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Abstract. Parthasarathy’s heritage has a hidden component arising from
a variant of his concept of shift-compactness which yields quick proofs of
fundamental theorems reviewed here. We demonstrate the closeness of the
variant notion to his original one as arising in the tacit treatment of all
possible convergent centrings.
We also include a very short proof of the Effros Mapping Theorem —a

non-linear version of the Open Mapping Theorem. This is deduced from a
shift-compactness theorem. Both these can be given a constructive form by
implementing a constructive improvement to a theorem on the separation of
points and closed nowhere dense sets.
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1. Probabilistic results
Central limit theory
Parthasarathy introduced the concept of shift-compactness for probabilis-

tic reasons. We recall the classical central limit problem in probability theory.
The prototype here is the original central limit theorem (CLT): that if one
has a sequence of independent copies Xn of a (real-valued) random variable
X with finite mean µ and variance σ2, then centring at means and scaling
gives convergence in law of their sum to the standard Gaussian (or normal)
law, Φ = N(0, 1):

P((
n∑
1

Xi − nµ)/(
√
nσ) ≤ x)→ Φ(x) (n→∞) ∀x.

This can be vastly generalised, to suitable (‘uniformly asymptotically negligi-
ble’, uan) doubly-indexed arrays (Xnk). The sequence of row-sums of the ar-
ray are approximated by ‘accompanying infinitely divisible laws’, which have
the same limits. These limits are the infinitely divisible laws, described by the
Lévy-Khintchine formula. This is the theme of the classic book [GneK1954].
The centring (at means when they exist, though they may not) is the “shift
in shift-compactness”.
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The area is best seen from a stochastic-process viewpoint, where the infi-
nitely divisible limit laws are generalised to Lévy processes, for which see e.g.
Bertoin [Ber1996]. Here one has a continuous-time parameter in the limit
process, while the arrays one begins with are discrete-parameter. (For more
on the interplay between discrete-space and continuous-parameter results,
see the companion paper [BinS].) To embed the initial discrete setting in the
continuous final one, one needs embedding theorems; see [Hey1977, Ch. III].
Embedding fails in the general locally compact case (see below).
As usual with limit theorems, exact independence is not needed, but can

be weakened to suitable forms of weak dependence, in particular to a hierar-
chy of mixing conditions. For details, see e.g. [EbeT1986], [Bra2007].
The theory was extended from the line R to locally compact abelian

groups with a countable basis for their topology by Parthasarathy [Par1967,
Ch. IV] (cf. Parthasarathy and Schmidt [ParS1972], Guichardet [Gui1972]),
and Heyer [Hey1977, Ch. V], using Parthasarathy’s concept of shift-compactness
(below). For the failure to extend to general locally compact groups, see
[Hey1977, Ch. VI]. To give a sample result: the condition for embeddability
to hold for a locally compact group G is that the connected component G0 of
the identity 1G be locally arcwise connected ([Hey1977, Th. 3.5.12]).
Shifts, stationarity and Szeg̋o
Shifts are ubiquitous and of fundamental importance. In particular, they

are crucial in spectral function theory, for which see Nikolskii [Nik1986].
Szegő theory is of fundamental importance in prediction theory, for which
see e.g. [Bin2012]. Stationarity is important in both areas.
Other areas of Parthasarathy’s work
Quantum probability
The continuous tensor products of [ParS1972] (see e.g. its reviewMR3907334)

are important in the field of quantum probability, one of Parthasarathy’s ma-
jor lifelong interests. For textbook expositions see [Par1992], Meyer [Mey1993].
See also [Par1988a], [Par1992], [Par1994],[Par2018], [BarGJ2001], [BarGJ2003],
[Bin2003].
Combinatorics and graph theory
Parthasarathy worked extensively on combinatorics and graph theory,

particularly in his early work (perhaps stemming from his 1962 PhD un-
der C. R. Rao at the Indian Statistical Institute, Kolkata). These areas are
important in statistics, in design of experiments.
Parthasarathy on Kolmogorov
We conclude here by referring to Parthasarathy’s excellent obituary ar-
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ticle on Kolmogorov [Par1988b], which is full of interesting reminiscences of
this greatest of all probabilists.

2. Groups, Baire spaces and analyticity
Below we develop shift-compactness notions related to that established

by Parthasarathy. The context here will always be that of a separable metric
group G. The group G may act on a topological space X. Hereafter such
a space X usually carries a metric dX (so is metric, is metrisable), but on
occasion we may permit a more general topological structure, and this will be
stated explicitly. In this connection we recall the Birkhoff-Kakutani invariant
metrization result, which was also key in his work ([Par1967, Ch. III Lemma
4.1, referring to [Kel1955, Ch. 6 p. 210]). We formulate this in the style
of Kolmogorov normability, by reference to a (group) norm ||x||, one which
satisfies the three axioms:
i) Positivity: ||x|| > 0 unless x = 1G, the identity element of G;
ii) Symmetry: ||x−1|| = ||x||, i.e. inversion invariance;
iii) Subadditivity: ||xy|| ≤ ||x||+ ||y||, i.e. the triangle inequality.

Theorem 2.1 [Birkhoff-Kakutani Normability Theorem, [Bir1936], [Kak1936]].
A first-countable right-topological group X is a normed group iff inversion
and multiplication are continuous at the identity.

Here first-countable means that the identity of the group has a countable
basis for its neighbourhoods; right-topological means that multiplication on
the right is continuous. Thus a normed group need not be a topological group
(see below). Such a norm generates a left- and a right-invariant metric, e.g.
dR(x, y) = ||xy−1||. Thus we denote open balls1 of radius ε > 0 centred at 1G
by Bε(1G). A further tool is provided by two inter-related concepts due to
Baire. We recall that a subset is meagre if it is a countable union of nowhere
dense sets. Baire’s Category Theorem asserts that a complete metric space
is non-meagre; equivalently, a countable intersection of dense open sets is a
dense Gδ. A (separable!) group X is Baire, meaning that the conclusion in
Baire’s theorem holds in it, iff some open subset is non-meagre (equivalently,
all non-empty open subsets are such). A subset T ⊆ X has the Baire property
(is Baire, for short) if T is open modulo a meagre set; the relevant open set
is referred to as its quasi-interior. (It is non-empty iff T is non-meagre.)

1 [Par1967] uses sphere in the sense of ball, sometimes open, sometimes closed; its
boundary there is denoted by B (see page 50).
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The concept of being meagre relies on countability. However, Banach’s
ingenious use of an open disjoint ‘almost covering’ (i.e. omitting only a
nowhere dense set) led to Banach’s Category Theorem, according to which
a union of any family of meagre open sets is meagre. (The result is thus
sometimes called the Banach Union Theorem.) This is very much in the
same spirit as τ -additivity in measure theory (see e.g. [Fre2003]). A measure
µ is τ -additive if, for any increasing (perhaps uncountable) family of sets,
{Aλ : λ < κ} say (well-ordered by ordinals),

sup
λ<κ

µ(Aλ) = µ(sup
λ<κ

Aλ), i.e. = µ

(⋃
λ<κ

Aλ

)
.

Baire’s Theorem has a countability-free form in the statement below,
which, however, refers to the countable chain condition, i.e. that any family
of disjoint open sets is at most countable (cf. [Fre1984, 11A]).
Martin’s Axiom, MA.
Any compact Hausdorff space satisfying the countable chain condition is

not the union of less than continuum many nowhere dense subsets.

This is a topological variant of Martin’s Axiom, which is usually stated
in its original context of partial orders. For a proof of the equivalence of
the two variants, and a discussion of its relative consistency, see e.g. Weiss
[Weis1984]. (The axiom reduces to Baire’s Theorem if the continuum is ℵ1.)
For a discussion of the axiom in its original context and its consequences see
[Fre1984]; the topological aspects are commented on ibid. §43, p. 192.
We further recall that a subset of X is analytic if it is the continuous

image of a Polish space (complete separable metric space). A continuous
image of an analytic set is manifestly analytic. Relevance here rests on
the fact that analytic subsets are Baire (by a result due to Nikodym, see
e.g. [RogJ1980, §2.9]), and so analyticity is the means by which the Baire
property is preserved under continuous images.
Finally, we note that situations below will arise which divide into two

sharply contrasting cases —usually where behaviour is, in some appropriate
sense, either very good or very bad. Thus in the dichotomies of §5 a subgroup
is either meagre or the whole group. In the Darboux dichotomy of §3, a real-
valued additive function on R is either continuous or locally unbounded on
every non-meagre Baire subset of R (cf. [BinJJ2020]). Such dichotomy often
has a generic aspect: if something works at all, it works nearly everywhere.
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The source of this genericity is addressed below: a property inheritable by
supersets either holds generically or fails outright. The nub is the following
straightforward result. Below Ba = Ba(X) denotes the Baire subsets of X.

Theorem 2.2 [Generic Dichotomy Principle, [BinO2010b]]. For F : Ba →
Ba monotonic, i.e. satisfying F (S) ⊆ F (T ) for S ⊆ T , either:
(i) there is a non-meagre S ∈ Ba with S ∩ F (S) = ∅, or,
(ii) for every non-meagre T ∈ Ba, T ∩ F (T ) is quasi almost all of T.
Equivalently: the existence condition that S ∩ F (S) 6= ∅ should hold

for all non-meagre S ∈ Ba, implies the genericity condition that, for each
non-meagre T ∈ Ba, T ∩ F (T ) is quasi almost all of T.

3. Shift-compactness and infinite combinatorics
Wefirst recall an important tool of [Par1967], the notion of shift-compactness

for probability measures and two related key properties. The context is the
convolution semi-groupM(X) of (Borel, probability) measures on a separa-
ble metric group X. This means thatM(X), understood to be equipped with
the weak topology, may itself be equipped with a separable metric [Par1967,
II Th. 6.2], to which the Birkhoff-Kakutani theorem of the preceding section
applies, in view of the continuity properties of convolution.
The subset K ⊆M(X) is right shift-compact if for any sequence of mea-

sures µn ∈ K there are right translations tn ∈ X such that the convolution
sequence µn ∗ tn has a convergent subsequence µnm ∗ tnm ⇒ λ ∈ M(X).
Similarly for left shift-compactness.
Using continuity of ∗ in the special case µnm ∗ t⇒ λ gives µnm ⇒ λ ∗ t−1,

showing µn to be conditionally compact. This holds more generally:

Theorem 3.1 [Par1967, III.Th. 2.1]. If both sequences of measures µn and
λn = µn ∗ νn are conditionally compact, then so also is νn.

The result applies to the special case νn = δtn of Dirac measures with tn as
above, showing that tnm is convergent (to t, say). More general adjustments
of a sequence µn towards conditional compactness emerge as a disguised
translational adjustment in the following result.

Theorem 3.2 [Par1967, III.Th. 2.2]. If the sequence of measures λn =
µn ∗ νn is conditionally compact, then µn and νn are respectively right and
left shift-compact.
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The concept of shift-compactness (often narrowed down to K a sequence)
is motivated by limit theorems and the detailed study of Gaussianity in
M(X). See §1 and, for instance, [Par1967, p.80, pp. 113-4] (also pp. 171,
182,187,195).

Theorem 3.3. If µm ∗ tm =⇒ λ ∈ M(X) with tm → t, then for each
λ-non-null Borel set A with λ-null boundary there is a sequence um so that

{m ∈ N : umtm ∈ A} is infinite.

In particular, in the abelian case, for tm = tzm with zm → 1X and sm = tum

{m ∈ N : smzm ∈ A} is infinite.

Proof. By the Portmanteau Theorem [Bil1999, Th. 2.1] (cf. [Par1967, Ch.
II Th. 6.1]) µm ∗ tm(A) > 0 infinitely often (i.o), i.e.

0 < µm ∗ tm(A) =

∫
u∈At−1m

dµm(u) i.o.

So, for infinitely many m, there is some um with umtm ∈ A. In the abelian
case, writing tm = tzm with zm → 1X and sm = tum yields the desired result.
�

Observe that the final assertion that smzm ∈ A i.o. yields an embed-
ding of an infinity of terms of apparently just the one null sequence zm into
many sets A associated with the Borel measure λ. However, Parthasarathy’s
definition tacitly admits a plurality of convergent subsequences (to appro-
priate limit measures λ, and/or their translates). This motivates a related
shift-compactness concept, now in a metric group, albeit focused not on one
useful null sequence zm → 1X , but on all null sequences in X.
Definition. Say that an arbitrary (‘target’) subset T ⊆ X is shift-

compact if for any null sequence zm → 1X there is t ∈ T such that

Mt = {m ∈ N : tzm ∈ T} is infinite.

In the case of the additive group of reals, such a property was initially
studied (albeit under a different name, and specialized to co-finite sets Mt)
by Kestelman [Kes1947] and later by Borwein and Ditor [BorwD1978] in
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the measure case. It is thus appropriate to name the following result on
infinite combinatorics after their pioneering work. For its extensive usage see
[BinO2024]. Theorems below that assert the shift-compactness of specified
sets will be termed shift-compactness theorems.

Theorem 3.4 [Kestelman-Borwein-Ditor Theorem, TheoremKBD]. Let zn →
0 be a null sequence in R. If T is a measurable/Baire subset of R, then for
generically all (= almost all/quasi all) t ∈ T there is an infinite set Mt (or
subsequence) such that

{t+ zm : m ∈Mt} ⊆ T.

Thus Baire non-meagre/measurable non-null sets are shift-compact.
Here a property holds for almost all, resp. quasi all, t if it holds for all t
off a null, resp. meagre, set. The genericity here results from the Generic
Dichotomy Principle, Theorem 2.2.

Relation to Parthasarathy shift-compactness. One may relax the def-
inition above to parallel more closely that of [Par1967] via Theorem 3.3 and
(temporarily) call T ⊆ X dynamically shift-compact, if for any zn → 1X
there are tn ∈ T with

tnzn ∈ T i.o., equivalently zn ∈ TT−1 i.o.

This, however, in turn is equivalent to 1X being an interior point of TT−1.
Indeed, if Bε(1X) ⊆ TT−1 for some ε > 0, then in fact zm ∈ TT−1 for co-
finitely many m. Conversely, if 1X is not an interior point of TT−1, then for
m = 1, 2, ... we may select zm ∈ B1/m(1X)\TT−1, giving zm → 1X but with
zm not i.o. in TT−1. Thus the celebrated Steinhaus-Weil interior point prop-
erty, SW, of Theorem 9.1 emerges here. In brief, dynamical shift-compactness
is just disguised SW.
The emphasis here on all null sequences in turn prompts an immediate

question concerning for which Borel measures λ do all λ-non-null sets A have
the embedding property of Theorem 3.3, that smzm ∈ A i.o. For locally
compact groups X, this is answered by the Simmons-Mospan Converse to
SW, Theorem 9.2, that λ is absolutely continuous w.r.t. Haar measure.
Thus the difference between KBD-like shift-compactness and Parthsarathy’s

lies in admitting all possible null sequences, so may be said to admit all pos-
sible convergent centring.
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Remark. In the proof of Theorem 3.3, passing to a compact K ⊆ A with
λ(K) > 0, given continuity of convolution and so of t 7→ λ(Kt−1), a situation
could emerge rather like that in [Par1967, Ch. 3 Lem. 3.1] (cited as Lemma
7.2 below) that for some infinite sequence of integers m(1), ...,m(n), ... all
the finite intersections Kt−1

m(1) ∩ ... ∩ Kt
−1
m(n) are non-empty (through being

non-null). There would then be u in their intersection such that u ∈ Kt−1
m(n),

yielding utzm(n) ∈ K ⊆ A, exactly as with the KBD-like shift-compactness.
Evidently, having tn ≡ t (down a subsequence) retrieves the narrower (static)
definition.
The dynamic version neverthlesss has its merits as an operational conve-

nience. Thus, recall Darboux’s Theorem [BinO2011] (cf. [BinJJ2020]) that
an additive function bounded on an interval is continuous. A strengthening
of this theorem may be obtained by an argument similar to the ‘reduction
to SW’above, to show that if f : R → R is additive and bounded (in mod-
ulus) by M on the dynamically shift-compact set T, then f is continuous,
and so linear. Indeed, f will be bounded on any interval, as otherwise we
may choose a convergent sequence xn → x with, say, f(xn) ≥ n. Writing
xn = x+ zn with zn → 0, choose tn ∈ T with tn + zn ∈ T i.o. Then i.o.

n ≤ f(xn) = f(x) + f(zn + tn)− f(tn) ≤ f(x) + 2M,

which gives a contradiction for large enough n.
Almost the same argument yields a proof of a standard result of functional

analysis, the Banach-Steinhaus Uniform Boundedness Theorem ([Rud1991,
§2.3], [Con1990, III §14, 14.1]).

Theorem 3.5. For X a non-meagre topological vector space and F a family
of continuous linear functionals, if for each x the set {||f(x)|| : f ∈ F} is
bounded, then {||f(x)|| : f ∈ F} is bounded on a nhd of 0.

Proof. Suppose otherwise. Then, for each n, there exist xn ∈ X and
fn ∈ F such that ||fn(xn)|| ≥ n. As f is continuous, {x : ||f(x)|| ≤ n} is
closed, and so is

An :=
⋂

f∈F
{x : ||f(x)|| ≤ n},

so has the Baire property. By assumption

X =
⋃

n
An.
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So, since X is non-meagre, there is N such that AN is non-meagre. By
Theorem KBD there are t ∈ AN and infinite Mt such that xm + t ∈ AN for
m ∈Mt. For m ∈Mt one has

||fm(xm)|| = ||fm(xm + t)− fm(t)|| ≤ ||fm(xm + t)||+ ||fm(t)|| ≤ 2N.

So {||fm(xm)|| : m ∈ Mt} is bounded, a contradiction, since Mt is infinite
(and ||fm(xm)|| ≥ m} for m ∈Mt ). �

4. Shift-compactness: a decade (or 67 years) on
We introduce a more general shift-compactness theorem after some pre-

liminaries. These results are taken from [Ost2013b]2, and with the exception
of Theorem 4.3, have brief proofs meriting repetition. They enable the devel-
opment in Section 6 of the Effros Mapping Principle, an important ‘cousin’
(non-linear generalization) of the celebrated Open Mapping Theorem (be-
low), giving by far the simplest and shortest proof, as compared to e.g. that
given by Ancel [Anc1987].

Definitions. 1. As in [BinO2010c, §2], denote by H(X) the normed
group of bounded autohomeomorphisms of a space X metrized by dX com-
prising those h(.) with finite norm:

||h|| := sup
x
dX(h(x), x) <∞.

2. Say that a subgroup G ⊆ H(X) separates (individual) points and closed
nowhere dense sets in the space X if, for each x ∈ X and F closed and
nowhere dense in X, there is in each neighbourhood of the identity 1G an
element g ∈ G such that g(x) /∈ F.
3. Say that the above separation of x from F is strong if in each neighbour-
hood of the identity there is a non-empty open set H such that h(x) /∈ F for
every h ∈ H. Equivalently (when the group is right-topological, as will be
the case below), in each open neighbourhood U of 1G there are g ∈ U and
an open neighbourhood V of 1G with V g ⊆ U and with V g(p) disjoint from
F.
4. The group G ⊂ H(X) acts transitively on a space X if for each x, y in X
there is g in X such that g(x) = y.

2An early survey of shift-compactness was presented at the 25th Summer Topology
Conference in July 2010 in Kielce. The current text is thus a review of shift-compactness
a decade on.
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5. A group G acts continuously under ϕ on X if ϕ : (g, x) 7→ g(x) := ϕ(g, x)
is continuous. Here gh(x) = g(h(x)). It acts separately continuously if each
point evaluation ϕx : g 7→ g(x) and each g : x 7→ g(x) is continuous.

Lemma 4.1. If G is a separable normed group, acting continuously and
transitively on a non-meagre space X, then for each non-empty open U in G
and each x ∈ X the set Ux is non-meagre in X.

Proof. We first work in the right norm topology of G. Suppose that u ∈
U ⊆ G and so without loss of generality assume that U = Bε(u) = Bε(1G)u
(for some ε > 0); put y := ux and W = Bε(1G). Then Ux = Wy. Next work,
exceptionally, in the left norm topology (for which W = Bε(1G) is a nhd of
1G). As each set hW for h ∈ G is now open (since now the left shift g 7→ hg is
norm-continuous and so a homeomorphism), the open family {gW : g ∈ G}
covers G, and so has a countable sub-cover, {gnW : n ∈ N} say. As G is
transitive, X = Gy, and so X is covered by {gnWy : n ∈ N}. So for some
n, the set gnWy is non-meagre. As g−1

n is a homeomorphism of X, the set
Wy = Ux is also non-meagre in X. �

Remark. If for each x the point evaluation map g 7→ g(x) is continuous and
X is analytic, then also Ux is analytic and so Baire.

Lemma 4.2 [Separation Lemma]. If G is a separable normed group, acting
separately continuously and transitively on a non-meagre space X, then for
any fixed point x and F closed nowhere dense the set

Wx,F := {α : α(x) /∈ F}

is dense open. In particular, G separates points from nowhere dense closed
sets.

Proof. The set Wx,F is open, as it takes the form ϕ−1
x (X\F ) and ϕx(g) =

g(x) is continuous (by assumption of separate continuity). By Lemma 4.1,
for U any non-empty open set in G, the set Ux is non-meagre, and so Ux\F
is non-empty, as F is meagre. But, then for some u ∈ U we have u(x) /∈ F .
�

Theorem 4.3. Suppose a separable subgroup G of H(X) acts transitively on
a non-meagre space X. Then G strongly separates points and closed nowhere
dense sets.
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Proof. Here the action is separately continuous, as for each g ∈ G the
autohomeomorphism g 7→ g(x) is continuous in x, and since for fixed p ∈ X,

d(g(p), h(p)) ≤ supX d(g(x), h(x)) = supX d(g(h−1(x)), x) = ||gh−1||,

on substituting h−1(x) for x. Now consider a point p ∈ X and a nowhere
dense closed set F. By Lemma 4.2 G, being a separable normed group acting
separately continuously and transitively on a non-meagre space X, separates
p and F . So there is τ ∈ G with τ(p) /∈ F. Let ε := d(τ(p), F ) > 0. Then for
any δ < ε, we have Bδ(1)τ(p) ⊆ X\F. Otherwise, ητ(p) = y ∈ F for some y
and η ∈ Bδ(1), and so

ε = d(τ(p), F ) ≤ d(y, τ(p)) = d(ητ(p), τ(p)) ≤ supX d(η(x), x) = ||η|| < δ,

a contradiction. That is, G strongly separates. �

The next result originates in [Ost2013b], generalizing its Euclidean pre-
decessor in [MilO2012], and then remerges in [MilMO2021] in a ‘construc-
tive’Euclidean presentation (i.e. using effective coding) enabling the use of
Gödel’s Axiom of Constructibility (V = L), to which we return later in this
section. Below is a clearer, shorter, and somewhat different proof from that
in [Ost2013b]. The end purpose is to enable an easy check on its construc-
tive character in Theorem 4.8 below. The general idea in Theorem 4.4 is
that, as more points ui in U are considered, progressively shorter ‘links’are
added to a chain of shifts, each ensuring preservation both of membership
in an open set U and of separation from a closed set F. When the points ui
converge, the existence of a limiting KBD shift comes from Baire’s theorem
(in Th. 4.6). For a simpler result in a right-topologial group acting on iself,
see [MilMO2021, Lemma 1].

Theorem 4.4 [Finitary Strong Separation]. Suppose the subgroup G of
H(X) strongly separates points from closed nowhere dense sets of X. Let
U ⊆ X be open, ui ∈ U for i ≤ n and F ⊆ X closed and nowhere dense.
Then, for each ε > 0, in Bε(1G) there is a non-empty open set V ⊆ G of
homeomorphisms η such that η(ui) ∈ U and η(ui) /∈ F for each i ≤ n.

Proof. We use induction on the number of points. The starting step
n = 1 (which reasserts strong separation) is similar to but simpler than the
inductive step, to which we now turn.
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Let ε > 0. Take ε̄ = min{ε/2, d(un+1, X\U)}. By the inductive hypothe-
sis, for the first n point ui, there is a set V ⊆ Bε̄(1G) as in the statement of
the theorem, i.e. for some τ 1 ∈ V with ||τ 1|| < ε̄ and all η ∈ Bδ(1G)

ητ 1(ui) ∈ U and ητ 1(ui) /∈ F for i = 1, ..., n.

By the assumed strong separation of τ 1(un+1) from F, choose τ 2 in Bδ(1G)
and B2 a nhd of 1G with both B2τ 2 ⊆ Bδ(1G) and ητ 2τ 1(un+1) ∈ U\F, for
each η ∈ B2.
Take τ := τ 2τ 1. Since ||ητ(un+1)|| ≤ ||η||+ ||τ || < ε̄+ δ < ε,

ητ(un+1) ∈ U.

Moreover, for η ∈ B2 ⊆ Bδ(1G),

ητ(ui) ∈ U and ητ(ui) /∈ F for i = 1, ..., n.

Combining yields the assertion for n+ 1 points. �

Remark. The inductive argument above (key to Theorem 4.6 below) is
based on a small ‘nudging’of an additional point un+1 away from a nowhere
dense set. This can also be developed in a Haar-measure context using the
density topology, for which the nowhere dense sets are the null sets, cf. The-
orem 8.8 (Kodaira’s Theorem). For the details see [MilMO2021, Th. 2H].

Lemma 4.5. Suppose the subgroup G of H(X) strongly separates points
from closed nowhere dense sets of X. For K = {xn : n = 0, 1, 2, ..} ⊆ X
with xn → x0 and closed nowhere dense F , the set

WK,F := {α ∈ G : α(K) /∈ F} = {α : α(K) ⊆ X\F}

is dense open in the norm topology.
In particular, for T ⊆ X co-meagre and G a separable subgroup of H(X)

acting transitively on X, there is α ∈ G with

{α(xn) : n = 0, 1, 2, ..} ⊆ T.

Proof. As to open-ness, for u ∈ WK,F one has u(K) ⊆ X\F , so ε :=
mink∈K{d(u(k), F )} > 0, as K is compact. Then Bu ⊆ WK,F for B =
Bε(1G).
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As to density, fix u and write un := u(xn). By Lemma 4.2 we may assume
u(x0) /∈ F. Now for some ε > 0 and integer N one has Bε(u(x0)) ⊆ X\F and
u(xn) ∈ Bε/2(u(x0)) for n > N. As in Theorem 4.3 find η with ||η|| < ε/2 such
that η(ui) /∈ F for i ≤ N. But for n > N one has η(u(xn)) ∈ Bε/2(u(xn)) ⊆
Bε(u(x0)) ⊆ X\F. Thus for all n one has η(u(xn)) /∈ F, as required.
For the particular case given, Theorem 4.3 applies yielding the required

strong separation. Now w.l.o.g. take T =
⋂
n(X\Fn) with each Fn closed

and nowhere dense. Here G is a Baire space (since e.g. the open set X\F1

is non-meagre). So by the above

C :=
⋂

n
{α ∈ G : α(K) ⊆ X\Fn}

is a dense Gδ-set in G. Thus
α(K) ⊆ T

for many (densely-Gδ many) α ∈ C. �

For a simpler result in which a Baire right-topological group acts on itself,
see [MilMO2021, Th. 1].
We now obtain a first generalization of Theorem KBD above (followed

by Theorems 7.7, 8.4 and 8.7). Here shift-compactness is a consequence of
separation properties.

Theorem 4.6. For T a Baire non-meagre subset of a metric space X and G
a separable normed group, Baire in its right norm topology, acting separately
continuously and transitively on X:
for every convergent sequence xn → x there are τ ∈ G and an integer N

such that τ(x) ∈ T and

{τ(xn) : n > N} ⊆ T.

In particular, this assertion holds in a separable subgroup G of H(X)
acting transitively on a non-meagre space X.

Proof. Write T := M∪U\
⋃
n Fn with U open,M meagre and each Fn closed

and nowhere dense in X. Let u0 ∈ T ∩U. By transitivity there is σ ∈ G with
σx = u0. Put un := σxn. Then un → u0. Take K = {un : n = 0, 1, 2, ..}.
Next write

C :=
⋂

n
{α : α(K) /∈ Fn},

13



which is a dense Gδ by Lemma 4.2. So, as the action is (separately) continuous
and G is Baire, the set

{α : α(u0) ∈ U} ∩ C
is non-empty. For α in this set,

α(u0) ∈ U\
⋃

n
Fn.

Now α(un) → α(u0), by (separate) continuity of α, and U is open. So for
large enough n, α(un) ∈ U. Since {α(um) : m = 1, 2, ..} ∈ X\

⋃
n Fn, we have

that α(un) ∈ U\
⋃
n Fn ⊆ T for such n.

Finally, put τ := ασ. Then τ(x) = ασ(x) ∈ T and {τ(xn) : n > N} ⊆ T .
For the final assertion, by Theorem 4.3G is a separable Baire group acting

separately continuously and transitively on X, as in Lemma 4.5. �

A refinement of this argument (for which see [Ost2015]) involves a second
Baire non-meagre set providing location for the ‘shifter’τ in the preceding
result:

Theorem 4.7 [Baire Shift Theorem]. For T a Baire non-meagre subset of
a metric space X and G a separable normed group, Baire in its right norm
topology, acting separately continuously and transitively on X:
for every convergent sequence xn with limit x and any Baire non-meagre

A ⊆ G with 1G ∈ A such that Ax ⊆ T, there are α ∈ A and an integer N
such that αx ∈ T and

{α(xn) : n > N} ⊆ T.

Constructive versions.
We recall the Gödel constructible hierarchy 〈Lα : α ∈ On〉, where On

denotes the class of all ordinals and, for each ordinal α, the sets Lα are
obtained by iterating transfinitely the operation which defines Lβ+1 as the
family of subsets of Lβ definable by the first-order formulas in the formal
language of set theory (i.e. with primitive symbol ∈ for membership). Here
the sets are allowed formal definitions that refer to a finite string of elements
of Lβ and all of their quantifiers range over Lβ —see eg. [BinO2019a]. The
class L := {Lα : α ∈ On} comprising all the constructible sets has a canonical
well-ordering <L (defined by transfinite induction using an effective listing
of all of the countably many predicates of the formal language).

14



Given a separable group X with a constructible listing of a dense set D
and corresponding listing I1, I2, ...of the basis of open balls {B1/n(d) : d ∈ D},
one considers the (cumulative) class Gα of open sets coded by Lα, i.e.

Gα = {U : U =
⋃

n
Ixn for some sequence xn in Lα}.

The family of complements of sets in Gα is denoted by Fα.
We now have the tools to define constructive strong separation by requir-

ing in the definition of strong separation as above that the set H is in the
family Gα for some ordinal α. Note that we do not presume members of X
and so of H are in Lα, only that the open set is coded by Lα. Recall that by
the definition of group action

(gh)(p) = g(h(p)).

Let D dense in G have a constructible enumeration. Given p (with p ∈ Lα)
and F closed nwd also coded in Lα there is a least n ∈ N with

B1/n(1G)p = {g(p) : ||g|| < 1/n} disjoint from F.

Using its constructible enumeration, pick the ‘first’d ∈ D ∩B1/n(1G). Then,
as in the proof above, for some least m ∈ N

B1/m(d) = B1/m(1G)d ⊆ B1/n(1G).

So
B1/m(1G)dp = {(gd)(p) : ||g|| < 1/m} is disjoint from F.

From here it follows that Theorem 4.3 has the constructible version below.
For this, recall that a canonical non-meagre Baire set is a non-meagre Gδ-set.
(Remove any surplus meagre set by expansion to a countable union of closed
nowhere dense sets.)

Theorem 4.8 [Constructible KBD; cf. [MilMO2021, Th. 1E]]. Suppose the
subgroup G of H(X) is separable and acts transitively on the non-meagre
metric space X, and that both G and X are coded in Lα. Given any conver-
gent sequence xn ∈ Lα, and non-meagre Gδ-set T =

⋂
Gn ⊆ X also coded in

Lα, there is h ∈ G coded in Lα+ω and N ∈ N with

{h(xn) : n > N} ⊆ T.
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Theorem1E of [MilMO2021] is a corollary, since the group of Euclidean
translations is normed exactly as Euclidean space: for h(x) = c+ x,

||h|| = ||(c+ x)− x|| = ||c||.

(The fact that this group strongly separates points from closed nowhere dense
sets was shown ibid. Prop. 1.) Constructible versions are relevant to the
construction of singular sets from Gödel’s Axiom of Constructibility, V = L.

5. Subgroup theorems
There are two well-known dichotomies (here ‘small or large’, rather than

‘nice or nasty’, as in the Darboux dichotomy where additive functions are
either continuous or everywhere unbounded, cf. [BinO2011]) asserting that
a Baire subset is either meagre or clopen. From our current perspective
they are ‘duals’(as with the generalization of Theorem KBD). There is the
Banach-Kuratowski dichotomy, that a Baire subgroup is either meagre or
clopen ([Ban1931, Satz 1],[Kur1966, Ch VI, 13 XII], cf. [Kel1955, Ch 6 Prob
P], [BGT Cor 1.1.4], [BecCS1958], [Bec1960]), where the context is a group
G and the subset is a subgroup H (evidently invariant under the translation
action of H). There is also the Kuratowski-McShane dichotomy [Kur1966],
[McS1950, Cor.1], concerning now a Baire subset S of a topological space
being either meagre or clopen, with the premise of a transitive action of a
family of autohomeomorphisms such that each action either leaves the subset
S invariant or shifts it into disjointness (see [BinO2010c]).
The dichotomies below are in keeping with this, though they interpret

large as ‘total’. We give an application in Theorem 5.3 below —see [BinO2011]
for others related to additivity, sub-additivity, and convexity (or for more de-
tailed analyses: [BinO2008], [BinO2009], [BinO2010a]). As may be expected
from the Banach-Kuratowski dichotomy, for totality one relies either on den-
sity or connectedness. The following direct proofs are inspired by a close
reading of work by Hoffmann-Jørgensen ([Hof1980, p. 255]), where the sub-
group theorem is implictly used for a topological group. They assume less
than completeness.

Theorem 5.1 [Subgroup Theorem - density version]. In a complete normed
group G, if H is a dense non-meagre subgroup with the Baire property, then
H = G.

Proof. We interpret the statement in the right norm topology. By the
Steinhaus-Weil theorem, Theorem 9.1 below, since H is Baire non-meagre
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and a subgroup, H−1H is an open nhd of 1G, and so H = H−1H is also an
open nhd of 1G in G. For any g ∈ G\H one has H ∩Hg = ∅ (as otherwise
h1 = h2g for h1, h2 ∈ H implies g = h−1

2 h1 ∈ H), and so Hg is a nhd of g
avoiding H. So H is closed in G; so, being dense in G, it is the whole of G.�

Our own earlier normed-group approach in [BinO2010c] relied on a weak-
ening of the Archimedean property (i.e. G =

⋃
n∈NH

n) in lieu of density to
derive a similar result, whereas in [BinO2011] we used Kronecker’s Theorem
to show that in the additive group R a non-meagre subgroup is dense. In the
absence of density the argument above still goes through when the group is
connected, as then the Archimedean property holds for H, as we show below.

Theorem 5.2 [Subgroup Theorem —connected group version]. In a con-
nected complete normed group G, if H is a non-meagre subgroup with the
Baire property, then G =

⋃
n∈NH

n and so H = G.

Proof. As in the proof above, H−1H = H is an open nhd of 1G in G.
Suppose that B := Bε(1G) ⊆ H. As B is symmetric and BS =

⋃
s∈S Bs is

open for any set S, the set C :=
⋃
n∈NB

n is an open subgroup with C ⊆ H.
Now for any g ∈ G\C one has C∩Cg = ∅ (as before, since otherwise c1 = c2g
for c1, c2 ∈ C implies g = c−1

2 c1 ∈ C), and so Cg is a nhd of g avoiding C. So
the non-empty set C is both closed and open in G, and, by the connectedness
of G, is the whole of G, i.e. G = C = H. �

Theorem 5.3 [Loy [Loy1976], Hoffmann-Jørgensen [Hof1980]]. A non-meagre
analytic topological group is Polish.

Proof. An analytic topological group H, being separable, may be densely
embedded (by completion) in a complete separable topological group G, but
now H is a non-meagre subgroup with the Baire property (being analytic),
so is all of G by Theorem 5.1. �

We next recall the classical Open Mapping Theorem from linear func-
tional analysis, including its analytic sets proof, as it is so short, (cf. [Rud1991,
48-49], [Con1990, 12.1]) and as a prelude to its non-linear generalization The-
orem 6.1.

Theorem 5.4 (Open Mapping Theorem). If L : E → F is a linear,
continuous surjection between Fréchet spaces, then L is an open mapping
(takes open sets to open sets).
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Proof. [Ost2015] Consider L : E → F , a linear, continuous surjection
between Fréchet spaces, and U a nhd of the origin. Choose a small enough
open nhd A of the origin with A − A ⊆ U . As L(A) is non-meagre (since
{nL(A) : n ∈ N} covers F ) and, being the continuous image of an open (so
analytic) set is Baire, L(A)−L(A) is a nhd of the origin by the Steinhaus-Weil
Theorem (Th. 9.1 below). But of course

L(U) ⊇ L(A)− L(A),

so L(U) is a nhd of the origin. So L is an open mapping. �

6. Effros Open Mapping Principle
We again follow the development in [Ost2013b]; cf. [Ost2013a], [Ost2015].

Recall that H(X) is the group of bounded self-homeomorphisms of a metric
space X onto itself, comprising those h(.) such that supx d

X(h(x), x) < ∞.
A subgroup G acts microtransitively on X if for U open in G and x ∈ X the
set {h(x) : h ∈ U} is a neighbourhood of x; we refer to §4 for other terms
concerning group action.
Theorem E below is a non-linear extension of the familiar Open Mapping

Theorem of functional analysis (see e.g. Rudin [Rud1991, §2.10-12]), recalled
in Theorem 5.4 above.

Theorem 6.1 (Theorem E —Effros Open Mapping Principle). Let
the normed group G have separately continuous and transitive action on X.
If under either norm topology G is analytic and Baire and X is non-meagre,
then the action of G is microtransitive. That is, for U an open neighbour-
hood of 1G and for arbitrary x ∈ X, the set Ux := {u(x) : u ∈ U} is a
neighbourhood of x. So the point-evaluation maps g 7→ g(x) are open for
each x.

Remark. The proof below again refers to analyticity multiple times in
order to use the fact that the continuous image of an analytic set is analytic
and so has the Baire property (again Nikodym’s Theorem, cf. §3). The
short proof follows that in [Ost2013b] but one hopes made clearer with more
explicit justification at key steps.

Proof of Theorem 6.1. Assume G acts transitively on X and that X is
non-meagre. Let B := Bε(1G) and suppose that, for some ε > 0 and some x,
the set T := Bx is not a nhd of x. Then there is xn → x with xn /∈ Bx for each
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n. Take A := Bε/2(1G) so that 1G ∈ A, and note that A is a symmetric open
set (A−1 = A, by the inversion axiom (ii) for norms in §2). By Lemma 4.1, Ax
is non-meagre, since G is separable. (G being analytic, is Lindelöf [RogJ1980,
§2.7], so being metrizable is separable.) Being open, A is analytic and, since
by separate continuity the evaluation map g 7→ g(x) is continuous, also Ax
is analytic and so again Baire. By Theorem 4.6 above, as Ax ⊆ Bx = T,
there are a ∈ A (which, being open is Baire non-meagre, allowing A as a
location for a) and a co-finite Ma such that axm ∈ Ax for m ∈Ma. For any
such m choose bm ∈ A with axm = bmx. Then xm = a−1bmx ∈ A2x ⊆ Bx, a
contradiction (note that a−1 ∈ A, by symmetry). �

7. ‘Bunching’: intersecting shifts
In this section we identify an implicit use by Parthasarathy of our variant

of shift-compactness and then show in Theorem 7.7 a connection with a very
general shift-compactness theorem. Below K always refers to a compact set
in a fixed metric group G wherein Bδ denotes the open ball of radius δ > 0,
centred at 1G.
If a (compact) set K meets a right-shift of itself, Kx say, then x ∈ K−1K.

In particular, if this occurs for all shifts x in some set, then one may regard the
set as witnessing a ‘bunching’phenomenon. For instance, if the witnessing
set comprises all suffi ciently small shifts x, in whatever sense, e.g. those in
the open ball Bδ, then 1G ∈ B ⊆ K−1K. This makes 1G be an interior point of
K−1K, exactly as in the Steinhaus-Weil Interior Point Theorem, Theorem 9.1
below. In view of the many applications of the latter theorem, it is of interest
to identify appropriate notions of smallness and circumstances guaranteeing
bunching. The ball B can in certain circumstances be relatively open, for
instance in the Cameron-Martin subspace of a Hilbert space [BinO2019b], or
as in the Borell interior point theorem [Bor1976].
An example of this occurs in the following result.

Theorem 7.1 ([Par1967, Ch. 3 Th. 3.1]; [Hey1977, Th. 1.2.10 p.34]). For
X a Polish group, if µ is an idempotent probability measure on X, then its
support is a compact subgroup on which µ is normalized Haar measure.

It is of interest here that Weil’s proof of SW [Wei1940] uses the convolu-
tion of the indicator functions of K and K−1, again a bunching phenomenon;
see [HewR1979, p. 296]. The bunching in the case of the idempotent measure
above is a consequence of Lemma 7.2. We omit the proof.
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Lemma 7.2 ([Par1967, Ch. 3 Lem. 3.1]). For X a Polish group and K a
compact subset, if µ a probability measure on X, then for some x0 ∈ X

µ(Kx0) = δK := sup
x∈X

µ(Kx).

Indeed, for δK > 0, and any sequence xn with µ(Kxn) → δK with
µ(Kxn) ≥ δK/2, there cannot be a subsequenceM ⊆ N with {Kxm : m ∈M}
mutually disjoint. In fact, as noted earlier in §3, if one may choose M ⊆ N
with

⋂
m∈MKxm non-empty, then for t in this intersection one has

{tx−1
m : m ∈M} ⊆ K,

reproducing our variant of shift-compactness. Indeed, very similar ideas can
be traced back to the Simmons-Mospan converse of SW, for which see §9.
It emerges that a related measure subcontinuity effect (below) produces

similar bunching, highly relevant to the Steinhaus-Weil Theorem, and links
amenability at 1 with shift-compactness, for which see Theorem 7.7 below.

Definition ([BinO2020a]). For µ a probability measure (or, more gener-
ally, a finitely additive measure) and compact K, noting that µδ(K) :=
inf{µ(Kt) : t ∈ Bδ} is weakly decreasing in δ, put

µ−(K) := sup
δ>0

inf{µ(Kt) : t ∈ Bδ},

and, for t = {tn} a null sequence, i.e. with tn → 1G,

µt−(K) := lim infn→∞ µ(Ktn).

Then
0 ≤ µ−(K) ≤ µ(K) = inf

δ>0
sup{µ(Kt) : t ∈ Bδ}.

(See [[BinO2020a, Prop. 1].) We say that a null sequence t is non-trivial if
tn 6= 1G infinitely often. Define as follows:
(i) µ is translation-continuous (‘continuous’or ‘mobile’) if µ(K) = µ−(K)
for all compact K ⊆ G;
(ii) µ is subcontinuous if 0 < µ−(K) ≤ µ(K) for all non-null compactK ⊆ G;
(iii) µ is (selectively) subcontinuous at a non-null compact K along t if
µt−(K) > 0.
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For compact K and δ,∆ > 0, put

B∆
δ = BK,∆

δ (µ) := {z ∈ Bδ : µ(Kz) > ∆},

which is monotonic in ∆ : B∆
δ ⊆ B∆′

δ for 0 < ∆′ ≤ ∆. Note that 1G ∈ B∆
δ

for 0 < ∆ < µ(K). It is precisely these sets, when aggregated by reference
to a a suitable selectively subcontinuous measure, that create interior points
‘by bunching together’as in Lemma 7.3 below. The specialization below to
a mobile measure (see above) may be found in [Gow1970], [Gow1972]. Here
and below we denote byM+(µ) the µ-non-null measurable sets.

Lemma 7.3 (cf. [BinO2020a]). Let µ be a finitely additive measure on a
metric group G. For µ-non-null K, if µt−(K) > 0 for some non-trivial null
sequence t, then for ∆ ≥ µt−(K)/4 > 0 there is δ > 0 with tn ∈ B∆

δ for all
large enough n and

∆ ≤ µ(K ∩Kt) (for all t ∈ B∆
δ ),

so that
K ∩Kt ∈M+(µ) (for all t ∈ B∆

δ ). (∗)
In particular,

K ∩Kt 6= ∅ (t ∈ B∆
δ ),

or, equivalently,
B∆
δ ⊆ K−1K, (∗∗)

so that B∆
δ has compact closure.

A fortiori, if µ−(K) > 0, then δ,∆ > 0 may be chosen with ∆ < µ−(K)
and Bδ ⊆ B∆

δ so that (*) and (**) hold with Bδ replacing B∆
δ , and in par-

ticular G is locally compact.

Lemma 7.3 applies in particular to invariant measures (as there µ− =
µ), so that a group G with a Haar measure is necessarily locally compact,
and conversely by Haar’s theorem. Thus G has a Haar measure iff G is
locally compact. However, one can relax local compactness, at the expense
of introducing pathology in the measure. We refer to [DieS2014, Ch.10] for
detail here.

Recall that a group G is amenable at 1 [Sol2006] (see below for the origin
of this term) if, given a sequence of probability measures µ := {µn}n∈N with
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1G ∈ supp(µn), for n ∈ N there are probabilities σ and σn on G with σn � µn
satisfying

σn ∗ σ(K)→ σ(K) (K ∈ K(G)).

The term ‘amenability at 1’(see [Sol2006, end of §2]) should be viewed
as a localization, via the restriction that supports contain 1G, of a Reiter-
like condition [Pat1988, Prop. 0.4] which characterizes amenability: for any
probability measure µ and ε > 0, there is a probability measure ν with

|ν ∗ µ(K)− ν(K)| < ε (for all compact K).

Abelian Polish groups are amenable at 1: see again [Sol2006].

Theorem 7.4 (Subcontinuity Theorem, after Solecki [Sol2006, Th. 1(ii)]).
For G Polish and amenable at 1G and t a null sequence, there is a proba-
bility measure σ = σ(t) such that for each compact K ∈ M+(σ) there is a
subsequence s = s(K) := {tm(n)} with

limn σ(Ktm(n)) = σ(K) (n ∈ N), so σs_(K) > 0.

Now we recall that E is left Haar null, abbreviated to E ∈ HN , as
in Solecki [Sol2005], [Sol2006], [Sol2007] (following [Chr1972], [Chr1974]) if
there are a universally measurable B covering E and a probability measure
µ with

µ(gB) = 0 (for all g ∈ G).

Theorem 7.5 below aggregates all the relevant sets B∆
δ of the preceding

Lemma 7.3, by including all shifts gK of all compact sets K and all null
sequences t using the associated measures σ(t) of Theorem 7.4. The notation
δ(gK,∆) also refers to the corresponding δ of Lemma 7.3.

Theorem 7.5 (Aggregation Theorem). For G Polish and amenable at
1G, and E universally measurable but not left Haar null, put

Ê :=
⋃

∆>0,g,t
{BgK,∆

δ(gK,∆)(σ(t)) : K ⊆ E, 0 < σ(t)(gK)/4 ≤ ∆ < σ(t)(gK)}.

Then
1G ∈ int(Ê) ⊆ Ê ⊆ E−1E.

In particular, for E open, 1G ∈ int(Ê).
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Key to the proof is a sequence zn ∈ Ê\B1/n(1G) (cf. §3). The immediate
consequence is Solecki’s theorem of Steinhaus-Weil type:

Corollary 7.6 (Solecki’s Interior-Point Theorem [Sol2006, Th 1(ii)]).
For G Polish and amenable at 1G, if E is universally measurable and not
left Haar null, then 1G ∈ int(E−1E).

Theorem 7.4 and Lemma 7.3 may be used to prove the following shift-
compactness result.

Theorem 7.7 (Shift-compactness Theorem for HN ). For G Polish and
amenable at 1G, if E is universally measurable and not left Haar null and
zn is null, then there are s ∈ E and an infinite M ⊆ N with

{szm : m ∈M} ⊆ E.

Indeed, this holds for quasi all s ∈ E, i.e. off a left Haar null set.

The abelian case of Th 7.7 was independently established by Banakh and
Jabłońska in [BanaJ2019], where sets that are not shift-compact are termed
null-finite: for a wider discussion see [BinO2024, §§15.7,15.8].
8. Beyond and around groups
At the heart of shift-compactness is the embedding (t, zn) 7→ tzn. But

that may be in two ways: as an action of some ‘translators’ t on a given
null sequence, as above, or as an action of a given null sequence zn on a
set of translators. Here in this section we consider the latter view on shift-
compactness. We need the following definition.

Definition [Category convergence, [BinO2010d]] A sequence of homeomor-
phisms ψn satisfies the category convergence condition (cc) if:
For any non-empty open set U , there is a non-empty open set V ⊆ U

such that, for each k ∈ N⋂
n≥k

V \ψ−1
n (V ) is meagre.

Equivalently, for each k ∈ N, there is a meagre set M such that, for t /∈M

t ∈ V =⇒ (∃n ≥ k)ψn(t) ∈ V.
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For this ‘subsequence convergence to the identity’form, see [BinO2010d]. See
[BinO2010d] also for the proofs of Theorems 8.1-8.8 below, unless otherwise
specified.

Theorem 8.1 [Category Embedding Theorem, CET]. Let X be a topological
space. Suppose given homeomorphisms hn : X → X for which the category
convergence condition (cc) is met. Then, for any non-meagre Baire set T
for quasi all t ∈ T there is an infinite set Mt such that

{hm(t) : m ∈Mt} ⊆ T.

Theorem 8.2 [First Verification Theorem for category convergence]. For
(X, d) a metric space, if ψn ∈ H(x) converges to the identity under the
norm ||h|| := supx d

X(h(x), x), then ψn satisfies the category convergence
condition (cc).

To deduce from CET a version of the KBD Theorem we need to note the
necessary context:

Theorem 8.3 [BinO2010c, Th. 6.3]. Let X be a normed group. Under
the right norm topology of the metric dR the homeomorphisms ρn(x) := xzn
converge under dR to the identity for all zn → 1G iff X is a topological group
(i.e. both (x, y) 7→ xy and x 7→ x−1 are continuous).

This leads to another generalization of Theorem KBD.

Theorem 8.4 [Topological Kestelman-Borwein-Ditor Theorem]. In a normed
topological group X, let zn → 1G be a null sequence. If T is a Baire subset
of X, then for quasi all t ∈ T there is an infinite set Mt such that

{zmt : m ∈Mt} ⊆ T.

Likewise, for quasi all t ∈ T there is an infinite set Mt such that

{tzm : m ∈Mt} ⊆ T.

24



Theorem 8.5 [Piccard-Pettis Theorem —Piccard [Pic1939], [Pic1942], Pettis
[Pet1950]]. In a normed topological group whose norm topology is Baire: for
A Baire and non-meagre (in the norm topology), the sets AA−1 and A−1A
both have non-empty interior.

As with the real line one may consider the analogue of the Lebesgue den-
sity topology, namely the Haar-density topology in a locally compact topo-
logical group. For the details (which combine results of N. F. G. Martin in
1964 and B. J. Mueller in 1965) see [BinO2024] and [BinO2010c].

Theorem 8.6 [Second Verification Theorem for category convergence]. Let
X be a locally compact topological group with left-invariant Haar measure η.
Let V be η-measurable and non-null. For any null sequence zn → 1G and
each k ∈ N,

Hk =
⋂

n≥k
V \V · zn

is of η-measure zero, so is meagre in the Haar density topology D.
That is, the sequence hn(x) := xz−1

n satisfies the category convergence
condition (cc) under D.

From here a measure-theoretic case of Theorem KBD follows:

Theorem 8.7 [Generalized Kestelman-Borwein Ditor Theorem—Measurable
Case]. Let X a normed locally compact topological group, zn → 1G be a null
sequence in X. If T is Haar measurable and non-null, then for almost all
t ∈ T there is an infinite set Mt such that

{tzm : m ∈Mt} ⊆ T.

This theorem in turn yields two important conclusions. The first is Ko-
daira’s Th 8.8 below and the second is Th. 9.1 in the next section.

Theorem 8.8 [Kodaira’s Theorem —[Kod1941, Corollary to Satz 18. p. 98],
cf. [Com1984, Th. 4.17 p.1182]]. Let X be a normed locally compact group
and f : X → Y a homorphism into a separable normed group Y . Then f is
Haar-measurable iff f is Baire under the Haar density topology D iff f is
continuous under the norm topology.

The situation here is analogous to what is well-known in the context of
R in aligning null measurable sets with the meagre sets (indeed the nwd
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dense sets) of the Lebesgue density topology: see [Kec1995, 17.47], justi-
fying a bitopological viewpoint and the primacy of category over measure
in its group-theoretic setting. Compare the title inversion between Oxtoby
[Oxt1980] and [BinO2024].

9. The Steinhaus-Weil Theorem and its converse
We begin with the celebrated Steinhaus-Weil Theorem [Ste1920], [Wei1940];

cf. Comfort [Com1984, Th. 4.6 p. 1175], Beck et al. [BecCS1958], [BinO2020a],
[BinO2020b], [BinO2021], [BinO2022], [BinO2024]:

Theorem 9.1 [Steinhaus-Weil Theorem]. In a normed locally compact group
G, for S of positive Haar measure the difference sets SS−1 and S−1S have
1G as interior point.

We close with two theorems, a corollary and some remarks concerning
the Steinhaus-Weil property of Theorem 9.1 above. This has a converse due
to Simmons [Sim1975] and later independently to Mospan [Mos2005]. The
latter revisits bunching. See also [BinO2018].

Theorem 9.2 [The Simmons-Mospan Converse]. In a locally compact Polish
group, a Borel measure has the Steinhaus-Weil property if and only if it is
absolutely continuous with respect to Haar measure.

Theorem 9.3 [Mospan property]. For G a metric group and compact
K ∈ K(G) :
(i) if 1G /∈ int(K−1K), then µ−(K) = 0; equivalently, there is a null sequence
tn → 1G with limn µ(Ktn) = 0;
(ii) conversely, if µ(K) > µ−(K) = 0, then there is a null sequence tn → 1G
with limn µ(Ktn) = 0, and there is a compact C ⊆ K with µ(K\C) = 0 with
1G /∈ int(C−1C).

Corollary 9.4. A (regular) Borel measure µ on a locally compact metric
topological group G has the Steinhaus-Weil property iff either (i) or (ii) holds.
(i) for each K ∈ K+(µ), the map mK : t→ µ(Kt) is subcontinuous at 1G;
(ii) for each K ∈ K+(µ), there is no ‘null’sequence tn → 1G with µ(Ktn)→
0.

The more general Steinhaus-Weil interior points property for the com-
posite case of sets AB with A,B non-null are studied in [BinO2022] and in
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Section 14.5 of [BinO2024] (cf. [Kha2019]). In the locally compact (Haar)
case, as above, AB will have interior points. In general, however, the sim-
ple property does not imply the composite; thus, for instance, Matoŭsková
and Zelený [MatZ2003] show that in any non-locally compact abelian Polish
group there are closed non-(left) Haar null sets (Section 7) A,B such that
A+B has empty interior.
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