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Abstract

Pairwise likelihood is a limited information method widely used to estimate latent variable models,
including factor analysis of categorical data. It can often avoid evaluating high-dimensional integrals
and, thus, is computationally more efficient than relying on the full likelihood. Despite its computational
advantage, the pairwise likelihood approach can still be demanding for large-scale problems that involve
many observed variables. We tackle this challenge by employing an approximation of the pairwise like-
lihood estimator, which is derived from an optimisation procedure relying on stochastic gradients. The
stochastic gradients are constructed by subsampling the pairwise log-likelihood contributions, for which
the subsampling scheme controls the per-iteration computational complexity. The stochastic estimator is
shown to be asymptotically equivalent to the pairwise likelihood one. However, finite sample performances
can be improved by compounding the sampling variability of the data with the uncertainty introduced
by the subsampling scheme. We demonstrate the performance of the proposed method using simulation
studies and two real data applications.

Keywords: Item factor analysis, structural equation models, composite likelihood, asymptotic normality,
stochastic gradient descent

1 Introduction

Structural equation models (SEMs) – a general family of latent variable models – are widely used to analyze
multiple observed variables from social surveys and administrative data. These models jointly treat observed
variables as measures of unobserved (latent) constructs, where the constructs often receive substantive inter-
pretations such as attitudes, beliefs, and abilities. When used in a confirmatory manner, statistical analysis
based on SEMs can reveal the inter-relationships among latent constructs and observed variables, based on
which specific hypotheses driven by social or economic theory can be tested. Factor models are a special case
of SEMs and also serve as a building block for more general SEMs. With a confirmatory factor model, one can
postulate certain relationships among the observed and latent variables by assuming a pre-specified pattern
for certain model parameters (factor loadings). Researchers can test whether the postulated relationships
exist by drawing statistical inference under this model, which is often known as confirmatory factor analysis
(CFA). We refer the readers to Bartholomew, Steele, Moustaki, and Galbraith (2008) for a comprehensive
review of SEM and CFA.

Questionnaire items in survey data are often categorical (ordinal or nominal). In the SEM literature,
one common approach for analyzing categorical variables with factor models is the underlying variable ap-
proach, which assumes categorical variables to be generated by underlying continuous variables (e.g., see
Jöreskog, 1990, 1994; Lee, Poon, and Bentler, 1990, 1992; Muthén, 1984). Under this modelling framework,
full maximum likelihood is computationally challenging when there are many items because evaluating the
likelihood function requires calculating integrals with respect to the respective underlying variables. Limited
information estimation methods have been proposed in the literature to tackle this computational challenge,
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such as the three-stage least squares estimation method (Jöreskog, 1990, 1994; Muthén, 1984) and composite
likelihood methods. Three-stage methods often suffer from instability issues when the sample size is small, or
the number of observed variables is large. This is due to the fact that statistical inference with these meth-
ods requires estimating a polychoric correlation matrix for the observed variables and further computing the
asymptotic covariance matrix of the polychoric correlations. Such asymptotic covariance matrix, in fact, is
often unstable.

Composite likelihood methods (see e.g., Besag, 1974; Lindsay, 1988; Cox and Reid, 2004; Varin, 2008;
Varin, Reid, and Firth, 2011) are a general class of inference functions particularly suitable when the full
likelihood is too expensive to compute. The main idea behind this approach is to construct a pseudo-
likelihood from marginal or conditional distributions of lower-order margins of the data. The most popular
approach for SEMs with categorical data is the pairwise likelihood function, which employs information from
all possible bivariate margins of the data. Under the underlying variable framework, pairwise likelihood
estimators have been proposed under different model settings, including the estimation of thresholds and
polychoric correlations of ordinal data (de Leon, 2005), factor models for ordinal (Jöreskog and Moustaki,
2001; Katsikatsou, Moustaki, Yang-Wallentin, and Jöreskog, 2012) and mixed data (Katsikatsou, 2013),
SEMs for longitudinal data (Vasdekis, Cagnone, and Moustaki, 2012) and random effects models (Vasdekis,
Rizopoulos, and Moustaki, 2014).

Despite its advantages, pairwise likelihood estimation can still be computationally demanding for large-
scale problems that involve many observed variables. An attempt has been made to reduce that computational
burden by proposing a sampling method for selecting pairs based on their contribution to the total variance
from all pairs (Papageorgiou and Moustaki, 2018). However, while the method manages to select relatively
small subsets of important pairs (in terms of variance contribution), the computational saving is partially
offset by the complexity of the sampling scheme, such that computation times are reported to improve only
about 20% on average.

This paper tackles the computational challenge of estimating large-scale pairwise likelihood SEMs from a
different perspective. Instead of sampling the pairs before the estimation as in Papageorgiou and Moustaki
(2018), we iteratively subsample them along the optimisation as recently suggested in Alfonzetti, Bellio,
Chen, and Moustaki (2023). In particular, such a strategy can be framed as a stochastic approximation
method, where each gradient iteration is constructed stochastically based on a new small subset of the pairs.
While the complexity-per-iteration drastically reduces, such an approach still allows to account for all the
pairs as the optimisation proceeds. Differently from Alfonzetti et al. (2023), we show that our stochastic
estimator is always asymptotically equivalent to the conventional pairwise likelihood estimator as long as
both the number of iterations and the sample size go to infinity, regardless of their relative divergence rate.
For ease of exposition, we focus on the CFA setting for ordinal data. However, our proposal can easily be
generalised to other SEM settings, including those considered in the above-mentioned pairwise likelihood
literature.

The paper is organised as follows. Section 2 reviews the confirmatory factor model for categorical data and
statistical inference based on pairwise likelihood. Section 3 proposes the stochastic approximation method to
tackle the computational challenge with large-scale pairwise likelihood estimation. We illustrate the capability
of the proposed method using simulation studies in Section 4 and two real data applications in Section 5.
We conclude with a discussion in Section 6.

2 Problem Setting

2.1 Confirmatory Factor Analysis of Categorical Data

Consider n respondents answering p ordinal or binary items. With the vectorY = (Y1, Y2, . . . , Yp)
⊤
we denote

the responses from a single respondent, where Yi ∈ {1, ...,mi} has mi categories, i = 1, . . . , p. We say an item
is binary if mi = 2 and ordinal if mi > 2. The underlying variable approach assumes the categorical variables
inY to be generated by the partial observation of a set of underlying continuous variablesY∗ = (Y ∗

1 , ..., Y
∗
p )

⊤,
where the random vector Y∗ is assumed normally distributed. More specifically, the connection between an
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observed variable Yi and the underlying continuous variable Y ∗
i is

Yi = c if and only if τ
(i)
c−1 ≤ Y ∗

i < τ (i)c , c = 1, · · · ,mi, (1)

where τ
(i)
k is the kth threshold of variable Yi, k = 0, ...,mi, satisfying −∞ = τ

(i)
0 < τ

(i)
1 < . . . < τ

(i)
mi−1 <

τ
(i)
mi = +∞. Since only ordinal information is available, the distribution of Y ∗

i is determined up to a linear
transformation. To ensure model identifiability, it is convenient to assume each Y ∗

i to follow a standard
normal distribution.

Then, a factor model for categorical data Y is defined by a classical linear factor model for Y∗, taking
the form

Y∗ = Λξ + δ, (2)

where Λ = (λij)p×q is a p × q matrix of factor loadings, ξ is a q × 1 vector of latent variables, and δ is a
p-dimensional vector of measurement errors. It is assumed that ξ follow a normal distribution Nq(0,Σξ),
where Σξ is a q × q matrix. The diagonal entries of Σξ are set to one to ensure that the scale of the latent
variables is identified. In addition, the measurement error vector δ is assumed to be independent of ξ and
follows a normal distribution Np(0,Σδ) with the covariance matrix Σδ being a p × p diagonal matrix. The
above model assumptions imply that Cov(ξ, δ) = 0 and Σδ = Ip − diag(ΛΣξΛ

⊤), where diag(ΛΣξΛ
⊤)

denotes a diagonal matrix whose diagonal entries are the same as those of ΛΣξΛ
⊤ and Ip the p-dimensional

identity matrix.
For CFA, zero constraints are imposed on the loading parameters in Λ, typically determined by prior

knowledge or hypothesis about the measured constructs. More specifically, λij is set to zero if one postulates
that item i does not directly measure latent variable j. A sensible CFA setting avoids the rotational indeter-
minacy of the latent variables, which further ensures the identification of the model (Anderson and Rubin,
1956).

For ease of exposition, in the rest of the paper, let us denote with Θ the parameter space, and θ ∈ Θ the
generic vector of unknown model parameters collecting free non-redundant elements in Λ and Σξ, as well as
the free thresholds.

2.2 Inference Based on Pairwise Likelihood

Suppose that data from n respondents are collected, where data from observation l is denoted by yl =
(yl1, ..., ylp)

⊤, l = 1, ..., n. The objective is to draw statistical inference on θ∗ ∈ Θ, the true parameter vector.
Theoretically, it is a simple parametric inference problem falling under the classical maximum likelihood
estimation framework. Unfortunately, maximum likelihood estimation is computationally very intensive. Let
R = {(c1, ..., cp)⊤ : ci ∈ {1, ...,mi}} be the set containing all the R =

∏p
i=1mi possible response patterns.

Then, the full log-likelihood takes the form l(θ) =
∑

c∈R nc log πc(θ) with nc the observed frequency of

pattern c = (c1, ..., cp)
⊤ ∈ R and

πc(θ) = P (Y1 = c1, . . . , Yp = cp;θ) =

∫ τ(1)
c1

τ
(1)
c1−1

· · ·
∫ τ(p)

cp

τ
(p)
cp−1

ϕp(y
∗;ΛΣξΛ

⊤ +Σδ)dy
∗.

Thus, computing l(θ) requires evaluating potentially R p-dimensional integrals. It follows that, for a moder-
ately large p, optimizing the full likelihood becomes computationally unaffordable due to the high complexity
of evaluating each πc(θ).

A pairwise likelihood approach has been proposed in Katsikatsou et al. (2012) to draw statistical inference
when the full likelihood is too expensive to compute. More specifically, the (unweighted) pairwise log-
likelihood takes the form

pl(θ) =
∑
i<j

mi∑
ci=1

mj∑
cj=1

n(ij)cicj log{π
(ij)
cicj (θ)}, (3)
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where n
(ij)
cicj =

∑n
l=1 1{yli=ci,ylj=cj} is the observed frequency of the bivariate pattern given by responses ci

on Yi and cj on Yj , while π
(ij)
cicj (θ) represents the model-implied probability of that specific response pattern

when evaluated at parameters θ, namely

π(ij)
cicj (θ) = P (Yi = ci, Yj = cj ;θ)

= Φ2

(
τ (i)ci , τ

(j)
cj ; ρij(θ)

)
− Φ2

(
τ (i)ci , τ

(j)
cj−1; ρij(θ)

)
− Φ2

(
τ
(i)
ci−1, τ

(j)
cj ; ρij(θ)

)
+Φ2

(
τ
(i)
ci−1, τ

(j)
cj−1; ρij(θ)

)
, (4)

The notation Φ2 (a, b; ρ) refers to the zero-mean bivariate cumulative normal distribution with correlation ρ
evaluated at the point (a, b), while

ρij(θ) = (λi1, ..., λiq) Σξ (λi1, ..., λiq)
⊤.

Recall that λik is a loading parameter in Λ, and Σξ is a q × q covariance matrix of the latent variables.
Note that the pairwise likelihood only involves two-dimensional integrals. Thus, it is computationally more
feasible than the full likelihood. The maximum pairwise likelihood estimator is then defined as

θ̂PML = argmax
θ

pl(θ).

Following the theory for composite likelihood (Varin et al., 2011), θ̂PML is consistent and asymptotically
normal. That is, as the sample size n goes to infinity, the PML estimator converges in distribution to
a multivariate normal random variable centered in θ∗, with asymptotic covariance matrix depending on
H = EY

{
−∇2pl(θ∗)/n

}
and J = VarY {∇pl(θ∗)/n}. Namely,

√
n
(
θ̂PML − θ∗

)
d−→
n

N
(
0,H−1JH−1

)
. (5)

More generally, one can add a pre-specified non-negative weight wij to each item pair (i, j) to obtain a
weighted pairwise log-likelihood; see Varin et al. (2011) for more details. Furthermore, we refer the readers
to Katsikatsou and Moustaki (2016) for more results on estimating and testing SEMs with pairwise likelihood.

Finally, note that the original formulation of the PML estimator for ordinal factor models proposed in
Katsikatsou et al. (2012) directly estimates the entries of Σξ, without ensuring it to be a proper correlation
matrix. We refer to this unconstrained version of the PML estimator as the UPML estimator. This paper
adopts a suitable reparameterisation ofΣξ based on the transformation proposed in Lewandowski, Kurowicka,
and Joe (2009), which ensures Σξ to be symmetric and strictly positive definite. Such an approach maps
Σξ to a set of free q(q − 1)/2 parameters to be estimated without explicit constraints. Accounting for the

specific nature of Σξ via reparameterisation is needed because the UPML estimate Σ̂ξ may not be a proper
correlation matrix, and consequently, the dependence relationships among the latent variables, which are
often of substantive interest, cannot be assessed. The mathematical details about the reparameterisation are
left in Appendix B.1.

3 Inference based on Pairwise Stochastic Approximation

Although the pairwise likelihood is computationally more feasible than the full likelihood, it still suffers from
a high computational cost when the number of variables, p, is large. This is because the complexity of the
pairwise log-likelihood is dominated by the number of item pairs, which is P = p(p − 1)/2. When p is
too large, optimising the pairwise log-likelihood can become computationally unaffordable with a gradient-
based optimisation routine. For example, with p = 50 binary items, the number of bivariate probabilities
involved in a single evaluation of the score function ∇pl(θ) becomes as high as 4P = 4, 900, which is already
computationally demanding and, overall, needs to be carried out at each iteration of the optimisation.
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To tackle this computational issue, we propose a stochastic estimator that replaces ∇pl(θ) in the optimi-
sation with a computationally convenient stochastic approximation by subsampling the pairwise components
in (3), while being asymptotically equivalent to θ̂PML. Let us define the p× p-dimensional matrix W , with
generic elementWij ∈ {0, 1}. Each elementWij corresponds to a specific pair of items. Suppose now to draw
ν out of the possible P pairs of items without replacement. If the pair (i, j) has been drawn, its corresponding
weight is set to one. Otherwise, its weight is set to zero. Then, we can construct an unbiased approximation
of ∇pl(θ) via

S(θ;W ) =
P

ν

∑
i<j

Wij

mi∑
ci=1

mj∑
cj=1

n
(ij)
cicj

π
(ij)
cicj (θ)

∇π(ij)
cicj (θ). (6)

Note that EW {S(θ;W )} = ∇pl(θ), since EW (Wij) = ν/P for all is and js. Thus, S(θ;W ) can be safely
used as a stochastic gradient in a stochastic approximation algorithm (Robbins and Monro, 1951; Polyak and
Juditsky, 1992; Ruppert, 1988).

Let Tn be the number of iterations in the algorithm, which diverges as n goes to infinity, and B an
initial burn-in period. Let η0 > 0 be the initial choice of the stepsize, with decreasing scheduling ηt =
η0(1 + aη0t)

−3/4, a > 0, in accordance with Xu (2011). We construct an estimator θ̄ with the following
algorithm:

1. Given ν, η0, Tn, B, θ0, for t = 1, . . . , Tn, alternate:

(a) Sampling Step: Sample Wt by drawing ν out of P pairwise components;

(b) Approximation Step: Compute St = S(θ;Wt) via (6);

(c) Update Step: Update the current estimate via θ̃t = θt−1 − ηtSt;

(d) Projection Step: Ensure the estimate to be in Θ with θt =
∏
(θ̃t).

2. Trajectories averaging: Compute θ̄ = 1
Tn−B

∑Tn

t=B+1 θt.

At each iteration t, step (a) samples a new set of weights Wt. Then, with the subset of pairs identified by Wt,
step (b) constructs the new stochastic gradient St. Successively, step (c) updates the parameter estimates,
and step (d) ensures they remain within the parameter space. The step (d) is needed to guarantee that
ρ(θ)ij in (4) is a proper correlation. In practice, it consists of adequately rescaling the loadings in order to
constrain their scale. See Appendix B for further details. Finally, after Tn iterations, the algorithm computes
the final estimate θ̄ by averaging the trajectories of the estimates along the optimisation, ignoring an initial
burn-in period aimed at limiting the influence of θ0 in the computation of θ̄. Such technique is also known
as Ruppert-Polyak averaging, from Polyak and Juditsky (1992) and Ruppert (1988).

This final averaging step plays a crucial role in defining the asymptotic behaviour of the stochastic
estimator because it allows a central limit theorem to characterise the demeanour of θ̄ as n and Tn diverge.
In particular, it can be shown that θ̄ is consistent and asymptotically normally distributed, i.e.

Ω−1/2
n (θ̄ − θ∗)

d−→
n

N (0; Id) , (7)

with an asymptotic covariance matrix defined by

Ωn =
1

n
H−1JH−1 +

1

Tn
H−1VnH

−1. (8)

The decomposition of Ωn in two terms, as outlined in (8), is particularly illustrative to understand how θ̄
behaves asymptotically. The first term on the right-hand-side in (8) denotes the sampling variability of the

data, and the sample size scales it. It coincides with the conventional variance of θ̂PML outlined in (5). Thus,
it is the component of the variance that diminishes as the sample size grows. The second term, instead,
is scaled by Tn and represents the additional variability due to the randomness of the optimisation. As
reasonable, it vanishes as the optimisation proceeds. At the core of this second term, we find the matrix
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Vn, which is connected to the variance of the stochastic gradient in (6) and, thus, to the distribution of the
weight matrix W .

To get an intuition about the behaviour of Vn, let us focus on the role of the sufficiency data reduction

in characterising the distribution of W in (6). Having θ depending on the data only through the set of n
(ij)
cicj

allows the stochastic weights Wij not to be indexed in l = 1, . . . , n, because computing the gradient on a
single observation has the same cost of computing it on the whole sample. While it might seem trivial, such
a structure has deep consequences on the behaviour of the optimisation noise. It follows that the stochastic
gradient S(θ;W ) in (6), while considering only a subset of the available pairs, still accounts for the full
sample at each iteration. Hence, the amount of information S(θ;W ) accounts for at each iteration grows
with growing sample size, and thus its average variability decreases as n diverges. It can be shown that, with
the stochastic gradient defined in (6), the matrix Vn in (8) takes the form

Vn =
1

n

{
P (P − ν)

ν(P − 1)
H − P − ν

ν(P − 1)
J

}
. (9)

The variability injected in the optimisation by the randomness of W corresponds to a weighted average of
the matrices H and J , with weights determined by the values of ν and P . When ν = P , no randomness is
left in W , and the weights of H and J in (9) collapse to zero. However, regardless of the choice of ν, Vn

vanishes naturally asymptotically because of the 1/n factor implied by the sufficiency reduction. It follows
that the second term on the right-hand-side in (8) decreases faster than the first because both n and Tn scale
it.

Therefore, it can be stated that θ̄ in (7) is asymptotically equivalent to θ̂PML in (5). Nevertheless, in
finite sample settings, the optimisation noise may still be non-negligible, such that it is always beneficial to
account for all the terms in (8). Note that the variance component in (8) referring to the optimisation noise
only demands an estimate of H and J to be evaluated as the sampling variability. In Section 4, we show that
considering the optimisation randomness improves finite sample performance of inference with θ̄.

For a detailed derivation of (7) through (9), see Appendix C. Note that the technical proof borrows from
the results in Alfonzetti et al. (2023). However, their setting assumes the weights used to construct S(θ;W )
to be indexed both in the pairs (i, j) and in the observations l = 1, . . . , n. In other words, by fixing ν, their
set of weights only accounts for a fixed amount of statistical information, while in the case of (6), this amount
grows with n, as discussed previously. Such a difference results in our optimisation noise in (8) disappearing
much faster than what happens in Alfonzetti et al. (2023) because of being simultaneously scaled by Tn and

n. The main implication is that, in our case, the stochastic estimator θ̄ is asymptotically equivalent to θ̂PML,
whatever the relative divergence rate of n and Tn, while in their case this happens only if n/(Tn +n) goes to
0 as n goes to infinity.

4 Simulation experiments

4.1 Setup

A simulation study is conducted to examine the performance of the proposed estimator. Let the number
of ordinal items be fixed to p = 40, while the number of latent variables, q ∈ {4, 8}, and the sample
size, n ∈ {1000, 2000, 5000} vary across the experimental settings. The simulated data consists of ordinal
variables with mi = 4 categories, and the true thresholds for all variables are fixed at τi = (−1.2, 0, 1.2), with
i = 1, . . . , p. Each combination of p, q and n accounts for S = 1000 replications. The true loading matrices
are generated to have a simple structure (one loading per item) with additional q − 1 cross-loadings. For
illustration purposes, the estimation proceeds by drawing only ν = 8 pairs per iteration out of the possible
P = 780. The initial stepsize η0 used in the stochastic updates is fixed at η0 = 10−2. An initial burn-in
period runs until the iteration n, so only subsequent iterations directly enter the computation of θ̄. See
Appendix C for further details about the simulation settings and the setup of the stochastic algorithm.
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4.2 Performance criteria

We are interested in evaluating the properties of the proposed estimator both in terms of pointwise conver-
gence to θ∗ and variability around its target. Since the number of parameters is large, instead of showing
results for each parameter estimate, we average performance criteria across all estimated parameters of the
same type (factor loadings and factor correlations). For brevity reasons, we omit results for thresholds since
they are typically of less interest to practitioners.

The convergence of the estimator is evaluated by computing the average mean squared error (MSE) along
the optimisation for t = 1, . . . , Tn, with

MSEt =
1

S

S∑
s=1

1

k

k∑
j=1

(
θ̄sjt − θ∗)2 ,

where S here is the number of replicates, k is the total number of parameters of the same type, θ̄sjt is the
estimate of the jth parameter for the replication s at the iteration t. Computational times are reported in
Appendix C.3, while additional sensitivity experiments can be found in Appendix C.4. Similarly, we want
to investigate how inference performance about θ∗ evolves along the optimisation. To this end, we compute
confidence intervals for θ̄ and their empirical coverage levels for different Tn. In particular, we rely on the
asymptotic covariance matrix in (7) assuming Vn = 0 and its finite sample counterpart accounting for both
the terms outlined in (8). To estimate the matrices H and J , we use their conventional empirical estimators
(e.g., see Section 5.1 in Varin et al., 2011).

4.3 Results

First, let us start by showing the convergence of θ̄ towards θ∗ when both n and Tn diverge. As expected,
Figure 1 outlines that the average MSE performance for correlations and loadings improves both with n and
Tn increasing. The MSE typically drops rapidly at the beginning of the optimisation and then slows down
its decrease during the remaining iterations. Furthermore, with n and Tn fixed, results are better when q = 4
rather than q = 8. This is expected because of the larger number of parameters involved in the latter case.
As a benchmark, we also compute θ̂PML, whose MSE performance is denoted by horizontal dashed lines in
Figure 1. In most cases, θ̄ almost overlaps θ̂PML in terms of MSE even before reaching 2n iterations.

q = 4 q = 8

n = 1000 n = 2000 n = 5000 n = 1000 n = 2000 n = 5000

correlations
loadings

0 n 2n 3n 0 n 2n 3n 0 n 2n 3n 0 n 2n 3n 0 n 2n 3n 0 n 2n 3n

0.001

0.010

0.100

3e−04

1e−03

3e−03

1e−02

3e−02

Iterations

M
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n 
sq

ua
re

 e
rr

or

Figure 1: Average Mean Squared Error performance along the optimisation of loadings and latent correlations
for p = 40, q ∈ {4, 8}, and n ∈ {1000, 2000, 5000}. Grey areas denote the initial burn-in period. Horizontal

dashed lines refer to θ̂PML performance.
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Second, we investigate the performance of confidence intervals built from (7), i.e. we track their observed
coverage levels when both the sample size and the number of iterations increase. Figure 2 shows the boxplots
of the empirical coverage grouped by parameter type. Furthermore, it also compares the performance obtained
by accounting only for the sampling variability of the data, the first term on the right-hand-side in (8), with
the one corrected by the optimisation noise, the last summand in (8). Results show that differences between
the two methods taper both when the sample size increases and when the number of iterations diverges.
Such behaviour is expected since, as seen in Section 3, the optimisation noise vanishes simultaneously with
n and Tn. However, the advantage of computing confidence intervals corrected for the optimisation noise is
evident when n or Tn are small, that is when the variance of the stochastic gradients is still non-negligible.
As in the case of Figure 1, coverage levels are typically better when q = 4 rather than q = 8. Nevertheless,
both cases tend to align to the nominal level when n and Tn increase.

q = 4 q = 8

n = 1000 n = 2000 n = 5000 n = 1000 n = 2000 n = 5000

correlations
loadings

1.5n 2n 2.5n 3n 1.5n 2n 2.5n 3n 1.5n 2n 2.5n 3n 1.5n 2n 2.5n 3n 1.5n 2n 2.5n 3n 1.5n 2n 2.5n 3n

0.90

0.94

0.95

0.96
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0.95

0.96

Iterations

E
m

pi
ric

al
 c

ov
er

ag
e

asymptotic corrected

Figure 2: Empirical coverage levels for confidence intervals for p = 40, q ∈ {4, 8}, n ∈ {1000, 2000, 5000} and
Tn ∈ {1.5n, 2n, 2.5n, 3n}. The horizontal dashed line denotes the target nominal coverage level, i.e. 95%.
The gray scale distinguishes confidence intervals constructed using only the first term in (8) (asymptotic)
from the ones considering both terms in (8) (corrected).

5 Real applications

We use two datasets to demonstrate the benefits of combining pairwise likelihood and stochastic optimisation.
The first is from the Big Five personality test, and the second is on learning capabilities of targeted customer-
supplier relationships. In the first case, we aim to present a real-data application where MPL is not a
computationally viable alternative. In such a scenario, θ̄ is a fast and reliable choice to estimate the model.
In the second application, we investigate a dataset with more contained dimensions. Although computing
θ̂PML is easily feasible, we show θ̄ is still reliable in terms of both pointwise and inferential performance. All
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experiments have been carried out on commodity hardware1.

5.1 Real application 1: The Big Five personality test

The dataset2 consists of responses obtained from a web-based survey designed to measure five dimensions
of human personality: Neuroticism (N), Agreeableness (A), Extraversion (E), Openness to experience (O),
and Conscientiousness (C). The dataset includes answers to p = 120 items on a 5-grade scale, totalling
619, 150 observations. It is worth noting that the dataset contains 367, 593 missing answers, which may
require appropriate handling or imputation techniques during the analysis (see, e.g. Katsikatsou, Moustaki,
and Jamil, 2022). However, given the dimension of the survey, we only retain the ones with complete records,
leading to a sample size of n = 410, 376.

As outlined in Johnson (2014), each of the five personality traits can be further split into six facets
measured by four items each, for a total of q = 30 latent traits to account for potentially mutually correlated
variables. We refer the reader to Johnson (2014) for a detailed inventory of each facet interpretation and
label. The following refers to the facets and items based on their respective area. For instance, facets N1

through N6 correspond to the Neuroticism (N) trait, while n1 through n24 to the related items. Similarly, the
survey is structured such that non-overlapping groups of four items measure each of the q latent dimensions.
Therefore, we assume that the positions of the zeros in the loading matrix Λ are known. It is worth noting
that all loadings are expected to be positive since any “negatively worded” items have been appropriately
re-coded.

The total number of parameters to estimate is 1035, namely 480 thresholds, 120 loadings, and 435 latent
correlations. The dimensions of the problem prevent numerical optimisation from being a viable option (we
manually interrupted the numerical optimiser after twelve hours of running). Nevertheless, the flexibility of
the proposed stochastic optimiser allows for overcoming such a challenge. Given the high computational cost
of the problem, we set ν = 1. In other words, the algorithm only draws one random pair per iteration and uses
it to update the stochastic estimates (however, almost identical results have been obtained using higher values
of ν). The initial stepsize is set at η0 = 10−4. Convergence is checked by monitoring the complete negative
pairwise likelihood on a validation portion of the data. The algorithm checks the validation likelihood every
five thousand consecutive iterations. The estimation stops when the difference between successive checks
drops under a certain tolerance level. In particular, we use 60% of the dataset as a training partition and
the remaining 40% as the validation set. Convergence is reached in about forty-five thousand iterations,
including an initial burn-in period of five thousand iterations, with a total computing time of around twenty
minutes.

Final results are shown in Figure 3 while complete parameter trajectories are provided in the Appendix.
On the left-hand side, Figure 3 reports estimates for the free loadings. As expected, all loadings are positive.
Furthermore, most items have similar importance in measuring the latent facets, given the comparable mag-
nitude of the estimated loadings. However, two questions appear less relevant in estimating their respective
latent traits. Specifically, e16, “Like to take it easy”, for Extraversion, and a20, “Boast about my virtues”,
for Agreeableness.

Consistently with the psychometric design of the personality test, the 30 latent facets cluster into five
blocks with high within-block positive correlations, as reported on the right-hand side of Figure 3. Note that
considering all thirty latent personality facets in the model simultaneously, the estimation uncovers complex
correlation patterns that might not be evident when fitting sub-models or analysing individual traits sepa-
rately. For instance, the results reveal negative correlations between the Neuroticism and Conscientiousness
traits, indicating an inverse relationship between these personality dimensions. Additionally, we observe in-
teresting correlation structures between the Agreeableness and Extraversion traits. Some facets within these
traits exhibit positive correlations, while others do not. For instance, consider facet A5 from the Agreeableness
trait, “Modesty”. While it correlates positively with the other Agreeableness facets, its correlation pattern
with the rest of the latent variables in the model is almost opposite to the overall behaviour within its block.

1Specifications: AMD Ryzen 7 4800H 16 x 2.9 GHz, R 4.1.2, gcc 11.4.0, Ubuntu 22.04
2Downloadable at https://osf.io/tbmh5/
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Figure 3: Estimated parameters on the Big Five dataset. Free loadings on the left-hand side. Latent
correlations on the right-hand side.

5.2 Real application 2: Learning capabilities

As a second example, we present a smaller application to benchmark the inferential performance of the
proposed stochastic estimator on a dataset where numerical pairwise likelihood is computationally viable.
Additionally, we also highlight how the numerical estimates are affected by properly accounting for the
constraints onΣξ. Recall that we refer to UPML as the unconstrained version of PML described in Section 2.2,
which directly estimates the non-diagonal entries of Σξ without imposing constraints other than symmetry.

We remind the reader that, as mentioned in Section 2.2 and detailed in Appendix B.1, both θ̂PML and θ̄
adopt a suitable reparameterisation of Σξ that ensures it to be a proper correlation matrix.

We use the same dataset that was analysed in Katsikatsou et al. (2012) using the UPML estimator.
Originally, the data were collected by Selnes and Sallis (2003), who aimed to study whether specific factors
affect the learning capabilities of targeted customer-supplier relationships. The eighteen items considered
serve as indicators of four factors, which are interpreted as collaborative commitment (ξ1), internal complexity
(ξ2), relational trust (ξ3), and environmental uncertainty (ξ4). See the Appendix for more details about the
items considered. All indicators were measured on a seven-point scale. The sample size is 286 after listwise
deletion. The matrix Λ is assumed to have a known simple structure (i.e. each item is loaded on just one
of the four factors). There are a total of 132 free parameters to be estimated, namely 108 thresholds, 18
loadings and 6 latent correlations.

The estimation via θ̄ is carried out with ν = 8 and η0 = 0.05. Stopped after 2,500 iterations by monitoring
the complete pairwise likelihood on the data every 500 updates after a burn-in period of 500 iterations. Table 1
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Table 1: Relationship learning data: Estimated factor loadings and correlations with θ̄, θ̂PML and θ̂UPML.
Standard errors in brackets. Results for θ̂UPML are taken from Katsikatsou et al. (2012).

Factors θ θ̄ θ̂PML θ̂UPML

Collaborative
Commitment
(ξ1)

λ1,1 0.877 (0.025) 0.883 (0.023) 0.882 (0.023)
λ2,1 0.885 (0.019) 0.891 (0.017) 0.891 (0.017)
λ3,1 0.875 (0.021) 0.884 (0.018) 0.884 (0.018)
λ4,1 0.887 (0.018) 0.898 (0.016) 0.897 (0.016)
λ5,1 0.869 (0.022) 0.875 (0.020) 0.875 (0.020)

Internal
Complexity
(ξ2)

λ6,2 0.624 (0.077) 0.626 (0.077) 0.622 (0.079)
λ7,2 0.827 (0.065) 0.820 (0.063) 0.821 (0.065)
λ8,2 0.782 (0.068) 0.788 (0.068) 0.784 (0.069)

Relational Trust
(ξ3)

λ9,3 0.808 (0.027) 0.808 (0.027) 0.808 (0.027)
λ10,3 0.863 (0.023) 0.865 (0.023) 0.866 (0.023)
λ11,3 0.867 (0.024) 0.867 (0.024) 0.867 (0.024)
λ12,3 0.907 (0.016) 0.908 (0.016) 0.908 (0.016)
λ13,3 0.872 (0.020) 0.871 (0.020) 0.871 (0.020)

Environmental
Uncertainty
(ξ4)

λ14,4 0.766 (0.033) 0.765 (0.033) 0.767 (0.033)
λ15,4 0.852 (0.027) 0.852 (0.027) 0.854 (0.027)
λ16,4 0.750 (0.040) 0.750 (0.040) 0.752 (0.040)
λ17,4 0.701 (0.044) 0.703 (0.044) 0.697 (0.044)
λ18,4 0.704 (0.043) 0.704 (0.042) 0.705 (0.042)

ξ1, ξ2

Σξ

0.257 (0.083) 0.255 (0.082) 0.255 (0.083)
ξ1, ξ3 0.631 (0.044) 0.629 (0.044) 0.627 (0.044)
ξ1, ξ4 0.662 (0.047) 0.661 (0.047) 0.658 (0.047)
ξ2, ξ3 0.128 (0.073) 0.126 (0.073) 0.125 (0.073)
ξ2, ξ4 0.194 (0.079) 0.198 (0.079) 0.197 (0.079)
ξ3, ξ4 0.650 (0.049) 0.648 (0.049) 0.651 (0.048)

reports the estimated latent correlations, loadings and their standard errors. Variances for both θ̄ and θ̂PML

have been computed via multivariate delta method in order to be comparable with the parameterisation
used by θ̂UPML. As expected, pointwise estimates provided by θ̄, θ̂PML and θ̂UPML are all quite similar.
Nevertheless, θ̂UPML sometimes exhibits slightly larger standard errors than its constrained counterpart
θ̂PML, both regarding loadings and latent correlations. At the same time, while θ̄ closely approximates
θ̂PML pointwise, it exhibits higher variability when accounting for the optimisation noise. Nevertheless, its
variability is still comparable to the other two methods and sometimes lower than the one characterising
UPML estimates.

6 Conclusions

This paper proposes a new estimator based on stochastic approximation to tackle the computational issue
with the traditional pairwise likelihood for the confirmatory factor analysis of high-dimensional categorical
data. The new estimator can provide asymptotically consistent point estimation and valid statistical inference
(e.g., confidence intervals) under any reasonably small computational budget constraint at the price of a small
sacrifice in statistical efficiency. The sacrifice in statistical efficiency becomes negligible as the sample size
grows to infinity. The key to the proposed estimator is the stochastic approximation technique, which uses an
optimisation procedure relying on stochastic gradients to give an approximation to the conventional pairwise
maximum likelihood estimator. As a byproduct of this research, a positive definite constraint, which is not
imposed in the previous estimators based on the pairwise likelihood, is introduced on the correlation matrix
for the latent variables via a suitable reparameterisation.

Nevertheless, the idea of sampling pairs to reduce the computational burden of pairwise likelihood estima-
tion of factor models is not completely new to the literature and has already been discussed in Papageorgiou
and Moustaki (2018). However, their proposed method has a different rationale from our stochastic estimator
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because it requires first selecting a subset of the pairs and then estimating the model on the selected pairs
only. Their estimators have been seen to reduce the computational time of pairwise maximum likelihood
while maintaining good statistical properties in terms of bias and mean squared error. Still, the inference is
based solely on pairwise likelihood estimation without considering the initial sampling of pairs. In contrast,
our method fully incorporates pair sampling in the inference procedure while allowing for the inclusion of all
pairs in the estimation by selecting new subsets of pairs at each algorithm iteration.

The effectiveness of our proposal is shown via simulation studies and two real-data applications. The
experiments highlight that the stochastic estimator is comparable to the conventional pairwise likelihood
estimator in terms of mean squared error and stress how inferential performance improves when the optimi-
sation noise is taken into account when drawing inference about the true parameters. In addition, we provide
two real data examples of very different dimensions to underline the flexibility of the proposed estimator and
its inferential reliability.

The current research can be extended in several directions. First, while we focus on the confirmatory
factor analysis setting, the proposed method can be easily applied to the exploratory factor analysis setting
after imposing certain minimum constraints to ensure model identifiability. Second, our procedure can be
modified to estimate mixture models (Ranalli and Rocci, 2016) or polychoric correlation matrices without a
factor model structure (Drasgow, 2004) based on similar pairwise likelihood approaches. Finally, sparsity-
inducing penalties, such as the lasso penalty (Tibshirani, 1996), may be needed in high-dimensional item
factor analysis (Chen, Li, Liu, and Ying, 2023). By incorporating techniques based on the stochastic proximal
gradient (Zhang and Chen, 2022), the current method may be extended to solve statistical inference problems
based on penalised pairwise likelihoods.

Reproducibility

The code to reproduce the simulated experiments and the real-data applications is available at
https://anonymous.4open.science/r/experimentsSTOPLFA.
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Appendix A Asymptotics

The proposed estimator, θ̄, works in a double asymptotic regime where both the sample size and the number
of iterations diverge to infinity. In the following, we show that:

i) The error θ̄ − θ∗ is asymptotically normal;

ii) Its asymptotic covariance is stated in (8).

The part of the proof related to i) follows the derivation in Appendix B in Alfonzetti et al. (2023), so here we
give an intuition about how the proof works, and we refer the readers to their work for a detailed derivation.
The proof of ii) is peculiar to the current setting of factor models with ordinal data, since it takes advantage
of the data reduction by sufficiency via bivariate frequencies.

A.1 Asymptotic normality

The interest lies on the distribution of θ̄ or, better, its distance from the true parameter θ̄ − θ∗. Thanks to
the linearity of the sum, we can rearrange it with

θ̄ − θ∗ =
1

Tn

Tn∑
t=1

θt − θ∗ =
1

Tn

Tn∑
t=1

(θt − θ∗) = ∆̄Tn
,

where, thus, ∆̄Tn
is the average error of the algorithm. Following Proposition 2 in Appendix B in Alfonzetti

et al. (2023), we can characterise the behaviour of ∆̄Tn
with

√
Tn + n∆̄Tn =

√
Tn + n

nTn
H−1

Tn∑
t=1

n∑
l=1

S∗
l,t + op(1), (10)

where S∗
l,t is the contribution of unit l at iteration t, namely

S∗
l,t =

P

ν

∑
i<j

Wijt

mi∑
ci=1

mj∑
cj=1

1{yli=ci,ylj=cj}

π
(ij)
cicj (θ

∗)
∇π(ij)

cicj (θ
∗).

Thus, the asymptotic distribution of ∆̄Tn
depends on the average behaviour of S∗

l,t along the iterations and

the sample. Let us define S̄∗ = n−1
∑

l S̄
∗
l = n−1T−1

n

∑
t

∑
l S

∗
l,t. Note that, since the random variables

S̄1, . . . , S̄n are independent conditioned on W1, . . . ,WTn , we can combine the Central Limit Theorem for
exchangeable random variables in Blum, Chernoff, Rosenblatt, and Teicher (1958) and the Cramér-Wold
device to prove the asymptotic multivariate normality of S̄∗, like done in Alfonzetti et al. (2023). Finally,
after (10), the asymptotic normality of S̄∗ guarantees the asymptotic normality of ∆̄Tn

. Note that Alfonzetti
et al. (2023) characterise (10) according to three asymptotic regimes depending on the relative divergence
rate of n and Tn. In the case of factor models for ordinal data, there is no difference between them regarding
the asymptotic distribution of θ̄ because of the data reduction by sufficiency. Thus, we only report (10) for
illustration purposes, but the same asymptotic result holds under the other regimes considered in their work.
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A.2 Asymptotic covariance

Theorem 2 in Blum et al. (1958), jointly with the Cramér-Wold device, identifies the asymptotic covariance
matrix of S̄∗ with n−1Var(S̄∗

l ). By using the law of total variance, we can write

n−1Var(S̄∗
l ) =

1

nTn
EY VarW |Y (S∗

l,t) +
1

n
VarY EW |Y (S̄∗

l ).

While the second term on the right-hand side coincides with J , as in Alfonzetti et al. (2023), the first term
behaves differently because of the specific structure of S(θ;W ), where the data reduction by sufficiency
strongly affects the distribution of W and, thus, the variability of the stochastic gradients.

Let us call Vn = n−1EY VarW |Y (S∗
l,t). Then, it can be shown that

Vn = ψ−2
1 n−1(ψ1 − ψ2)H + n−1

(
ψ−2
1 ψ2 − 1

)
J

=
1

n

{
P (P − ν)

ν(P − 1)
H − P − ν

ν(P − 1)
J

}
,

where ψ1 = EW (W 2
ijt) = EW (Wijt) = ν/P and ψ2 = EW (WijtWi′j′t) = {ν(ν − 1)}/{P (P − 1)}. Differently

from Alfonzetti et al. (2023), the moments of our random weights do not depend on n, because of the
sufficiency reduction of the data. Such property implies that Vn is an o(1). That is, it vanishes as the sample
size grows. In Alfonzetti et al. (2023), instead, it is an O(1) and remains constant when n goes to infinity.

It follows that the asymptotic covariance matrix of S̄∗ can be written as n−1Var(S̄∗
l ) = T−1

n Vn + n−1J .
Finally, after (10), the asymptotic distribution of the average error of the algorithm, ∆̄Tn

, is characterised
by the covariance matrix

Ωn =
1

nTn
H−1

{
P (P − ν)

ν(P − 1)
H − P − ν

ν(P − 1)
J

}
H−1 +

1

n
H−1JH−1, (11)

as reported in Section 3. Therefore, it holds that Ω
−1/2
n ∆̄Tn

d−→
n

N (0, Id). As discussed in Section 3, the first

term on the right-hand side of (11) is scaled both by n and Tn. Hence, it decreases faster than the second
term on the right-hand side of (11), whatever the relative divergence rate between n and Tn. It follows that,

with n and Tn going to infinity simultaneously, θ̄ is asymptotically equivalent to θ̂PML, because the second
term on the right-hand side of (11) is the dominant part of the asymptotic covariance matrix. Finally, note
that such result implies that differences among the three asymptotic scenarios outlined in Alfonzetti et al.
(2023) are not relevant in the current setting since the data reduction by sufficiency always allows θ̄ to match

the statistical efficiency of θ̂PML asymptotically.

Appendix B Model constraints

The model outlined in Section 2 implies the parameter space Θ to be affected by some sets of parametric
constraints. More specifically, three types of constraints can be identified:

1. Thresholds: for i = 1, . . . , p it needs to hold that −∞ = τ
(i)
0 < τ

(i)
1 < . . . < τ

(i)
mi−1 < τ

(i)
mi = +∞ in

order to model the ordinal nature of the responses correctly.

2. Latent variables: the latent covariance matrix Σξ needs to be constrained to be a correlation matrix
to fix the scale of the latent variables.

3. Model implied correlations: Similarly, to fix the scale of the underlying variables Y ∗
1 , . . . , Y

∗
p , we need

to ensure that, for all is and js, λ⊤
i Σξλj = ρ(θ)ij are proper correlations, where λ⊤

i is the generic i-th
row of Λ.
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The first set of constraints is the most straightforward to manage. One can account for it by directly

reparametrising the thresholds (while fixing one threshold per item) with ∆
(i)
mi = exp

{
τ
(i)
mi − τ

(i)
mi−1

}
, and

thus estimating thresholds positive differences rather than thresholds per se. However, in practice, it is
sufficient to initialise the thresholds far enough from each other in order to avoid their overlapping without
relying on the above-mentioned reparameterisation.

The second and third sets of constraints are instead more involved to consider. We investigate them in
detail in the following paragraphs.

B.1 Latent variables correlations

The latent covariance matrix Σξ is constrained to be symmetric and positive semi-definite, so it is useful to
parametrise it via its Cholesky decomposition Σξ = U⊤U , with U the upper triangular Cholesky factor.
However, the scale of the latent variables is fixed to one to allow the identification of the parameter vector.
Thus, U must be constrained to be the upper triangular Cholesky factor of a correlation matrix, which
translates into imposing ∥us∥ = 1, where us is the s-th column of U . To do this, we rely on the transforma-
tion proposed in Lewandowski et al. (2009), similar to state-of-the-art statistical software like Stan3 (Stan
Development Team, 2022). Hence, the generic element of the matrix U is defined recursively via

Ur,s =



0 if r > s;

1 if r = s = 1;

zr,s if 1 = r < s;
zrs

zr−1,s
Ur−1,s(1− z2r−1,s) if 1 < r < s;

Ur−1,s

zr−1,s
(1− z2r−1,s) if 1 < r = s,

where zr,s is the Fisher’s transformation of an unconstrained parameter hr,s, namely zr,s =
exp (2hr,s)−1
exp (2hr,s)+1 =

tanh(hr,s). Thus, from the q(q−1)/2 unconstrained parameters hr,s, the transformation recovers Σξ ensuring
it is a proper correlation matrix.

B.2 Model implied correlations

Without explicit constraints on the loadings, it is possible in principle to visit along the optimisation a state
of θ such that |ρij(θ)| = |λ⊤

i Σξλj | > 1 for some pair of items (i, j). In this case ρij(θ) is not a valid
correlation and, hence, ∇pl(θ) is not computable. In fact, while the parameterisation ensures ΛΣξΛ

⊤ is a
valid covariance matrix, it does not explicitly constrain its scale. By the Cauchy-Schwarz inequality, it always
holds that |ρij(θ)|2 ≤ ρii(θ)ρjj(θ). Thus, by imposing ρii(θ) ≤ 1 for all i = 1, . . . , p, we ensure |λ⊤

i Σξλj | ≤ 1
for all is and js.

In other words, we need to impose a constraint on the loadings to ensure the residual variance estimates
stay away from the negative domain since Σδ = Ip − diag(ΛΣξΛ

⊤). Consider νi = Uλi, where U is the
upper Cholesky factor of Σξ. Then, the residual variance constraint is satisfied by imposing ∥νi∥2 ≤ 1
for i = 1, . . . , p. The projector operator on the L2 unit ball has the well-known analytical form

∏
(νi) =

νi/max{1, ∥νi∥2}. Thus, for each item i, the loadings are orthogonally projected into the parameter space
with ∏

(λi) =
λi

max

{
1,
√
λ⊤
i Σξλi

} , (12)

which guarantees ∥νi∥2 ≤ 1. Such constraint is connected to what the factor analysis literature usually refers
to as a Heywood case (Heywood, 1931), which denotes the occurrence of estimated non-positive residual

3https://mc-stan.org/docs/reference-manual/correlation-matrix-transform.html
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variances. Typically, the observation of a Heywood case suggests two possible issues (Dillon, Kumar, and
Mulani, 1987). On one hand, it can be related to the sampling variability of the data. The low statistical
information provided by small sample sizes might lead the (pairwise) maximum likelihood estimator to wander
outside the parameter space. On the other hand, it might be a symptom of model misspecification, thus
represents an indicator suggesting practitioners to revise their models.

With the availability of ever larger datasets, the former interpretation has slowly lost relevance, such that
Heywood cases are primarily interpreted as a sign of misspecification. However, instability issues related to
data variability are particularly relevant in the case of stochastic procedures. Since only small subsets of
the data are considered at each iteration, the higher variability of St compared to ∇pl(θ), might lead to
|λ⊤

i Σξλj | > 1 for some is and js and, thus, interrupting the optimisation. The projection in (12) completely
avoids this scenario, pulling the loadings back within Θ whenever they push to escape. In practice, if the
model is correctly specified, the projection only affects the iterations at the beginning of the optimisation
when the estimate is far from the target and the optimisation noise is still large.

As a final consideration, note that, while (12) avoids the occurrence of
|λ⊤

i Σξλj | > 1, it does not entirely write off the eventuality of Heywood cases, since it still allows for null
residual variances (i.e. λ⊤

i Σξλi = 1). Thus, practitioners retain the possibility to interpret such boundary
cases as a sign of model misspecification.

Appendix C Supplementary material for simulation experiments.

C.1 True parameter vector

In accordance with the simulations Katsikatsou et al. (2012), the ordinal items have been generated on
a four-grade scale, with thresholds set at τi = (−1.2, 0, 1.2), with i = 1, . . . , p. Since larger models are
considered in the simulations here, differently from Katsikatsou et al. (2012) we generate true loadings and
latent correlations randomly. In particular, true loadings are drawn uniformly at random in [0.2, 0.8]. We
avoid generating negative loadings to dodge sign-flipping problems during the estimation. Instead, latent
correlations are generated through the parameterisation outlined in Appendix B.1 to ensure that the true Σξ

is a proper correlation matrix. The unconstrained parameters are drawn uniformly at random in [−0.8, 0.8],
which typically leads to small-to-moderate values of latent correlations, both positive and negative. Finally,
to ensure that the true models are non-degenerate, we further pass through the projection step in (12) for
i = 1, . . . , p. The two Λ matrices used for the settings with p = 40 and q ∈ {4, 8} are reported in Figure 4,
while the latent matrices Σξ are plotted in Figure 5.

C.2 Stochastic estimator setup

As reported in Section 4, the choice of drawing ν = 8 pairs per iteration is purely illustrative. Lower values of
ν lead to larger optimisation noise and, thus, highlight even more the need for a correction in the asymptotic
covariance matrix when constructing confidence intervals. However, the more considerable the noise, the
higher the number of iterations needed to converge. On the contrary, larger values of ν drastically lower
the optimisation noise, which helps stabilise parameter trajectories along the optimisation. However, while
estimates would converge earlier in terms of iterations, the computational cost of the stochastic gradients
grows linearly with ν, so it is non-trivial to anticipate which choice of ν would lead to the lowest total
computational time. For this reason, ν = 8 has been shown as an illustrative example without any claim of
being an optimal choice.

The value of the initial stepsize η0 = 10−2 has been chosen manually by minimising the average MSE
of the stochastic estimator (with ν = 8) on the most challenging setting (i.e. p = 40, q = 8, n = 1000) on
a grid of possible values. For a detailed discussion about the effects of the choice of η0 on the inferential
performance of θ̄, we refer the readers to Alfonzetti et al. (2023) and in particular to their Appendix C. Note
that the hyperparameter a, in the stepsize scheduling, is fixed arbitrarily low at a = 10−3, since, following
Xu (2011), it should be chosen as the lowest eigenvalue of H, but it is unknown in practice.
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Figure 4: True loading matrices used in simulations in Section 4.

As a final note, all the S = 1000 replications are initialised at the same starting point. Namely, thresholds
start from (−1, 0, 1); all loadings are initialised at 0.5 since they are expected to be positive, while the
unconstrained reparameterisation of the latent correlation matrix starts from the null vector. To get rid
of the influence of the starting point in the computation of θ̄, we add a burn-in period of length B. In
particular, we let the algorithm discard the first B = n iterations, such that the Ruppert-Polyak averaging
used to compute θ̄ starts from t = n + 1. While such an approach is highly beneficial in practice, its only
consequence on the asymptotic theory outlined in Section 3 is substituting Tn with the effective averaging
range, namely Tn −B.

C.3 Computational times

In Table 2 we report the computational times recorded for the experiments presented in Section 4.
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Figure 5: True latent correlation matrices used in simulations in Section 4.

Table 2: Computational times (s) for θ̂PML and θ̄ evaluated at Tn = 2n.

n q θ̂PML θ̄

1000
4

35.74 3.59
2000 34.41 7.16
5000 33.90 17.33

1000
8

105.74 4.65
2000 114.74 9.07
5000 108.03 22.05

C.4 Sensitivity checks for starting points and stepsize

In this section, we present some additional simulation experiments to assess the sensitivity of the stochastic
estimator setup outlined in Appendix C.2. In particular, we assess the mean squared error performance of
the algorithm for different choices of the threshold starting points and the initial stepsize η0. Concerning
thresholds initialisation, two additional starting points have been tested under the setting with q = 8 and n ∈
{1000, 2000, 5000}, namely (−2, 0, 2) and (−0.5, 0, 0.5). Figure 6 presents the mean squared error performance
averaged across 1000 simulations for the two starting points previously mentioned, together with the one used
Section 4, namely (−1, 0, 1). As apparent from the plots, the trajectories stemming from the three starting
points almost overlap since the early stages of the optimisation, namely even before the end of the burn-in
phase. This suggests that the burn-in period is successfully limiting the influence of the starting point in the
averaging process.

Regarding the sequence of steps ηt, a correct setup of the decreasing scheduling is of key importance for
efficient computations of stochastic approximations. See Xu (2011) for further details. In particular, the
parameter η0, determining the length of the initial step, needs to be set according to the data. In practical
applications, η0 should be chosen by monitoring the likelihood of the model after a small number of iterations.
Figure 7 reports the average mean squared error performance across 1000 simulations for iteratively halved
values of η0 at the end of the burn-in period. Results show that the mean squared error performance is robust

19



to underspecification of η0. When the value chosen for η0 is too large, instead, the trajectories diverge. A
closer inspection of the experiments revealed the reason for such behaviour to be threshold trajectories
breaking their order constraints. As Appendix B outlines, the current parameterisation does not incorporate
the explicit ordering of thresholds. Thus, while setting the η0 to reasonably low values is enough to obtain
good performance, a suitable reparameterisation of the model thresholds, as discussed in Appendix B, would
potentially allow for larger steps and more robustness to η0 misspecification.
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Figure 6: mean squared error performance from three different starting points for the thresholds: start 1

(-1,0,1), start 2 (-2,0,2), start 3 (-0.5, 0, 0.5). Grey areas denote the burn-in period B = n.
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Figure 7: Average mean squared error performance across 1000 replications at the end of the burn-in period
(B = n) for different values of η0.

Appendix D Supplementary material for Big Five application
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Figure 8: Trajectories along the optimisation of parameter estimates and validation objective function on
the Big Five dataset. The grey areas denote the initial burn-in period.

Appendix E The indicators for the Relationship Learning data

Collaborative Commitment

cc1 To what degree do you discuss company goals with the other party in this relationship?

cc2 To what degree are these goals developed through joint analysis of potentials?

cc3 To what degree are these goals formalized in a joint agreement or contract?

cc4 To what degree are these goals implemented in day-to-day work?

21



cc5 To what degree have you developed measures that capture performance related to these goals?

Internal Complexity

ic1 The products we exchange are generally very complex.

ic2 There are many operating units involved from both organizations.

ic3 There are many contract points between different departments or professions between the two organizations.

Relational Trust

rt1 I believe the other organization will respond with understanding in the event of problems.

rt2 I trust that the other organization is able to fulfill contractual agreements.

rt3 We trust that the other organization is competent at what they are doing.

rt4 There is a general agreement in my organization that the other organization is trustworthy.

rt5 There is a general agreement in my organization that the contact people on the other organization are trustworthy.

Environmental Uncertainty

eu1 End-users needs and preferences change rapidly in our industry.

eu2 The competitors in our industry frequently make aggressive moves to capture market share.

eu3 Crises have caused some of our competitors to shut down or radically change the way they operate.

eu4 It is very difficult to forecast where the technology will be in the next 2-3 years in our industry.

eu5 In recent years, a large number of new product ideas have been made possible through technological break-
throughs in our industry.
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