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Abstract

A standing challenge in data privacy is the trade-off between the level of privacy and the efficiency
of statistical inference. Here we conduct an in-depth study of this trade-off for parameter estimation
in the S-model (Chatterjee, Diaconis and Sly, 2011) for edge differentially private network data re-
leased via jittering (Karwa, Krivitsky and Slavkovié¢, 2017). Unlike most previous approaches based
on maximum likelihood estimation for this network model, we proceed via method of moments. This
choice facilitates our exploration of a substantially broader range of privacy levels — corresponding to
stricter privacy — than has been to date. Over this new range we discover our proposed estimator for
the parameters exhibits an interesting phase transition, with both its convergence rate and asymptotic
variance following one of three different regimes of behavior depending on the level of privacy. Because
identification of the operable regime is difficult to impossible in practice, we devise a novel adaptive
bootstrap procedure to construct uniform inference across different phases. In fact, leveraging this
bootstrap we are able to provide for simultaneous inference of all parameters in the S-model (i.e.,
equal to the number of vertices), which would appear to be the first result of its kind. Numerical
experiments confirm the competitive and reliable finite sample performance of the proposed inference
methods, next to a comparable maximum likelihood method, as well as significant advantages in terms
of computational speed and memory.

Key words: adaptive inference, 8-model, bootstrap inference, data privacy, data release mechanism, edge
differential privacy, phase transition, Stein’s method.

1 Introduction

In this information age, data is one of the most important assets. With ever-advancing machine learn-
ing technology, collecting, sharing and using data yield great societal and economic benefits, while the
abundance and granularity of personal data bring new risks of potential exposure of sensitive personal or
financial information which may lead to adverse consequences. Therefore, continuous and conscientious
effort has been made to formulate concepts of sensitivity of the data and privacy guarantee in data usage,

and those concepts evolve along with the technological advancement. At present, one of most commonly
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used formulations of data privacy is the so-called differential privacy (Dwork, 2006; Wasserman and Zhou,
2010). This paper is devoted to studying statistical estimation in the context of edge differential privacy
for network data.

In network data, individuals (e.g., persons or firms) are typically represented by nodes and their
inter-relationships are represented by edges. Therefore, network data often contain sensitive individual
information. On the other hand, for analysis purposes the information of interest in the data should
be sufficiently preserved. Hence, the primary concern for data privacy is two-folded: (a) to release only
a sanitized version of the original network data to protect privacy, and (b) the sanitized data should
preserve the information of interest such that analysis based on the sanitized data is still effective.

To protect privacy, the conventional approach is to release some noised version of summary statistics
of interest. Normally the summary statistics used are of (much) lower dimension than the original data.
In the context of network data, the chosen summary statistics can be the node degree sequence (Karwa
and Slavkovié¢, 2016) or subgraph counts (Blocki et al., 2013). To achieve differential privacy, only a noised
version of the summary statistics is released. The noised version of the statistics is generated based on
some appropriate release mechanism, which depends critically on the so-called sensitivity of the adopted
statistics. One of the most frequently used data release schemes is the Laplace mechanism of Dwork et al.
(2006). See also Section 2 of Wasserman and Zhou (2010), and Section 3 of Karwa and Slavkovi¢ (2016).
Karwa and Slavkovi¢ (2016) considered edge differential privacy for the S-model (Chatterjee, Diaconis
and Sly, 2011), where only the node degree sequence, which is a sufficient statistic, is released with added
noise generated from a discrete Laplace mechanism. However, a noisy degree sequence may no longer be
a legitimate degree sequence. Even for a legitimate degree sequence, the maximum likelihood estimator
(MLE) may not exist. Karwa and Slavkovié¢ (2016) propose a two step procedure that entails ‘de-noising’
the noisy sequence first and then estimating the parameters using the de-noised data by MLE.

A radically different approach is to release a noisy version of an entire network. Karwa, Krivitsky and
Slavkovié¢ (2017) offer what they call a generalized random response mechanism for doing so and present
empirical results of its use with maximum-likelihood estimation in exponential random graph models. The
structure of this release mechanism is the same as the noisy network setting of Chang, Kolaczyk and Yao
(2021), where the edge status of each pair of nodes is known only up to some binary noise and method
of moments was used to estimate certain network summary statistics. As noted by Chang, Kolaczyk
and Yao (2020), this noisy network setting in turn is essentially analogous to the idea of jittering in the
analysis of classical Euclidean data, where each original data point is released with added noise. In this
paper we study this jittering release mechanism for network data, and we do so in the specific context
of parameter estimation in the S-model. However, importantly, we note that unlike approaches based on
release of noised versions of specific, pre-determined summary statistics, jittering allows for the possibility
of multiple statistics to be calculated and/or quantities to be estimated from the same released network.

Specifically, we conduct an in-depth study on the statistical inference for the S-model based on the edge
m-differentially private data generated via jittering, where m > 0 reflects the privacy level; the smaller
m, the greater the level of privacy. Unlike most previous approaches to inference under this model,
based on maximum likelihood estimation, we proceed via method of moments. This choice facilitates
our exploration of a substantially broader range of privacy levels m than has been to date. Let p be the

number of nodes in the network. Our major contributions are as follows. First, we develop the asymptotic



theory when p — oo and m — 0, and find that (i) in order to achieve consistency of the newly proposed
moment-based estimator, 7 should decay to zero slower than p~1/3 logl/ 6 p, while (ii) both the convergence
rate and the asymptotic variance of our proposed estimator depend intimately on the interplay between p
and 7. In particular, the asymptotic behavior of these quantities exhibits an interesting phase transition
phenomenon, as w decays to zero as a function of p, following one of three different regimes of behavior:
a>p VA a=xp V4 andp V> > p /3 logl/6 p. Second, because identification of the operable
regime is difficult to impossible in practice, we devise a novel adaptive bootstrap procedure to construct
uniform inference across different phases. Third, leveraging this bootstrap we are able to provide for
simultaneous inference of all parameters in the 5-model (i.e., equal to the number of vertices), which would
appear to be the first result of its kind and requires a substantially different and more nuanced technical
approach than for finite-dimensional results. Lastly, numerical experiments confirm the competitive and
reliable finite sample performance of the proposed inference methods, next to a comparable maximum
likelihood method, as well as significant advantages in terms of computational speed and memory.

The rest of the paper is organized as follows. Section 2 introduces the concept of edge w-differential
privacy for networks, and the data release mechanism by jittering (Karwa, Krivitsky and Slavkovié,
2017). Section 3 addresses inference for the S-model based on edge differentially private data, introducing
the method of moments estimator and characterizing its asymptotic behavior. Section 4 develops the
bootstrap adaptive inference that makes inference feasible in practice (i.e., despite the phase transition),
and presents the accompanying results on simultaneous inference. Some numerical results are reported in
Section 5. We relegate all the technical proofs to the Appendix.

For any integer d > 1, we write [d] = {1,...,d}, and denote by I; the identity matrix of order d.
We denote by I(-) the indicator function. For a vector h = (hy,...,hq)", we write |h|; = Z;l:1 |h;j| and
|h| = max;¢(q |h| for its Li-norm and Loc-norm, respectively. For a countable set S, we use #S or S|
to denote its cardinality. For two sequences of positive numbers {ap},>1 and {cp}p>1, we write a, < ¢,
or ¢, 2 ap if limsup,_, a,/c, < o0, and write a, < ¢, if and only if a; < ¢, and ¢, < ap. We also write

ap K ¢p Or ¢p > ay if limsup,,_,, ap/c, = 0.
2 Edge differential privacy

2.1 Definition

We consider simple networks in the sense that there are no self-loops and there exists at most one edge from
one node to another for a directed network, and at most one edge between two nodes for an undirected
network. Such a network with p nodes can be represented by an adjacency matrix X = (X j)pxp, where
Xii =0, and X;; = 1 indicating an edge from the i-th node to the j-th node, and 0 otherwise. For
undirected networks, we have X; ; = X ;. In this paper, we always assume that the p nodes are fixed and
are labeled as 1,...,p. Then a simple network can be represented entirely by its adjacency matrix. To
simplify statements, we often refer to an adjacency matrix X as a network.

Let X be the set consisting of the adjacency matrices of all the simple and directed (or undirected)
networks with p nodes. For any X = (X )pxp € X and Y = (Y;j)pxp € X, the Hamming distance
between X and Y is defined as

(S(X,Y) = #{(l,j) S Xi,j 75 Y%hj}, (2.1)



where Z = {(7,7) : 1 <1i # j < p} for directed networks, and Z = {(4,7) : 1 < i < j < p} for undirected
networks. To protect privacy, the original network X is not released directly. Instead we release a sanitized
version Z = (Z; j)pxp € X of the network, where Z is generated according to some conditional distribution

Q(-|X). Here Q is also called a release mechanism (Wasserman and Zhou, 2010).

Definition 1 (Edge differential privacy). For any 7w > 0, a release mechanism (i.e. a conditional proba-
bility distribution) @ satisfies m-edge differential privacy if
QZ|Y)
su su L <" 2.2
X,YEpX, ZEE Q(Z ‘ X) - ( )
(X, Y)=1 Q(Z|X)>0
The definition above equates privacy with the inability to distinguish two close networks. The privacy
parameter 7 controls the amount of randomness added to released data; the smaller 7 is the more
protection on privacy. Notice that (2.2) is much more stringent than requiring |Q(Z |Y) — Q(Z | X)| to
be small for any X,Y € X with 6(X,Y) = 1. In practice 7 is often chosen to be small. Then it follows

from (2.2) that
QZIY) - Q(z|X)|
<" —-1l=m.
x,S\I(ler, Slel}() Q(Z ‘ X) =€ T

5(X,Y)=1 Q(Z|X)>0

Note that multiple notions of privacy have been introduced for networks; see Jiang et al. (2020) for a recent
survey. In this paper we focus on the notion of edge differential privacy (e.g., Nissim, Raskhodnikova
and Smith (2007)). At the same time, there is a connection between differential privacy and hypothesis

testing.

Proposition 1 (Wasserman and Zhou, 2010). Let the released network Z ~ Q(- | X) and Q satisfy w-edge
differential privacy for some m > 0. For any given i # j, consider hypotheses Hy : X; j = 1 versus Hj :

Xi; = 0. Then the power of any test at the significance level v and based on Z, QQ and the distribution of
X is bounded from above by ve™, provided that X; ; is independent of { Xy ¢ : (k,€) € Z and (k,l) # (i,7)}.

Proposition 1 implies that if Z is released through @ which satisfies m-edge differential privacy and
7 is sufficiently small, it is virtually impossible to identify whether an edge exists (i.e. X;; = 1) or not
(i.e. X;; = 0) in the original network through statistical tests, as the power of any test is bounded by its
significance level multiplied by e™. The independence condition in Proposition 1 is satisfied by the Erdos-
Rényi class of models for which all edges are independent, including the g-model and the well-known
stochastic block model. Proposition 1 follows almost immediately from the Neyman-Pearson lemma for
the optimality of likelihood ratio tests for simple null and simple alternative hypotheses. It was first
proved by Wasserman and Zhou (2010) with independent observations. Since their proof can be adapted
to our setting in a straightforward manner, we omit the details.

For further discussion on differential privacy under more general settings, we refer to Dwork et al.
(2006) and Wasserman and Zhou (2010).

2.2 Edge privacy via jittering

Now we introduce the data release mechanism of Karwa, Krivitsky and Slavkovié¢ (2017), which is formally

the same as the noisy network structure adopted in Chang, Kolaczyk and Yao (2021). This approach



releases a jittered version of the entire network. The word of ‘jittering’ means that a small amount of
noise is added to every single data point (Hennig, 2007).

For 7 specified just after (2.1) above, we define a data release mechanism as follows:
Zij = Xijl(eij =0)+1(eij =1) (2.3)
for each (4,7) € Z. In the above expression, {€;;}(; j)er are independent random variables with
Pleij=1)=ao;j, Plei;=0))=1—-0;;—0F,; and Plg;=—-1)=p5;. (2.4)
For an undirected network, Z; ; = Z;; for j > i. Then it follows from (2.3) and (2.4) that
P(Zi;=1|X;;=0)=0;; and P(Z;; =0]|X;;=1)=0;. (2.5)

Furthermore the proposition below follows from (2.2) and (2.5) immediately. See also Proposition 1 of
Karwa, Krivitsky and Slavkovi¢ (2017).

Proposition 2. The data release mechanism (2.3) satisfies w-edge differential privacy with

m = max log { max < Qi 5 Bi.j 1—ay; , 1— Bz’,j) } |

L ) b
(i.J)€ET 1-0i; 1—a Bij Qi j

Remark 1. It is easy to see from Proposition 2 that the maximum privacy is achieved by setting a; ; =
Bi; = 0.5 for all (i,7) € Z, as then 7 = 0. By (2.3) and (2.4), Z; ; = I(e;; = 1) then, i.e. Z carries no
information about X. In order to achieve high privacy, we need to use large «; ; and f3; ;. In Section 3
below we will develop statistical inference approaches for the original network X based on the released
data Z as m — 0. When m — 0, it holds that 7 =< max; j)e7(1 — ;; — B; ;) and there exists a constant
e > 0 such that a; ;,0;; € (¢,1 —¢) for all (i,5) € Z.

3 Differentially private inference for the S-model

In this section we introduce a new method-of-moments estimator for the parameters of the network (-
model and characterize the asymptotic behavior of this estimator, through which we discover an interesting

phase transition.
3.1 The [-model

The so-called -model for undirected networks is characterized by p parameters @ = (61,...,6,)" € RP

which define the probability function

exp(6; + 6;) o

PX;,=1)= . 3.1
( 1,] ) 1 + exp(gz + 9]) Y ? # ] ( )
See Chatterjee, Diaconis and Sly (2011). Then the likelihood function is given by

exp{(0i +0;)Xi;}
1+ exp(6; + 0;)

Fx:0) = 1]

1,j:1<J

x exp(U101 + - - + Upbyp) ,



where U; = ;. ;,; Xi j is the degree of the i-th node. Hence the degree sequence U = (Uy,...,Up)" is a
sufficient statistic.
Denote by 8(U) = {6;(U),...,0,(U)}" the maximum likelihood estimator for @ based on U. For

given degree sequence U, é(U) must satisfy the following moment equations:

i €[p].

_ Z exp{0;(U) + 6,(U)}
2 Tt exp{6,(U) +0,(U))
Unfortunately 8(U) may not exist; see Theorem 1 of Karwa and Slavkovi¢ (2016) for necessary and
sufficient, conditions for the existence of (U). When 0(U) exists, Chatterjee, Diaconis and Sly (2011)
show that

6(U) = 6] < Cup™/?10g"? p (32)

with probability at least 1 — Cyp~2, where C, > 0 is a constant depending only on |@|. For any
fixed integer s > 1 and distinct 41, ...,¢s € [p], Yan and Xu (2013) establish the asymptotic normality of
{0,,(U),...,0,,(U)}" as p — oo, which can be used to construct joint confidence regions for (6, , ..., 60,)".
However, to our best knowledge, simultaneous inference for all p parameters in the S-model remains
unresolved in the literature.

Karwa and Slavkovi¢ (2016) consider differentially private maximum likelihood estimation for 8 based
on a noisy version of the degree sequence. With 7= =< (log p)_l/ 2 the noisy degree sequence in their
setting is defined as U + V, where the components of V = (V;,...,V,)" are drawn independently from a
discrete Laplace distribution with the probability mass function P(V = v) = (1 — x)xl*!/(1 4 &) for any
integer v, where k = exp(—7/2). Given observed U + V, Karwa and Slavkovi¢ (2016) propose a two-step
procedure: (a) find the maximum likelihood estimator U* for U based on U + V|, and (b) estimate 8 by
6(U*). Theorem 4 of Karwa and Slavkovié¢ (2016) shows that {6y, (U*),... 60, (U*)}" shares the same
asymptotic normality as {8, (U),...,0,, (U)}" for any fixed integer s > 1 and distinct £y, ..., ¢ € [p].

To appreciate this ‘free privacy’ result, let us assume first that |@|,, < C for some universal constant
C > 0. Then there exists a universal constant C > 1 such that C’_lp < minie[p] U, < max;e|p] U, < C’p
holds almost surely as p — oco. On the other hand, Lemma C in the supplementary material of Karwa
and Slavkovié¢ (2016) indicates that [U* — Uls < v6p*/21log'/? p holds almost surely as p — oo, which
implies that U* is dominated by U. Hence, 8(U*) shares the same asymptotic distribution as 8(U) when
7 = (logp)~'/2. However, the asymptotic behavior of 8(U*) is unknown when = < (logp)~'/2.

Our interest in this paper is on differentially private estimation based on released data Z = (Z; j)pxp
generated by the more general jittering mechanism (2.3). Remark 1 in Section 2.2 shows that Z is 7-
differentially private with 7 < max; ;).;<;(1 — ; j — B ;). To gain more appreciation of the impact of the
privacy level @ on the efficiency of inference, we introduce a new moment-based estimation for 8 based
on Z. We then establish the asymptotic theory under the setting that p — oo and m may vary with
respect to p. Of particular interest is the findings when m — 0 together with p — oo. It turns out the
asymptotic distribution of the new proposed estimator depends intimately on the interplay between 7 and
p, exhibiting interesting phase transition in the convergence rate and the asymptotic variance as 7 decays
to zero as a function of p. See Theorem 1 and Remark 2(a) in Section 3.3. To overcome the complexity

in inference due to the phase transition, a novel bootstrap method is proposed, which provides a uniform



inference regardless different phases. In addition, it also facilitates the simultaneous inference for all the

p components of @ as p — co.
3.2 A new moment-based estimator
Under f-model (3.1), P(X;; = 1)/P(X;; = 0) = exp(#; + 0;) for any i # j. Hence

P(Xie = 1)P(X;; = 0)P(Xy; = 1)
P(Xie = 0)P(X;; = 1)P(Xy; = 0)

—exp(20), i#j#L. (3.3)

Since only the sanitized network Z = (Z; ;)pxp, defined as in (2.3)—(2.5), is available, we represent (3.3)
in terms of the probabilities of Z; ;. For any ¢ # j and 7 € {0, 1}, put

Plig)r(2) = (2 = 0ig) (1= iy —2)' 7.
Then P(X;,; = 0) = (1 -0y — i) "Bl 0(Zij)} and P(X; = 1) = (1 -y = Bi,j) "B j)1(Zij)}-

ij),r for any i # j and 7 € {0,1}. Since Z; ; is
independent of {Z; - : 1{i,7} N {i,7}| <1}, it follows from (3.3) that

To simplify the notation, we write ¢; ;) -(Zi ;) as ¢

E{@(i,é),lSO(i,j),OSD(e,j),1}

= exp(26y), 1£j#L. 3.4
E{Sﬁ(i,é),oSO(i,j)J@(z,j),o} ( ) ( )

Hence a moment-based estimator for 8, can be defined as

s 1 ﬂm)
Op==log | — ), 3.5
= loe (£ (3.5)
where )
fLe 1 = Tl Z ©(3,0),1P(i,5),0P(€,5),1 » (3.6)
(Z7J)EHZ
. 1
fle2 = Tl Z ©(,0),09(i.5),1P(£.5),0 » (3.7)
(ivj)EHK

and Hy = {(i,7) : 1,7 # £ such that i < j}.
3.3 Asymptotic properties and phase transition

Put T = {(i,j) : 1 <i < j < p}. We always confine {(aij, 8i )} jyer € M(7;C1,C2) with

M(y; C1, Cy) _{{(ai,jaﬂi,j)}(i,j)el 1 C1 < i, Bi; < 0.5,

Coly < min (1 —a;; — i) < max (1 —a;; — Bi i) < C
2 7S (1 g = Bug) < e (1= 0 = fig) < 27}

for some v € (0,1], C1 € (0,0.5) and Cy > 1. Our theoretical analysis allows 7 to be a constant, or to
vary with respect to p. Of particular interest are the cases when v — 0 (at different rates) together with
p — oo. When {(a;, Bij)}ijer € M(7;Ch,C2) for some fixed constants C7 € (0,0.5) and Ca > 1, it
follows from Remark 1 in Section 2.2 that the privacy level 7 <y — 0.



3.3.1 Consistency

Proposition 3 below presents the consistency for the moment-based estimator ég defined in (3.5), which
indicates that 6, can be estimated consistently under the edge m-differential privacy with m — 0, as long
as > p~ /3 logl/6 p.

Condition 1. There exists a universal constant C3 > 0 such that |0|,, < Cs.

Proposition 3. Let Condition 1 hold and {(ij,Bij)}ujer € M(y;C1,C2) for two fived constants
C1 € (0,0.5) and Cy > 1. If v > p~Y310g p, it then holds that maxXep] 0,— 04| = Op(y3p~1 log'/? p)+
Op(y~'p™/?10g"? p).

Notice that the privacy level m < . In order to ensure the consistency of ég, the edge differential
privacy level 7 must satisfy condition 7 > p~1/3 logl/ 6p. On the other hand, when a;; = 0= B, our
estimator (3.5) is essentially constructed based on the original network X. In this case, we can then
set v = 1, and our estimator shares the same convergence rate of the maximum likelihood estimator of
Chatterjee, Diaconis and Sly (2011); see (3.2) in Section 3.1.

3.3.2 Asymptotic normality

Let o1 = |He| ™ Z(z‘,j)em E{©a,0,190,5),09,5),1} and pg2 = |Ho| 7t Z(i,j)e?-le E{®i,0,096,5),19@,),0) for
each ¢ € [p], which are, respectively, the population analogues of fi,; and fiz2 defined in (3.6) and (3.7).
Put N = (p — 1)(p — 2). Proposition 4 gives the asymptotic expansion of ég — 6y, which can be obtained
from the proof of Theorem 1 below. For any ¢ # ¢, let

1 1 1
Nip = Y [E{Sp(é,j),l}E{‘P(i,j),O} + M7E{90(z,j),o}E{90(i,j),1} . (3.8)

) )

Proposition 4. For any i # j, write Z; ; = Zi j —E(Zi ). Let Condition 1 hold and {(cig, Bij) }jyer €
M(; C1,Cy) for two fized constants C; € (0,0.5) and Cy > 1. If v > p~ /3 log'/ p, it then holds
that 0, — 0, = Tg’l + T&g + Ry, where T},l =-—_N"1 Zi’j:#j,i’j#(w,l + ,Uzg,Q)(2#[71/14[’2)_IZOi,zZDg’jZDZ'J and
Tro=@—-1)"'Y, Iy >\Z~7gZO,-7g satisfy |Tp1| = Op(y3p™") and |Tya| = Op(v~'p~Y?), and the remainder
term Ry satisfies |Ry| = Op (v %p~2) + Op(y " 2p~ ' log p).

The leading term in the asymptotic expansion of 0, — 0, will be different for different scenarios of ~:
Tgyg, a partial sum of independent random variables, serves as the leading term if v > p~1/4, TK,I + TM

/4 and Tg’l, a generalized U-statistic, is the leading term if p V> ¥ >

is the leading term if v < p~
p /3 Iogl/ 6 p. Such characteristic will lead to a phase transition phenomenon in the limiting distribution

of the proposed moment-based estimator. Put

1
b= — > N Var(Ziy), (3.9)
p i 1AL
-1 2
bﬁ = — <M> Z Var(Zi7g)Var(Zg7j)Var(Zi’j) . (310)
NN meaber ) s



Theorem 1. Let Condition 1 hold and {(ij, Bij)} e € M(v;Cr, C2) for two fized constants Cy €
(0,0.5) and Cy > 1. For any fized integer s > 1, let 1 < {1 < --- < Ly < p. Then as p — o, the following
three assertions hold.

(a) Fory > p~ Y4, (p— 1)1/2d1ag(b vz _1/2)(651 Otys- 500, —00,)" — N(0,1,) in distribution.

(b) For p~/4 > ~ > p1/3 1og1/6p N1/2 dlag(b V2L 00— 6, Bu, — 60)T = N(0,1)
in distribution.

(c) For~y = p~ /4, N2 diag[{(p—2)bs, +be, } /2, .., {(p—2)be, +be,} /2)(00, b0y, .., by
N(0,1) in distribution.

—Qg.s)T —

S

Remark 2. (a) Theorem 1 presents the asymptotic normality of the proposed estimators when p — co

2 and by = ~~6. The limiting distribution

and also, possibly, 7 < v — 0. It can be shown that b, < ~~
depends on the relative rates of p and « intimately; yielding an interesting phase transition phenomenon
in the convergence rate. More precisely, when v > p~1/4 (including the case v is a fixed constant), we
have |6 — 6, = Op(p~/?4~1). On the other hand, |6, — 6| = Op(p~/*) when v < p~ /4, and O, (p~1y~?)
when p=1/4 > v > p=1/3 logl/6

(b) The result for the estimator with the original network X can be obtained by setting v = 1 (i.e.
a;; =0 = B ;). Then by Theorem 1(a), p1/2b21/2(é5 —6¢) — N(0,1) in distribution, where

Z e, 1 exp(fe + 05) + Ne_,Ql exp(f; +0;) 12 exp(6; + 0y

b= {1+ exp(0; + ;) {1 + exp(0; +0;)} | {1+ exp(0; + 0p)}?

p=1 (R [p— Jij#Ls

(c) To construct confidence intervals for 6, based on Theorem 1, we would have to overcome two
obstacles: (i) to identify the most appropriate phase in terms of relative sizes between ~ and p, and (ii)
to estimate by and by which determine the asymptotic variances. For (ii), we give their estimates in the
Appendix. Unfortunately (i) is extremely difficult if not impossible, as in practice we only have one ~
and one p. Proposition 5 in the Appendix shows that (ii) is only partially attainable, as, for example, by
cannot be estimated consistently when p=1/4 < ~ < p~1/4 logl/ 4p. A novel bootstrap adaptive procedure
will be developed in Section 4, which provides a uniform inference procedure when v =< 7w — 0 across the
three different phases. The inference with v being a fixed constant can be obtained based on Theorem 1

with the estimated by specified in the Appendix.

4 Bootstrap adaptive inference

The goal of this section is primarily two-fold: First we construct a novel bootstrap confidence interval
for 6, which is automatically adaptive to the three phases identified in Theorem 1. Second, we leverage
the new bootstrap procedure with Gaussian approximation via Stein’s method to provide simultaneous
inference for all p components of 8 as p — co. Additionally, we provide an algorithm for data-adaptive
selection of a working parameter in our approach. In the sequel, we always assume that the privacy level

7 — 0 together with the number of nodes p — oo.
4.1 Bootstrap algorithm and simultaneous inference

Recall N = (p—1)(p—2). As vy =< 7 — 0, the three asymptotic assertions in Theorem 1 admit a uniform
representation:

N2 diag(v,, %, .. v, ) (B0, — 00, B, — 0,,)" = N(0,L) (4.1)



in distribution, where vy = (p — 2)by + be. Note that by < v~2 and by < v~ 6. Hence (p—2)bg/ve — 1 when

v > p~ Y4 and Bg/w — 1 when v <« p~ /4. Now we reproduce this structure in a bootstrap world based

on the available network Z. The goal is to estimate vy adaptively regardless of the decay rate of ~.
Recall Z = {(i,5) : 1 < i < j < p}. For a given constant § € (0,0.5), we draw bootstrap samples

VAR (ij)pxp according to

Zl =2 = ZijIniy =0)+ Iy =1), (i,j) €T, (4.2)

where {1; ;}(; j)er are independent and identically distributed random variables with P(n; ; = 0) = 124,
P(n;; =1) =6 and P(n;; = —1) = 6. For i # j and 7 € {0, 1}, put

Pl (@) = fo =8 — i (1—20))7{1 =8 — i (1~ 28) — 2}

To simplify the notation, we write cpzij) T(Zz‘T,j) as gazi o for any i # j and 7 € {0,1}. Note that P(X; ; =

0) = B{p|; ;) o} (1= 28)71(1 — iy — Bi;) ™ and P(Xy; = 1) = Bfgf, ;) (1= 20)7 (1 — iy — Biy) !
T oo .o .

As Z; ; is independent of {ZEJ s {i, 50 {i, 5} < 1}, it follows from (3.3) that

T

E{90 (i,0)1% z,g),o‘P(z,j),l}

E(yl, 00 =exp(20p), i#jF#L, (4.3)

/—\—l— A—F

T
L)1 ()0}
which is a bootstrap analogue of (3.4). Similarly, we define a bootstrap estimator for 6, as:

T

A 1 Mg 1

9;:210g(AJr >, (4.4)
Hp o

N N -1 T T T
where g,y = [Hel ™ Sy, 90,01 916510901 209 o = el ™ Ciaen, i 02(i.0 2,00 We also
define the bootstrap analogues of jig 1, p1g2 and A; ¢ as

1 1
/‘Z,lzw Z E{9011,@),195([@',3'),0‘?&4),1}’ Nggzw Z E{9021',4),03021',]'),190&,;'),0}v
(1,5)EH, (1,5)EH,
1 1
o= g 3 [l Bl o+ elualBlels ]
p i “He1

Then é} admits a similar asymptotic property as (4.1). To present it explicitly, we let
= (-2 +0b), ¢ 4.5
V( (p ) V4 + ’ € [p]7 ( : )
where

P 1 .2 i
b= g > Mvar(Z],),

[RRE4
1 (Mt s\ i i i
by = — —— E Var(Z; ,)Var(Z, ;)Var(Z; ;) .
2N
Fo1Fe2 i, i, 1AL
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Theorem 2. Let the conditions of Theorem 1 hold, and 6 € (0,c] for some constant ¢ < 0.5. As
p— 00,70 andy > p /3 log O p, it holds that (a) NV diag(v) ", v} ") (0] —0y,,....0] —
00,)" — N(0,1;) in distribution for any fixed integer s > 1 (md 1< < - <l <p, and (b)
MaXye(p] wiv7t = 1] = O(8), where vy is specified in (4.1).

Theorem 2 indicates that Ve/ ve — 1 for any v > p~/31og!/® p provided that we set § = o(1). For
fixed s > 1 and given 1 < ¢; < --- < £, < p, we can draw bootstrap samples Z! as in (4.2) with some
0 = o(1), and compute the bootstrap estimate (ég b éT )" defined in (4.4) based on Zt. We repeat
thls procedure M times for some large integer M and compute yg =NM~! Z%:1{éz,;(m) - ézk}z with

Iy M HT (™) for each k € [s], where {061 ,...,st(m }T is the associated bootstrap estimate
in the m-th repetltlon Then a conﬁdence region for (0y,,...,0¢,)" can be constructed based on the
asymptotic approximation N'/2 dlag( iz ﬁg;_l/Q)(égl — 05,00, —0,)" ~ N(0,1,).

Importantly, we note that in both Theorems 1 and 2, s is fixed when p — oco. Hence the infer-
ence methods presented so far are not applicable to all p components of 8 simultaneously. However, a
breakthrough can be had via the Gaussian approximation in Theorem 3 below. To our best knowledge,
this is the first method for simultaneous inference for all the p components of 8 in the S-model. Write
6 = (01,...,0,)" where  is the proposed moment-based estimator given in (3.5) based on the sanitized
data Z. As shown in Proposition 4, the leading term of 6 — 0 cannot be formulated as a partial sum
of independent (or weakly dependent) random vectors, which is different from the standard framework
of Gaussian approximation (Chernozhukov, Chetverikov and Kato, 2013; Chang, Chen and Wu, 2021).
Hence the existing results of Gaussian approximation cannot be applied directly, which requires signifi-
cant technical challenge to be overcome in our theoretical analysis. We construct Theorem 3 by Stein’s
method.

Theorem 3. Let Condition 1 hold and {(« ;, Bi;)} J yez € M(7;C1,Ca) for two fived constants Cy €
(0,0.5) and Cy > 1. As p — 00, let 0 < § < (plogp)~t, v — 0 and v > p~/3log!/? p. Then it holds that
SUpuege [P{NY2(VH~1/2(0 — 6) < u} — P(¢ < u)| — 0, where VI = diag(yir,.. Vp) and & ~ N(0,1,).

Write € = (&1,...,&)" ~ N(0,I,). For any S = {¢1,...,4,} C [p], let V:rg = diag(l/;[l,...,l/;rs),
0s = (égl, . .,égs)T, 0s = (0¢,,...,0,,)" and €g = (&,,...,&.)". Following the arguments in the proof
of Proposition 1 in the supplementary material of Chang et al. (2017), Theorem 3 implies that

supsup [B{NYZ(VE) V205 - 65)]o0 < u} — P((&gle < )] =0
S ueR

as p — oo. Given « € (0,1) and S C [p],

R 1/18|
O = {a e RIS NV2|(VE)1/2(0s — a))o < ! (”j)} (4.6)

is a 100 - a% confidence region for 8s. We refer to Section 4 of Chang et al. (2018) for applications of this
type of confidence region in simultaneous inference. If 7 is a fixed constant, Theorem 3 still holds with
replacing VT by (p—2) -diag(lal, cee Bp) where by is given in (I.3) in the Appendix. If we set a; ; =0 = f; 5
in the jittering mechanism (2.3)—(2.5), then v = 1 in this case and the released data Z is identical to the

original data X. Our simultaneous inference procedure also works in this case.
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4.2 Adaptive selection of

The tuning parameter ¢ plays a key role in our simultaneous inference procedure. We propose a data-
driven method in Algorithm 1 to select §. To illustrate the basic idea, we denote by I/g (0) the associated 1/;
defined in (4.5) with § used in generating the bootstrap samples Z in (4.2). If {1y} scs are known, the ideal
selection for the tuning parameter § should be dop¢ = arg mins maxycs \1/;r (6) — v¢|. Unfortunately, {v;}secs
are unknown in practice, as they depend on the unknown parameters 61, ..., 8,. A natural idea is to replace
the vy’s by their estimates. Recall ;, = 27! log(ﬂg,lﬂzg) with fig1 = |He| ™! Z(i7j)67'le D(i,0,19(i,5),0P(0,5),1
and figo = |He| ™! Z(i,j)ew ©(i,0),09(i,5),1P(t,5),0- Due to the nonlinear function log(-) and the ratio between
fie,1 and fip 2, 0 usually includes some high-order bias term. More specifically,
By — ey flez — pe | (g — pe2)?  (flen — pe1)? 4

00— 0, = + - +Ry,
2101 2102 4#?,2 4#21

high-order bias

where Ry is a negligible term in comparison to the high-order bias. Although the high-order bias has
little impact on the estimation of 6y, it may lead to a bad estimate of v, if we just plug-in él, e ,ép in
the nonlinear function v, which depends on 6y, ...,6,. Hence, when we replace {v;}ses in Algorithm 1,
we use their associated estimates with bias-corrected é}fc, e 9}?9 Based on the optimal dop¢ selected in
Algorithm 1, we can replace the values V;rl, R Vgs in (4.6) by ﬁgl (Oopt), - - - ,ﬁ;rs (0opt) specified in Algorithm
1 to construct a 100 - % simultaneous confidence region for fs in practice.

5 Numerical study

5.1 Simulation

In this section we illustrate the finite sample properties of our proposed method of estimation and inference
for the unknown parameters in the S-model by simulation. For a given original network X, we always set
(0 4,Bi;) = (o, B) for any i,j € [p] and @ # j in the data release mechanism (2.3) and (2.4) to generate
Z. In our simulation, we set « = 8 € {0,0.1,0.2,0.3} and p € {1000,2000}. Note that Z = X when
a=p=0.

We draw 01, ..., 6, independently from N (0,0.2), and then generate the adjacency matrix X according
to S-model (3.1). Based on the released data Z, we applied the moment-based method (3.5) to estimate
6 = (61,...,60,)", and then calculated the estimation error L(0) = p~'|@ — 8]3. We also compared our
estimator with an adaptation of the maximum likelihood estimator (MLE) of Karwa and Slavkovi¢ (2016),
by correcting the degree sequence Uy as (1 —a — 3)"'{Uz — (p — 1)a} and then applying the algorithm
developed in that same paper. Table 1 reports the averages, medians and standard deviations of the
estimation errors over 500 replications. The proposed moment-based estimation performed competitively
in relation to the MLE, though the MLE is slightly more accurate overall. However the MLE method is
memory-demanding when p is large. For example with p = 1000 and @ = 8 = 0.1, the step generating
a graph with given degree sequence (i.e. Algorithm 2 of Karwa and Slavkovi¢ (2016)) occupied 3.91
GB memory. In contrast, the newly proposed moment-based estimation only used 38.19 MB memory.
Furthermore, the MLE is excessively time-consuming computationally when p is large. See Table 1 for

the recorded average CPU times for each realization on an Intel(R) Xeon(R) Platinum 8160 processor
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Algorithm 1 Selecting tuning parameter ¢

1: Obtain {0}2_,, {fie1}0_, and {fir2})_, based on (3.5), (3.6) and (3.7), respectively.
2: Calculate

@ 1= (1 — Qi — ﬂi,ﬁ) eXp(é@' + ég) (1 — QG — Bi,j) (1 — Oy — ﬁ&]) ( v+ )
(), 1+ exp(d; + 6y) 1+ exp(f; + 0)) 1+ exp(f; + ;) ’
oy  (L—oue— i) (1— iy — Bij)exp(fi +60;) (1— auj — Bry)
(3027 + exp(6; + 6y) 1+ exp(b; + 0;) 1+ exp(8; + 6;) ’
3: repeat

: leave out one (i, j) € H, randomly and denote by #, the set including the rest elements in H,
5: calculate i = |H, |~ Z(i,j)e?—t; @i gy and figg = [Hy |7} Z(z’,j)e?—t[ $(i,j.0),2>, which provide the
estimates of yp 1 and py o, respectively
6. calculate biasy = 47/, 5 (fin2 — fie2)® — 4 iy 5 (ieg — fien)?

7: until M replicates obtained, for a large integer M, and get biasél), - blas(M)
8: approximate the high-order bias in 6y by b/i\aSg Z blasé ™) , and obtain 9}” =0, — ligsg, the

bias-correction for ég
9: calculate ﬂ}?ﬁ = |He|™ Z(w)em D0, and Ngg = [Hel™ Z(”)ew P(i )2, Where P g 1 and
D(i.j, 0)2 are defined in the same manner as $(; )1 and P jr) 2, respectively, with replacing {9@} -1
Abc
by {67} 1 ) . .
10: calculate o VE = (p—2)b}?c+bbc, where b}?c and b'gc are defined in the same manner of b, and by specified

as (I.3) in the Appendix with replacing (fie,1, fie 2, {ék}izl) by ( ufl,ﬂ%, {Hbc} 1)

11: repeat
12: given § > 0 and draw bootstrap samples Z1 = (ZZ )pxp asin (4.2), calculate the bootstrap estimate

éz defined in (4.4) based on the bootstrap samples ZT
13: until M replicates obtained, for a large integer M, and get
14: caleulate 7](5) = p2M~1 "M {eT (m) _ §5)2 with 0 = M~ M_ g0
15: select dopy = arg ming maxycs |Ve( ) — 0P|

gro, . g

(2.10GHz). With p = 1000, the average required CPU time for computing the MLE once is over 471
minutes with the original data X (i.e. a = 8 = 0) and is almost double with the sanitized data Z (i.e.
a, 3 > 0). Tt is practically infeasible to conduct the simulation (with replications) for all scenarios with
p = 2000, for which we only report the results with @ = 8 = 0 with the average CPU time 5095 minutes
per estimation.

Based on our moment-based estimator 8, we also constructed the simultaneous confidence regions (4.6)
for all the p components 6y,...,0,. To determine the tuning parameter J, we applied the data-driven
Algorithm 1 with M = 500. Table 2 lists the relative frequencies, in 500 replications for each settings, of
the occurrence of the event that the constructed confidence region contains the true value of 8. At each

of the three nominal levels, those relative frequencies are always close to the corresponding nominal level.
5.2 Real data analysis

Facebook, a social networking site launched in February 2004, now overwhelms numerous aspects of
everyday life, and has become an immensely popular societal obsession. The Facebook friendships de-

fine a network of undirected edges that connect individual users. In this section, we analyze a small
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Table 1: Estimation errors of the proposed moment-based estimation and the maximum likelihood esti-
mation for @ in the S-model (3.1). Also reported are the average CPU times (in minutes) for completing
the estimation once for each of the two methods.

Proposed method Maximum likelihood estimation
a=0 a=0

P Summary statistics 0 0.1 0.2 0.3 0 0.1 0.2 0.3
1000 Average 0.0041 0.0065 0.0118 0.0274 0.0062 0.0065 0.0116 0.0272
Median 0.0041 0.0065 0.0117 0.0274 0.0041 0.0064 0.0116 0.0267
Standard deviation 0.0002 0.0003 0.0006 0.0012 0.0085 0.0003 0.0005 0.0026

Time (min) 1.0340 1.0439 0.9191 0.8540 471.6290 881.2221 772.3427 774.1594

2000 Average 0.0020 0.0032 0.0058 0.0133 0.0058 NA NA NA

Median 0.0020 0.0032 0.0058 0.0133 0.0043 NA NA NA

Standard deviation 0.0001 0.0001 0.0002 0.0004 0.0019 NA NA NA

Time (min) 4.2333 4.8707 3.7540 3.7256 5095.0520 NA NA NA

Table 2: Empirical frequencies of the constructed simultaneous confidence regions for 8 covering the truth
in the f-model (3.1).

P Level a=p=0 a=p=0.1 a=p£=0.2 a=p=0.3
1000 90% 0.876 0.868 0.910 0.888
95% 0.932 0.928 0.958 0.948
99% 0.984 0.982 0.982 0.992
2000 90% 0.900 0.876 0.898 0.896
95% 0.950 0.956 0.946 0.952
99% 0.988 0.990 0.996 0.992
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Facebook friendship network dataset available at http://wwwlovre.appspot.com/support.jsp. The
network consists of 334 nodes and 2218 edges.

We fit the 8-model to this network. As an illustration on the impact of the ‘jittering’, we identify the
nodes with the associated parameters equal to 0 based on both the original network and some sanitized

versions. More specifically, we first consider the multiple hypothesis tests:
Hyp:0,=0 versus Hygz:0,#0

for 1 < ¢ < 334. The moment-based estimate 6 = (él, .. ,é334)T based on the original data X is cal-
culated according to (3.5). Theorem 1 indicates that the p-value for the ¢-th test is given by 2{1 —
@(\/@321/2@\)} with by defined as in (I.3). Note that 6, and 0y, are asymptotically independent for
any {1 # l5. The BH procedure (Benjamini et al., 1995) at the rate 1% for the 334 multiple tests identi-
fies the 10 nodal parameters (02, 021, 033, 051, 078, 0186, 0202, 0211, 0263, O272) being not significantly different
from 0. Put & = {2,21,33,51,78,186,202,211,263,272}. We consider now the testing for the single
hypothesis setting

Hy:05=0 versus H;:0s#0 (5.1)

based on both the original network X and its sanitized versions Z via jittering mechanism (2.3) with
a=3=0.1,0.2 and 0.3. Let ¢y,...,C900 be independent and N(0,I;p). By Theorem 3, the p-value
of the test for (5.1) based on Z is approximately 1000~! 27172201 H{|¢,loo > \/MﬁAfgl/Q@éZ) 0o}
where éfgz) is the estimate of 85 based on Z by the moment-based method (3.5), and \73 is the estimate
of the asymptotic covariance of \/M{é’gz) —0s}. When a = § = 0, Z = X, the p-value for
testing (5.1) based on X is then 0.1019. As the test based on Z depends on a particular realization when
a = =0.1, 0.2 and 0.3, we repeat the test 500 times for each setting. The average p-values of those 500
tests (based on Z) with a = 5 = 0.1, 0.2 and 0.3 are, respectively, 0.1276, 0.1522 and 0.1874, which are
reasonably close to the p-value based on X. The standard errors of the 500 p-values are 0.0795, 0.1281
and 0.1408, respectively, for o = 5 =0.1,0.2 and 0.3.

This small illustration suggests that, with increasing edge noise (and hence increasing privacy), the
resulting p-value is increasingly over-estimated with increasing standard error. Both trends are to be

expected — since with increasing edge-noise the signal will be weakened — and merit future study.
Appendix

I Estimating the asymptotic variances in Theorem 1

If we know the decay rate of ~ falls into which region, we can construct the confidence region of
(O¢y,-..,0p,)" based on Theorem 1 with the plug-in method. To do this, we need to estimate by, ’s

and ng’s first. By (3.8), we can estimate \;, as

A 1 1 1
i = p— m@(z,j),lw(i,j),o + ﬂTQ‘P(&j),OS@(i,j)J (L1)
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with fig; and fiz 2 specified in (3.6) and (3.7), respectively. By the definition of Z; ;, we have Var(Z; ;) =
{aij+ (1= Bij)exp(0; + 0;)H1 — a;j + Bijexp(i + 0;) {1 + exp(6; + 0;)} 2 for any i # j. We can

estimate Var(Z; ;) as

— i 1—0; 1— oy i ) j
Var(Z; j) = @i + B’JZ A( %) Loyt ]eXp(? %) : (1.2)
1+ exp(6; + 0;) 1+ exp(6; + 0;)
Based on (I.1) and (1.2), we can estimate by and by, respectively, as
— Z A2 Var(Z;) (1.3)
EEI4
b L (Beat By S Var o= -
= — Var(ZM)Var(Zg’j)Var(Zi’j) .
2N\ fufues e iy

The convergence rates of such estimates are presented in Proposition 5.

Proposition 5. Under Condition 1 and {(cj, Bij)}j)er € /\/l(% 01,02) for two fized constants C €
(0,0.5) and Cy > 1, if v > p~/310g"/% p, it holds that \bgb[l 1] = Op(v*p~Hog p)+0, (v 2p —1/2]0g1/2 D)
and |l~)gl~)zl — 1] = Op(y3p~t log'/? p) + Op(v"1p ~1210g1/2 p) for any given ¢ € [p].

For any fixed integer s > 1, Theorem 1 and Proposition 5 imply that p1/2d1ag(b 1/2 ,6251/2)(@1 —
031,...,055 —0p,)" =4 N(O,Iy) if v > p ~14]og/4p, and pdlag(b 1/2 ..,bgsl/Q)(Gg1 - 051,...,@ -

0p,)" —4q N(0,1,) if p1/3 log1/6p < v < p~ Y% Unfortunately, such plug—ln method does not work in

1/4

the scenario p~/4 <~v= p /4 log™/* p since (;g is no longer a valid estimate for by. On the other hand, it

is difficult to judge which regime the decay rate of « falls into in practice with finite samples. Hence, the

plug-in method is powerless practically.

II Technique Proofs

In the sequel, we use C' and C to denote generic positive finite universal constants that may be different

in different uses.

A Proof of Proposition 3

For any ¢ € [p], let 11 (4, j; £) = ©(i.0),19(i,5),09(¢,5),1 and P2(i, 55 £) = ©(i.0), 0P (,5)1P(¢,5),0- Write (i, ji 0) =

é:Z(m‘)eHﬂﬁl(iaj;f) and ¢ :Z(i,j)eH[E{¢1(i7j;£)}
S ST (A Y T S ien, BlaG, 50}

(A1)

To prove Proposition 3, we need the following lemma.

Lemma 1. Under Condition 1 and {(« , Bij)} i ez € M(7y; C1, Ca) for two fived constants Cy € (0,0.5)
and Cy > 1, it holds that maxgepy) || Hel ™ 3 j e, P13, 45 0)] = Op(p~'log"? p) + Op(v2p~ 2 10g!/? p) +
Op(yp~ " logp) = maxycpy) [[Hel ™' 22 jyen, V26,33 0)]-
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PTOOf. Define ffg = {ZLg, ng‘ : (Z,]) € /Hg} Then E{Q/)l(l,j,f) | ffg} = Qp(z’,l),l@(Z,j),lE{@(i,j),O} and

1 o 1 o .
Tl > (g0 = ] > Wi ;0 — E{ga (i, ;) | Fe})
igyen, (i) EHe
121(,1
1 . .
+m D By, 5;0) | Fo} — E{ea (i, 5;0)}] -
U ig)en
ER

In the sequel, we will specify the convergence rates of maxc(, [1y,1,1| and maxepy |Ir,1,2], respectively.

Convergence rate of maxyep) [Ig1,1|. Conditional on Fy, we know that {11(i, j; €)}; jyen, is an inde-

pendent sequence. For any (i,7) € H,, write O'(Qij)7g71 = Var{¢1(i,7;0) | F¢} = go%wm¢%£’j)71Var(Z¢7j).
Due to max; jyep, [%1(4,7;€)] < C and max(; j)en, U(Qi,j),f,l < C, by Bernstein inequality, we have that
P(|I11] > u|Fe) S exp(—Cp?u?) for any u = o(1), which implies that P(|I,11] > u) = E{P(|I;11] >
u| Fp)} < exp(—Cp*u?) for any u = o(1). Therefore, we have maxep, [I,1,1] = Op(p~* log'/? p).

- Define @i jy.r = @), —E{#(ij),r}- Duetoyu(i, j; £) = 11(4, ;5 €)

Convergence rate of maxcp) 1Ip1.2
for any i # j, it then holds that

P=DP-Ia2= Y [peoaeent —Blewniven i HE{@a 0}
i i, 6,5
=2 > uniBlewn Bleepot+ Do PunabenaBlea o) -
i, i, 0,570 1,107, 1,5 7L
Iorn(1) Ip1a(2)

For Ip15(1), we have Tp1(1) = 325520 66,0112 250 i BA ) 1 VB @i )03 =2 Doiiiee Pli 01 Aie- By
Condition 1, minge(, min;. jz¢ A; ¢ < py? = maxyep) max;: jz¢ A; ¢. Note that maxye(p max;. j2¢ Var{og 01}
< C. Given ¢, since {¢(; ) 1}iiz¢ is an independent sequence, by Bernstein inequality, P{|/;12(1)| >
u} < exp(—Cp~3y~*u?) for any u = o(p?y?). Thus, maxye(y [Le,1,2(1)] = O, (v?p*/?1og"/? p). For Ip12(2),
letting B(; ;)¢ = 'y’lE{Lp(iJ-),o}, then v 11,1 5(2) = Di ittt P09 ) 1B ). Under Condition 1,
MiNge ) TN 5.2, i 20 Big)e <X 1 X maxge, max; ;. iz, i j2¢ B(i j)¢- By the decoupling inequalities of de
la Pena and Montgomery-Smith (1995) and Theorem 3.3 of Giné, Latata and Zinn (2000), we have that
maxge(p] P{| D2, 5.iz). i j20 R0 1801 Bgyel > up < exp(—Cp~lu) for any p < u < p?, which implies
maxgep) [1r,1,2(2)] = Op(yplogp). Hence, maxyey |Tr12| = Op(v?p~'/?1og!? p) + Op(yp~'logp). We

establish the first result. Similarly, we can also prove another result. O

Now we begin to show Proposition 3. By Condition 1, mingey pe,1 = = maxyeip) 2. Notice that
pen = Hel ™ Y syen, BAULGL 50} and pre = [Hol ™1 Y jyep, B{w2(i, 4; 0)}. Since v > p=/31og!/0 p,
Lemma 1 implies that maxyc ) [Hel7! Z(i,j)e’)—[[ 1231(2}]'; 0] = Op('yg) = MaXyep) |[He| Z(m)eﬂg 722(1"]'3 0)].
By (A.1), it holds that ff — Q= Mg_gl’%d_l Z(i,j)e’}-{e 1;1(1'7]'2 ) — Mé,lﬂZS’%f‘_l Z(i,j)e’]—[g 1/32(i7j§ 0)+ R,
where maxc () |Rp,1| = Op(v~p~2log p)+O0p (v~ 2p~log p). Thus, maxye,) [G—Ce| = Op(y~*p~ log!/? p)+
Op(v'p 21082 p) = 0,(1). Recall that ¢, = pg1 /- Since 6 = log(¢e)/2 and 6y = log(r)/2, by
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Taylor expansion, we have that

00— 0p = 2C (Ce - Cz) + Ry 2
1 1 o
(i, 3 ¢ = > (i, 5 0) + Ry, (A.2)
= 2 Z " S 7

where maxe,) [Re2| = Op(y~%p~2log p)+Op (v ?p~Hog p) = maxepy) | Ry, 3| . Therefore, maxgep, 0,—0,| =
Op(v3p~1og2 p) + Op (v p~/210g"/? p) = 0,(1) . We complete the proof of Proposition 3. O

B Proof of Theorem 1
Recall 7~Ll(za.77£) = wl(zaj’g) - E{wl(z7j7£)} and 1;2(%‘776) = ¢2(27j7£) - E{T/JQ(’Z,],E)} Note that >

p1/310g"6 p. Write N = (p—1)(p —2). Given ¢ € [p], following the proof of Lemma 1, it holds that

| Z (i, 55 0) |’H | > Wi 0) — B{wi (i, 5; €) | Fe)]

( 7.7 EH (Zvj)EHK
Ip1,1=0p(p~1)
2 .
+ N Z 6,01 B E{ @@ )0} TRea,
4t i, 0§20
N=1;1,2(1)=0p(v2p~1/2)
1 o 1 .. .
m 1/]2(273;6) = m Z [1/]2(@7.]76)_E{w2(17]a£)|?€}]
i gen, U gyen

Ié,z,lzgp(lfl)
2 .
Ty Z | D,0,0E{P(e,5),0  EB{pg 1} +Res
1,51 175, 1,574

N~y 55(1)=0p(v?p~1/2)

where |Ry 4| = Op(vp™1) = |Ry5|. Also, for given £ € [p], by (A.2), we have

Iiig Topa | Teap(1)  Iepp(1)
20 2pe2 0 20N 2pp9N

~~

Ty Ty2

00— 0, =

+Rf,6 ) (B : 1)

where |Ryg| = Op(v %p72) + Op (v 2p71).
B.1 Case 1: y>p /4

Notice that Tp1 = Op(y~3p~1). We then have p—0p = ,u“N LS. i gvitg it P01 B{o@n 1 YE{@u. .0} —

NZ%N_l Z@j;i;&j,@j;ﬁz Qb(i,ﬁ),OE{QD(E,j),O}E{@(i,j),l} + Ry 7, where |Ry7| = O (’y p~1). We define )‘M =
Ymin(p — 2)7! Zj;j#,i[MZ%E{QO(e,j),l}E{@(i,j),0}‘f‘/ig_,QlE{(P(z,j),O}E{SD(i,j),l}] With Yiin = ming ;.2 (1—a; j—
Bi;)- Under Condition 1, minge,) min;. ;2 Afp = 1 < maxyepp) max;: iz A} . Recall 01 = Zip —E(Zip)
and (.00 = —Zig + E(Zig). Then (B — 0r) = (0 — 1) 50 M { Zie — E(Zin)} + Res with
|Reg| = Op(v™2p71). Let by = (p— 1)1 D it )\Z’gVar(Zi’g). Given s different /1, ..., ¢, we define an
s-dimensional vector w; = (W 1,...,W; )" with W; ; = /\;‘,é]_{ZM]. —E(Ziy;)} for any j € [s]. Then it
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holds that Ymin(Gs, — Op,, ..., 0, — 0p)" = p~! Divitty,.0, Wi T With 1o = Op(v~2p~1). Notice that
p! dicite,.0, Var(wi) = diag(be, u, ..., be,x) + O(p~'). Since {w;}ize,,.. ¢, is an independent sequence,

by the Central Limit Theorem, (p — 1)/ *yindiag(by, L, ... b, %) (Be, — bey- .. 00, — 60,)" 5 N(0,L,).

fl,* ?

Notice that by, = ~v2;,bs. We complete the proof of Case 1. O
B.2 Case 2: p /4> v > pY310g/%p
Notice that Tyy = Op(y~'p~1/2). Write Z; ; = Z; j — E(Z; ;). Then it holds that

N 1 . . . . o
02 _ 0[ —_ Z 80(7’7‘6)71(’0(67])71 + SO(ZJ):O(‘O(EJ):O ZZ ] +R€ 9 (BQ)
N = 2101 24102 ’ ’
1,5 175, 1,74 ' ’
e

with |Ryo| = Op(y 5p72) + Op(y~'p~1/2). Notice that

1 D0, 1P, 1 P,0).0P.)0 | =
n=my X {Hutn, Seoofnty,

2 2
i,j: 17, 4,57 He1 Lo 2
2 E{SO 0,5 ,1} . E{SD 0 ’0} ) )
N [2/2]) (i), %‘P(i,@),o Z; (B.3)
17]7‘;é]71a]?é£ Z71 £72
Je1
. Eten.1 /B0 E{oi 0o E{ow o} -
-~ $ [ {so(m,;} {e,1} N {s%,e),;} {‘P(Z,g),o}]Zm‘
i,jrig, i,j 7 e, e
Jra

Under Condition 1, minge ) min j: i, i j2e[B{ @ 0)1 YE{ 0@ 51} 2me1) ™ + E{o(i.0).0  ELe(e.5),0} 2hee,2) 7]
=y = maxgepy) max; jizj i 20 B{ 0601 E{p @)1} 2nen) T HE{9q 0,0 E{@ )0} 2he2) 1] Tt follows
from Bernstein inequality that |Jya| = Op(y~1p~!). For Jy 1, we can reformulate it as follows:

1 . 1 E{ewii} .
Jo1 = 1 Z D(i,0),1 [ Z %Zi,j

) p-2 g Pl
Je,1(1)
1 . 1 E{¢w )0} -
b 3 w1y 3 el .9
P= pP=e e He2
Jg;r(2)

Due to minge, miny. j2¢ E{@(&j),l}/ﬁﬁ =72 x MaXye[y] MAX;: j£¢ E{go(g7j)71}u£_’11, by Bernstein inequality,
Pl(p —2)~ ! Do itie E{¢(Z,j)71}ﬂzllZi7j] > u] < exp(—Cry*pu?) for any u = o(1). Given sufficiently large
C, > 0, define &/(Cy) = {max;.;2¢|(p — 2)! Zj:#i,ﬁ ]E{w(e,j),1}/ﬁ211zi,j| < Coy2p1/210g!/? p}. Then

1 , 1 E{pwe i} s
p—] > o [p_ 5 > "7

Py e HeL

Aie

P{|J.1(1)] > u} < IP’{ > u,gg(o*)} +pC.  (B5)

/
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Notice that the constant C' in (B.5) can be sufficiently large if we select sufficiently large C. Let F_, =
{Z; ;14,5 # (}. Conditional on F_;, Bernstein inequality implies that
E{owinalt
P P

¢
) iz HeL }

Cp*u C, log'/?
S exp I max|A; | < —
CZZ z;ééAzz + pumax;: Z#@‘Azé‘ i1 AL v2p

for any u > 0. Selecting © = C,y2p~! logp, we have

> U,EZ(C*)

E{ewiat Cilogp
|y X | 3 Bl f]5 G2 g0 5
Sy, p== . me Pl 7P
~ C logl/Zp
< C. < Zx e ) O

which implies P{|(p—1)"" 32,20 @01 [(0=2) " 25 jis E{SO(e,j)J}MleZOi,jH > Cy2p~tlogp, E(C)} S
p~¢ — 0. Here the constant C can be sufficiently large if we select sufficiently large C,. Thus, (B.5) implies

maxye(y |Jo,1(1)] = Op(y~2p~1logp). Analogously, we also have maxye(y |Je, 1( )| = Op(7y 2p~tlogp). By
(B.4), maxpepy |Jo1| = Op(v2p~1logp). Due to Py = Zigand @ 5y 0 = —Zij, by (B.2) and (B.3), w
have 0y — 0y = —=N"237, oo iao{(2uen) ™ + 2ue2) ™} Ziw Ze 5 Zij + Reao with [Re 0l = Op(y5p72) +

Op(v~'p~Y/2), which implies —2p1,11102(0¢ — 00)/(pe1 + pe2) = N7V soisio s joe ZitZejZig + Rean =
Ap+ Ry with [Req1| = Op(v3p72)+0p (v2p~1/?). In the sequel, we will specify the limiting distribution
of VN(Ay,,...,Ay,) for given s different ¢4, ...,¢;. For given k € [s], we have

Afk = N E : Zl Kszk JZ it~ N E : Zi,ZkZKk,jZi,j
1,51 977, 6,51 1#7, 1,5 F L,
1,571, ls {6330 {1, L1 L1555} 0 (B-6)
Moy 1 My, 2

Notice that N - Mék,2 = Zk’ K #k D i il Zék/ ékzéwsz/u + Zk;’ KAk Zz ETINWA Z; ka&mfk/ Zi ot
Zk’ K KR K Kk ng, Ak Zék,ﬁkn ng, L = 23 k' £k > i i£L1,. s Zz Rz Zﬁk,ﬂk/ Wby + Zk’ KK AR KK R
ng, kafkka ng, L Since max; ;. z;éj |ZZ]| < C maxke[s] maXps k' k' k' #k, k' £k ‘ng, ng[k’gk,, ng, Zk”‘ ~ 1,
which implies My, » = 2Zk/:k/7ék DZK’“’EL“’ Zi:i#h...,és N~ Zl,szufk/ + Ry, 12 with |Ry, 12| = O(N~1). For
given k' such that k' # k, since {ZZ £, Mk/}wﬁél ‘.
we have P{(p — s)~ |2:Z itly s lgk Mk,\ > u} < exp(—Cpu?) for any u = o(1). Therefore, it holds
that maxp g2k [N S50, g, Ziwn Zig,| = Op(p~/?), which implies My, o = Op(p~%/2). By (B.6),
Ag, = My, 1 + Ry, 12 with [Ry, 12| = Op(p~%/?).

Given /1, ..., ls, write by, 4 = N1, i gvitgigten.. 0. Vor(Zig )Var(Zy, j)Var(Z; ;) and f(ta,. .., ts) =

E{exp(:NV2S75_ tyb, 1/2 My, 1)} with (2 = —1. Let Fiyow. = YeerlZipy, Zoyj 2 i, § # ). Then

YT

is an independent sequence, by Bernstein inequality,

s
E{ exp (LN1/2 Z tkbg;ﬁMZkJ) ‘ ‘/TZ’.__!S}

k=1
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2t1b, 1/2
g o o
=E eXP{ > L(Z \/i Zi,ekZék,j>Zi,j}'féﬁ,...,@]
i, i<], k=1
4,370 5l
Nk
4 )
— H eXp{ (Z 227 leme]) J}"Fh Z]
0,51 9<d,
1, FL] s ls
~1/2

N2, 20, ) 21y = V(i 20y LN TV 230, 20, ) 2
TNy 2teby NV 24y, 2y, 1) 22, + Rig with [Rij| < ON73/2(Jta] + -+ + [t,])?, which implies
[eXP{ (> k= 1thbeklﬁN_l/ZZOi,ekZoek,j)Zoz‘,j}|fé‘l,...,zsl = 1-27N (5 2ty [EN V22,0, 2, )P Var (Z )+
R* for any 4,7 # f1,...,{, where |]-:i;kj| < CN732(Jta| + -+ + [ts])3. Due to |, 2 — 11y wil <
Zk:l |21, —wy| for any zj,, wy, € C with |2 < 1 and |wy| < 1, [E{exp(t(NY235_, tkbé_kl,ngkvl)"7:;1,...!5}_
[Lijoicsigier, e {1 = 2700y 2tuby LN TY2 2, 4 2, 5)2Var(Zij)H S N7Y2(0| + - + [1])°. Tt also
holds that | TT; ;. sc; i 14, ex{—27 5y 2tuby N2 2, 0 Zg, ) Var(Zi )} T st
NS 2, ANV, 7y D2Var(Zig) Y S NTY(|t] + -+ + [ts])3, which implies that

@k *kk

1 o o 2
oL T (S )

0,1 1<J, 1, #1504

—E{exp (ANWZt b, 2 My, ) ]fh H SN2 (Jty] 4 - |])P.

By Taylor expansion, exp{¢(>_;_; 2txb

Zk *ok

-----

Define Q Z IR RN I (Zk 1 tkbg 11)% 1/22i75k25k7j)2Var(Ziyj) — ZZ:l t%. We have f(tl, ey ts) =
exp(—> 74 tQ)IE{eXp( Q)} —|— R with |R| < N*1/2(\t1] —|— \tsl)?’. In the sequel, we will show
1/2 ,1/2 \_ S

]E(ZzzékZZQk,j)}V&r( i,j) + Zk,k’:k;ék’(NbE,{,**bflf/,**) ! Zi,j:i;éj,i,jyékl,...,ﬁs tktk’Zi,ﬁkZz‘,ﬂk/ Znggk,,]Var( i,j)-
For given k and k' such that k # k’, by the decoupling inequalities of de la Pena and Montgomery-
Smith (1995) and Theorem 3.3 of Giné, Latala and Zinn (2000), PHN_lOZi,j; i#]‘,igj#hé--,fs{Ziz,szgk,j -
]E(Zfek o, J>}Var( Zi )| > u] S exp(~Cpu) and P[[N Zi,j:i;éj,i,j;«éél,...,fs Zi,kaMk/ Zty 3205 Vor(Zig)| >

u] < exp(—Cpu) for any u — 0 but pu — oo, which implies P{|Q| > (|t1| + o ) ?u} < exp(—Cpu)
for any u — 0 but pu — oo. For sufficiently large C, > 0, define £(C.) = {|Q| < C.p~tlogp}. Then
Pt te) = exp(— iy ) (Elexp(—Q)I{E(C.)}] + Elexp(—Q)T{E( *> H)+ R with [R] S N~ /2(|t
+ -+ |ts])3. As p = oo, due to the facts 0 < Elexp(—Q — >_5_; t2)I{E(CL)°}] < P{E(CL)} — 0
and 1 + exp(—Cip~tlogp)P{E(Cy)} < Elexp(—Q)I{E(Cy)}] < exp(Cip~tlogp)P{E(CL)} — 1, we have
ft1, ... ts) = exp(— Y 5_ t2). Since \/ﬁﬂghlwhgbg’jﬁ(whl + th)*ll;;f — 1 for by, specified in (3.10),
we complete the proof of Case 2. O

B.3 Case 3: y=<p /4

Note that Qb(i,j),l = Zom' and @(i,j),o = *Zom'. By (B.1), ég —0p=(p— 1)_1 Zz il )\i’gZQLzﬁL Ji+ Ry, where
|Re6| = Op(p~'/2), and \; o and J; are specified in (3.8) and (B.2), respectively. Recall N = (p—1)(p—2).
As sh?wn in Section B.2 that J, = —ON_1 Zl‘7j;i7ﬁj,i7]‘¢£{(2/4’f€,l)_1 + (2,114,2)_1}201,4206?22]’ +9p(P_1/2 log p),
then 0y — 0y = (p— 1) 7" 3y isp NieZie = N7H 305 i igeed Qen) ™+ (202) ™'} 210 20 25 + Reas with
|Re3| = Op(p/2logp). Define iy = 2\ epue o2/ (1 + pie2)- Then —2pg 1 pe 2 (e + pue2) ™" (00— 0p) =
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—(p—1)71t>. it i zZOZe + Nt Zw ey ZOZgZogJZO” + Ry 14 with |Ry 14| = Op(]o_5/4 logp). Given s
different ¢4, ..., 4, as shown in Section B.2, N~ Z” i, 1,1 7 nggk ]ZZJ M@k 1+ Op(p*3/2) , where
Mj, 1 is specified in (B.6). We also have —(p—1)~ Zuﬂk )\ngkZz o =—(p—1)" Zi:iﬂl,...ls S\i,ngoi’gk +
O(p=3/2) = My ,+O0(p~%2). Then —2pug, 1p1g, 2 (11 + te,2) (O, —00,) = M, 1+M; 1 +0p(p~%/*log p).
Let by, wex = 2{ 10, 1000,.2/ (o1 + 110,,.2) }2(p—2)by, for any k € [s], where by, is defined in (3.9). Write by, =
be, sx + Doy s With by, .. specified in Section B.2. Let f(t1,...,ts) = Elexp{tN/237%_, tki)é_kl/Q(Mng +
Mj 1)} with 1? = —1. Recall that Firote = Yee1lZinys Zuyj + 0,5 # U} Following the same argument
used in Section B.2, we can show | exp{—2~"! Digriciigtlnts D he1 2tklv)£_kl/2N_1/QZ nggk ;)?Var(Z; ;)}
—E{exp(tNV/2375_ ltklv);klmMgk, INFe e H S N=Y2(|t1|4...+|ts])?, which implies that f(t1,...,ts) =
Elexp(tN'? 375, tkb_1/2M* 1) X exp{=325 i ity 0 (k=1 tkb_1/2 N=YV2Z; 4, Zy, 5)*Var(Zi )} +
O(N~Y/2) for any given (t1,...,t;). Define @ =3, i ;g o (S | tkb*/? -1/27, gkz"gk J)2Var(Z; ;)
=3t 1bay /B Due to Q = 325, 7 (Nbg, )™ 32 i, s (22,23 ;—E(22,, 22 ;)WVar(Zij)+
ZMC,: Y (Nbéfbéf) Zi’j:#j’i’j#hwes tktk/Zoi’gk Zig,, ng’]ng,JVar(Zw), using the technique for spec-
ifying the upper bound of P{|Q| > (|t1|+- - -+|ts|)?u} in Section B.2, we have P{|Q| > (|t1|+- - -+|ts|)?u} <
exp(—Cpu) for any u — 0 but pu — co. For sufficiently large C, > 0, define £(C,) = {|Q| < C.p~'logp}.
Notice that

v 2
5 . . 5. tkb 1/2 . o
exp (AN 123"ty QMEkJ) exp{ - Y (Z \/% ZipnZug | Vax(Zi)

k=1 igiiti,  \ k=1
1,50 1 s
_ 2N, 7-1/2 ) = (b 5
=exp [ (N2> b, M | exp | —Q =) AT I{E(CL)}
k=1 k=1 L
s o ~ s t2b . ~
+ exp (LN1/2 Ztkbgk1/2Mékk,1> exp ( -Q - Z W) H{E(CL)}.
k=1 k=1l

Then we have f(t1,...,t5) = exp(—>.i_ 1tzb€k,**bzk )Elexp(:NV2375 tkbgkl/ My ) exp(—Q QI{E(C}]
+O(p~%)+O(N7/2). Note that (My, 1,..., My 1) = =yt diag{2pe, 1100y 2 (ke 1 + pey,2) ™ - 200,100,
(g1 + e, 2) 1 Hp — 1)1 Zi:z‘#l,.../s w;, where ypin = min, j.;4;(1 — oy ; — B;;) and w; is specified in
Section B.1. As shown in Section B.2 that (p—1)~1/2 dlag(bzl/z, cee bzsl/Q) Divitty..0s Wi 4 N(0,15)
with by, defined as (3.9), then N1/2diag{(2u4171ughg) Y, 1 + 11e,.2) (p — 2)_1/2b;11/2, ooy (2pegapie, 2) 7t

(fog1 + preg2) (P — 2)_1/2();:/2}(]\/[;171, M) 4 N(0,I,). By the Dominated Convergence Theorem,
f(ty,.. 3 ts) — exp(— Y z_, t2) for any given (t1,...,ts). Hence, N2 diag[{(p—2)by, —I—IN)gl}_l/Q, o {p—
2)bg, 4 be,} /200, — b4y, ..., 00, — 05,)" 4 N(0,I). We complete the proof of Case 3. 0

’len

C Proof of Proposition 5

To construct Proposition 5, we need the following lemmas.

Lemma 2. Under Condition 1 and {(ci j, Bij)} i jyer € M(v; Cr, C2) for two fized constants Cy € (0,0.5)
and Cy > 1, if v>> p~/310g"/ p, it holds that MAaX;: j£( |5\i7g — gl = Op('y_3p_l/2 log!/? p) for any given
( € [p], where Ai g is defined in (L.1).

Proof. Due to ,&Z,l — He1l = |,H£’71 Z(i’j)e?{l 1[)1(1‘7]‘36) and [1,@’2 — He2 = |IH€’71 Z(i’j)e?{l 1[}2(ivj;£)7 follow-
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ing the proof of Lemma 1, |fig1 — pte1| = Op(p™') +Op(v?p~Y/2) = |fie.2 — p1e2| for any given ¢ € [p]. Given
(¢,7) such that i # £, we know {©(;),1%(i,j),0}j: j#¢i i an independent and bounded sequence. By Bern-
stein inequality, max;. ;¢ |(p — 2) ! >0l P 16,50 — Blows 1 HE{ i 0l = Op(p~/?log!? p) =

max;: j¢ | (p — 2)~1 Zj;j;é{,i[So(ﬁ,j),OSo(i,j),l — E{gp(&j)p}E{(p(m),l}]]. Notice that 1 < 3= fe2. Based on
the definition of \;  and \; ¢ given, respectively, in (3.8) and (I.1), we complete the proof. |

Lemma 3. Under Condition 1 and {(ci j, Bij)} i jyer € M(v; C1,C2) for two fized constants Cy € (0,0.5)
and Cy > 1, if v > p~Y31og"/S p, it holds that max;. y, |\//a}( Zio) — Var(Zi )| = Op(v1p~1/2 log!/? p) +
Op(y3p~1 log'/? p) for any given £ € [p], where Var( Ziy) is defined in (1.2).

Proof. Define f(z) = (1+¢€%)~! for x € R. We know sup,cg | f'(z)| < C. As shown in Proposition 3 that
maxep) 00—60| = Op (v 1p~1/210g" /2 p)+0, (v 3p~ ' log!/? p), then we have max;. j+¢ [{1 + exp(f; 4 6)}
— {1+ exp(0; + 0,)} 1| S maxe, 00 — 84] = Op(y3p~1og!/? p) + Op (v 1p~/2log!/? p). Based on the
definition of \//E;(ZM) and Var(Z; ¢), we complete the proof. O

Now we begin to prove Proposition 5. Recall that by = (p — 1)"1 ", Iy )\227€Var(Zi,g) and by = (p —
D i 5‘?,@@(2@8)' Then be—be = (p=1)71 3.2 (A? = N2 ) Var(Zi o) +(p— 1)_1 D it )‘25{@( Zip)
—Var(Zi o) b+ (p—1) "1 31 i20(A2 =22 ){Var(Z; )~ Var(Z;)}. Note that ;¢ < 4~ ' and Var( Zi4) = 1. By
Lemmas 2 and 3, |by—b| < MaX;: j£¢ |;\12£ 2Z|—i—fy_2 MAaX;; j£¢ \\//a\r( ) Var(Z; )| = (’y p~Llogp)+
Op(v*p~210g"/? p). Since by =< v~2, we have |by/by — 1| = Op(v~*p~togp) + Op(v2p~ 2 10g!/? p).
Analogously, we have |l:)g—[;g| = Op (7 % Mog'/2 p) + O, (7 "p~/?log!? p). Recall that by = v~C. Tt holds
that |bg/be — 1| = Op(y3p~Hog!2 p) 4+ O, (v~ 1p~/?log!/? p). We complete the proof of Proposition 5. 0

D Proof of Theorem 2

The proof of Part (a) is almost identical to that of Theorem 1 given in Section B. We only prove Part (b).
Recall Vé (p 2)bT+bT and vy = (p 2)bg+be. Then I/e—l/g (p— 2)(bz—bg)+5}—54. Note that )\;r’e =(1-
20) " N, pf = (1—20)3pg1 and puf 5 = (1—26)3u05. Then b} = (p— 1)71(1 — 26) "2 3", A2 Var(Z] )
and bT {2N(1 = 20)°} " { (pe1 + 110,) /(e 122,) 3 Zi,j:i¢j7i7j¢eVar(ZlZ)Var(Zgﬁj)Var(Zj») Recall § €
(0, c] with ¢ < 0.5. For any i # ¢, noticing that |Z; ;| < C, we have that |Var(Zi£)(1 —28)72—Var(Z;,)| =
§(1 —6)(1 —26)72 < 4. Under Condition 1, we have mingep Ming j¢ A g < vl =< MaX e[y MAX;: ¢ Ai g
and mingep) e, < 7* < maxgepy pr,2. Then (p—2) maxye, |b}; —by| < pdy~? and maxey \i)z —by| < 6v76,
which implies maxye ) \V;r — | < pdy~2 + 5~y 6. For any £ € [p], notice that vy =< py=2 if v > p~1/* and
v =<y Sifp />y p /3 logl/6

E Proof of Theorem 3
As shown in (B.1), it holds that

p. Then maxcp, |V21/Zl — 1] = 0(9). O

1 I 1 1 1 1
err  Tean 012(1) oo )+R£,67
2pen 2402 21N 2pgoN (E.1)

-~

Te Ty2

0y — 0, =

where maxe ) [Reg] = Op(y%p 2 log p)+O0p (v 2p~!log p). Write N = (p—1)(p—2). As shown in Section
B2, Typn = —N""3 iiziiined Quen) ™+ (2pe2) ™ Y 20 Z0 i Zi g+ Jea + o2, where maxyepy [Jo1 +Joo| =
Op(v2p~tlogp). Recall that Tyo = (p—1)"1 3, y )\MZOi’g with A; ¢ specified in (3.8). By (E.1), we have
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O —0p = =NV, iizi s il Quen) ™ + pe2) ™} ZiwZe Zig + (p = 1)1 X in0 it Zig + Res, where
maxe(y| | Re,15] = Op(v 5p~2logp) + Op(y2p~logp). Recall vy = (p — 2)by + be < py 2 +~76. Then
N1/2V[1/2(éé*‘9£) = =N YN it i V;1/2[{(2M£,1)_1+(2/1&2)_1}20@(20&3'201',]’*)\i,EZQi,K]+R€,16, where
maxc ) |Rei6] = Op(p~/2y  logp) if v > p~'/4, and maxye,) [Rei6] = Op(p~ 'y logp) if p~H/4 2 v >
p~/310g"% p. Given (i, ) such that i # j, we define Yije= —1/[1/2[{(2/%1)_1 + (2u572)_1}2i’g257j20i7j -
/\ingoM] for any ¢ # i, j, and Y{; j), = 0 for £ =i or j. Then N1/2V£—1/2(é£ —0)) =N"1/2 Doijiitg Yg) et
Rp16 =: hy + Ry 16. Write V = diag(vy, ..., l/p), h=(h,..., hp)T and T = (Rl,lg, ces ,Rp716)T. Then

NY2v=Y2(0 —0) =h+r. (E.2)

Lemma 4 gives the covariance matrix of the leading term h, whose proof is given in the supplementary

material.

1

Lemma 4. It holds that Cov(h) = B where B = (By, 4,)pxp Satisfies maxi<¢, 2e,<p | By e,| S p7" and

By =1 for any L € [p).

Now we begin to prove Theorem 3. Define ¢ = sup,cpy |P(h < u) — P(§ < u)| with £ ~ N (0,1L,). By
(E.2), we have P{NY/2V~1/2(§ —0) < u} = P(h+7 < u, [f|oo < €)+P(h+T < u, |F|oo > €) for any € > 0,
which implies P{N'/2V~1/2(§ — 0) < u} < P(h < u+€) + P(|f|oo > €) and P{N/2V~1/2(§ — 9) < u} >
P(h<u—¢|f|oo <€) > P(h < u—e)—P(|F|oc > €). Therefore, P{NY/2V-1/2(0 —0) <u} —P(¢ <u) <
P(h < ute)—P(€ < ute)+P(€ < ute)—P(€ < u)+P([F|eo > €) < 0+P(€ < ute)—P(€ < u)+P(|F|o0 > €)
and P{N'/2V-12(0 —9) <u}l —P¢ <u) >Plh<u—e —Pl <u—e +P¢ <u-—¢) —P¢ <
u) —P(|f|ec > €) > —0+ P& <u—¢) — P& <u) —P(|t|oc > €), which implies that

sup [P{N'/2V~1/2(6 — 6) < u} — P(¢ < u)|
ucRp

<o+ sup [P(€ <u+e) — P& <u)|+P(f|o > €) (E.3)
ucRkp

< 04 Celog'? p 4+ P(|F|oe > €).

The last step is based on Nazarov’s inequality. Recall |F|o = Op(p~ /2y logp) + Op(p~ 1y 3 logp).

Since v > p~Y31log!/? p, then p=1/2y11og® 2 p 4+ p~ 1y 310g?/? p = o(1). There exists ¢ — 0 such that

12p 5 0and p~ /2y logp+p Lty 3logp = o(€). For such selected €, we have Ce log1/211)4-IP’(|f'|Oo >

elog
€) — 0as p— 0.

In order to construct Theorem 3, we first need to show ¢ — 0 as p — oco. Let g ~ N(0,B) with
B specified in Lemma 4, and define g = sup,cpe |P(h < u) — P(g < u)|. Then ¢ < ¢+ supyepre |P(§ <
u) —P(g < u)|. Recall that & ~ N(0,1,) and g ~ N (0, B) with |I, — B|oc < p~!, we have sup,eps [P(€ <
u) -Plg <u)| S, - B|éé3 log?3p < p~Y310g?3p — 0. To show o — 0, it suffices to show g — 0.
Define g. = supyegre vepo1] [P(vvh + 1 —vg < u) — P(g < u)| with g ~ A(0,B). Tt is obvious that
0 < 0«. We only need to show g, — 0 as p — oco. Let §:= ¢logp. For a given u = (u1,...,u,)" € RP,

we define

Fy(y) == " log [Zexp{ﬁ(ye - W)}] (E.4)
(=1

for any y = (y1,...,yp)" € RP. Such defined function Fp(y) satisfies the property 0 < Fs(y) —
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maxXye(p) (Yo — ue) < B~ ogp = ¢! for any y € RP. Select a thrice continuously differentiable function
fo : R — [0, 1] whose derivatives up to the third order are all bounded such that fo(t) =1 for t < 0 and
fo(t) =0fort > 1. Define f(t) := fo(¢t) for any t € R, and ¢(y) := f{Fs(y)} for any y € RP. To simplify
the notation, we write q,(y) = dq(y)/9ye, qur(y) = 9%q(y)/0yedyr, and qui(y) = 8q(y)/Oyedyrdy;. Let
g be an independent copy of g. Define T := q¢(/vh++v/1 — vg) —q(g). Write § = \/vh++/1 — vg. Notice
that P(8 < u—¢) < P{F3(6) < 0} < E{q(6)} < PLF3(E) < 6~} +E(T) < B(g < u+6~Y) +[B(T)| <
P@g <u—¢ )+ Colog"?p+|B(T) and P(§ <u—¢~ ') > P <u—¢ ') = Cop'log"?p— [E(T)],
then we have

0. < Cotlog?p+ sup |E(T)|. (E.5)
vE[0,1]

In the sequel, we will give an upper bound for sup,¢p 1] [E(T)|-

To do this, we first generate mean zero normal distributed random variables {Vi (i.5) g}i’ j.0:i#j#¢ that in-
dependent of the sequence {Y{; j) ¢}i,j,¢:ij¢ such that Cov{V(;, ;)01 Viia jo)ta ) = COVIY (i1 j1) 005 Yiinjo) bo )
for any (i1,71,¢1) and (ig,jg,fz) such that iy # j1 # £1 and iy # ja # lo. We set V(; jy, = 0if £ =i or j.
Let {W(; jy.e}ij e izjze be an independent copy of {V(; j ¢}ije.izjze- We also set Wi, 5y, =0if £ =i or j.
For each (i,7) such that i # j, define three p-dimensional vectors y(; ;) = {Y(ij),1:-- > Yiij)p) s Vi) =
Vi Vit ™ and wi iy = {Wi iy, Wiy pt " We know that N=Y237, o v ;) ~ N(0,B)
andN*1/22i7j:i¢j N(0,B). Weletg:Nfl/zzij#jv(”) andg—N*1/221”# (i)

Define c(t) = Z” it c(m (t) for any t € [0, 1], where c(; j)(t) := 1/2[\[{fy () T VI —vvi it +
v1-— Wij)] Write c; ) (t) = {C(w 1(1),. 7])7p( )}T. Then ¢(1) = /vh + /1 —vg and ¢(0) =
g. Define c(”)(t) = N~ 1/2[t 1/2{\fy (ij) T \/1 —VV(ij) } - (1 —t)_l/Qw(i,j)] and write €(i,j) (t) =
{C(i,j),l( )s - C(” ( )}*. Then

T = &dt Z Z/ qe{c(t) }e(i g),e(t) dt

0 i,j: 175 £=1

which implies QE(T) =D ijiit 2b=1 fo qg{c )} j.e(t)] dt. For given (i, j) such that i # j, and ¢, we

have C(z])ﬁ( ) 1/2[1&_1/2{\/»}/(1] N4 +v1 V (4,9) é} - (1 - t) 1/2W(z]) Z] Recall Yv(zg)f = ‘/( i), =
W =0 for £ =14 or j. It then holds that

DY / (ge{e(t) e o(B)] dt (E.6)

’Lj 1#£7 L lF£0,j

1,5),¢

Notice that Y{; j) ¢ is a function of {Zoi’g,Zog’j, Z”} Given (i,7,¢) such that i # j # ¢, we first consider
{Zoi7g,Zog7j, Z”} will appear in which Y{; ;1) »’s. Recall Y{;r i) p = —1/[,”2[{(2/1@/,1)*1—1—(2/15/72)*1}ZOZ-%/ZOg/’j/ZOi/,j/
— Ao Zy ). Then Z;, will appear in Yy jn g such that either (¢/,¢) = (i), (j,¢) = (£,i) or
(i',5") = (i,£) holds. Since Zo“ = Zoi,g, we know Zoi,g is also not independent of Yy s such that
either (¢',¢) = (¢,7), (4/,¢) = (i,¢) or (i,5') = (4,i) holds. Given i and ¢ such that i # ¢, let
Su(i, 0) = {5, 0) + {i', 'y = {e, 3y {5, 0) - {7, 0} = {i, 3y {7, 0) - {€,i'} = {i,¢}}.
Then we have ZDM is independent of {Y{(y jn ¢} i jr.0)¢s.i,0)- For any (i,j,¢) such that i # j # £, de-
fine S(i,5,£) = Si(4,7) U Si(4,£) U Si({,i). We know Y(; ;0 is independent of {Y(y jiy o} jo.0r)¢s(ig0)-
For any (i,7,¢) and (i',j',¢) such that i # j # ¢ and i’ # j' # 0, let E;}]@E, {({,j,0) €

25



S(i,7,¢)}. For given (i,j,¢) such that i # j # £, we set ag ’Mg o = 0if £ e {75’} Write ag ’]{g =
{ (w Z . ag}{]’%p}T. and define (':(‘W)’ (t) =D i jrirzj € gt )oag ’j’,;, where o denotes the Hadamard
product Let c*(W)’Z'(t.) =c(t) — c‘(f’J)’e(t). We can see that ¢~ (»)4(t) is independent of {ZM, Zgj, Z]}
Write c(#9)4(t) = {cgm)’g(t), e ,cl(f’])’[(t)}T. It follows from Taylor expansion that

1
/0 Elge{e(t)}éq (1)) dt

- / Bl M0 0] de + Y / Blande 00 e, (0 (0] i (E.T)
L1 (4,4,6) - T2 (i,5,6,k)
D> / / (1= 7Blaaa e~ (e) + e ) e (00 (1)l (1)) dr
o 13(4,5,6,k,1)

Di it Db bti Z?l:l I3(d, 5, ¢, k,1). As shown in the supplementary material, >, ;. ;25> . oz 11(4, 5, €) =
0, Zzgz;ﬁj ZK: LFi,5 Zi:l |12(iaja ¢ k)| 5 p_1/2¢3 10g7/2 b, and 217]17@ ZZ:Z#i,j Z%l:l |I3(i7ja ¢ k;? l)| S
p1/2¢310g"/? p. Then supyepoa] E(T)] < p~12¢310g7/? p. Together with (E.5), selecting ¢ = p'/8log™/* p,
we have 0. = SuPyere vejo,1] [P(vV0h + V1 —vg < u) —P(g < u)| < ¢ og!?p 4+ p~12¢P1og™? p =

p~/8log®* p. Hence, supycgs [P{N/2V~1/2(0 — 0) u} —P(& <u)| = 0as p — oco. On the other hand,

since § < (plogp)~t, we have NY2|[{(VH)~1/2 - v~-1/2}(§ — )|, = op{(logp)~/2}. Following the same
arguments for deriving (E.3), we have supycgs [P{NY2(V1)~1/2(6 — 0) < u} —P(¢ < u)| — 0 as p — co.
We complete the proof of Theorem 3. a
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Supplementary Material for “Edge Differentially Private Estimation in
the S-model via Jittering and Method of Moments”

In the sequel, we use C' and C to denote generic positive finite universal constants that may be different

in different uses.

S1 Proof of Lemma 4

For any ¢1, ¢ € [p], we have

1
Bue = > Cov{¥(ij),e0> Yiig).n}
Z'vj: l#]a ivj?éflvéz

/

(1)
Bll»fz
1
TN > Cov{¥(iy i) Yiingo) it} -
11,J1,12,J2: 11751, 12772,
(i1,31)#(i2.d2), 11,71 7#€1, i2.d27€2
(2)
B51752

Since E{Y{; j ¢} = 0 for any (3, j, £) such that i # j and £ # i, j, it holds that

1/2.1/2 _ /2 1/2
Vo, Vi, COV{Y(ilyjl)yh’Y(i27j2)7€2} =V Y, E{Y(ihjl),@lY(i%h)ab}

Py + W1,2) <Mg,1 + uem) 5 : . . . .
— E Z . Zg . i1, Z Y Zﬁ . Z R
< 2“51,1:“‘51,2 2/’%271”(2’2 ( 11,1 1,J1 1,71 12,62 2,J2 12 .72)

ey 1+ ey 2 o o o o
- (222> My 0 B(Zis 0 Zi 3203 32 i 52)
lu€271/’l’€2,2
Hey, 1+ fey 2 - . . . ) ]
- <211> )\iQ,EQE(ZiQ,EQZil,El Zfl,j1 Zil,jl) + )\ihgl)\iQ,sz(Zil,ﬁl ZiQ,ZQ)
Moy 11001 ,2

for any (i1, j1, 41,42, j2, €2) such that iy # ji, i2 # j2, 11,71 # {1 and iz, jo # Lo

Case 1. (i1,j1) = (i2,j2). In this case, we write i1 = i9 =i and j; = j2 = j. For any (i, j, {1, ¢2) such
that ¢ # j, €1 # {y and 4,5 # £1,02, we have E(ZoijlZoglijOi’gQZOg%jZsz) = 0, E(Zoi,glzvaongoi,j) = 0,
E(Zi 0y Zig, Zo, j2i ;) = 0 and E(Z; ¢, Z; 4,) = 0, which implies

B, =0 (S.1.1)

for any ¢1 # l5. For {1 = {5, we write /1 = 5 = £. Then WCOV{Y(,-JM, 1/(Z-7j)7g} = {(pe,1 + W,Q)/(Zum,uw)}2
Var(Ziyg)Var(Zg,j)Var(Zm-)+)\22’£Var(Zi7g) for any (i, ,¢) such that ¢ # j and ¢, j # ¢. Thus, for any ¢ € [p],

we have

2
1 1 (pen+ pep
Ver,f = N(W) Z Var(Zi’f)Var(Zg,j)Var(ZiJ')

1,511, 1,57
1 2 i)@
+ > N Var(Ziy) = 5 o (S.1.2)
0.5 i, 1§
Case 2. i1 = i3, j1 # jo. In this case, we write iy = iy = 4. For any (3,1, jo,¥1,¢2) such that




jlan ?é ) jl 7& j?, f1 7& 627 Z]l 7& gl and ¢ j? 7& ‘627 we have }E(Zoi,@lzofl,j1ZZj1Z ngoﬂz,jQZO’i,jz) —
Var( 151)\/&1"(2@1 ZQ)Var( lfz) (]2 = ghjl = 62) ( lflzl 52252 J2Z ,]2) =0, E(Zi,ZQZillZ@hlei,jl) =0
and E(Z; 4, Zib) = 0, which implies that

L2 172
Vo, Ve
% Z COV{YUl)Kla (i,j2)752}

4,1,J2: 1#71,732, J1 752,

1,171, 1,0 # L2 (813)

1
_ </%,1 + /%,2) (#ez,l + Me2,2> = S Var(Zig,)Var(Ze, o) Var(Zsg,) = v 0p!
2/“1,1;“@1,2 2#[2,1/«%2,2 N (R EZ N5

for any £1 # fy. For ¢4 = l5, we write £1 = ¢ = £. Tt then holds that IE(ZQKZMIZ’]IZEJQZ,JZ) =0,
IE(ZQ%ZO&EZOZ-W) =0, E(Z2£Zg 912291) =0 and E(Zfé) Var(Z; ) for any (i, ji, j2,¢) such that ji,j2 # ¢,

1y

J1 # j2 and 14, j1, jo # ¢, which implies that for any ¢ € [p], we have

Vg
N > Covi¥iigu),e: Yiijuy.e}

41,321 1751 Ji/ﬁéjz

1,91,52
.14
1 B2 (S.1.4)
=N > AidB(Z;, Z X Var(Zig) = (p = 3)by.
4,J1,J27 1#51,52, 17525 1:9£L
4,J1,d27#4

Case 3. i1 # i2, j1 = j2. In this case, we write j; = jo = j. For any (i1,i2,7,¢1,¢2) such that
il,ig 7'5 j, ’il 7& iQ, 51 7& EQ, j,il 75 61 and j,ig 7'5 52, we have IE(ZOz1 glzogl]ZOHJZOZ%&ZOKQJZO@ZJ) =
Var( jh)var(Zh ZQ)Var( Jb)l(iQ = 1,11 = l3), (le 41212,KQZZ2JZZQ J) =0, E( 127€2Z11 llzél,JZu ]) =0
and E( ihngi2752) = Var(Zy, 4,)1(i2 = ¢1,41 = {2), which implies that

A
T Z COV{Y“ )51 }/‘(7;2:.7')762}

1,12,J: J711 12, 11 712,
Jyi1 71, Jyig# Lo

o1+ Wl,2> (/%,1 + Mgz) 1
= — Var(Z; ¢, )Var(Zy, 4,)Var(Z;,) (S.1.5)
< 2”51,1”@1,2 2”@2,1:“*@2,2 Nj:j; A 7 . It

AL 61, 21
DL Var(Zu) =<0 T =0
R

for any ¢ # f5. For {1 = fy, we write £ = ¢ = £. It then holds that IE(ZOZ1 gZOZQJZD“]ZOZQ,gZDim) =0,
E(Zi1752i27g247j2i2’j) = 0, E(Zoi%gZoithog,jZoil,j) = 0 and E( Zl,ngz ¢) = 0 for any (i1,12,7,¢) such that
Q1,12 # j, i1 # g and j, i1, 99 # ¢, which implies that for any ¢ € [p], it holds that

Uy
N > Covi{¥(iy )0 Yiin e} = 0
11,19,7: JF41,12, 11 #42,
Jriq,ig#L

(S.1.6)

Case 4. i1 # 19, J1 # jo. For any {1 # {5, it holds that E(Zoihgl Zaghjl Zoim-l Z°i2’522052,j220i27j2) = Var(Z;, ¢,)
Var(Zy, o,)Var(Z;, o,)1 (i1 # €2, jo = 1,192 = {1, 51 = {2) + Var(Zy, ¢,)Var(Zy, ;,)Var(Z, i,) 1 (z’l = lo,io #
Uogo = Giz = §1)s B(Ziy s Zin s 203 jo Zin o) = 05 B(Zigts Zin.tr 2y jo Zin o) = 0 and E(Ziy 0, Zigty) =
Var(Zy, 4,)1(i1 = la,i2 = 1) for any (i1, j1,%2,j2, €1, €2) such that iy # ji, i1, j1 # {1, i2 # jJo, 12, J2 # {2,




i1 # 1o and j1 # ja, which implies that

/212
0 Ve
# Z Cov{Y(i, j1).ns Yiin o) o }

11,J1,12,J2: 11771, 127752,
11719, J1 752, 11,1741, 12,5272

ey + M£1,2) <M42,1 + Mzﬂ) 1
= - Var(Z; / Var Zg ¥ Var(Z; ¥
(fptthis ) (Bot bRz} o 57 Var(z4, ) Var(Z, ) Var(Zi 1)

i1t i17201 62
+ (’”1’1 T “’“) <’“2’1 i ’”2’2) = S° Var(Zi, g,)Var(Ze, i) Var(Ze, ) (S.1.7)
2/1g, 1140, 2 210, 110002 ) N i b v 2

+ Var(Zfl,b) = 7_6p_1 + v

Jug2t i#d2, 1927462
for any ¢, # fo. For 1 = fy, we write £; = €y = £. Tt holds that B(Z, ¢Z0 i, Ziy j1 ZintZt.js Zin o) =
Var( i1, g)val"(Zg 12)Var( i1, ZQ)I(il = Jo2,i2 = jl)’ E(Zil,eziQ,EZE,jQZi27j2) =0, E(Ziz,fzihfz&hzihjl) =0
and E( i gZZQ g) = 0 for any (21,]1,22,]2,6) such that il 7é jl, iQ 7é jg, ’il 7& ’iQ, j1 7& j2 and il,iQ,jl,jQ 7& é,
which implies that for any ¢ € [p],

Uy
N ) Cov{¥(iy g6 Yiiz,go) 3
.i;hv?zvff1'1.#',17?2#2;;/_,
1719, 71732, 11:31,12.3
1712, 1752, 11,31,12,J2 ) (8.1.8)
Moy + o2 1 by
— Z Var(Z;, ¢)Var(Z;,)Var(Z;, i,) = = -
24101 00,2 T 2
11,828 41712, 11,0270
For any ¢; # {5, notice that vy < py~2 + 776 and
p2 -1 Cov{Y}; Y,
1,00 — N Z OV{ (41,91) 41> (i2,j2),€2}
11,J1,12,J2: 11771, 12752,
(i1,31)#(i2,d2), 11,51 741, i2,J2#L2
1 1
=N > Covi{Yijn),e Y et + > Cov Y510 Yoz o}
1,51,J2: 51752, 1#71,525 i1,49,7: 41 #ig, j#i1,12,
4,1 7L, 1,527 E2 11,5701, 19,5702
1
+ N Z COV{Y“ J1) fl’Y(i27j2)752} .

- i1d1ig.d0t 1 71 G272

11712, 1772, 11,01 741, 12,5272
It follows from (S.1.3), (S.1.5) and (S.1.7) that max1§g1#2§p|Bé12)62] < p~!. Analogously, by (S.1.4),
(S.1.6) and (S.1.8), it holds that Bﬁ) = v, {(p - 3)by + be/2} for any ¢ € [p]. Notice that By, ¢, =
Béll)b + Béi)f2 for any 51,£2~€ [p], together with (S.1.1) and (S.1.2), we have maxi<g, 2s,<p |Bey ty| S p~°
and By = v, '{(p — 2)by + b} = 1 for any £ € [p]. We complete the proof of Lemma 4. 0

S2 To prove I;(i,5,¢) =0 for any i # j # ¢

])E(t) as C7 C_(ivj)ae’ C](juj):‘e’

i) and & j) g, respectively. Notice that qg{c*("’j)’f}c'(mm = N 12g{c( ’j)’e}[tfl/Q{ﬁY(m),g +
V1I—oVie— (1 —1)" 1/2W(”) ¢]. Since Y{; ;y ¢ is independent of ¢~ ()4 then E[qg{c_(i’j)’e}y(i’j)ﬂ =0.
We notice that Viy iy o with i # j° # ' included in ¢~ 0L satisfies |[{i/, 5/, ¢'} N {i,5,£}| < 1. Since

To simplify the notation, we write c(t), ¢~ (“1)(¢), c,(f’j)’e(t), ciij),e(t) and ¢



Cov{Viir j.es Viijy,e} = Cov{Y(w j»y.er, Yij),e}» the proof of Lemma 4 indicates that Cov{V{y j»y ¢, Vi j) e} =
0 for any i 7é J 7é ¢ such that ]{z ,J ,E’} ﬂ {i,7,€}] < 1. Recall that {V{; j) ¢}ij e izj-0 ave normal random
variables. Thus, V{; ;) , is independent of ¢~ )£ Then E[qz{c_(i’j)’g}lf(i7j),g] = 0. Analogously, we know
that W(; ;)¢ is also independent of ¢~ @DL which implies E[Qg{c*(i’j)’g}W(m),g] = 0. Hence, I(4,5,¢) =0
for any i # j # /.

S3 To prove Z@j;i;ﬁj Zé;ﬁ;ﬁi’j i:l ‘12(i7ja£a k)‘ SJ p_1/2¢3 10g7/2p
(1,5),¢

To simplify the notation, we write c(t), ¢~ (“1)4(¢), (i’j)’e(t), ciij)e(t) and ¢ 5y () as c, c@L ¢
C(ij),e and ¢(; jy ¢, respectively. Notice that c(l’]) £ = = ittt G )kag }]’,g Thus,

N
(1,5,¢,k) Z / q(gk{c 6.3); }c (1,4),LC@0" 57 kaEZ’J ; ]dt (S.3.1)
iP5 i £

We will consider Is(7,j,¢, k) in two cases: (i) k # 4,7,¢, and (ii) k € {i,7,¢}, in Sections S3.1 and
Doigeitg 2ot epig L2 3 G0 + 32 5 iai D0 j 1206 3 6 ) 4 D0 50 izg Do 02y 12(255, €, 0)]. - As we will
show in Sections S3.1 and S3.2, it holds that >, ., . > . ps; Sor 12ty ,0,k)] S p 12310872 p.
S3.1 Case 1: k #1i,5,¢
Recall af;")) , = I{(i', ', k) € S(i,j,0)} and k # i, j,£. Then a(;)) | =1if and only if {i', j'} C {3, j,¢}.
It follows from (S.3.1) that

1 1
L(i, 5,0, k) = /0 E (g {c™ "D Y e 0 k) dt+/0 E[qox{c™ "D Y e s ey x] dt
1 1
+/0 E[qer{c™ Ve 1) e ) dt+/0 E [qoe{c™ Y e ) 000 0] dE (S.3.2)

1 1
+/0 E[gu{c™ "D Y e .0 k] dt+/0 E[qu{c™ "D Y e ey x) dt -

Notice that C(i,j),eCG0 0k = N_l[t_l/z{\/a/(i,j),z + V11— UV(z‘,j),K} - (1- t)_l/QW(i,j),ﬂ] [\/f{\/EY(M)k +
V1I=oVioet + V1= tWg il and {Y 5.0, Viij).e, Wi j),e} is independent of ¢~ (9 Tt then holds that

N - Elgoe{e™ "} e 4 e 4]
= 0E[aa{c™ Y g Yo a] + (1= 0)E[gad{c WV ) Vi i) (8.3.3)
— E[qu{e” "W 5y Weio x] -

Recall Yii’g)’k is a function of {Zlk7 ch,g, ZDM}. We have shown that ¢~ (8¢ ig independent of Zoi’g. We will

remove the components in ¢~ ()¢ that depends on sz; and ZOW. As we have shown that Z ;,j is indepen-

dent of {Y{y jn o }ir 7 .0)¢s. (i,j) for any given i and j, we define ()60, — => i Jrirqr Cir g © {a(z’] Z; +
alik) (k0) @50 (k) (0.5:6) § g(k:8) _ J(k) o (K6) (63:6)  ,(ik) (kL) ( D
A T A, '> a(z 9By gy ~ Bl jry © A jry ~ Agir iy © Agir iy AR ) © Ay © Ay gy b Where ag,) =

{ (” . }TW1thaE wd) E/_I{( i’ 5", 0) € Si(i,j)} for 0/ £ 4,5 andagz.}]?,)g/:Oforﬁ’e{i’,j’}.

We know Y(z,g),KY(Z,Z),k is 1ndependent of ¢ — clt)LE0k  Recall ¢4 = Do it C(ir g7 © agz}]’,g Then
C(i,j),[,(i,f),k _ c(i’j)7é = {C(i,k) —+ C(k,i)} o (1 — €y — e]) + {C(@’k) + C(kj)} o (1 e; — e]) + Zm;ﬁz,],f,k{c k,m ):i +

4



Clmk),i Y€ T DomstijokdClhm) e T Cmpyetee + D pziiok{CGm)k + Comi)k + Cem)k T C(m.e), 1}k, Where
1 is a p-dimensional vector with all components being 1. Let ¢ EDNLEOE — ¢ _ cB)6EDE - Recall
c— 6Nl — ¢ — ¢l Then c®D0E0k=(05) .— =05 _ ¢—(0:0)460k — ¢(6,0),6000.k _ o(65)L Write
i) L@ k=)l — (EDEEOR=CINE L ADLEOR=D AT W know that Y,

1’7j)7
L0k Based on the proof of Lemma 4, we also have Viig),00 Vo) ks Wiy e Weise) ke

¢ and Y(; o) 1 are inde-
pendent of ¢~ ()
are independent of ¢~ (:):6(0k By Taylor expansion, it holds that E[qgk{c*(i’j)’Z}Y(i,j)ng(M)jk] =
Elgo{c™ CDEGCOMIBLY 5y Vi o} + S0y [y Elaorm{e™ OGR4 7@ LEGOR=GDO Y, o Vi, o )
LA LEO K0 4 Notice that E{Y5)0Y.0.0 = BAViij).eVieowt = E{W(; 7)eW ek} Then (S.3.3)
implies that

N - Elgop{e™ "} e 4 e 4]

p 1
— Z/ E[qzkm{c_(i»j)vg’(ivavk+Tc(i’j)’é’(ive)vk_(ivj)72}61(/rib’j)767(7;7Z)7k_(i7j)7e (834)
0

m=1

x {vYi Yok + (1 —0)VaneVior — WaieWaext] dr.

Define & = {|Y(i,j),e| v ’V(i,j)f
Py 0

Var{V(; jy.¢} = v ly6 < Var{W(; ;y¢}. Recall V(;;, and W(; ;) , are normal random variables with

V Wil < B forany i # j # (} for some B > 0. Write v =

Then v < maxsc[, Vs X mingep Vs. As shown in Case 1 in the proof of Lemma 4,

mean zero. Thus, max; je.izjze [Viij) el = v12473 .0 (log'/? p) = max; j ¢ i#j+k |Wiij)l- Notice that
max; j . ij# | Yol S v1/27=3 Recall v = py~24~76. Then v=1/2473 < 1. If we select B = C, log'/? p
for sufficiently large Cs, it holds that P(£f) < p~¢. Here C can be sufficiently large if we select sufficiently
large C* Notice that C—(i,j),é,(i,ﬁ),k + Tc(i,j),é,(z‘,é),k—(i,j),ﬁ = Cc— C(i,j),f + (T _ 1)C(z’,j),Z,(z‘,é),k—(z‘,j),é. ReStriCted
on &1, it holds that

» 54B
|C(’L’J)7Z‘OO < + Z

>

1 1
ﬁ Z Yv(Slvm)752 ﬁ Z Yv(m,sl),sg

N 51,82: 81782 m: m#i,j,0,k 51,82 81752 m: m#i,j,0,k
s1,s2€{i,5,6} s1,82€{i,5,}
1 1
+ Z \/N ‘/(sl7m)7s2 + Z \/N ‘/(m»sl)st (835)
51,891 81#89 m: m#i,j,0,k 51,823 51752 m: m#i, g,k
s1,89€{%,5,0} s1,89€{%,5,0}
1 1
+ Z \/N W(Shm),sz + Z \/N W(m,81),32
51,821 81782 m: m#i,j, b,k 51,821 81752 m:m#i,j,lk
s1,s0€{i,7,0} s1,s9€q{1,5,0}
and
(7‘).])a€)(z7z)7k_(7’3‘7)7€
c |oo
24B 1 1
< \/»N + Z \/N Z Yisl,m),sg + Z \/N Z }/tm,sl),SQ
51,823 51782 m:m#i,j,6,k 81,821 81752 m:m#i,j,6,k
s1,s9€{i,€,k} s1,s9€{i,,k}
1 1
2w 2 Vemelt X 7% Vim).e (8:3.6)
51,821 81752 m: m##i,j,0,k 81,82 81782 m: m##i, 5,0,k
s1,s9€q{i,4,k} s1,s9€{i,0,k}




1
+ Z VN Z Wisim),se| + Z ’
51,521 81752 m: m#i,j,0,k 51,52: 81752
s1,s9€{i,0,k} s1,s9€q{i,L,k}

1
ﬁ Z W(m,sl),SQ

m: m##i,j,0,k

which implies that

< 85 + 24
— max
- VN

1
+ ﬁ Z Yv(m,s1),s2

m: m##i,j,0,k

1
ﬁ Z }/(81,m),52

51,521 81752 <
m: m##i,j,0,k

s1,s2€{i,5,6,k}

}

1 1
-+ 24_ max { = Z ‘/(Sl,m),SQ t = Z ‘/(mzsl)vSZ } (8‘3'7)
Sj};;é{?ﬁ,i} VN m:m#i, 0k VN m:m#£i,j,0k
1 1
—+ 24 max { — W(Sl,m),SQ =+ Z W(mvsl)aSQ }
sz UV mzige VN . mti,j bk

under &;. Recallv = py24~76 < MaXep Vs X Mingep, vs. Given sy, 52 € {i,J,¢, k} such that s; # so, we
have N™Y2 2o Yisnmyss = —Vor | A (2itsa) "+ @rtsn2) "INV ok Zonsa Dosn Doy m+
N_1/2(P - 4)7/;21/2)\51,52 Zsl,sg- Then ‘N_I/Q > m#i,j,0,k Y(sl,m),52| S V_1/27_3|N_1/2 dom: m#i,j,0.k Zosz,mZDsl,m|
+v 1/ 2y~1. Notice that {Zosl,mZOS%m}m: m#i,j,k,¢ 1S an independent sequence. By Bernstein inequality, we
have P(IN~Y/2%" i gk ZOSQ,mZDSLm| > u) < exp(—Cpu?) for any u = o(1), which implies that

1
ﬁ Z Yv(sl ,M), 82

max max
4,90,k i#£j#LFEk  s1,52: s1F59 <
m: m#i,j,0,k

s1,s2€{i,5,4,k}

3 B 3 3 10g1/2p
< Cv 1/2')/ 1 +v 1/2’7 3. Op (])1/2 . (838)

Analogously, we also have max; ;g k:ixj40-k MAX, go: 51250 ,51,80€40,5,6,k} ]Nfl/z Zm:m#@j,&k Y(m781),32\ <
Cr=12~y=1 4= 1/24—3. Op(p_1/2log1/2 p). As shown in Cases 1 and 2 in the proof of Lemma 4, we can ob-
tain that COV{V(shm),sza V(s1,m)752} = ngl{(ﬂ82,1 + M82,2)/(2M8271ﬂ82,2)}2var(Z51,82)Var(Zs2,m)Var(ZS1,m)+
v, ' A2 Var(Zs, ) and Cov{ Vs, m) 2> Vistm/)se} = Vg A2y s, Var(Zs, s,) for any m # m’. Then we have

81,52 81,52
Var{3 . siok Vistm)sa ) < pr~1y72(y"*4p) < p. Since {Vis1,m),s0 ym:msi,j,0,k are normal random vari-
ables with mean zero, then it holds that N—1/2 Zm:m#,j,ﬁ,k V(s1,m),s; 18 also a normal random variable

with mean zero and variance N~ !Var{} ),523 =< P~ 1. Therefore,

m: m#i,j,0,k Vv(Shm

, log!/2 p
omax o max = Y Vi, :0p<12 : (5.3.9)
Lk AR sz [N L2 rY

Also, as shown in Case 3 in the proof of Lemma 4, Cov{V(m s} 05 Vim' s1),s0} = 0 for any m # m/.
is also a normal random variable with mean zero and vari-
1 6. Notice that v =< py=2 + 6. Then it holds that

2

ance N™' 37 o Var{Vim si) s} < P~

Then we have N—1/2 dom: mi,j bk Vim,s1),s
l/_l’y_ .



1

N7 zi gk Var{Vim o)., } S p~ ', which implies that

10g1/2
:Op( 7 ) (S.3.10)

\/> Z ‘/(m,s1),32

ma
FORATHLR o128 ;es
ki Lt lig bk m:m#i,j, 0k

1,5,,k}
Identically, maxi j.¢ k: ij£04k WAXa, or: sy 85 s1,s0e ik} N2 X i jiok Wisnm).se| = Op(p™/?log/? p).

and Max; j ¢ g igjAt4k MAXg, oy s £85 51,0060k} [N 2D mi .ok Wimsi)sel = Op(0™ 2log'/? p). We
define

1 C.xlog'/?p
s { s [ 3 om0
s1,80€{4,5,6,k} m: m¢7;7j7€7k p
1 Cls logl/Qp .,
S, | > Yinsis| < — g framyiZjAlAk

s1,89€{i,5,£,k} m: m;éi,j,é,k

for sufficiently large C,. > 0. We can also define & (V') and & (W) in the same manner. Let
Ey = EQ(Y) N 52(V) N EQ(W) . (S.3.11)

Notice that v~ 1/24~1 < p=1/2 and v~ /2473 < 1. Tt holds that P(£5) < p~¢. Here C can be sufficiently
large if we select sufficiently large Cy.. Recall that B = C, 10g1/ 2 p. Restricted on & N &, by (S.3.7), we
< 78C,N—1/2 logl/2 P+ 1440**]9*1/2 logl/2 p.
As p — oo, it holds that 78C,N~1/2log!/? p + 144C,.p~1/?log'?p < 3/(48) with 8 = ¢logp, which
implies that

have maXi,j,Z,kli#j;ﬁf;ﬁk ’c(ivj):e — (7— — 1)c(i,j),é,(i,e),kf(i,j),é

(1,9),6 _ -1 (4,9),2,(4,0) ,k—(2,5),¢ El §319
o L (r=1De e < 15 ( )

under & N &s.

As shown in Lemma A.5 of Chernozhukov, Chetverikov and Kato (2013), there exists Upgpm, (V) such
that |geem (V)| < Usn(v) for any v € RP, where 377, Upm(V) S #B? for any v € RP. Thus,
(S.3.4) leads to > p gz i D ke k?éwz |N - E[qzk{c_(i’j)’Z}C.(i’j)xC(i,g),k]| S g+ T2 With T” 1 = logp -
S oy S kﬁﬂzgl 1f0 I(E1N&) - Uekm{c_ i:3),6(0 k4 e (6:3),6,(0:0)k—( 7])£}| £,(1,0),k—(i,5),¢ |dr
and Ty 52 = >0 pzi j Do k#,ﬂz _1 Jo EU(EFUES) - U {e™ 700k 1700600k 0:9), e}{’Y(i,j),éHY(i,Z),k‘"i"
Vit Vol + Wiy Wiy i HeSi? HEOREDL0 47 Together with (S.3.12), Lemma A.6 of Cher-
nozhukov, Chetverikov and Kato (2013) implies that, restricted on £NE, Upgp(c) < ngm{c_(i’j)’z’(i’e)’k—i-
7B k=00).0 <y () for any ¢ € [0,1]. Thus, Ty 1 S ¢68%log pE[I(E1NEa) maxy, g. s |clB9):600:k=(05).0
Restricted on £ N &y, it follows from (S.3.6) that maxy p. k2 |c("’j)’Z’(i’z)’k_(m')’z|oo < 24p~1/20, log1/2p +
6p~ /20, logl/2 p, which implies

o0)-

$3%1og>? p

Tija1 S
e

(S.3.13)

For T; j o, since U {c= G LE0K (1) 4 7c6:)4G0k=00)L(#)]) < ¢B2, by Cauchy-Schwarz inequality, it
holds that

7j,2 < ¢,8 Z Z Z E 81 U gC |C(Z’J ,(4,0) ,k— ,j),é,

004,75 k: k1,56 m=1



]

X 1Y), 1Y i,0)

b)Y G0, 3).¢
< pPoBPPV(EF U E5)
x max EY/2[|ci) 400k (00),
0k 0Ek

2l e P Y0k + Vi) e Vi i

+ Wiy e Wi o) 11}
< PPoBPPY2(E U ES) e, EY/4{|cEDAEO =GN AR Y, o o BYEYS{|Y 0 4

A SEY BV ) o BYEY B Vi o 115}

+p3¢ﬁ21F’1/2(8CU52) rgl%;( E1/4{’C 1,9),4,(1,0),k—(3,5),¢

where the last step is based on the fact {V{; ;)¢ Vi) k} and {W(; ;)0 Wi 1} are identically distributed.
Notice that max; J citiAe | Yiigel S v1/24=3 <1 and Vii )¢ is a normal distributed random variable with
Var{V(; j,} < v 1770 < 1. Thus Tj ;2 < p3¢ﬁ2}P’1/2(51 U E5) maxy . p2x E/4{]c(07) 600 k- 4.}, Fol-
lowing the same arguments for (5.3.8), (S.3.9) and (S.3.10), (S.3.6) leads to maxy . ¢£, E1/4{|c 5.3)6,(0),k=(07),)4 1
< 1, which implies that T; j2 < p3¢52P1/2(5f U E5). Recall that P(EF U ES) < p~¢ and C can be suf-
ficiently large if we select sufficiently large C, and C,, in the definition of & and &. Hence, with
suitable selection of (Cy,Cyy), we have Tj o < p 12432 log3/2p Together with (S.3.13), it holds that

Db 0ti§ Dok kil
we can bound the other terms in (S.3.2). Recall 8 = ¢logp. Hence, 7, 5 0i > 2y g i D g jpi g 1126 5, 6 k)| S
1268210832 p = p~1/2¢3 1087/ p.

S3.2 Case 2: k=1i,j,/

We first consider the case with k = 4. Notice that ¢y jy; = 0 if i’ =i or j' = i. By (S.3.1), it holds that

fol [qex{c™ 79)£}c i), £CG0 .k At S p =5/232 10g3/? p. Following the same arguments,

1 1
Ir(i,7,¢,1) = /0 E[gei{c™ )" Fe(ig),eCe.), ]dt+/ [%{C_(Z’])’K}é (6.):CG.0).) At

+ Z /0 qg {C (8.3, K}C (4,5),£C(m,5), ] dt + Z /0 qf {C g, K}C 1,5),£C(m,¢), ] dt
m: m##i,j,l m:m#i,j,l
1

+ Z / q1g {c” (@.3), E}c (6,),£C(j,m) Z] dt + Z /0 E[qm'{Ci(i’j)l}é(i,j),éc(é,m),i] dt.

m: m#i,j,0 m: m#£i,j,0

Note that ¢ j),e = N~ V2 [t 20 5y otV T = 0V ) o} —(1=0) "2 Wiy ol e = N2 IVHVOY o
+ V1 =0V} + V1 —tW el Recall that we have shown {Y{; ;) ¢, Viij),e, Wiij),e} is independent of

14

¢~ Following the same arguments in Section S2 to show Wii,j),e is independent of ¢ @)L we also

have {V(; )i W(j,0),i} is independent of ¢~ ()L, Notice that Y(j0),i is a function of (Zoj,i, ZDM, ZDM). Thus

Y(j0),i 1s also independent of ¢ (@it

Since {Y{; ;)¢ }i e izj-e is independent of {V(; ) ¢}ijeizj2e and
{W(i,j)’g}i’j,g; i+j+¢ is an independent copy of {‘/'(Z-J),g}i,j,g; ij+t, it holds that NE[Q@;{C_(Z’j)’Z}C.(Lj)’gC(j’g)’i] =
Elgei{c™ D WE{Y ;5.0 00t + (1= 0)E{V;i 5.0Vt — B{Wi ;Wi = 0. Analogously, we also

have E[qgi{c_(i’j)’e}c'(i7j)7gc(&j),i]:0. Then

1 1

Io(i,5,¢,1) = Z /0 E[qu{c™ " }é( 4 oCim.jya) At + Z /0 E[qei{c™ "} e 4y oCme.i) dt
m:m#£i,j,0 m:m#£i,j,Ll
(S.3.14)



1

+ > ; E(qu{c™ "D ey ocmal d+ Y /0 E[qei{c™ "} e 4y ecomy.i] dt -
m: m#i,j,0 m: m##i,j,0

In the sequel, we only need to bound each term in (S.3.14). For E[qei{c_(i’j)’g}é(m)’gcwm)?i] with m # 4, j, ¢,

it holds that NE[qe; {c™ "} e; ) peomy il = vE[aei{e™ DY i) Yo my i+ (1=0)Elge{c™ DGV, 5 Vigm il
—E[qgi{c (04 Wi 5),eW(em),i)- Following the same arguments in Section S2 to show V/; ;) ; is independent

of ¢~ ()t we also have {Viem),is Wiesm),i} is independent of ¢~ Thus,

N - Elgei{c™ DY i) ocmy ] = vElau{e™ " YY 5 oY my il — vElga{e™ D HE(Y 4y eYiem) it -
(S.3.15)

Notice that Yy, is a function of {Zogyi,Zoi,m,Zog,m}, and ¢ jny ¢’s involving ZOM are not included in

¢~ (@) Similar to the strategy used in Section S3.1, we can remove c(,jn,e's that related to {Zog,m, Z,m}
from ¢~ ()¢, and denote by ¢~ (#7)£, We define c(i)-6:(6m)i — Do ] i1 €t ' o{a(” Z% +agf,77,)) +a8’m)) —

aE ’M; o gf m)) —ag ’M; oag}in)) —aEZ m)) gz, ,)) +a§ }]’2 oagf m)) oagz ) } ‘We know that Y(Z s gY(g m).i is inde-
pendent of ¢ —c(#7):4Em)i - Recall ¢(9)f = =D i it S J/)oag i e% Then ¢(9)4:(Em)i_ ¢ (6.0)4 = {c@m) +
C(m,)}o(1—e;—e;) +{c(im)TCmito(l—er—e;)+> ., zm{c(u m)i T Clmou)i Y€+ Dyt j om{Cum) e+
Clmu) 0 y€e + Zu¢i’j’e7m{c(u74)7m + Ceu),m + Cui)m T Cliu)mfem- Let c —(@05),6,(6m)yi — ¢ — c(@3).6(Em)i and
c(B0)4(6m)i—(0.) .4 — o= (654 _ = (03)4(6m)i - Then ¢(6d)¢ (f m)i=(:9)t = ¢(h3)b(Em)i _e(6:9):£ By Taylor ex-
pansion, Blgei{e™ "}V j) ¥(em).i] = Elga{e™ )"f’“’m”i}]E{Y(i,jxeY@,m),i}JrZ?:l Jo Elgeis{e™CbEm iy
Tc(i7j)’£7(€7m)’i_(i’j)’K}Y(i’j),gY([’m)chi’j)’e’(&m)’if(i’j)’e] dr. Together with (S.3.15), it holds that

IV - Elgei{c™ DY ey ecmyal] < [Elgu{c™B)4Em-] _E[in{c_(w)’e}]"E{Y(i,j),éy(ﬁ,m),i}l

Ry (i, 6:m)
p 1
_|_ Z E[’qﬁs{Cf(l’])vz’(évm)vl + Tc(l’])vg’(&m)ﬁ*(lﬂ)7Z}|
=170

X [Yii g) el [Yigm all e HE 0D

R2 (i7j7zum)

Note that ¢=(:):6Em) 4 7B bEm)i=(00)f = ¢ — Bl 4 (7 — 1)cB)EEm) =09 Following the
identical arguments in Section S3.1 for bounding the term on the right-hand side of (S.3.4), we have

> szg g Rl ) S p~1/26%10g"/% p. By Taylor expansion, Elgs{c— (914} ~E[gy; {9 Em)i)]

01 Jo Elgeis{c™ (D4 m)z+70(w>’ ()i (1)L} (PAEEMN= @I a7 Thus, Divitjim 2t tigm 1 (05 5, ,m)

< p12¢8%10g%? p. Then Divitjm 2t 0zijom [V - Elgei{c™ (@.7), é}c' (i) £CEm) )| S p~ 1292 10g%? p, which

implies D201 37 i D0 otig | X mopi folE[%‘{C G e gy pcmal dtl S p~' /2057 log® p. Analo-

gously, we can obtain the same result for other terms in (S.3.14). Recall § = ¢logp. Hence, we have that

S S i ot iy T2 (6,5, £, 0) S p/2¢% log™/2 p. We also have 370y 373 sy (Ta(iy 4,4, 4)] S

p~1 /243 log™? p. and Z?:l D ivitg 2ot 0ig T2(6 0, O] S p~1 243 1og™? p.




D s —-1/2 43 7/2

S4 To prove Zu]l;ﬁj Zﬁzﬁ#i,j Zk‘,l:l ’13(%]7 67 ka l)’ 5 p / ¢ log p

To simplify the notation, we write c(t), ¢~ (“1)(¢), c,gi’j)’e(t), ciij)e(t) and ¢ 5 (1) as c, c @)L, c,(f’j)’g,
C(i )0 and ¢ ;) ¢, respectively. Define £ = {|Y(i’j)7£\ V |Vv(7;7j)’g| Vv |W(i7j)’e| < p1/2/(46) for any i # j # (}.
We then have

(,7,0,k,1) / / (1 — TE[L(E)qum{c™ B9 —|—TC(Z’])£}C( ])gc,i’j) l(i’j)’e] drdt
I3,1(4,5,6,k,0)
1 rl . . Y.
+/ / (1 — 7)E[(E)qua{c™ @) + TC(W)’e}c'(,-’jmcg’”’ cl(w)’ |drdt .
0o Jo

I3,2(i7.j7€7k7l)

Let w(t) = 1/(VtAy/1—t) forany t € (0,1). Notice that ¢(; ;) , = N_l/Q[t_l/Q{ﬁY(m)’ﬁ\/l — Vi)t —
(1—¢)7Y2W; jy¢)- Then max; j . izjze [0l S 2 w(t) max; ;e izjze{| Yool V Vi gyl VIWiij.el}. On
the other hand, same as (S.3.5), it holds that

e < O
max |c < —— max Y el V IVigyel VIWe,
s | e T 1 0 #{l (el V Vi) el V W g el }
1
+i,%&;x# Z VN Z Hoamsn
VAN J 51,80:51#892 mim#ivjve
sl,ng{iJ!e}
1
+i-%3éx¢z Z VN Z Yim,s1),5
TEVFITE (| o1 m: m#i,j,0
s1,80€{i,5,0}
1
1, DD Dl v, D DR CRR (8.41)
.54 1FJF 51,801 81789 Nm:mii’j’g
sl,s2E{i7jyl}
1
+i-%32(~# Z VN Z Vim,s1).s2
2]t J 51,80:51#892 m:m#iv‘jve
sl,szE{iJ!e}
1
+i-%§2§# Z VN Z Wisrm).so
TEVFITE (| o1 m: m#i,j,0
s1,80€{i,5,0}
1
+,omax D VN D Wimssn
LI FTF 51,821 81752 m:m#i, g,

s1,59€{%,5,£}

We define
1 C’* log'/? p
8(Y> = { max — Z (s 206 Pod
81,891 81#S 1,m 1/2
s1isa€{ig) \/> m##i,j,l p
1 C* logl/Qp . .
sl,g}?f_;% T Z (m,s1) T for any i # j # /¢
s1,52€{4,5,¢} m#i,j
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for sufficiently large C, > 0. We can also define £(V) and £(W) in the same manner. Let £ = £(Y) N
E(V)NE(W). Using the same arguments in Section S3.1 to derive the upper bound of P(E5) for £ specified
in (S.3.11), it holds that P(£¢) < p~©. Here C' can be sufficiently large if we select sufficiently large C..
Hence, restricted on &, we have MAX; j /- i£jte ]c(i’j)’e\oo <p! max; ;e i#j20Yiig),el VI Vig).el VIW ).l b+
p~/?log!/? p, which implies that max; j ¢ ixje ¢ gy ol [ 2y S p~3w(t) maxy j . isjed Yo ),V Vi el PV
(Wi j.el?} + p2w(t) log pmax; j g izj2e{ Y )0l V Vi)l V IWii j)el} under . As shown in Lemma A.5
of Chernozhukov, Chetverikov and Kato (2013), there exists Uy (v) such that g (v)| < Upg(v) for any
v € RP, where sz,lzl Ui (v) < ¢3?% for any v € RP. Then

p 1
I31(2, 7,4, k,1)| < 2 3/ E{I £ max ¢ c(B3)€)2 }dt
M2121| 3,1(1,J IS ¢67p ; ( )i’j’&##” el 2
1
= 2p3 E{I Scﬁg max C’L . C(i,j),f 2 }dt 842
¢B7p /0 ( ), max L)l 5 (S4.2)

1
rosty® [ B{rEn e max oo et b,

Notice that max; ;¢ i2j20|Y(i jy.¢| < C, and Vii,j),e and W(; 5 o are normal random variables. It holds that

PR Mene

V Vi),

VWil } > u] < Op® exp(—Cu?) (S5.4.3)

for any u > 0. We have fol E{I(Ecﬂg) MAX; j : i j £ |C‘(i’j)’g| ]c(i’j)fﬂgo} dt < p3E[I(&£°) max; ;. #j#{\Y(i’j),ZP\/
Vi) PVIWG ) e HAp2log pE[I(ES) max; j g i2 641 Y0 )|V Vi ).l VIW(i j).e| }]. By Cauchy-Schwarz in-
equality, we have E[I(£°) max j ¢ izjre{|Y(i5),elV Vi), VWi gy o[} < PHY2(E)EY2 [max j . i je{ | Vi ) 2V
Vi) e2VIW(i ) el < p* exp(—CpB~2). Analogously, we have E[I(£) max; j . iz j2e{|Y(i ) o[>V Vi gy o[ *V
(Wi .e*H < p* exp(—CpB~2). Then it holds that

1
EI(E°NE ax  |ég c(i’j)’“}dt< log p - exp(—CpB~2). S.4.4
[ e{rend) mux et b ar < progp-exp(-Cos ) (544

By Cauchy-Schwarz inequality, it holds that

) . o
E{I(gc nes) Yy €i.¢l1 ’w}

§P1/2(5"c)-1511/2{ max |¢(i7j)7€\2|c<iﬂj>f|§o}

i b i
<PY2(EC)-EYY  max ¢yl p BV max |elBDE8 G
- i bitge ) i,j, b i g e

Notice that P(€ ) < p~¢, where C can be sufficiently large if we select sufficiently large C, in the definition

of . T hus, with suitable selection of C, we have

1
- . 1

c c AL (L])vé 2 <
/0 E{I(€ née), max [l ym} dtS 7 (S.4.5)
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Together with (S.4.4) and § = ¢logp, (S.4.2) implies that

> S (gL kD] S ¢52 + $6%F logp- exp(~CpB?)

1,5 £k,l=1

¢3 1Og2p 3,673 Cp

In the sequel, we begin to consider I3 (3, j, ¢, k,1). We have that

I32(4, 7,0, k,1)]

/ / (1-7)E Eﬂg)ngl{C (Z’])Z‘FTC b3), €}|C (4,9) K||Ck7] Hcl”

] drdt (S.4.7)

e drat.

/ / (1 = T)E[L(E N EYUga{c™ W 4 7eEDY e o le?t

Notice that

1 1
/O /0 (1 — DE[(E N EYUm{e 0 1+ 7t e ol )] drat

1
Sen ) i,7),0 4,5),0
< 9B /0 E[T(E N €9) i ol D15 at

1
2 o . 9,7),412
<o [ E{umso) [l |oo}dt

Same as (S.4.5), we have

Z Z Z// (1= 1E[(E NE)Uga{c™ 0! 4 74

1,5: 177 L 0F#1,7 k=1
i)t ¢*log’p

4,5),4
lel™ ) drdt S 7

|C('L,j chk (848)
Restricted on €N E, (S.4.1) implies that max; j . i-£j-£¢ |Gl o < p~1/2p-T + p12l0g!2 p < 3/(4p) for
sufficiently large p if ¢ < p'/2log™%/?p. Lemma A.6 of Chernozhukov, Chetverikov and Kato (2013)
implies that, restricted on €N E, U (c) < ngl{c*("’j)’e + TC(i’j)’Z} < Ui (c) for any t € [0,1]. We then
have

// (1 — T)EUI(E N E)Uga{e D 4 reD Y e o o[l drat

< / E{I(E N E)Una(C)lé i olle? e} dt.

Rg(i,j,e,k,l)
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Notice that

)k €k €0k T Cegk T ik T Cank, LkFGL,
Z {C(m,j),i + C(j,m),i} + Z {C(m,Z),i + C(Z,m),i} , ifk=1,
Ck = Z {C(m,i)J‘ + c(i,m),j} + Z {c(m@’j + C(&m),j}v ifk=j,
m;éi,j,é m;ﬁj,f
Z {em,j)e T cm)et + Z {etmyiye + camyet, ifk=1¢.
m;éz,],f m;éz,é

Since Y27, 1—y Un(v) < ¢3° for any v € RP, we have

.. 2 . (4,9),£,2
> > Rs(ij k1) S 68 -E{e}gggfjl%,j)yel' max max [’ I}

0 l#£0,5 k: k#i,5,0
¢ klik,lij¢ 7i:J ki k]

PB%w(t) [
S ——5—E| max Y
~op i,j,@:i;ﬁj;ﬁg“ (4:9),¢
< ¢62w(t) 10g3/2 P

p3

SV Vil v !W(i,j),dg}]

which implies that

e 5 . o
Z Z Z /0 /0 (1 - T)E[I(g N S)Uﬂd{c*(l,j),[ + TC(l’J)’E}

i,j1 i 000 kel k.5,

219 3/2 310 7/2
< ¢B"log™"p _ ¢ log""p (5.4.9)
p p
If k € {i,7,¢}, we have
(i:):) < 1 v 1 v
1S Z VN Z (s1,m),52| T Z VN Z (m,51),52
51,52:51.#52 m;m?éi7j7£ 51,52:51.7%52 m: m;ﬁi,j,f
s1,82€{i,5,¢} s1,s2€{i,5,¢}
1 1
T gm X Veme|t 2 g 2 Ve
51,821 81752 m: m#i,j,0 51,821 81#59 m:m#i,j,0
s1,89€{i,5,0} s1,80€{4,5,¢}
1 1
+ Z \/N Z W(sl,m),Sz + Z \/N Z W(m,sl),sg .
81,821 81753 m:m#i,j,¢ $1,80: 81 #52 m: m#i,j,l
s1,s9€{i,5,£} s1,s9€{i,7,0}

Restricted on &, it holds that MAX; j 4 i jA0 MAX ke {7 5.0} |c§:’j)’£| < ]o*]L/Zlogl/2 p. Also, notice that ¢~ () =
c — c)!. Lemma A.6 of Chernozhukov, Chetverikov and Kato (2013) implies that, restricted on £ N &,
Upei(c) < ngl{cf(i’j)’g} < Upi(c) for any t € [O, 1]. Then

21 1/2 .
> Rs(i,j,&i,l)SL o p-E{.max |¢(ij)el - max  max !cl(””)’zl}
o p/ igtipe IO i
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_ 0B%(1)log"*p

2 2 2
S Y B max {[Yag®V Vg™V W™}
- ¢8%w(t)log’? p
~ P32
, )L
Then 3, 5.isi Yo isiy St Jo Jo (1= TIEIE NEUpn{e™ O 4+ re@D e ) ol|e") e drdt

< p_l/ngﬁz 10g3/2p p_1/2¢53 log7/2 p. We can also obtain the same bound for £ = j and /. Thus,

Z Z Z Z // (1 = NE[(E N E)Uga{c™ 0 + rcl:DA}

6,J: 1% L 0F£5,g k: k=1i,5,0 1: |F£i,5,0

¢*log"?p

: 4,3),€) .(3,9),£
% [é gyl lef e drdt < 7

(S.4.10)

If k,1 € {i, 4,0}, we have

2
ZRs i, 5,0,1,1) S < PP logp E{ max ’C'(i,j),d}

p i i
¢p*w(t) logp
S e -E ijg{gg;#{ly(i,j),z\ V Viagyel V W gl §
2
< 0B%w(t)log*?
~ pQ

and

2]
ZR3 Z ]76727] d)ﬁ o8P E{ max ‘C(l,j),f‘}

vy RNy
2
Sww@mpq
p
_ $5%w(t)log®p
~ p2

Y V V
i,j,?:lia;;# {‘ ‘ ‘V (4,9), ‘ ‘Wz])d}

Thus, 32, 5.izi Dot 020 2akeils ki jif fol fol(1—7)E[I(5ﬁ5)U£kl{C_(i’j)’“ﬁc(i’j)’é}|é(i,j),e o . €||C “drat

< p1¢3log™/? p. Together with (S.4.9) and (S.4.10), we have

> 2 Z// (1= PE[(E N EUp{c WL 4 7))

1,50 15 £ 4F£4,5 k,l=1

qf)3 10g7/2 p
p1/2

DD drdt <

X ¢ g).eller (S.4.11)
Combining (S.4.8) and (S.4.11), (S.4.7) implies that 37, ;. ;5 >y i 2 =1 13,200, 5, 6k, D] S 1243 1og"/?
Together with (S.4.6), it holds that >, . >y s S Ma(i, 4, 4,k 1)] S p 124310872 p+ ¢PpB log® p-

exp{—Cpp—2(logp)~2}. If we select ¢ < p'/? log—%/? p, we have Zi’j:#j Z&#i’j Z£,1=1 \Is(i, 7,0, k, 1) <
p12¢31007/2 .
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