ−∣J ∣

h

∏
i=1
∣U ′i ∣pe(H)

≤ (1 + 2hδ′ + 2hεδ−h + 2h+1hδ−h ε
δ′
)

h

∏
i=1
∣U ′i ∣pe(H) ≤ (1 +

√
ε)

h

∏
i=1
∣U ′i ∣pe(H) .

To get the second line, we used (1 + ε)(1 + hε) ≤ 1 + 2hε, (1 − ε)(1 − h ε
δ′ ) ≥ 1 − 2h ε

δ′ and

h

∏
i=1
∣Ui∣ − ∑

∅≠I⊆J
∏
i∈I
∣Ui ∖U ′i ∣∏

i/∈I
∣U ′i ∣ =∏

j/∈J
∣Uj ∣∏

j∈J
∣U ′j ∣
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as we are left with those edges that have vertices in Uj ∖U ′j for j /∈ J and in U ′j for j ∈ J .
To get to the third line, we used that for j /∈ J we have ∣U ′j ∣ ≥ (1 − δ′)m = (1 − δ′)∣Uj ∣ and
that for each i we have ∣Ui ∖U ′i ∣ ≤ ∣Ui∣ ≤ δ−1∣U ′i ∣. In the last estimate we use the bound on
ε and the choice of δ′. This finishes the proof of (5).
For (6), we repeat essentially the same argument we used for the lower bound of (5).

Observe that from (ii) of Lemma 6.6, if ∣X ∣ ≥ 2εnd1−h, all but at most εm vertices from
each Ui have degree at least (1 − hε)mh−1 in FX . Therefore

E[e(F̃ ′X)] = e(F ′X)pe(H) = (1 ± h ε
δ)

h

∏
i=1
∣U ′i ∣pe(H) = Ωh,δ,ε(Cn) (12)

and again ∆[e(F̃ ′X)] = Oh,ε,δ(E[e(F̃ ′X)]2C−1n−1). Then with Lemma A.1 we have

P[e(F̃ ′X) < (1 − ε)E[e(F̃ ′X)]] ≤ exp(−
ε2E[e(F̃ ′X)]2

2∆[e(F̃ ′X)] + 2E[e(F̃ ′X)]
) ≤ exp(−hn) ,

where the last inequality holds for large enough C. Then with a union bound over all
choices of U ′1, . . . , U

′
h we conclude that e(F̃ ′X) ≥ (1 − ε)E[e(F̃ ′X)] with probability 1 − e−n

and, using (12), we finish the proof. □
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