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Abstract

We study how individual inventors respond to incentives to work on “clean” electricity technolo-
gies. Using natural gas price variation, we estimate output and entry elasticities of inventors and
measure the medium-term impacts of a price increase mirroring the social cost of carbon. We
find that the induced clean innovation response primarily comes from existing clean inventors.
New inventors are less responsive on the margin than their average contribution to clean energy
patenting would indicate. Our results strengthen the rationale for government intervention to

expedite the energy transition.
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1 INTRODUCTION

Clean energy innovation is critical to reducing the costs of climate change mitigation and allowing
society to avert the worst-case scenarios projected by climate scientists. A long literature in
economics provides empirical evidence that innovation in clean energy responds to economic
incentives, and recent research on directed technical change provides a theoretical justification for
subsidizing clean technology research and development. But crafting effective subsidies requires
understanding the sources and mechanisms of induced innovation.

This paper focuses on individual inventors to shed light on the origins of clean energy innovation.
A vast body of research in economics underscores the pivotal role of human capital in the innovation
process. However, the role of individual scientists and inventors in the energy sector has received
relatively little attention from economists. What is the evolution of a typical energy inventor’s
career? Given the extensive training required to reach the frontier of specialized fields, are inventors
likely to shift their research focus from conventional fossil fuel technologies to emerging clean
technologies? What is the role of new entrants relative to incumbents? Addressing these questions
is vital to understanding and influencing the pace of future clean energy innovation.

We use comprehensive global data on patent applications to characterize the careers of individual
inventors working on electricity generation technologies. We extract these inventors’ patent applica-
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tions and classify them as either “clean,” “grey,” or “dirty” electricity technologies.! We document
two new stylized facts about energy inventors. First, we find that most inventors specialize in
either clean or dirty technologies. This is consistent with returns to specialization in human capital
accumulation, and it raises the question of whether future government policies to encourage a shift
from dirty to clean technologies may be impeded by frictions that make it difficult for individual

inventors to work in different fields. Second, about half of the clean patent families in the data came

from inventors who had not patented before in clean. This sizeable number highlights the crucial

1. Although emissions intensities vary significantly across different fuels and technologies, we use the simplistic
terminology clean and dirty for broad categorizations in keeping with prior work (e.g., Acemoglu et al. 2012; Aghion
et al. 2016). In our main definition of “clean,” we include renewable and nuclear energy, while “dirty” includes patents
related to the combustion of fossil fuels. “Grey” encompasses energy efficiency and biomass and waste combustion
since they still emit greenhouse gases despite being cleaner than traditional fossil fuels.



role of new entrants in clean innovation.

We then study how individual inventors respond to economic incentives in order to develop
a deeper understanding of the forces determining these stylized facts. Our primary measure of
economic incentives is the price of natural gas, which is arguably the most important factor price in
electricity markets. When natural gas is more expensive, clean technologies become relatively more
competitive, and demand for them increases. Thus, if firms and inventors expect higher natural gas
prices to persist, they have a greater incentive to improve clean electricity technologies.

Our empirical strategy leverages variation in natural gas prices over both countries and time to
examine how inventors respond to changes in factor prices at both the intensive and the extensive
margins. The residual variation in natural gas prices that we exploit stems primarily from supply
shocks that are not transmitted globally due to transportation constraints. We also implement an
instrumental variable strategy that isolates variation from the shale gas revolution, which shifted
out the supply of natural gas and generated a persistent reduction in the price of natural gas in
North America relative to other regions due to natural gas transportation constraints. This strategy
mitigates concerns about the potential endogeneity of natural gas prices and the fact that inventors
are likely to respond differently to transient shocks than to persistent shocks.

First, we focus on active clean inventors and estimate an intensive margin output elasticity to
quantify how the number of patents an inventor produces responds to natural gas prices. We use
panel data methods to model how natural gas prices affect the number of clean energy patents
an inventor produces, including inventor and time fixed effects to account for cross-sectional
differences as well as common shocks to innovation incentives. To do so, we first construct prices
using information on the firms that individual inventors patent with. This leverages the role of firms,
which effectively act as intermediaries that observe market signals and respond by organizing and
directing inventors’ research activities.

Second, we examine the extent to which economic incentives induce new inventors to enter
clean patenting. We estimate an extensive margin elasticity, which we refer to as an entry elasticity,

to quantify how the number of inventors entering clean technology responds to natural gas prices.



To do so, we shift our analysis to the firm level. We assemble a panel of firms patenting in clean
energy and identify inventors listed on a firm’s patents in a given year. Within those, we focus on
inventors who are filing their first clean patent. We use inventors’ patenting history to classify them
as either: having never patented before; having patented outside of energy; or having patented in
grey or dirty but not clean technologies. We count the number of inventors in each group and then
estimate the elasticity of the number of new clean technology inventors with respect to natural gas
prices for each group.

Together, these empirical strategies allow us to characterize how inventors respond along both
the intensive and extensive margins and to compare the magnitudes of the responses. At the intensive
margin, we find that a 10% increase in natural gas prices induces about 5% more clean families
for the average clean incumbent. The direction and magnitude of this effect are consistent with
prior work at the firm and technology levels. The instrumented elasticity estimates are similar to the
non-instrumented estimates. At the extensive margin, we find that a 10% increase in natural gas
prices leads to an increase in entry of up to 6% depending on the time horizon and type of entrant.

We combine these econometric estimates to study the potential effects of an increase in natural
gas prices equivalent to a social cost of carbon of $51 per metric ton of carbon dioxide. We find
that total clean patenting would increase roughly one-third relative to baseline patenting rates in
the medium run. The dominant mechanisms of this aggregate response are increased patenting by
existing clean inventors and, to a lesser extent, patenting by new entrants who had not previously
produced patents.

Overall, these findings show that induced innovation in the medium run relies primarily on the
intensive margin, and that the entry of new inventors plays a more minor role. We interpret this
as a manifestation of path dependency, which is a key feature shaping the dynamics of directed
technical change (e.g., Acemoglu et al. 2012; Aghion et al. 2016), and which provides a rationale
for rapid government intervention to direct innovation toward clean technology to correct the carbon
externality. Our results, therefore, reinforce this rationale for interventions to hasten the energy

transition. Our findings also underscore the need for research to better understand what motivates



individuals to become clean inventors.

This paper provides new empirical evidence to the literature on the economics of energy and
environmental innovation. Prior research has shown that the optimal climate policy combines carbon
pricing and R&D subsidies to effectively redirect scientists from dirty to clean technologies (e.g.,
Acemoglu et al. 2012; Acemoglu et al. 2016; Fried 2018; Hart 2019; Lemoine 2020). Empirical
analyses have shown that energy price increases and environmental policies induce innovation in
clean technologies (e.g., Newell et al. 1999; Popp 2002; Johnstone et al. 2010; Popp and Newell
2012; Noailly and Smeets 2015; Aghion et al. 2016; Dugoua 2021; Myers and Lanahan 2022;
Gerarden 2023). Such effects have been documented both at the technology and firm levels, but
there is no empirical evidence on how such incentives influence the work, and especially the research
direction, of individual inventors. We provide new empirical evidence on how high-skilled workers
respond to incentives that can be used to guide future modeling assumptions and policy design.>

This paper also relates to the literature studying the role of human capital in innovation, and
especially how individual inventors respond to incentives (e.g., Jones 2009, 2010; Azoulay et
al. 2011; Bell et al. 2019; Agarwal and Gaule 2020; Van Reenen 2021; Akcigit et al. 2022). In
particular, Azoulay et al. (2019) and Myers (2020) highlight the role of new entrants in biomedical
research and find that it is costly to influence the direction of their work. We contribute to this
literature by documenting similar patterns in the context of climate change mitigation technologies.

We also build on a growing literature that studies the impacts of the shale gas revolution. Much
of this literature focuses on the implications of lower natural gas prices on the electricity sector and
environmental outcomes in the short run (e.g., Cullen and Mansur 2017; Linn and Muehlenbachs
2018; Kanittel et al. 2019; Coglianese et al. 2020).> We contribute to this literature by exploiting
slightly different variation and studying different outcomes. Prior papers primarily use variation
within the U.S. for estimation.* By contrast, we leverage the significant change in natural gas

prices in North America relative to other regions of the world to study how fuel price changes

2. Popp et al. (2022b) argue government investments in human capital will be needed to scale low-carbon energy.

3. Hausman and Kellogg (2015) assess welfare and distributional implications for the broader economy.

4. For example, Fowlie and Reguant (2022) exploit variation in the shale revolution’s effects on natural gas prices
across locations and industries to simulate the effects of a domestic carbon price on U.S. manufacturing.



induce innovation by individual inventors.’ This innovation could have transformational effects on

environmental, electricity sector, and broader economic outcomes in the long run.

2 STYLIZED FACTS ABOUT ENERGY INVENTORS

2.1 Data

Energy Patent Data. We extract electricity generation-related patent applications from the
PATSTAT database (European Patent Office 2022) using specific patent classification codes.®
These codes help us classify patents as relating to either clean, grey, or dirty technologies. Clean
technologies include zero or low-carbon electricity generation technologies (i.e., solar, wind, marine,
geothermal, hydro, and nuclear).” Dirty technologies include patents related to the combustion
of fossil fuels (i.e., coal, oil, and natural gas). In grey technologies, we group patents related to
improving the efficiency of combustion processes and electricity generation from biomass and
waste.

We aggregate patent applications at the level of patent families, which are collections of patents
that are considered to cover the same technical content and, therefore, represent the same invention.
We date families by their priority year, which is the year when the earliest application within the
family was filed.

Online Appendix Figure C.1 plots the number of clean, grey, and dirty patent families over time
in our sample. The trends are similar to those documented previously by Popp et al. (2022a) and
Acemoglu et al. (2023), with the number of clean patent families increasing rapidly over the 2000s,

followed by a decline in clean patenting since 2010. By contrast, the number of new patent families

5. Acemoglu et al. (2023) present suggestive evidence of the impact of shale gas development on clean innovation as
motivation for a theoretical model of the long-run consequences of the shale gas revolution.

6. We use codes from the Cooperative Patent Classification and the International Patent Classification (European
Patent Office 2020, 2021), building on previous studies that have listed relevant energy codes (Johnstone et al. 2010;
Lanzi et al. 2011; Dechezleprétre et al. 2014; Popp et al. 2022a). See Online Appendix A.3 for a detailed list of codes.

7. A patent family is classified as clean if it has at least one code related to renewable or nuclear energy. We also
consider an alternative definition of clean that includes some enabling technologies relevant to electricity and excludes
families that include any grey or dirty codes. Results for that definition are in the appendix.



in grey and dirty technologies has been more stable over the past three decades.

Inventor Data. Next, we identify individual inventors to construct a panel dataset of their patenting
activity over time. Intellectual property authorities require that all individuals who contributed to
an invention be listed as inventors on the application, but they do not use unique identifiers for
individual inventors. To analyze inventors’ activities over their careers, researchers must, therefore,
use the inventor names written on patent applications to identify unique inventors.

Our starting point is to use the PATSTAT Standardized Name identifier, which results from
a harmonization procedure completed prior to data publication.® This harmonization, however,
is incomplete: 70% of the inventors in our sample are not included. We improve the PATSTAT
identifier by standardizing inventors’ names and disambiguating inventors based on string matching.’

For our analysis, we focus on inventors who are listed on at least one energy patent application
filed in an OECD country after 1990.!° We define the year when the inventor becomes connected to
a family as the earliest year when the inventor appears on any of the applications in the family. In

the end, our sample contains a total of 726,049 energy inventors.

2.2 Stylized Facts

Most Energy Inventors Specialize in Clean or Dirty Technologies. Figures 1a and 1b show
the extent to which energy inventors specialize in either clean, grey, or dirty patenting based on
inventors’ global patent portfolios between 1990 and 2019. To construct the graphs, we classify
inventors with at least one energy patent family in a given year according to their last three years of
patenting.

On average throughout the period, 29% of energy inventors patent in clean energy only. Inventors

who patent in grey and/or dirty energy are more numerous, making up 60% of energy inventors.!!

8. Liet al. (2014) provides disambiguated identifiers for USPTO inventors only. Our study requires disambiguation
of all inventors globally.
9. Online Appendices A.2 and B explain this procedure in detail.
10. We limit our geographic scope because natural gas price data is available for OECD countries only.
11. Here, for simplicity, we restrict our attention to energy-related patents. Hence, when we say that an inventor
patents only in clean, we mean that all of the energy patents the inventor produces are in clean. The inventor may also



By contrast, the share of energy inventors who are active in both clean and dirty or grey energy
patenting is only 11%.

Figures 1a and 1b also show how specialization has changed over time. The total number of
energy inventors increased until 2012, led by a rapid rise in the number of clean inventors during
the 2000s. During that period, the share of inventors working in clean energy roughly doubled. On
the other hand, the number of inventors working on dirty and/or grey energy grew more gradually
over time, so that their share fell significantly over the 2000s. Finally, while the number of inventors
working in both areas has increased over time, it remains small relative to the clean and dirty

categories.

New Entrants are a Quantitatively Important Source of Clean Patenting To assess the
contribution of different types of inventors to innovation output, we document the number of
clean families produced by inventors based on their prior patenting behavior. Figures 1¢ and 1d
summarize the distribution of clean families over the sample period. To compute these numbers, we
inversely weight patent counts by the number of inventors associated with each patent family to
avoid double-counting, and then aggregate patent counts across inventors of each type.

On average, throughout the period, we find that only about half of clean families (49%) are from
clean incumbents, either inventors with prior patenting in clean only (32%) or in clean as well as
grey and/or dirty (17%). Roughly one-third of families (28%) come from inventors who did not
previously appear in the patent data. About 19% come from inventors that had previously patented
in fields that we do not classify as energy. Finally, a small fraction of clean families (4%) come

from inventors with prior patenting in grey and/or dirty but not clean.'?

patent in other non-energy fields.
12. We find similar distributions of incumbents versus entrants for grey and dirty families (see Online Appendix C.3).
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FIGURE 1
Type of Energy Inventors and Clean Patent Families

Note: Figures la and 1b show the extent to which energy inventors specialize in either clean, grey, or dirty patenting.
We focus on inventors’ global patent portfolios for inventors with at least one energy patent in an OECD country after
1990. To construct the graphs, we first identify inventors with at least one energy family filed in year ¢, and then classify
them according to their last three years of patenting activity. This three-year window is used only for Figures la and 1b
and not for other figures and results in the paper. Figures 1c and 1d illustrate the types of inventors behind clean families
over time. They plot trends over time in the levels and shares of clean families produced by inventors with previous
clean patents, inventors new to patenting, inventors with previous patents outside the set of energy technologies under
study, and inventors with previous grey and/or dirty patents. Families with multiple inventors are fractionally attributed
to the inventors to avoid double-counting. In our data, only 3.0% of inventors starting in grey and/or dirty eventually
enter clean patenting.

3 EMPIRICAL STRATEGY

The remainder of the paper focuses on how innovation in clean electricity generation technologies
responds to changes in economic incentives, which we proxy by changes in natural gas prices. In

this section, we discuss the sources of price variation that we exploit. We then explain our approach



to estimating clean innovation responses on both the intensive and extensive margins.

3.1 Identifying Variation

Our empirical strategy builds on a literature on induced innovation dating to Hicks (1932). Hicks
hypothesized that a change in relative factor prices would spur innovation to use less of the factor
which had become relatively expensive. We use natural gas prices as a proxy for relative factor
prices in electricity generation, and therefore as an indirect proxy for the expected returns from
innovation in renewable and nuclear electricity generation technologies that compete with natural
gas-fired electricity generation. !>

We use data on natural gas prices from the International Energy Agency (2020) and exploit
variation across countries and time, visualized in Figure 2a.'* The price variation across countries
at a given point in time stems primarily from constraints on the transportation of natural gas. The
clearest example of this is the shale gas revolution. The development of horizontal drilling and
hydraulic fracturing caused prices for natural gas in North America to decline significantly in 2009.
These price reductions were not seen in other regions for many years due to short-run capacity
constraints on the export of natural gas. The identifying variation used in our primary empirical
strategy comes from residual variation in natural gas prices after conditioning on country and time
fixed effects, plotted in Figure 2b.

To mitigate concerns about potential endogeneity of natural gas prices due to reverse causality —
that clean technology developments may affect demand for natural gas, and therefore affect natural
gas prices — we also implement an instrumental variable strategy that restricts attention to the

variation in natural gas prices caused by the shale gas revolution. We use a binary instrument that

13. While renewable and nuclear technologies primarily serve as substitutes to fossil fuel technologies, they can also
be complements in some markets and time periods. The role of these technologies as substitutes versus complements
generates opposing innovation incentives. Our empirical strategy estimates the net effect of these countervailing forces.
The Online Appendix also presents results using a broader definition of clean that includes enabling technologies
such as smart grid and energy storage. However, the extent to which those enabling technologies are substitutes or
complements to natural gas electricity generation is less clear than for clean electricity generation technologies.

14. Natural gas prices are in nominal U.S. dollars per megawatt-hour. All econometric analysis in the paper includes
time fixed effects, which absorb common time-varying factors including changes in the value of U.S. dollars due to
inflation, so the results are invariant to using prices in real terms.
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Note: Panel a plots the price of natural gas in each country over time using data from the International Energy Agency
(2020). Prices are in U.S. dollars per megawatt-hour (MWh). Panel b plots residuals from a regression of the natural
logarithm of the natural gas prices from Panel a on country and year fixed effects.

is one for the United States and Canada starting in 2009 and is zero in all other countries and
time periods. This instrument explains 51% of the residual variation in natural gas prices after
accounting for country fixed effects, time fixed effects, and other control variables included in our
main specifications. We use a control function approach based on Lin and Wooldridge (2019) to
implement the instrumental variable strategy, detailed in Appendix E.

We use a shift-share research design to utilize this country-level identifying variation to study
outcomes at the inventor and firm levels, as described in the subsequent sections. In doing so, we
build upon recent methodological papers by Adao et al. (2019), Goldsmith-Pinkham et al. (2020),
and Borusyak et al. (2022). For identification we rely on exogeneity of the natural gas price
shocks rather than exogeneity of the shares (i.e., weights), as in Adao et al. (2019) and Borusyak

etal. (2022).1

15. These papers focus on linear models and provide new procedures for inference that are robust to correlated
residuals among units with similar exposure shares. Unfortunately, we are not aware of analogous results for nonlinear
models. Thus, we cluster regressions by unit (i.e., inventor or firm). Online Appendix F presents additional results in
which we conduct estimation and inference using linear models following the methods from Borusyak et al. (2022).
Those results remain statistically significant.
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3.2 Response at the Intensive Margin: Output Elasticity of Incumbents

To quantify the magnitude of the induced innovation response at the intensive margin, we focus on
inventors who have produced at least one clean patent and study how their clean patenting activity
responds to natural gas prices. Specifically, we model patenting as a function of energy prices and

inventor characteristics:

PATS = exp(BpInP;_1 + BxXir—1 + % + i) + uir, (1)

where PATi,C is the count of clean families filed by inventor i in year £;'® P;_ is the price of natural
gas that inventor i is exposed to in year r — 1;!7 X;,_; is a set of controls; % and n; denote year and
inventor fixed effects; and u;; is an error term. In some specifications, we also include tenure fixed
effects to account for how productivity evolves over the course of inventors’ careers.'® We estimate
equation 1 via Poisson pseudo maximum likelihood under the assumption that natural gas prices are
conditionally weakly exogenous.

Our empirical model requires a measure of the natural gas price(s) that individual inventors
use to form beliefs, which we do not directly observe. Most inventors patent in conjunction with
corporations, and we view their incentives as primarily mediated by firms. Thus, we construct price
measures for each individual that depend upon the prices that the firm(s) they are associated with

are exposed to.!”

16. We construct inventors’ time-series such that the first year corresponds to the first observed clean patent filed by
the inventor, and the last year corresponds to the year of the last observed patent (of any type). Our results are robust to
arbitrarily truncating inventors’ time-series at 50% of their observed tenure. See Online Appendix G.4.

17. We use the previous year’s prices as a proxy for individual inventors’ beliefs about future prices while still
allowing a lag that gives inventors time to respond to variation in price. While we do not have direct evidence on
individual inventors’ beliefs about natural gas prices, Anderson et al. (2013) find that U.S. consumer beliefs about
gasoline prices are indistinguishable from a no-change forecast. We also estimate more flexible distributed lag models
that include prices from the previous three years. This choice of lags is supported by survey evidence on inventor
activities from Nagaoka and Walsh (2009), who report that the average amount of time spent on research leading up to
a patent application is less than two years, and that between 80% and 90% of patents involve three or fewer years of
research leading up to an application.

18. The tenure variable is the number of years since we observe an inventor’s first patent (of any type).

19. Patent applications provide the names of applicants (i.e., the entities retaining the intellectual property rights),
and most applicants are for-profit organizations. We connect inventors to firms based on the applicants that appear on
their patents. The link between PATSTAT inventors and Orbis firms is provided by Orbis IP (Bureau van Dijk). Most
inventors are linked to multiple firms, either because their individual patents are jointly filed by multiple companies

11



We, therefore, construct inventor-specific prices in two steps. First, we compute firm-specific
prices as the weighted average of country-level prices. Second, we compute inventor-specific prices

as the weighted average of firm-level prices. The resulting prices are given by

sjcGDP,
InP; = ZSUZZCS]CGDP In Py,

where P, is the average tax-inclusive natural gas price in country c in year #; s;; is the share of
inventor i’s patent families that are associated with firm j;?° and s jc captures exposure of firm j
to country c. We calculate s;. as firm j’s share of energy patents in country ¢.! This method of
constructing firm-specific prices is similar to prior analyses of induced innovation at the firm level
(e.g., Noailly and Smeets 2015; Aghion et al. 2016).?? Finally, GDP. is the average GDP of country
¢ from 1990 to 2018 and adjusts for differences in market size across countries.

We use the same weighting method to construct inventor-specific measures of the country-level
controls contained in Xj,_;. These variables are the natural logarithms of GDP per capita (World
Bank 2020a, 2020b) and public spending on energy and low-carbon research, development, and
demonstration (RD&D) (International Energy Agency 2019). These factors are included because

they are likely to influence patenting, and they may be correlated with natural gas prices.

at one point in time, or because they switch between firms over time. Our results hold even when we only consider
inventors who have been associated with a single firm (see Appendix G.6). Independent “garage” inventors who are not
associated with any firms represent 13% of individual inventors in the data. For these inventors, we use the price of
their country of residence.

20. We use observations across all years to construct these shares because 67% of inventors do not patent before 2000.

21. To mitigate concerns about the potential endogeneity of the shares, we use observations in a pre-period (1990-
1999). For firms that do not apply for patents prior to 2000 (52% of firms in the sample), we assume they are equally
exposed to all countries (weighted by their GDP). Our results are robust to using weights based on all-period patenting.
See Online Appendix G.5 for details.

22. This approach also allows us to rely on results from the methodological literature on shift-share research designs.
However, it makes the inventor-level price variable less interpretable as a price. In Appendix J, we repeat our analysis
by first computing inventors’ exposure-weighted prices, and then taking the natural logarithm. Our results are robust to
using this alternative functional form.

12



3.3 Response at the Extensive Margin: Entry Elasticity of Inventors

Next, we examine whether changes in natural gas prices induce inventors who have not previously
worked on clean energy technology to enter clean patenting. Because we only observe inventors once
they patent and do not observe their education or career history, we are unable to use within-inventor
variation in natural gas prices to study extensive margin responses. Instead, we use firm-level
information on patenting portfolios and the inventors they patent with. For each firm in each year,
we count the number of inventors filing clean families with the firm for the first time in their career,

$.23

meaning that the inventor never patented in clean before year We use these data to estimate a

firm-level model analogous to the inventor-level model in equation 1:
Ej, = exp(BpInPje—y + ByXj—1 + 4 + 1) + ;. )

where £ ft is the number of new entrant inventors of type k filing a clean family with firm j in year
t.2* We classify entrants into three types: those who previously patented in grey and/or dirty but not
clean energy, those who previously patented outside of energy, and those who had not previously
patented. InPj,_; is the exposure-weighted log price of natural gas for firm j in yearr — 1. Xj; _;
includes the exposure-weighted logs of GDP per capita, energy, and low-carbon public RD&D
spending for firm j in year ¢ — 1. These variables are constructed as described in Section 3.2. Year
and firm fixed effects are denoted yf and n }‘, and u’]?t is an error term. We estimate these models

separately by type.

23. The coverage of the correspondence between PATSTAT and Orbis is severely limited after 2014. For this reason,
we restrict our firm-level sample to years between 2000 and 2014.

24. To avoid double-counting inventors who file patents with multiple firms, we weigh the relationship between a firm
and an inventor by the inverse number of firms the inventor patented with in that year.

13



4 RESULTS

4.1 Output Elasticity Estimates

Table 1 contains estimates of the elasticity of clean patenting with respect to lagged natural gas
prices. Panel A presents baseline results from models that include fixed effects and use all residual
variation in natural gas prices. Panel B presents results from instrumental variable models that only
use price variation from the shale gas revolution. Panel C presents results from a distributed lag
model which uses all residual variation in natural gas prices in the three years prior to patenting. The
columns contain alternative specifications of Equation 1.%°> The first two columns use the simple
count of clean families as the outcome variable. The third and fourth columns use the count of

d.26 The last two columns use the

clean families weighted by the number of citations they receive
simple count of clean families inversely weighted by the number of coinventors associated with
each family (i.e., “fractional” count).%’

In Panel A, all six specifications yield output elasticities of around 0.45. The effect is somewhat
larger when families are weighted by citations, indicating that price variation affects the production
of higher-quality patents on the margin. By contrast, it is somewhat smaller when using fractional
patent families, suggesting that price variation affects patenting by teams more than by individual
inventors on the margin.

Panel B of Table 1 presents estimates from the instrumental variable strategy. Overall, the
qualitative patterns across columns are similar to those in Panel A, though the magnitudes differ
somewhat. The most likely explanation for the differences between Panels A and B is that the
price variation used to identify the output elasticity is different and that the local average treatment

t.28

effect of the instrument is different from the average treatment effect.”® The shale gas revolution

generated a large decline in natural gas prices in North America that was expected to persist far

25. We document results with additional outcome variables in Online Appendix G.3.

26. Specifically, for a family filed in year ¢, the weight is equal to the ratio of the number of citations the family
received within three years over the number of citations that the average energy family filed in year ¢ received.

27. For example, if an inventor produced one clean family in a given year in conjunction with another inventor, the
outcome would be 0.5 rather than 1. We use this approach to avoid double-counting.

28. Other potential explanations for the differences include price endogeneity and sampling variation.
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TABLE 1
Estimates of Incumbent Inventors’ Elasticity of Patenting with Respect to Natural Gas Prices

Count of Clean Patent Families

Simple Count Citation-Weighted Coinventor-Weighted

(D (2) (3) 4 ©) (6)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.495 0.396 0.582 0.451 0.458 0.374

(0.038) (0.039) (0.048) (0.048) (0.049) (0.049)
Inventors 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
Pseudo-R2 0.291 0.292 0.373 0.375 0.265 0.266
Panel B: Instrumental variable estimates
Prices (log, t-1) 0.523 0.308 0.871 0.596 0.412 0.211

(0.058) (0.060) (0.077) (0.077) (0.071) (0.072)
Inventors 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
First-stage F-statistic 163 163 163 163 163 163
Panel C: Distributed lag estimates
Cumulative effect (3 lags) 0.534 0.420 0.551 0.410 0.564 0.441

(0.050) (0.052) (0.065) (0.066) (0.059) (0.062)
Inventors 80,795 80,795 80,795 80,795 80,795 80,795
Observations 572,195 572,195 572,195 572,195 572,195 572,195
Pseudo-R2 0.294 0.295 0.370 0.372 0.267 0.268
Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X
Country-year covariates X X X X X X

Note: The dependent variables are the number of clean patent families, either unweighted, weighted by citations, or
inversely weighted by the number of coinventors, depending on the column. Panels A, B, and C contain estimates of the
same parameters using different estimation strategies. Panel A presents estimates of equation 1 estimated via Poisson
pseudo-maximum likelihood. Standard errors are clustered by inventor and reported in parentheses. Panel B presents
estimates of equation E.2 estimated via the control function approach described in the text, using the shale gas revolution
as an instrument for natural gas prices. Standard errors are constructed via block bootstrap of the two-step control
function approach, sampling inventors 250 times with replacement. The first-stage F-statistic for the instrumental
variable estimates is from estimating equation E.1 at the country-year level rather than the inventor-year level, since the
instrument varies at the country level and it thus provides a more conservative assessment of the instrument’s strength.
Panel C is analogous to Panel A except that the models include three lags of natural gas prices and all other covariates
that vary across both countries and time, and the coefficients represent cumulative effects.

into the future. This expectation of persistent price changes could have had a larger impact on the
incentives for engaging in high-risk, high-reward innovation that is more likely to be cited than it
had on the incentives for more incremental innovation (relative to other, potentially transient price

variation).
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In Panel C, we present results from a distributed lag version of the baseline Poisson model as
a complementary approach to capture the medium-run effects of persistent price changes. The
elasticity estimates are now quite similar across columns. Given how similar the estimates are
across Panels A, B, and C, and given that a large fraction of the overall variation in the data is driven

by the shale revolution, we focus on the non-instrumented results for the remainder of the paper.?’

4.2 Entry Elasticity Estimates

Table 2 contains estimates for the entry elasticity with respect to lagged natural gas prices. Each
column corresponds to a different type of entrant. Panel A presents estimates from models with one
lag. Panel B presents the cumulative effect from distributed lag models with three lags. In Panel A,
the estimates are positive but somewhat imprecise. The entry elasticity point estimates are similar
across types of entrants. In Panel B, the estimates for new-to-patenting and grey/dirty entrants are
larger and more precisely estimated. The change in magnitude is intuitive because inventors and
firms may need time to respond to price changes, and because they are likely to respond less to
transient than to persistent price changes. On the other hand, we do not find clear evidence that

non-energy inventors respond to price shocks.

29. Appendix G also contains results for a broader definition of clean patenting that includes enabling technologies.
The estimates are typically smaller in magnitude than the main estimates, which is as expected since enabling
technologies are not direct substitutes for electricity generated from natural gas.
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TABLE 2
Estimates of the Elasticity of Inventor Entry with Respect to Natural Gas Prices

Number of Clean Inventors

New to Patenting From Grey/Dirty From Non-Energy

(D ) 3)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.212 0.143 0.122

(0.127) (0.099) (0.105)
Firms 3,822 4,970 4,930
Observations 52,982 68,709 68,223
Pseudo-R2 0.671 0.591 0.624
Panel B: Distributed lag estimates
Cumulative effect (3 lags) 0.509 0.653 0.203

(0.168) (0.122) (0.160)
Firms 3,680 4,777 4,708
Observations 43,262 55,612 55,075
Pseudo-R2 0.680 0.595 0.631
Year fixed effects X X X
Firm fixed effects X X X
Country-year covariates X X X

Note: The dependent variables are the fractional number of inventors (that is, inversely weighted by the number of firms
they are associated with) of each type within each firm who are new to patenting in clean patent families in that year.
The sample used for estimation is a balanced panel of firms from 2000 to 2014. Panel A presents estimates of equation
2 estimated via Poisson pseudo-maximum likelihood. Standard errors are clustered by firm and reported in parentheses.
Panel B is analogous to Panel A, except that the models include three lags of natural gas prices and all other covariates
that vary across both countries and time, and the coefficients represent cumulative effects.

5 How wouLD CARBON PRICING INDUCE INNOVATION?

To place the intensive and extensive elasticity estimates in context, we analyze the effects of a
persistent natural gas price increase equivalent to the U.S. Government’s social cost of carbon of
$51 per metric ton of carbon dioxide. This corresponds to 54% of the GDP-weighted global average
price of natural gas in 2014. We model the medium-run effects of this price increase over 10 years.

To calculate the aggregate impact of this change in natural gas prices, we use a first-order
approximation that combines responses along the intensive and extensive margins. We use the
estimated elasticities from the distributed lag models in Sections 4.1 and 4.2 along with data on

baseline rates of patenting and entry to compute the contribution of each margin.?® The extensive

30. To avoid double-counting, we use elasticities estimated using the count of clean families inversely weighted by the
number of coinventors and the number of inventors inversely weighted by the number of firms they are associated with.
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margin responses are computed separately by entrant type and take into account typical patenting
rates over the first 10 years after an inventor enters clean patenting. Appendix I provides a formal
description of our approach and more details on its implementation as well as its limitations.

Table 3 summarizes the results. In the medium run, intensive margin responses by incumbent
inventors are the largest source of induced patenting. Within the extensive margin responses, entry
to patenting by new inventors is quantitatively most important. Responses by inventors who had
previously produced patents related to grey or dirty technologies are next most important. Finally,
entry by inventors who had previously worked on technologies outside energy contributes a small
and imprecisely estimated amount. In total, this represents a clean patenting increase of 36% relative
to a scenario in which the baseline rate of clean patenting from 2014 had been constant over 10
years.

TABLE 3
Predicted Impacts of Carbon Pricing on Clean Patenting

Source Patents Share (%)
Intensive margin response
Incumbent inventors 37,886 66.1
(5,326) (5.8)
Extensive margin response
Entry from grey/dirty 5,884 10.3
(1,099) (2.1)
Entry from non-energy 2,299 4.0
(1,812) 3.1)
Entry to patenting 11,237 19.6
(3,709) (5.6)
Total 57,307 100.0
(6,828)

Note: Predicted changes in the number of clean patent families due to a persistent 54% increase in natural gas prices
over the course of 10 years, relative to a base year of 2014. The total change in patenting represents an increase of 36%
relative to baseline patenting rates. Output and entry elasticities are estimated using three lags of natural gas prices as in
Panel C of Table 1 and Panel B of 2. Inputs for the extensive margin analysis are derived from a balanced panel of firms
from 2000 through 2014 as in Table 2. Standard errors are constructed using the delta method.

To assess the sensitivity of these results, we present analogous estimates using alternative
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specifications and samples in Online Appendix 1.3. While the absolute magnitudes of patenting
activity depend on the specification, the relative importance of each margin does not: in all cases,
the largest sources of induced patenting activity are increased patenting by incumbent inventors,

followed by entry of new inventors without prior patents.

6 CONCLUSION

We draw two main conclusions from our analysis. First, inventors typically specialize, either in
clean, grey, or dirty technologies. Notably, around half of the clean patents come from inventors
who previously specialized in clean technology, and these inventors’ output responds to changes
in natural gas prices. Second, while new entrants are critical to clean innovation, they don’t
respond strongly to changes in natural gas prices, particularly those who have previously patented
in non-energy sectors.

Our carbon pricing analysis shows that induced innovation is primarily driven by intensive
margin increases in incumbents’ patenting output. Extensive margin entry of new inventors plays a
more minor role. These responses on the margin contrast with the roughly equal split of patenting
between the two groups on average.

These findings raise the question of whether policies encouraging a shift from dirty to clean may
be impeded by frictions that make it difficult for individual inventors to work in different fields and
highlight the need for further work to understand better what drives individuals to become clean

inventors.
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A Data Cleaning and Construction

A.1 Overview of Patent Data Cleaning and Construction

We used the Spring 2022 Edition of PATSTAT from the European Patent Office (2022). There’s a
time lag between when patents are filed and when they appear in the database. As a result, data
after 2019 is incomplete, with many patent applications missing.

We group patents by DOCDB simple patent families to prevent counting the same invention
multiple times. Sometimes, multiple patents are filed for the same invention. This can happen if the
patents have slightly different details about the same invention or if identical patents are filed in
different countries.

PATSTAT provides the names and identifiers of the inventors and applicants listed on patent
applications. However, only a subset of the identifiers is disambiguated. For this reason, we further
process inventor names and improve inventor disambiguation (see next section for details). For
applicants, we leverage Orbis Intellectual Property (Orbis IP), a database from Bureau van Dijk
that contains links between private organizations and their patent applications. We match data from
Orbis IP with PATSTAT using patent application numbers. In the end, this allows us to link DOCDB
families in PATSTAT to BvD ids of Orbis establishments associated with these families.

Furthermore, PATSTAT provides extensive information about each patent family, especially
where each application was filed. Since our data on natural gas prices only covers OECD countries,
we concentrate on inventors who have submitted at least one energy patent in an OECD country.
When categorizing inventors (like clean, grey/dirty, or non-energy), we consider their entire patent
history in PATSTAT, no matter where the patent was filed.

A.2 Summary of Inventor Disambiguation and Cleaning

This section provides a summary of cleaning steps on inventor names. For more details, see Section
B.

We standardize inventor names by starting with the PATSTAT Standard Name identifier and
then removing special characters, changing all middle names to middle initials, and keeping only
the first middle initial for people with multiple middle names.

We then use granted patent applications from the USPTO to compare the performance of our
approach with the disambiguation effort done by Li et al. (2014). We find that for the subsample of
inventors listed on USPTO patent grants between 1975 and 2010, our approach yields 92.1% of
correct matches.

One concern is that our approach is susceptible to a “John Smith” problem, whereby we
wrongly tag two identifiers as being the same inventor. Here, we adopt a conservative approach
to limit the potential for false positives. We count the number of countries and the number of
PATSTAT Standardized Name identifiers associated with each unique name that remains after our
standardization procedure. For unique names for which either the number of countries or the number
of PATSTAT identifiers is above the 99th percentile, we revert back to identifying unique inventors
based solely on their PATSTAT identifiers. To be conservative, when inventors have patenting gaps
of more than 15 years, we ignore observations before the gap. We also drop inventors whose patent
history spans more than 60 years.



A.3 Clean, Grey, and Dirty Classification using Patent Technological Codes

To study the type of energy technologies in patent applications, we use the codes given on the
patent filings. These codes tell us if the patent is about clean, grey, or dirty energy technologies.
We use codes from both the Cooperative Patent Classification (CPC) and the International Patent
Classification (IPC). This way, we can include many patent families. Specifically, we need IPC
codes to include patents from China and Japan, as they don’t use the CPC.

We make a list of energy codes that are relevant to electricity generation based on previous
studies (Johnstone et al. 2010; Lanzi et al. 2011; Dechezleprétre et al. 2014; Popp et al. 2022).
These codes are shown in Tables A.1, A.2, and A.3. Note that we do not include codes related to
fracking in “dirty” since this would introduce endogeneity with respect to changes in natural gas
prices. We also do not include patents related to carbon capture and storage in “clean” since such
technologies are complementary to fossil fuels.

In our main method, we say a patent family is “clean” if it has at least one code about renewable
or nuclear energy. With this method, even if a patent has grey or dirty codes, it’s still “clean” if it
has a renewable or nuclear code.

We also use another, broader, method to define “clean.” This method is different in two ways.
First, it includes more than just renewables and nuclear; it also includes other enabling technologies
related to electricity (see Table A.1). Second, it does not consider patents “clean” if they have any
grey or dirty codes. Robustness results using this broader definition are contained throughout this
Online Appendix.

A “dirty” patent family is one that has at least one “dirty” code and no “clean” or “grey” codes.
“Grey” patent families are those that: 1) have at least one “grey” code, irrespective of whether they
also have “clean” or “dirty” codes; or 2) have both “clean” and “dirty” codes.



Table A.1: CPC and IPC Codes for Clean Electricity Generation Technologies

Sub-sector Code Description
. FO3D ‘Wind motors
Wind . . . . - . . .
Energy HOIL27/142 Dev1.ces consisting of a plurality .of semiconductor componenFs s:ens.ltlve to 1nf.ra—red radiation, light -
specially adapted for the conversion of the energy of such radiation into electrical energy
YO02E10/70 Wind energy
E04D13/18 Aspects of roofing for energy collecting devices - e.g. incl. solar panels
F03G6 Devices for producing mechanical power from solar energy
F24J2 Use of solar heat e.g. solar heat collectors
Solar F26B3/28 Drying solid materials or objects by processes involving the application of heat by radiation e.g. from the sun
Energy HOI1L31/04 Semiconductor devices sensitive to infra-red radiation, light - adapted as conversion devices
HO2N6 Generators in which light radiation is directly converted into electrical energy
YO02E10/40 Solar thermal energy, e.g. solar towers
YO02E10/50 Photovoltaic [PV] energy
YO02E10/60 Thermal-PV hybrids
Y02B10 Integration of renewable energy sources in buildings
Renewables .
YO02E10 Energy generation through renewable energy sources
lgﬁglrega; YO02E30 Energy generation of nuclear origin
E02B9/08 Tide or wave power plants
. FO3B13/10 Submerged units incorporating electric generators or motors characterized by using wave or tide energy
Marine o . . . . .
Energy FO3B13/12 Submerged units 1ncorp0rat1ng electric generators or motors characterized by using wave or tide energy
F03G7/05 Ocean thermal energy conversion
YO02E10/30 Energy from the sea, e.g. using wave energy or salinity gradient
Hydro
Enyergy YO02E10/20  Hydro energy
F03G4 Devices for producing mechanical power from geothermal energy
Geothermal Mechanical-power-producing mechanisms - using pressure differences or thermal differences occurring in
Ener F03G7/04
gy nature
F24]3 Production or use of heat, not derived from combustion - using natural or geothermal heat
YO02E10/10 Geothermal energy
Systems integrating technologies related to power network operation and ICT for improving the carbon
Y02B70/30 footprint of the management of residential or tertiary loads, i.e. smart grids as CCMT in the buildings sector
or as enabling technology in buildings sector.
Systems integrating technologies related to power network operation and communication or information
Enabling Y02B90/20 technologies mediating in the improvement of the carbon footprint of the management of residential or
Technologies tertiary loads, i.e. smart grids as enabling technology in buildings sector
YO02E40/70 Smart grids as climate change mitigation technology in the energy generation sector
YO02E60 Enabling technologies (storage, hydrogen. . .)
YO02E60/10 Energy storage using batteries, capacitors, Mechanical energy storage, e.g. flywheels or pressurised fluids
YO02E60/30 Hydrogen Technology
YO02E60/50 Fuel Cells
Systems integrating technologies related to power network operation and communication or information
YO02E60/70 technologies mediating in the improvement of the carbon footprint of electrical power generation,
transmission or distribution, i.e. smart grids as enabling technology in the energy generation sector
Systems integrating technologies related to power network operation, communication or information
Y04S technologies for improving the electrical power generation, transmission, distribution, management or usage,

i.e. smart grids.




Table A.2: CPC and IPC Codes for Grey Electricity Generation Technologies

Sub-sector Code Description
Chemical or physical processes (and apparatus therefor) conducted in the presence of fluidised particles,
B01J8/20 O P .
with liquid as a fluidising medium
Chemical or physical processes (and apparatus therefor) conducted in the presence of fluidised particles,
B01J8/24 . -
according to fluidised bed furnaces
C10J3 Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
Use of steam or condensate extracted or exhausted from steam engine plant; Returning energy of steam, in
FO1K17/06 : ;
exchanged form, to process, e.g. use of exhaust steam for drying solid fuel of plant
Plants characterised by more than one engine delivering power external to the plant, the engines being driven
FO1K23 . .
by different fluids
FO1K27 Plants for converting heat or fluid energy into mechanical energy; use of waste heat;
FO1K3 Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
FOIKS Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of
Honigmann or Koenemann type
FO02B1/12 Engines characterised by fuel-air mixture compression ignition
FO2B11 Engines characterised by both fuel-air mixture compression and air compression, or characterised by both
positive ignition and compression ignition, e.g. in different cylinders
Engines characterised by the introduction of liquid fuel into cylinders by use of auxiliary fluid; Compression
F02B13/02 A . L . . . .
ignition engines using air or gas for blowing fuel into compressed air in cylinder
F02B3/06 Engines characterised by air compression and subsequent fuel addition; with compression ignition
Energy F02B49 Methods of operating air - compressing compression - ignition engines involving introduction of small
Efficiency F02B7 Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
F02C3/20 Gas turbine plants characterised by the use of combustion products as the working fuel
F02C3/32 Gas turbine plants characterised by the use of combustion products as the working fuel
F02C3/34 Gas turbine plants characterised by the use of combustion products as the working fuel
F02C3/36 Gas turbine plants characterised by the use of combustion products as the working fuel
Combinations of gas-turbine plants with other apparatus; Supplying working fluid to a user, e.g. a chemical
F02C6/10 . . . .
process, which returns working fluid to a turbine of the plant
F02C7/30 Gas turbine plants - Preventing corrosion in gas-swept spaces
F02G5 Profiting from waste heat of combustion engines;
F22B31 Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus;
Arrangements or dispositions of combustion apparatus
Steam generation plants, e.g. comprising steam boilers of different types in mutual association;
F22B33/14 S . -
Combinations of low- and high-pressure boilers
F22G Superheating of steam (steam separating arrangements in boilers)
F23B10 Combustion apparatus characterized by the combination of two or more combustion chambers (using only
solid fuel)
Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven
F23B30 . . .
means for advancing the burning fuel through the combustion chamber
F23B70 Combustion apparatus characterized by means for returning solid combustion residues to the combustion
chamber
Combustion apparatus characterized by means creating a distinct flow path for flue gases or for
F23B80 -
non-combusted gases given off by the fuel
Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or
F23Cl . .
alternately, at least one kind of fuel being fluent
F23C10 Apparatus in which combustion takes place in a fluidised bed of fuel or other particles
Combustion apparatus characterized by the arrangement or mounting of burners; Disposition of burners to
F23C5/24 .
obtain a loop flame.
F23C6 Combustion apparatus characterized by the combination of two or more combustion chambers (using fluent
fuel)
F23D1 Burners for combustion of pulverulent fuel
F23D17 Burners for combustion simultaneously or alternatively of gaseous or liquid or pulverulent fuel
F23D7 Burners in which drops of liquid fuel impinge on a surface
F27B15 Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
YO02E20/10 Combined combustion
YO02E20/30 Technologies for a more efficient combustion or heat usage
YO02E40 Technologies For An Efficient Electrical Power Generation, Transmission Or Distribution
Solid fuels essentially based on materials of non-mineral origin - animal or vegetable substances; sewage,
C10L5/40 . . . .
Bi town, or house refuse; industrial residues or waste materials
1(;nmdass FO1K25/14 Plants or engines characterized by use of industrial or other waste gases
Waste F02B43/08 Engines or plants operating on gaseous fuel generated from solid fuel, e.g. wood
YO02E20 Combustion Technologies With Mitigation Potential (E.G. Using Fossil Fuels, Biomass, Waste, Etc.)
YO2E50 Technologies for the production of fuel of non-fossil origin (Biofuels, e.g. bio-diesel, Fuel from waste, e.g.

synthetic alcohol or diesel)
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Table A.3: CPC and IPC Codes for Dirty Electricity Generation Technologies

Sub-sector Code Description
C10J Production of fuel gases by carburetting air or other gases
CI10L1 Liquid carbonaceous fuels; Gaseous fuels; Solid fuels
Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G,
C10L3 .
C10K; Liquefied petroleum gas
Traditional CI10L5 Solid fuels
Fossil Steam engine plans; steam accumulators; engine plants not otherwise provided for engines using special
Fuels FO1K king fluid: 1
working fluids or cycles
F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply in air-breathing
jet-propulsion plants
F22 Steam generation
F23 Combustion apparatus; combustion processes
F24) Production or use of heat not otherwise provided for
F27 Furnaces; kilns; ovens; retorts
F28 Heat exchange in general
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A.4 Inventor-Level Patenting Outcomes

To determine how often an inventor patents, we look at the number of patent families of different
types (e.g., clean) that are connected to inventor i in year . We use the first application in that
family where the inventor’s name is mentioned to assign a year for the family for that inventor.

Imagine an inventor applied for a patent that is classified both as “renewable energy” and as
“grey” (this is a rare but possible case concerning only 3.6% of renewable energy families). Using
our basic definition of “clean”, this inventor would be noted as having one “clean” patent and one
“grey” patent. However, using the broader definition of “clean”, the inventor would only have one
“grey” patent and zero “clean” ones.

Note that, with our baseline definition, the patent is therefore counted twice, once as “clean”
and once as “grey.” While this has no bearing on our regression analyses, which center on clean
patenting, it does mean that in Section 2, the inventor is labeled as “Clean and Grey/Dirty.” If we
adopt the broader definition of “clean”, the entire patent family is then classified as “grey”, and
consequently, so is the inventor.

We construct an alternative count of inventor-level clean families by weighting families by the
number of citations they received. The number of citations received is often used as a proxy of
patent quality (Jaffe et al. 2000; Jaffe and Rassenfosse 2017). Our weighting procedure lets us give
more weight to families that may be of higher quality. Specifically, for a family filed in year #, the
weight is equal to the ratio of the number of citations the family received within three years over the
number of citations that the average energy family filed in year ¢ received.

This weighting approach presents two defining features: 1) it uses a particular time window
(three years in our baseline measure) and 2) it makes the weight relative to the citation count of the
average energy family filed in that same year (as opposed to the average energy family filed in any
year). We provide further explanations regarding these features below.

First, we use a particular time window because the older a patent family is, the more chances
there are for others to cite it. Comparing old and new patents directly on their number of citations
wouldn’t be inappropriate since newer ones haven’t had as much time to get cited. For this reason,
we count citations that occur within a particular time window. We use three years in our baseline
measure but, as an extra check, we also look at citations from the first five years.

In fact, since we’re using citations from a fixed time frame to compare patents, the exact time
frame shouldn’t change much as long as citations happen at about the same rate over time for all
patents. In our sample, citations peak on average after four years, and so our robustness check using
citations received within five years ensure that our measure covers the majority of citations.

Second, we use the citation count of the average energy family filed in the same year in the
denominator which makes the weight relative to the citation behavior of a contemporaneous family.
This is useful because citation patterns may change significantly over time without necessarily
indicating a change in quality. For example, the average family filed in 2000 may have a lower
number of citations received within three years compared to a family filed in 2014, simply because
the overall inventors and firms in the economy, and thereby a citing pool of patents, was much larger
in 2014. But this does not necessarily mean the 2000 families are of lower value.

Another issue may arise since the 2022 version of PATSTAT provides good coverage of applica-
tions only up to 2019, and the number of citations that occurred within 3 or 5 years for a family
filed in, e.g., 2017, may be incomplete. Constructing citation weights based on the average behavior
of the energy families filed in the same year circumvents these potential problems.
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We also construct an alternative count of inventor-level clean families by weighting families by
the number of coinventors that are listed on the patent. In this case, the weight equals 1/n where n
is the total number of coinventors on the patent. So if two inventors worked on a “clean” patent
together, each would get credit for half a patent. We use this approach to avoid double-counting and
to facilitate comparisons to extensive margin responses in Section 5.

Finally, while we can easily observe when inventors produce their first patent, it is more difficult
to ascertain when they exit. For this reason, if an inventor didn’t patent in a year but did later on, we
impute that they produced zero patents that year. But after the last year we observe a patent from an
inventor, we do not impute any more data. That means the record for each inventor stops the last
year in which they produced a patent family.

A.5 Natural Gas Price Data

We use data on natural gas prices from the International Energy Agency (2020). Prices are available
for three sectors: electricity generation, industry, and households. Our baseline prices use industrial
prices because the coverage of prices for electricity is much poorer, and the industrial prices are
highly correlated with electricity sector prices. The International Energy Agency (2020) natural
gas prices are in nominal U.S. dollars per megawatt-hour. As discussed in the text, all econometric
analysis in the paper includes time fixed effects, which absorb common time-varying factors
including changes in the value of U.S. dollars due to inflation, so the results are invariant to using
prices in real terms.

A.6 Ancillary Data for Regressions

We use country-year level data from the International Energy Agency (2019) on government
spending on energy RD&D, both in aggregate and specifically for low-carbon technologies. Country-
year level data on GDP and GDP per capita in 2017 U.S. dollars purchasing power parity terms
come from the World Bank (2020a, 2020b).

A.7 Construction of Exposure Measures

As explained in the main manuscript, our baseline inventor-specific prices take the following form:

5 jcGDP,
InP; = ZSUZZCS]CGDP In Py,

where

» P, represents the average tax-inclusive natural gas price in country ¢ during year . Our
baseline approach uses industry prices. However, for robustness checks, we introduce
alternative measures based on prices in the electricity generation and household sectors.
Furthermore, price data might be incomplete for some countries. In our primary approach, we
construct prices only for countries with data consistently available from 2000 to 2017 or with
at most one year missing. This approach yields what we term a “balanced” panel of prices.
For further robustness, we also formulate an “unbalanced” version, incorporating all available
country-year price data, irrespective of its duration or consistency.
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* GDP, represents the average GDP of country ¢ from 1990 to 2018, expressed in PPP terms
using constant 2017 international dollars. For added robustness, we also consider measures
without GDP-weighting the prices.

* 5jc quantifies firm j’s exposure to country c¢. In our primary approach, this is determined by
the proportion of firm j’s energy patents in country ¢ spanning 1990 to 2015. To enhance
robustness, we consider three alternative methods to compute this weight: 1) Based on the
proportion of all of firm j’s patents in country ¢ from 1990 to 2015. 2) Using the proportion
of firm j’s energy patents in country ¢ during a pre-defined period from 1990 to 2000. 3)
Reflecting the proportion of all of firm j’s patents in country ¢ within the same pre-defined
period from 1990 to 2000. Firms lacking patent activity during the pre-period are allocated
uniform weights across all countries.

* s5;j measures the association between inventor i and firm j. Specifically, it’s determined by
the fraction of patent families of inventor i linked with firm j. This weight is constructed
using the full time series of each inventor’s activities. Inventors who file independently, often
termed ‘“garage” inventors, are presumed to be influenced by the price in their country of
residence.
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B Inventor Disambiguation

B.1 Background

The challenge of accurately distinguishing authors and institutions is a significant concern in patent
data. The same entity, be it an organization or an individual, can be represented with variations
in their names, depending on the channels they’ve used for patent applications over time. Such
inconsistencies arise from spelling errors, typographical mistakes, and different name variants,
among others. While the initial PATSTAT data provided names and addresses of inventors, it lacked
a system to uniquely identify inventors chronologically. For our study, creating a consistent and
unique identifier for each inventor is crucial as we aim to monitor patents registered by individual
inventors over time. Patent data frequently suffers from name misspellings, leading to multiple
variants for a single inventor’s name (e.g., JONSSON, NILS-AKE might also appear as JONSSON,
NILS A.). The primary difficulty in disambiguation lies in associating all variants of an inventor’s
name without inadvertently merging distinct inventors with similar names.

Numerous studies have endeavored to disambiguate names and establish trustworthy inventor
identifiers within patent databases, predominantly within the USPTO and EPO repositories. For
instance, Li et al. (2014) (hereforth LLDD) undertook a disambiguation exercise on patents regis-
tered with the USPTO between 1975 and 2010, yielding unique identifiers for each inventor within
their sample timeframe. A parallel initiative on European patent data was carried out by Coffano
and Tarasconi (2014), crafting distinct inventor identifiers for the EPO database spanning 1970 to
2010. Research endeavors focusing on tracking activities at the inventor level typically lean on such
disambiguated databases.

For our current study, given the absence of previous disambiguation work on the most recent
PATSTAT dataset, our aim is to design straightforward disambiguation rules for the PATSTAT
database. This will facilitate the efficient identification of unique inventors over time, while
significantly alleviating issues related to name misspelling.

B.2 Harmonized Names in PATSTAT Data

PATSTAT provides multiple name versions for a single inventor: the nonharmonized inventor name
(person name), the name in its original language, and several harmonized renditions.

The initial harmonized version in PATSTAT is the DOCDB standardized name, designated for
applicant and inventor names set for inclusion in DOCDB. An issue with the DOCDB standardized
name is its occasional misalignment with accurate person names. For instance, an inventor named
“Charquet, Daniel” might be erroneously linked with “MARDON JEAN-PAUL”, a clear mismatch.
Such errors are particularly prevalent in USPTO patents.

Another available harmonized version is the HAN name, formulated primarily by the OECD
HAN (Harmonized Applicant Name) project of the OECD. However, this applies solely to patent
applicants and excludes inventors. ‘ The final harmonized version is the PATSTAT standardized
name (PSN name), derived through automation and manual refinements, with non-harmonized
names being directly lifted from the person name variable'. This standardization aims to rectify
spelling variations, typographical errors, and acronym inconsistencies.

1. Details on PSN name and PSN ID construction in PATSTAT can be found in Magerman et al. (2006)
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While PSN name harmonization undoubtedly reduces data discrepancies, it can fall short. A
number of issues arise in particular related to presence of special characters (e.g., “TAKAHASHI,
YUKIO” and “TAKAHASHI YUKIO”) or the treatment of middle names (e.g., “JONSSON NILS
AKE” vs. “JONSSON NILS A.” or “SCHULZ, JOHANN G.” vs. “SCHULZ, JOHANN G. D.”).

Such issues are widespread, necessitating further refinement to the harmonized name variables
for more accurate inventor identification. In addition, existing IDs anchored solely to harmonized
name spellings disregard the locational/address data, potentially misidentifying distinct inventors
with identical names.

B.3 Simple Rules for Further Name Disambiguation

As outlined in the previous section, two primary challenges arise when directly utilizing the
PATSTAT standardized name ID (PSN ID) as a singular inventor identifier: 1) Variations in the
spelling or format of an inventor’s name lead to multiple identifiers for the same individual. 2)
Conversely, distinct inventors sharing identical names may be erroneously grouped under one
identifier.

For our analysis, we devised three straightforward rules to clean PATSTAT standardized names
(PSN name) and forge unique inventor identifiers based on these refined names. We then examine
the efficacy of these rules by comparing our approach to the disambiguated USPTO inventor data
from LLDD.

We implemented the series of different rules:

* Rule 0: No modification (i.e., keeping the PSN name as provided by PATSTAT)
* Rule 1: Character cleaning and punctuation cleaning
* Rule 2: Rule 1 4 changing all the middle names to middle initials

* Rule 3: Rule 1 + Rule 2 + keeping only 1 middle initial for people with multiple middle
names

We also created two new inventor identifiers:

* Inventor ID 1: unique disambiguated PSN names as inventor identifier (without using any
address information)

* Inventor ID 2: unique combinations of disambiguated PSN names and reported country of
residence as inventor identifier

B.4 Comparing to Li et al. (2014)

To assess the efficacy of our disambiguation rules and the resultant inventor IDs for PSN names in
PATSTAT, we compare our approach to the disambiguated inventor IDs of LLDD. To do so, we
first narrow our PATSTAT sample to inventors that filed granted energy-related patents through the
USPTO between 1975 and 2010. This data subset is then integrated with the OECD triadic patent
family database via PATSTAT IDs, allowing us to retrieve the original USPTO IDs for these patents.
Using these USPTO IDs, we extract an identical subset of patent grants from LLDD.



16

Table B.1 displays our data summary. We found more unique inventors using the original PSN
names (38,853) than in LLDD (36,546). This suggests that the PSN IDs might be mixing up some
inventors, seeing them as different people when they’re actually the same. Consequently, we also
find a higher average patent applications per inventor in LLDD.

Table B.1: Summary Statistics of Comparable Sample Used for Analysis

PATSTAT subsample Li et al. (2014) subsample

Number of Unique Inventors 38,853 36,546
Number of Patent Grants 26,018 26,018
Number of OECD Triadic Families 20,257 20,257
Number of DOCDB Families 22,135 -
Number of Inventors w/ Reported Address in 2 Countries 199 252
Number of Inventors w/ Reported Address in 3 Countries 3 6
Average Number of Patent Applications Per Inventor 0.670 0.712

Note: The number of unique inventors from PATSTAT sample is identified by the number of unique PSN IDs (hence
unique PSN names).

Next, we match the inventor IDs from LLDD with our various cleaned-up versions of PATSTAT
inventor IDs. We start by pairing inventors in each patent record using their cleaned-up last names.
If a patent record has more than one inventor with the same last name, we use both their first and
last names to match them. This ensures that each name from PATSTAT is checked against all its
versions in the LLDD data.

Table B.2 gives an overview of how well each method works.> Row 1 displays the total number
of unique inventors in LLDD. Row 2 the total number of unique inventors in PATSTAT with the
original PSN ID. These totals stay the same, no matter which rules we use. They’re there to help
compare results. Row 3 reports the number of unique inventors in PATSTAT based on the rule used
in each column.

Rows 4 and 5 provide information on mismatches between the two sets of data. Row 4 shows
instances where an inventor has a unique ID in LLDD but gets multiple IDs in PATSTAT. For
example, using Rule 1 with inventor ID 1, 1,298 inventors from LLDD get treated as different
people in PATSTAT when they should be the same. Row 5 is the opposite: it lists cases where
PATSTAT thinks inventors are the same person, but LLDD treats them as different people. There
are 760 such instances.

Rows 6 and 7 tell us the number of inventors we are not able to match between the two datasets.
These are less informative because as long as these inventors show up only one time in the data, this
will not lead to over or under disambiguation. As a result, the numbers in Row 6 and 7 are simply
an indication of the matched sample size.

Finally, Row 8 shows the number of correctly matched inventors. This is calculated by taking
the unique inventors in PATSTAT and subtracting the ones with matching problems (multiple match
in either way and unable to match). The percentage of these correctly matched inventors (Row 9)
is then the correctly matched number divided by PATSTATs total unique inventors based on the
particular rule used in each column.

2. We do not include results for Rule O (which doesn’t change the PSN names) because very few matches were
found using this rule.
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The fraction of correctly matched inventors is largest for Column 5 with 92.1%. This corresponds
to using Rule 3 with inventor ID 1.

Table B.2: Summary of Performance of Different Disambiguation Rules

Rule I&INVID1 Rule I&INVID2 Rule2& INVID 1 Rule 2&INVID2 Rule 3& INVID 1 Rule 3& INVID 2

Number of unique inventors in LLDD 36,546 36,546 36,546 36,546 36,546 36,546
Number of unique inventors in PATSTAT (by PSN ID) 38,853 38,853 38,853 38,853 38,853 38,853
Number of unique inventors in PATSTAT 37,170 37,440 36,147 36,472 36,257 36,565
Inventors with non-unique IDs in PATSTAT but unique ID in LLDD 1,298 1,395 522 628 572 668

Inventors with non-unique IDs in LLDD but unique ID in PATSTAT 760 619 894 726 754 699

Number of inventors in LLDD we cannot match to PATSTAT 1,417 1,417 1,416 1,417 1,417 1,417
Number of inventors in PATSTAT we cannot match to LLDD 1,591 1,601 1,530 1,546 1,550 1,570
Number of correctly matched inventors 33,521 33,825 33,201 33,572 33,381 33,628

Fraction of correctly matched inventors 0.902 0.903 0.918 0.920 0.921 0.920
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C Descriptives

C.1 Trends in Families Over Time
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Figure C.1: Patent Families by Type Over Time

Note: The figures plot the number of patent families classified as clean, grey, and dirty over time. Panel a uses the
baseline definition of clean and Panel b uses the broader definition.
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Figure C.2: Trends in the Number and Composition of Energy Iventors over Time

Note: These figures are alternative versions of Figures la and 1b from the main text. The figures illustrate the extent
to which energy inventors specialize in either clean, grey, or dirty patenting. We focus on inventors’ global patent
portfolios for inventors with at least one energy patent in an OECD country after 1990. To construct the graphs, we first
identify inventors with at least one energy family filed in year ¢, and then classify them according to their last three

years of patenting activity.
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Table C.1: Energy Inventors by Type

(a) Using the Baseline Definition of Clean

Inventor Type All Inventors Serial Inventors Serial Inventors (2 years +) Energy Serial Inventors Top 10th Inventors

Grey/Dirty only 60% 55% 52% 50% 24%

Clean only 29% 29% 29% 28% 23%

Clean and Grey/Dirty 11% 16% 18% 22% 53%

Total Number of Energy Inventors 726,049 459,972 393,815 287,734 76,396

(b) Using the Broader Definition of Clean

Inventor Type All Inventors Serial Inventors ~ Serial Inventors (2 years +) Energy Serial Inventors Top 10th Inventors

Grey/Dirty only 45% 41% 39% 37% 18%

Clean only 44% 43% 42% 39% 29%

Clean and Grey/Dirty 11% 16% 19% 24% 53%

Total Number of Energy Inventors 982,805 636,405 545,708 401,262 104,687

Note: These tables show the average share of energy inventors by type for different definitions of clean. These shares
correspond to the average of the trends shown on Figures 1a, 1b and C.2. Details about the different definitions of clean

are provided in Subsection A.3.
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C.3 Clean, Grey, and Dirty Patent Families by Origin of Inventors
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Figure C.3: Clean, Grey, and Dirty Patent Families by Origin of Inventor

Note: These figures illustrate the types of inventors that produce clean, grey, and dirty patent families over time. They
plot the trend over time in the number and share of families connected to incumbents, inventors new to patenting,
inventors with previous patents outside the set of energy technologies under study, and inventors with previous energy
technology patents. Families with multiple inventors are fractionally attributed to the inventors to avoid double-counting.
Figures C.3a and C.3b are reproductions of Figures 1c and 1d from the main text for convenience.
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C.4 Descriptives using a Broader Definition of Clean
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Figure C.4: Energy Inventors By Type (All Inventors)

Note: These figures are alternative versions of Figures 1a and 1b from the main text using a broader definition of clean
as described in Subsection A.3.
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Figure C.5: Clean Patent Families by Origin of Inventor

Note: These figures are alternative versions of Figures 1c and 1d from the main text using a broader definition of clean
as described in Subsection A.3.
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C.5 Other Information about Patent Codes
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Figure C.6: Technological Areas Most Often Combined by Energy Inventors

Note: This bar plot depicts the specific technology areas that energy inventors focus on. The highest bar shows that
over 25% of the energy inventors in our sample have patents exclusively in fossil-related technologies, while just over
15% specialize in enabling technologies. The most frequent other clean area is solar with about 10%. The label “Other”
corresponds to all other combinations of technologies that are not listed.
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Figure C.7: Clean and Grey/Dirty Technological Areas Most Often Combined by Inventors
Note: This graph shows the 20 most common combinations of clean and grey/dirty areas. The highest bar indicates that
about 45% of mixed-type inventors combine technologies related to fossil and enabling. 40% also combine fossil and
any renewables. The percentages are calculated such that an inventor that combines fossil, enabling, and renewable
technologies will count towards both the first and the second bars, as well as one or more other bars for the specific
renewable technologies they combine.
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D Summary Statistics

D.1 Inventor-Level Summary Statistics

Table D.1: Summary Statistics for Patenting Variables - Baseline Definition of Clean

count. mean sd min p50 p90 p95 p99  max

Simple Count 1086250 0.50 1.10 0.00 0.00 1.00 2.00 5.00 113.00
Coinventor-Weighted 1086250 0.21 0.53 0.00 0.00 0.60 1.00 2.00 76.50
Citation-Weighted (3 years) 1086250 0.53 1.66 0.00 0.00 140 251 6.68 173.41
Citation-Weighted (5 years) 1086250 0.53 1.76 0.00 0.00 1.39 254 7.03 171.64
Triadic 1086250 0.09 0.39 0.00 0.00 0.00 1.00 2.00 30.00
Triadic (Coinventor-Weighted) 1086250 0.03 0.18 0.00 0.00 0.00 020 0.83 31.50
Granted 1086250 0.36 0.85 0.00 0.00 1.00 2.00 3.00 46.00
Granted (Coinventor-Weighted) 1086250 0.14 039 0.00 0.00 0.50 1.00 1.83 49.00
Triadic Granted 1086250 0.08 0.37 0.00 0.00 0.00 1.00 1.00 30.00
Triadic Granted (Coinventor-Weighted) 1086250 0.03 0.17 0.00 0.00 0.00 0.20 0.67 31.50
More than 2 countries 1086250 0.24 0.64 0.00 0.00 1.00 1.00 3.00 37.00
More than 2 countries (Coinventor-Weighted) 1086250 0.09 030 0.00 0.00 033 050 1.11 38.00
More than 2 OECD 1086250 0.20 0.58 0.00 0.00 1.00 1.00 2.00 36.00

More than 2 OECD (Coinventor-Weighted) 1086250 0.08 0.27 0.00 0.00 0.25 0.50 1.00 37.00
Note: These summary statistics are for the sample of clean incumbent inventors used in the incumbent regressions.

Table D.2: Summary Statistics for Patenting Variables - Broader Definition of Clean

count mean sd min p50 p90 p95 p99  max

Simple Count 2055150 0.67 1.57 0.00 0.00 2.00 3.00 7.00 98.00
Coinventor-Weighted 2055150 0.24 0.61 0.00 0.00 0.75 1.00 2.52 50.50
Citation-Weighted (3 years) 2055150 0.67 242 0.00 0.00 1.76 3.05 8.05 385.90
Citation-Weighted (5 years) 2055150 0.67 250 0.00 0.00 1.76 3.11 8.34 356.07
Triadic 2055150 0.13 0.50 0.00 0.00 0.00 1.00 2.00 50.00
Triadic (Coinventor-Weighted) 2055150 0.04 0.18 0.00 0.00 0.00 025 1.00 28.50
Granted 2055150 047 1.17 0.00 0.00 1.00 2.00 5.00 75.00
Granted (Coinventor-Weighted) 2055150 0.16 043 0.00 0.00 050 1.00 1.98 37.00
Triadic Granted 2055150 0.11 047 0.00 0.00 0.00 1.00 2.00 39.00
Triadic Granted (Coinventor-Weighted) 2055150 0.04 0.17 0.00 0.00 0.00 0.25 0.83 28.50
More than 2 countries 2055150 0.31 0.84 0.00 0.00 1.00 1.00 4.00 52.00
More than 2 countries (Coinventor-Weighted) 2055150 0.10 0.32 0.00 0.00 0.33 0.50 125 36.33
More than 2 OECD 2055150 0.27 0.79 0.00 0.00 1.00 1.00 3.00 52.00

More than 2 OECD (Coinventor-Weighted) 2055150 0.09 030 0.00 0.00 033 050 1.17 36.33

Note: These summary statistics are for the sample of clean incumbent inventors used in the incumbent regressions,
based on the broader definition of clean as described in Subsection A.3.
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Table D.3: Summary Statistics for Different Measures of Natural Gas Prices - Incumbents Sample

count mean sd min max

Prices GDP-Weighted Balanced (log, t-1) 1,065,105 326 122 5.51 735
Prices GDP-Weighted Unbalanced (log, t-1) 1,065,228 327 12.1 5.51 735
Prices Not GDP-Weighted Balanced (log, t-1) 1,065,105 375 125 5.51 735
Prices Not GDP-Weighted Unbalanced (log, t-1) 1,065,228 37.9 12.5 5.51 73.5
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D.2 Firm-Level Summary Statistics

All Firms with energy patents
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(a) Baseline Definition of Clean
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(b) Broader Definition of Clean

Note: The graphs depict the distribution of firms based on their specialization degree. The x-axis consists of the
following ratio: gﬂiggzz%gxgz;x%ggz%g:g;gz%ggzz;’;gig, where FamilyCountClean is the average number of
clean patent families firm j filed annually between 1990 and 2014. This ratio holds a value of O when a firm files
an equal number of clean and grey/dirty patent families. It registers a value of 1 when a firm exclusively specializes
in clean patents and -1 when it focuses purely on grey or dirty patents. The graphs suggest that most firms in our
sample are specialized in either clean or dirty. However, larger firms exhibit greater diversification, combining clean and
grey/dirty patents. Notably, Figure D.1b emphasizes that when adopting the broader definition of clean, many larger
firms focus predominantly on clean energy. This tendency can be attributed to sizeable conglomerates like Panasonic,

which patent extensively on battery-related technologies and little on grey or dirty technologies.

Figure D.1: Density Plots for the Degree of Specialization
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Table D.4: Firm-Level Summary Statistics

(a) Mean
Family Count | Percent | Family Count Percent in Energy If Diversified | If Specialized in
Total Energy Energy ReNu Clean Grey Dirty Clean Grey/Dirty
Row Sample Description 1 2 3 4 5 6 7 8 9 10 Row
1 Firms with energy patents 11.2 45 12 25 43 16 41 0.1 0.4 0.5 1
2 Firms with Re/Nu patents 259 44 2.1 79 83 8 9 0.2 0.7 0.1 2
3 Firms with clean patents 19.7 41 1.7 49 87 5 8 0.2 0.8 0.0 3
4 Firms connected to energy inventors 11.2 45 1.2 25 43 16 41 0.1 0.4 0.5 4
5 Firms connected to Re/Nu inventors 17.8 36 1.5 38 56 14 31 0.2 0.5 0.4 5
6 Firms connected to clean inventors 15.8 37 1.4 33 58 13 30 0.2 0.5 0.3 6
7  Firms connected to non-energy entrants before the year of entry 522 10 2.8 28 54 13 34 0.3 0.4 0.3 7
8  New Firms connected to non-energy entrants the year of entry 527 31 34 59 73 10 17 0.3 0.5 0.1 8
9 All Firms connected to non-energy entrants the year of entry 43.6 27 2.8 59 73 9 18 0.3 0.6 0.1 9
10 Firms connected to grey/dirty inventors 18.6 38 1.5 11 22 23 54 0.2 0.1 0.7 10
11 Firms connected to grey/dirty entrants before the year of entry 46.3 18 2.7 21 42 17 41 0.3 0.3 0.4 11
12 New Firms connected to grey/dirty entrants the year of entry 88.9 24 53 45 63 12 25 0.4 0.4 0.2 12
13 All Firms connected to grey/dirty entrants the year of entry 712 23 4.2 41 58 14 28 0.4 0.4 0.2 13
14 Firms connected to new to patenting entrants the year of entry 61.0 12 33 40 63 11 27 0.4 0.4 0.2 14
(b) Median
Family Count | Percent | Family Count Percent in Energy If Diversified | If Specialized in
Total Energy Energy ReNu Clean Grey Dirty Clean Grey/Dirty
Row  Sample Description 1 2 3 4 5 6 7 8 9 10 Row
1 Firms with energy patents 2.0 33 0.7 0 0 0 0 0.0 0.0 1.0 1
2 Firms with Re/Nu patents 2.1 30 1.0 100 100 0 0 0.0 1.0 0.0 2
3 Firms with clean patents 22 25 0.7 44 100 0 0 0.0 1.0 0.0 3
4 Firms connected to energy inventors 2.0 33 0.7 0 0 0 0 0.0 0.0 1.0 4
5 Firms connected to Re/Nu inventors 2.6 19 0.5 0 75 0 0 0.0 0.0 0.0 5
6 Firms connected to clean inventors 2.4 20 0.5 0 86 0 0 0.0 0.0 0.0 6
7 Firms connected to non-energy entrants before the year of entry 8.3 4 0.3 1 60 0 13 0.0 0.0 0.0 7
8  New Firms connected to non-energy entrants the year of entry 43 13 0.8 67 98 0 0 0.0 1.0 0.0 8
9 All Firms connected to non-energy entrants the year of entry 4.2 11 0.6 67 100 0 0 0.0 1.0 0.0 9
10 Firms connected to grey/dirty inventors 2.1 21 0.5 0 0 0 64 0.0 0.0 1.0 10
11 Firms connected to grey/dirty entrants before the year of entry 6.4 7 0.5 0 33 0 29 0.0 0.0 0.0 11
12 New Firms connected to grey/dirty entrants the year of entry 10.2 8 1.0 33 77 0 7 0.0 0.0 0.0 12
13 All Firms connected to grey/dirty entrants the year of entry 8.9 8 0.8 27 67 0 10 0.0 0.0 0.0 13
14 Firms connected to new to patenting entrants the year of entry 8.9 5 0.4 25 77 0 6 0.0 0.0 0.0 14

Note: The tables present summary statistics of various firm samples. For instance, the first row examines firms that filed
at least one energy patent between 1990 and 2014. In contrast, the 8th row delves into a specific subsample: firms that
connected with a non-energy entrant in their year of clean entry but had no prior connection with them. Table D.4a
reports values for the mean firm while Table D.4b reports values for the median firm.

Below is more information about each variable in the columns. All variables are calculated using firm-level patent data
for the period between 1990 and 2014.

“Family Count Total” (Column 1) is the average number of patent families filed annually, irrespective of type.
“Percent Energy” is the proportion of energy-related patent families out of the total count.
“Family Count Energy” is the average number of energy-related patent families, filed annually.

The section labeled “Percent in Energy” breaks down firms’ energy patent portfolio into the following categories:
Renewables and Nuclear (“ReNu”), Clean (our broad definition of “Clean” that include enabling technologies),
Grey, and Dirty.

Columns “If Diversified” and “If Specialized in” show the mean or median values of binary variables that indicate
whether a firm is diversified and if not, whether it i specialized in Clean or in Grey/Dirty. This classification

relies on the following ratio:

FamilyCountClean—FamilyCount Grey—FamilyCountDirty
FamilyCountClean~+FamilyCount Grey+FamilyCountDirty *

Where FamilyCount Type represents the average yearly count of patent families of type £ filed by firm j between
1990 and 2014. The binary variables are constructed as follows:

— Firms with a ratio greater than 0.8 are classified as specialized in Clean.
— Firms with a ratio less than -0.8 are seen as specialized in Grey or Dirty.

— Firms with a ratio between -0.8 and 0.8 are termed diversified.
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Take-Aways from Table D.4
* Regarding firms that have at least one energy patent:

From Row 1, we learn that, on average, these firms file 11.2 patents annually (Column
1), with 45% of these patents being energy-related (Column 2). In contrast, the median
value for the total patent family count is significantly lower at 2.0 (Table D.4b Column
1). This suggests a skewed distribution with a long right tail, meaning that while the
typical firm patents only two families per year, some firms patent extensively. Most
firms specialize in clean or grey/dirty; about 10% only are diversified (Column 8).

* Regarding inventors that enter clean from non-energy:

— Row 7: Before patenting in clean energy, non-energy entrants typically are connected
with firms that: 1) patent more frequently than the average energy-patenting firm (51.8
in Column 1 vs 11.2 in Row 1 Column 1); 2) focus less on energy, with only 10% of
their patents being related to energy (Column 2); 3) are more likely to be diversified (0.3
in Column 8 vs. 0.1 in Row 1).

— Row 8: When non-energy inventors enter and file their first clean patent, we typically
observe that they file patents with firms they have never patented with. The newly
associated firms have a greater focus on energy (32% in Column 2 vs. 10% in Row 7)
compared to the firms these inventors were previously patenting with (32% in Column 2
vs. 10% in Row 7). They are also considerably less likely to specialize in grey/dirty (0.1
in Column 10 vs. 0.3 in Row 7).

* Regarding inventors that enter clean from grey and/or dirty:

— Row 11: Before patenting in clean, grey/dirty entrants are connected with firms that:
1) patent more frequently than the average grey/dirty firm (45.4 in Column 1 vs 18.6
in Row 10); 2) are not as heavily focused on energy, with their energy-related patents
constituting only 19% of their portfolio (Column 2), compared to 38% for the average
grey/dirty firm (Column 2 Row 10); 3) exhibit greater diversification between clean and
grey/dirty technologies (reflected by a value of 0.3 in Column 8); 4) are less inclined to
specialize solely in the grey/dirty sector (0.4 in Column 10 vs 0.7 in Row 10).

— Row 12: When grey/dirty inventors enter clean, we observe that they tend to file patents
with firms they have never patented with before. These newly associated firms patent
significantly more than the firms these inventors were previously patenting with (85.2
in Column 1 vs 45.4 in Row 11). Additionally, these firms are more likely to be
diversified (0.4 in Column 8 vs. 0.3 in Row 11) and less likely to specialize in grey/dirty
technologies (0.2 in Column 10 vs. 0.4 in Row 11).
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E Instrumental Variable Estimation

As described in Section 3, some estimates come from an instrumental variable strategy that utilizes
variation in natural gas prices caused by the shale gas revolution. Since the model in equation 1 is
nonlinear and contains inventor fixed effects, we use a control function approach to implement the
instrumental variable strategy. Our approach is based on the control function method outlined in
Lin and Wooldridge (2019). We start by estimating a first-stage linear regression of prices on the
shale revolution instrument, as well as all other covariates used in estimating equation 1:

InPy_y = Bezir—1 4 BxXie—1 + Fi1 + i + dir1, (E.1)

where z;; 1s an inventor-specific measure of the binary instrument for the shale gas revolution.

The shale gas revolution instrument is determined at the country level. It takes on a value
of one for the United States and Canada starting in 2009 (when the shale revolution began to
take effect), and is zero in all other countries and time periods. To construct the inventor-specific
instrument z;;, we take the same approach described in Section 3 for constructing inventor-specific
natural gas prices: First, we compute firm-specific values of the instrument as a weighted average
of the country-specific instrument, where the weights for each firm depend on the location of
their patenting activity. Then, we use these firm-specific values of the instrument to compute the
inventor-specific instrument. Here, the weights depend on the share of each inventor’s patents that
are associated with each firm.

The first-stage estimating equation is identical to the first stage of two-stage least-squares.
However, it is not appropriate to use predicted values in place of the potentially endogenous
regressor in equation 1 because the model is nonlinear. Instead, we recover the residuals from
estimating E.1, i;;, and modify equation 1 to include those residuals:

PATS = exp(BpInP;_1 + Battir—1 + BxXir—1 + % + M) + uir. (E.2)

We estimate this augmented model via Poisson pseudo maximum likelihood. To conduct inference,
we use a block bootstrap of this two-step procedure at the inventor level, sampling inventors 250
times with replacement.
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F Alternative Inference Based on Borusyak et al. (2022)

In this appendix, we present results that rely on an alternative approach to inference. As explained
in the main text, we cluster standard errors for regressions by unit (i.e., inventor or firm) because we
are not aware of any procedures for inference that are robust to correlated residuals among units
with similar exposure shares in the context of nonlinear models.

To provide an indication of how the estimated standard errors may change if methods were
available to properly account for these correlated residuals, we estimate a series of additional
regressions. First, we reproduce our baseline regressions in Panel A of Table 1, which are estimated
via Poisson pseudo maximum likelihood. This model takes the form:

PATE = exp(BpInPy—1 + BxXi—1 + ¥ + M) + thir. (E1)

Second, we use ordinary least squares to estimate a linear model that is analogous to the baseline
exponential mean model. This model takes the form:

In (0.01 +PAT,$> = BpInPy_y + ByXi_1 + % + 1 + . (F2)

The outcome variable for these models is arbitrarily defined to be the natural logarithm of 0.01
plus the patent count, rather than the log of the patent count, due to the presence of zeros in the
patent count data. We use this modification because it treats large patent counts similarly to the
implicit log transformation in the exponential mean model used for our main specifications. While
the coefficients are no longer directly interpretable as elasticities, estimating a model with this
transformation via ordinary least squares yields coefficient estimates similar in magnitude to our
baseline exponential mean model estimated via Poisson pseudo maximum likelihood. That said, the
focus of this analysis is on the standard errors produced by different estimation methods, not the
coefficients themselves.

Third and finally, we follow the methods introduced by Borusyak et al. (2022) to estimate an
analogous ““shock-level” linear regression at the country level rather than at the inventor level. To do
so, we first construct exposure-weighted averages of the residuals from a projection of the outcome
and treatment variables, In (0.01 + PATitC) and In P;_1, on the nuisance parameters in equation F.2.
We use the resulting country-year data to estimate the relationship between patenting and natural
gas prices using the equation

1 ) —
In(0.01+ PATC),, = BplnP,,_; +ql, 8+, (F3)

where the notation follows Borusyak et al. (2022).3 The variable qg_l denotes any country-level
control variables that are included in shift-share form in the control vector used to compute the other
variables in the regression.* We estimate this equation by instrumental variables, using observed

3. In brief, vf; denotes the residual from a projection of a variable vf; on the control vector X;;_1 and all fixed effects
from equation F.2, and v, denotes the exposure-weighted average of an inventor-level variable v;. See Borusyak
et al. (2022) for more details.

4. These variables are GDP per capita, public RD&D spending on all energy technologies, public RD&D spending
on low-carbon energy technologies, and year fixed effects. Inventor fixed effects and tenure fixed effects are also
included in the regressions used to compute the shock-level variables in equation F.3, but they are excluded from g

as prescribed by Borusyak et al. (2022), because they are inventor-level controls rather than country-level controls.
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country-year natural gas prices, In P, _1, to instrument for their transformed shift-share equivalents,

ﬁi_l. The regression is weighted by each country’s average exposure across inventors. Finally,
standard errors are clustered by country.’

Tables F.1 and F.2 presents the results of this analysis. In Table F.1, Panel A reproduces the PPML
results from Panel A of Table 1 in the main text. Panel B contains results for the In (0.01 + PATitC)
approach as shown in Equation FE.2. The coefficients are not directly interpretable as elasticities, and
are no longer of direct interest. Panel C contains results for the Borusyak et al. (2022)’s approach,
as shown in Equation F.3.

Table F.1: Main Results with Alternative Inference Methods

Count of Clean Patent Families

Simple Count Citation-Weighted = Coinventor-Weighted
1) 2) 3) “) &) (6)

Panel A: Poisson estimates
Prices (log, t-1) 0.495 0.396 0.582 0.451 0.458 0.374
(0.038) (0.039) (0.048) (0.048) (0.049) (0.049)

Standard errors clustered by Inventor Inventor Inventor Inventor Inventor Inventor
Number of clusters 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
Pseudo-R2 0.291 0.292 0.373 0.375 0.265 0.266

Panel B: OLS estimates
Prices (log, t-1) 0.640 0.416 0.685 0.459 0.494 0.323
(0.026) (0.026) (0.024) (0.025) (0.021) (0.022)

Standard errors clustered by Inventor Inventor Inventor Inventor Inventor Inventor
Number of clusters 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
Adjusted R2 0.179 0.183 0.189 0.194 0.179 0.183
Panel C: Shock-level estimates
Prices (log, t-1) 0.653 0.401 0.754 0.558 0.498 0.305
(0.166)  (0.093) (0.097) (0.065) (0.144) (0.086)
Year fixed effects (shock level) X X X X X X
Country-year covariates (shock level) X X X X X X
Standard errors clustered by Country Country Country Country Country  Country
Number of clusters 27 27 27 27 27 27
Observations 342 342 342 342 342 342

Covariates included in all panels

Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X
Country-year covariates X X X X X X

5. All implementation details, including weighting and clustering, follow Borusyak et al. (2022).
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Three things stand out in the comparison between Panels B and C. First, the standard errors in
Panel C are larger than those in Panel B. This is because the approach in Panel C better accounts
for the possibility of correlated residuals among units with similar exposure shares. Second, all
of the estimates in Panel C remain statistically significant at conventional levels despite the larger
standard errors. Third and finally, the coefficients are slightly different. In principle, the approach
in Panel C of Table F.1 should be able to replicate the coefficient estimates in Panel B, given the
equivalence results in Borusyak et al. (2022). As it turns out, implementing the methods from
Borusyak et al. (2022) in our case is complicated slightly by missing data. For a small number
of countries and years, we do not observe data on RD&D spending. In our main analysis, we
circumvent this data limitation by modifying the weights on a variable-specific basis to omit these
missing observations from the computation of inventor-level exposure variables. As a result, the
weights we use to determine inventor-level exposures vary slightly.® Consequently, this results in
a minor variation in the coefficients obtained from estimating the model at the inventor-level and
estimating the “shock-level” model at the country-level following Borusyak et al. (2022).

To confirm that we can replicate the inventor-level coefficients using this country-level approach
to estimation and inference, we also estimate a set of restricted models that omit covariates that vary
over both countries and time. Specifically, the three country-level covariates we include in Table F.1
but exclude from Table F.2 are GDP per capita, public RD&D spending on all energy technologies,
public RD&D spending on low-carbon energy technologies.

Table F.2 contains the estimates from these modified specifications. The coefficients in Panel A
of Table F.2 are slightly larger than their counterparts in Panel A of Table F.1 due to the omission
of these three covariates. However, this analysis is focused on inference, and the standard errors
are very similar in magnitude in both versions of Panel A. Focusing on Panels B and C, three
things stand out in the comparison between Tables F.1 and F.2. First, the identical coefficients
within each column of Panels B and C of Table F.2 confirm that our “shock-level” estimation using
country-level data successfully reproduces the shift-share estimates derived from inventor-level data.
This is consistent with the equivalence results in Borusyak et al. (2022). Second, as before, the
standard errors in Panel C are larger than those in Panel B, but they remain statistically significant
at conventional levels. Third and finally, the standard errors in Panel C of Table F.2 are similar to or
smaller than their counterparts in Table F.1.

In summary, these results suggest that the standard errors in our primary analysis may exhibit a
downward bias due to the fact that clustering the standard errors in inventor-level regressions does
not fully account for the possibility of correlated residuals among inventors with similar exposure
shares. Yet the magnitude of this bias may be small given that all the estimates in Panel C of F.1
and F.2 remain statistically significant. On net, these results do not signal that the main results of
the paper hinge on the shortcomings of current inference methods available for nonlinear models of
the type we estimate.

6. This is despite the fact that we use constant exposure shares based on pre-period patenting activity in our analysis.
The slight variation in inventor-level exposure shares comes from missing data for individual regressors at the country
level (e.g., RD&D spending for a given country in a given year), not a source of endogeneity in the construction of
exposures at the inventor level (e.g., from using exposure shares based on contemporaneous patenting activity).
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Table F.2: Main Results with Alternative Inference Methods

Count of Clean Patent Families

Simple Count

Citation-Weighted Coinventor-Weighted

ey 2) 3) “) 4) (6)
Panel A: Poisson estimates
Prices (log, t-1) 0.598 0.502 0.824 0.669 0.505 0.420
(0.037) (0.038) (0.049) (0.050) (0.045) (0.047)
Standard errors clustered by Inventor Inventor Inventor Inventor Inventor Inventor
Number of clusters 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
Pseudo-R2 0.290 0.291 0.372 0.374 0.265 0.265
Panel B: OLS estimates
Prices (log, t-1) 0.681 0.424 0.755 0.499 0.523 0.327
(0.025) (0.026) (0.024) (0.025) (0.020) (0.021)
Standard errors clustered by Inventor Inventor Inventor Inventor Inventor Inventor
Number of clusters 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
Adjusted R2 0.178 0.183 0.188 0.194 0.179 0.183
Panel C: Shock-level estimates
Prices (log, t-1) 0.681 0.424 0.755 0.499 0.523 0.327
(0.153) (0.053) (0.084) (0.071) (0.136) (0.051)
Year fixed effects (shock level) X X X X X X
Country-year covariates (shock level)
Standard errors clustered by Country Country Country Country Country Country
Number of clusters 31 31 31 31 31 31
Observations 428 428 428 428 428 428
Covariates included in all panels
Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X

Country-year covariates
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G Robustness of Incumbent Patenting Results

G.1 Main Results Showing All Controls

Table G.1: Baseline estimates showing all controls

1) () 3) “) (5) ©6)
Simple Count  Simple Count Citation-Weighted ~Citation-Weighted ~Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) 0.495%* 0.396"** 0.582"** 0.451%** 0.458*** 0.374***
(0.038) (0.039) (0.048) (0.048) (0.049) (0.049)
GDP per capita (log, t-1) 3.381" 4111 5.712%* 6.399"** 1791 2.543%%*
(0.389) (0.373) (0.405) (0.392) (0.477) (0.444)
Energy RD&D (log, t-1) -0.068™* -0.063** -0.046 -0.033 -0.014 -0.008
(0.030) (0.031) (0.040) (0.041) (0.036) (0.037)
Low-Carbon RD&D (log, t-1) -0.095"* 0.004 -0.402"** -0.204* -0.047 0.033
(0.037) (0.036) (0.049) (0.048) (0.042) (0.040)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 101,839 101,839 101,839 101,839 101,339 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565
Pseudo-R2 0.291 0.292 0.373 0.375 0.265 0.266

Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table G.2: IV estimates showing all controls

1) 2 3) “) ) (6)
Simple Count  Simple Count Citation-Weighted ~Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) 0.523%* 0.308* 0.871* 0.596* 0.412% 0.211%
(0.058) (0.060) (0.077) (0.077) (0.071) (0.072)
GDP per capita (log, t-1) 3347 4.26" 5.09%* 6.09*** 1.87* 2.83*
(0.125) (0.127) (0.150) (0.151) (0.177) (0.178)
Energy RD&D (log, t-1) -0.065*** -0.073** 0.005 -0.008 -0.018 -0.023
(0.022) (0.023) (0.025) (0.026) (0.031) (0.032)
Low-Carbon RD&D (log, t-1) -0.090*** -0.007 -0.332% -0.179** -0.052 0.021
(0.024) (0.025) (0.028) (0.028) (0.033) (0.033)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Inventor Clusters (SEs) 101,839 101,839 101,839 101,839 101,839 101,839
Observations 728,565 728,565 728,565 728,565 728,565 728,565

First-stage F-statistic 163 163 163 163 163 163

Dependent variable: Number of Renewable/Nuclear docdb patent familics.

Poisson pseudo-ma likelihood. B $ (N in parentheses.
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Table G.3: Distributed lags estimates showing all controls

[€3) @) 3 (€] (5 (6)
Simple Count  Simple Count ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) 0.191** 0.184*** 0.344*** 0.351%* 0.207*** 0.189"*
(0.046) (0.046) (0.059) (0.058) (0.053) (0.053)
Prices (log, t-2) 0.173*** 0.098** 0.131** 0.025 0.295*** 0.218***
(0.045) (0.045) (0.058) (0.058) (0.055) (0.054)
Prices (log, t-3) 0.169*** 0.138*** 0.076 0.033 0.061 0.034
(0.045) (0.045) (0.051) (0.052) (0.053) (0.053)
L.GDP per capita (log, k$) 3.846"* 4310 4.562*** 5157 3.934* 44924
(1.238) (1.160) (0.803) (0.757) (1.583) (1.468)
L2.GDP per capita (log, k$) 0.104 0.461 1.654* 2.067* -0.642 -0.187
(0.753) (0.712) (0.541) (0.522) (1.030) (0.958)
L3.GDP per capita (log, k$) -0.251 -0.223 1.945%* 1.902%* -1.667** -1.583**
(0.368) (0.354) (0.381) (0.380) (0.430) (0.420)
L.Energy RD&D (log, m$) -0.187*** -0.141%* -0.118** -0.039 -0.132** -0.097*
(0.050) (0.050) (0.059) (0.060) (0.052) (0.053)
L2.Energy RD&D (log, m$) -0.246*** -0.212%* 0.046 0.113* -0.194*** -0.170**
(0.044) (0.045) (0.059) (0.059) (0.051) (0.051)
L3.Energy RD&D (log, m$) -0.092** -0.074** 0.078* 0.111%* -0.140%* -0.123%
(0.033) (0.033) (0.042) (0.042) (0.039) (0.038)
L.Low-Carbon RD&D (log, m$) 0.036 0.133** -0.326™* -0.172* 0.036 0.131**
(0.059) (0.059) (0.070) (0.070) (0.064) (0.063)
L2.Low-Carbon RD&D (log, m$) 0.164*** 0.203*** -0.203*** -0.142* 0.228*** 0.262***
(0.042) (0.043) (0.058) (0.059) (0.050) (0.050)
L3.Low-Carbon RD&D (log, m$) -0.026 -0.005 -0.138%** -0.103** 0.058 0.082**
(0.038) (0.038) (0.046) (0.046) (0.041) (0.041)
Cumulative Effect 0.534#%* 0.420%%* 0.551%%* 0.410%** 0.564%# %% 0.441%%*
(0.050) (0.052) (0.065) (0.066) (0.059) (0.062)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 80,795 80,795 80,795 80,795 80,795 80,795
Observations 572,195 572,195 572,195 572,195 572,195 572,195

Pseudo-R2 0.294 0.295 0.370 0.372 0.267 0.268

p Number of

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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G.2 Alternative Qutcome: Broader Definition of Clean Patenting

Table G.4: Main Results with Clean Patenting as Outcome

Count of Clean Patent Families

Simple Count Citation-Weighted Coinventor-Weighted
(1 2 3) 4 Q)] (6)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.321 0.243 0.370 0.262 0.309 0.238

(0.024) (0.025) (0.035) (0.035) (0.026) (0.027)
Inventors 192,106 192,106 192,106 192,106 192,106 192,106
Observations 1,443,210 1,443,210 1,443,210 1,443,210 1,443,210 1,443,210
Pseudo-R2 0.340 0.341 0.395 0.397 0.285 0.286
Panel B: Instrumental variable estimates
Prices (log, t-1) 0.385 0.166 0.707 0.429 0.350 0.137

(0.042) (0.044) (0.059) (0.060) (0.042) (0.044)
Inventors 192,106 192,106 192,106 192,106 192,106 192,106
Observations 1,443,210 1,443,210 1,443,210 1,443,210 1,443,210 1,443,210
First-stage F-statistic 163 163 163 163 163 163
Panel C: Distributed lag estimates
Cumulative effect (3 lags) 0.346 0.289 0.269 0.199 0.398 0.331

(0.035) (0.036) (0.053) (0.053) (0.037) (0.037)
Inventors 149,983 149,983 149,983 149,983 149,983 149,983
Observations 1,120,566 1,120,566 1,120,566 1,120,566 1,120,566 1,120,566
Pseudo-R2 0.346 0.347 0.398 0.399 0.290 0.291
Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X
Country-year covariates X X X X X X

Note: The dependent variables are the number of clean patent families, either unweighted, weighted by citations, or
inversely weighted by the number of inventors, depending on the column. Panels A, B, and C contain estimates of the
same parameters using different estimation strategies. Panel A presents estimates of equation 1 estimated via Poisson
pseudo-maximum likelihood. Standard errors are clustered by inventor and reported in parentheses. Panel B presents
estimates of equation E.2 estimated via the control function approach described in the text, using the shale gas revolution
as an instrument for natural gas prices. Standard errors are constructed via block bootstrap of the two-step control
function approach, sampling inventors 250 times with replacement. The first-stage F-statistic for the instrumental
variable estimates is from estimating equation E.1 at the country-year level rather than the inventor-year level, since the
instrument varies at the country level and it thus provides a more conservative assessment of the instrument’s strength.
Panel C is analogous to Panel A except that the models include three lags of natural gas prices and all other covariates
that vary across both countries and time, and the coefficients represent cumulative effects.
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G.3 Alternative Outcome: International and Triadic Families

G.3.1 Baseline Definition of Clean

Table G.5: Baseline Poisson Estimates with Alternative Outcome Variables

[0) @ 3) ) ©) ©) &) ) © (10) an a2 a3) a4
Simple Count  Coinventor-Weighted ~ Citation-Weighted (3y) Citation-Weighted (5y)  Triadic  Triadic  Granted Granted Triadic granted ~Triadic granted More than 2 countries  More than 2 countries  More than 2 OECD  More than 2 OECD
Prices (log, t-1) 0396 03747 04517 0382 009 0123 0231 0227 0,001 0222 0419 0358 0304 0227
(0.039) 0.049) (0.048) (0.050) (0.083)  (0.132)  (0.040)  (0.053) (©0.087) (0.138) (0.052) ©.073) (0.054) (0.079)
GDP per capita (log, t-1) 4111 2543 6399 7137 46320 4426"0 4611 2889°° 4929 4818 4468 2922 4434 2974
(0373) (0.444) (0.392) (0.416) 0821)  (0868) (0333)  (0.341) (0.846) (0.898) (0.482) ©511) (0.490) (0.523)
Energy RD&D (log, t-1) 0,063 -0.008 0,033 -0.035 0.157° 0217 0124 0058 0,133 -0.167 0.086° 0205 0027 0.166"**
(0.031) 0.037) 0.041) (0.044) (0.090)  (0.122)  (0.034)  (0.041) 0.092) (0.124) (0.047) (0.060) (0.049) (0.063)
Low-Carbon RD&D (log, 1) 0.004 0033 02047 0237 04847 03337 0029 0009 05517 0,437 -0.309° 0318 0271 02727
(0.036) (0.040) 0.048) (0.052) (0.110)  (0.134)  (0.037)  (0.043) ©.113) (0.136) (0.056) (0.069) (0.058) (0.072)
Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 101,839 101,839 101,839 101,839 26038 26038 83452 83452 24,399 24,399 60,699 60,699 53,180 53,180
Observations 728,565 728,565 728,565 728,565 200635 200635 601408 601408 188,609 188,609 439944 439,944 394,785 394,785
Pseudo-R2 0292 0266 0375 0392 0210 0214 0259 0239 0204 0210 0235 0229 0226 0223

Note: This table show specifications similar to Panel a of Table 1 in the main text but using different left-hand side
variables. Columns 1, 2, and 3 are the same as Column 2, 6, and 4 in Panel a of Table 1. The other columns present
results for the count of clean families that are “triadic” (i.e., filed at the USPTO, EPO and JPO), granted in at least one
jurisdiction, filed in more than two countries, or filed in more than two OECD countries. Most results are consistent
with the baseline results shown in Table 1 except for specifications using triadic families as outcome variables. Triadic
families are not very common in our dataset. As shown in Table D.1, the number of clean families for the average
clean incumbent is 0.5, but it is only 0.1 for triadic families. The standard deviation is also much lower, and the 90th
percentile is 0.

Table G.6: Distributed Lag Estimates with Alternative Outcome Variables

&3] 2) 3) “@) 5) (6) (0] ®) ©) (10) an 12) a3) (14)
Simple Count  C: Weighted Ci Weighted (3y) Ci Veighted (Sy) ~ Triadic ~ Triadic ~ Granted  Granted Triadic granted Triadic granted More than 2 countries More than 2 countries  More than 2 OECD  More than 2 OECD
Prices (log, 1) 01847 0.189 03517 0242 0235 0210 0100 0.101° 0.083 0.032 03147 0318 0279 0262
(0.046) (0.053) 0.058) (©.061) 0.099)  (0.123)  (0.049)  (0.060) (0.103) (0.128) 0.062) 0.074) 0.066) (0.080)
Prices (log, t-2) 0.098" 0218 0.025 0.005 <0067 0311 -0.082° 0028 0.187" 0318 01817 0.090 0.120° 0040
(0.045) (0.054) 0.058) (0.059) 0.098)  (0.122)  (0.047)  (0.057) (0.103) (0.129) (0.060) 0.074) (0.065) (0.080)
Prices (log, -3) 0.138" 0034 0033 0078 0265 0284 0201 01557 0229 0.201" 0021 0013 0.115" -0.072
(0.045) (0.053) 0.052) (0.054) 0.089)  (0.113)  (0.046)  (0.053) 0.091) 0.118) 0.056) 0.067) (0.060) 0.072)
L.GDP per capita (log, k$) 4310 4492 5157 5005 1697°  2470° 3379 2984 172" 2.680" 3087 2756 30817 2969
(1.160) (1.468) 0.757) (0.664) 0962)  (1293)  (0.421)  (0512) (1.001) (1363) (0.568) (0.730) 0.592) (0.740)
L2.GDP per capita (log, k$) 0461 0.187 2067 2621 1897 L677° 1349 1107 1709 1714 176" 1208 1.697° 1.083*
0712) (0.958) 0.522) (0478) (0763)  (0.986)  (0.383)  (0.490) 0.767) (1.041) (0.483) (0.590) (0.501) (0.604)
L3.GDP per capita (log, k$) 0223 -1.583" 1902 2,645 4812 330 06720 0705 5209 33720 1843 1.067* 2028 1148
(0.354) (0.420) 0380) (0398) 0713)  (0944)  (0361)  (0512) (0.741) (0.993) (0456) (0.546) (0.469) 0571)
L.Energy RD&D (log, m$) 01417 0097 0039 0028 0043 0010 -0.127*  -0.110° 0.090 0043 0.026 0.187* -0.009 0.152"
(0.050) (0.053) 0.060) (0.063) 0.127)  (0.167)  (0.051)  (0.057) (0.130) ©.171) (0.068) (0.086) 0.070) (0.090)
L2 Energy RD&D (log, m$) 0212 0170 0.113" 0145 0000 0084 0217 -0.169° 0037 0.077 02267 0287 0.150" 0225
(0.045) 0.051) 0.059) (0.063) (0.134)  (0.151)  (0.044)  (0.051) (0.136) (0.154) (0.069) (0.080) 0.072) (0.084)
L3 Energy RD&D (log, m$) 0074 0123 01117 0122 0245 0195 0023 -0.040 0.196" 0.174° 0196 0172+ 01517 0152+
(0.033) (0.038) 0.042) (0.050) 0.091)  (0101)  (0.034)  (0.039) (0.094) (0.105) 0.048) 0.057) (0.050) (0.058)
L Low-Carbon RD&D (log, m$) 0133 0131 0.172° 0235 0704 056" 0054 0.100 0817 0.680""" 0324 0392 0291 0349
(0.059) (0.063) 0.070) 0.075) 0154)  (0.178)  (0.056)  (0.062) (0.159) (0.181) 0.079) (0.099) (0.082) (0.103)
L2.Low-Carbon RD&D (log, m$) ~ 0.203"*" 0262 0,142 0162 0126 0170 0173 0.167°" 0.084 0.194 -0.246"" 0225 0.199"" 0.179"
(0.043) (0.050) 0.059) (0.064) (0.128)  (0.150)  (0.044)  (0.051) (0.130) (0.155) (0.066) 0.076) (0.069) (0.080)
L3 Low-Carbon RD&D (log, m$) ~ -0.005 0,082 0,103 0119 0.490°" 0309 -0.127"  -0.061 0496 0315 0.197" 0158 0204 0155
(0.038) (0.041) (0.046) (0.054) 0.092)  (0.108)  (0.038)  (0.042) (0.095) 0.113) 0.0s1) (0.060) (0.052) (0.062)
Cumulative Effect 04204+ 0.441%%% 0.410%%* 0.325%% 0.198%  0385%% 0220%% 028455 03330 0.488%% 0.474%%% 0.421%5% 0.284%#% 0230+
(0.052) (0.062) (0.066) (0.069) (0.103)  (0.133)  (0.054)  (0.068) (0.106) (0.135) 0.067) (0.084) 0.070) (0.090)
Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 80,795 80,795 80,795 80,795 20304 66,110 66,110 18,962 18.962 47,686 41,505 41,505
Observations 572,195 572,195 572,195 572,195 156331 474218 474218 146,339 146,339 344,973 307,974 307,974
Pscudo-R2 0295 0.268 0372 0387 0214 0.261 0239 0.204 0210 0228 0226 0222

Note: This table show specifications similar to Table G.5 but with three lags of natural gas prices and other variables
that vary by country and year.
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G.3.2 Broader Definition of Clean

Table G.7: Baseline Poisson Estimates with Alternative Outcome Variables

(1) 2) 3) “) (5) (6) W) (8) 9) (10) (an 12) (13)
Simple Count  Ct ghted  Cita Weighted (3y) Cita Weighted (Sy) ~ Triadic Triadic Granted Granted  Triadic granted Triadic granted More than 2 countries  More than 2 countries  More than 2 OECD  More than 2 OECD
Prices (log, t-1) 0.243+ 0.238" 0.262%** 0.231%* 03607 0.250% 0.193"*  0.204"* 0.32. 0.208%** 0353 0.307 0.305**
(0.025) (0.027) (0.035) (0.037) (0.049)  (0.070) (0.027) (0.031) (0.049) (0.073) (0.033) 0.041) (0.034)
‘GDP per capita (log, t-1) 5.023** 3.989" 6.728"* 7317 4.720""  4.880°" 4.932% 4.044% 5.020" 5.227* 4281 3.804* 4291 3.8847
(0.220) (0.208) (0.266) (0277) (0.488) (0.502) (0.228) (0.226) (0.499) (0.516) (0.306) (0.320) (0.312) (0.330)
Energy RD&D (log, t-1) -0.082*** 0.011 -0.064* -0.080"** -0.160°**  -0.157***  -0.136"*" -0.048" -0.180"** -0.179*** -0.023 0.062* -0.099*** -0.008
(0.022) (0.023) (0.026) (0.028) (0.045) (0.053) (0.023) (0.026) (0.045) (0.051) (0.029) 0.034) (0.031) (0.036)
Low-Carbon RD&D (log, t-1) 0.000 -0.056" -0.1937* -0.242 0587 -0.576"*  -0.083"**  -0.154*** <0635 <0637 -0.382" -0.504*+* -0.371% -0.480"*
(0.025) (0.025) (0.032) (0.033) (0.057) (0.063) (0.027) (0.029) (0.058) (0.064) (0.036) (0.041) (0.037) (0.042)
Year FEs X X X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X X X
Tenure F X X X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X X X
Coinventor-Weighted X X X X X X
Inventor Clusters (SEs) 192,106 192,106 192,106 192,106 60,862 60,862 162,486 162,486 57,499 57,499 124,219 124,219 111,290 111,290
Observations 1,443210 1,443,210 1443210 1,443210 505,533 505,533 1,239,641 1,239,641 479,501 479,501 959,866 959,866 880,361 880,361
Pseudo-R2 0.286 0.397 0.407 0.212 0.195 0.300 0.249 0.207 0.191 0.257 0.227 0.255 0.225
Note: This table show specifications similar to Table G.5 but for the broader definition of clean.
m (&3] 3) “@ ®) ©) @ ®) © (10) an 12) a3) (14)
Simple Count  C Weighted  Ci eighted (3y) Ci Weighted (Sy) ~ Triadic Triadic ~ Granted ~ Granted ~Triadic granted Triadic granted More than 2 countries  More than 2 countries  More than 2 OECD  More than 2 OECD
Prices (log, t-1) -0.090"** 0.038 -0.044 0.032 0.012 -0.173"** -0.160"** -0.078 -0.098 0.021 -0.007 0.003 -0.055
(0.035) (0.064) (0.063) (0.071) (0.080) (0.036) (0.039) (0.071) (0.080) (0.046) (0.050) (0.048) (0.053)
Prices (log, t-2) 0.191%* 0.114" 0.080 0.078 0.058 0115 0.149"** 0.071 0.062 0.244% 0.256" 0.225* 0.228"
(0.032) (0.053) (0.054) (0.065) (0.075) (0.032) (0.036) (0.065) (0.076) (0.041) (0.046) (0.044) (0.050)
Prices (log, 1-3) 0.230" 0.046 0.144* 0.010 0.015 0275 0.288""" 0.050 0.049 0.160"** 0.179** 0.115" 0.136""
(0.032) (0.056) (0.058) (0.061) (0.071) (0.032) (0.035) (0.062) (0.073) (0.038) (0.044) (0.041) (0.047)
L.GDP per capita (log, k$) 2.830" 2474 41710 4.392* 1.553" 1.659*  2.861"*" 2413 1.631° 1.769** 2,664 2226 2.706"" 2454
(0.292) (0.332) (0.321) (0.326) (0.591) (0.746) (0.283) (0.321) (0.603) (0.778) (0.368) (0.431) (0.383) (0.448)
L2.GDP per capita (log, kS) 1.988"* 1792+ 2,511 2731 2.161%"" 2494 1.949" 1911 2,137 1348 1.598** 1362 1478
(0.245) (0.289) 0.277) (0.280) (0.464) (0.587) (0.252) (0.303) (0.475) (0.315) (0.371) (0.332) (0.390)
L3.GDP per capita (log, kS) 0916 0.404* 36" 2.648" 2982 L127* 0.678"" 3.864 3.013 1.864* 1.678* 1.863"* 1.637°*
(0:215) (0.234) (0.278) (0.287) (0.514) (0.246) (0.284) (0.451) (0.538) (0.297) (0.323) (0.316) (0.344)
L.Energy RD&D (log, m$) -0.082°* 0.008 0.030 0.036 -0.129° -0.148  -0.109"""  -0.023 -0.196"" -0.215" -0.080" 0.007 -0.140""* -0.048
(0.035) (0.036) (0.054) (0.056) (0.077) (0.090) (0.037) (0.041) (0.079) (0.090) (0.049) (0.056) (0.051) (0.059)
L2.Energy RD&D (log, mS$) -0.098""* -0.050 0.002 0.045 -0.166"" <0095 -0.121***  -0.059" <0214 -0.143* 0.033 0.132%* -0.041 0.056
(0.032) (0.032) (0.041) (0.042) (0.069) (0.077) (0.033) (0.035) (0.071) (0.079) (0.044) (0.049) (0.046) (0.051)
L3.Energy RD&D (log, mS$) 0.053** -0.005 0.092*** o0.121% 0.094* 0.057 0.098*** 0.048" 0.078 0.046 0.170*** 0.148" o 0.095*"
(0.023) (0.024) (0.034) (0.036) (0.053) (0.061) (0.023) (0.025) (0.055) (0.062) (0.033) (0.036) (0.034) (0.038)
L.Low-Carbon RD&D (log, m$) 0.078** 0.001 -0.226*** <0317 <0488 -0.425"""  -0.029 -0.101"* -0.510"" -0.451" -0.283"* -0.415" -0.286""" <0394
(0.038) (0.039) (0.057) (0.061) (0.087) (0.100) (0.042) (0.045) (0.091) (0.103) (0.056) (0.064) (0.058) (0.068)
L2.Low-Carbon RD&D (log, mS$) 0.068"" 0.073* -0.062 -0.095 <0315 -0.323"" 0.026 -0.014 -0.343" -0.226** -0.299*** -0.188""* <0251
(0.032) (0.035) (0.057) (0.059) (0.071) (0.082) (0.033) (0.037) (0.085) (0.044) (0.049) (0.046) (0.052)
L3.Low-Carbon RD&D (log, mS) -0.188" -0.092*** -0.290"** -0.336"" <0490 -0.384""*  -0.302*** -0.231"** -0.380"** -0.291"* -0.241" <0293 -0.239*
(0.025) (0.026) (0.031) (0.034) (0.053) (0.062) (0.025) (0.027) (0.063) (0.036) (0.038) (0.037) (0.040)
Cumulative Effect 0.289%## 0.331%%% 0.199%** 0.180%## 0.120% 0.085 0.217#%%  0.277%** 0.013 0.425%%% 0.427%%% 0.342% %% 0.309%**
(0.036) (0.037) (0.053) (0.055) (0.068) (0.082) (0.038) (0.041) (0.081) (0.048) (0.052) (0.048) (0.055)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
“Tenure FEs X X X X X X X X X X X X
Country-Year Covariates. X X X X X X X X X X X X
Coinventor-Weighted X X X X X
Inventor Clusters (SEs) 149,983 149,983 149,983 149,983 46,586 46,586 126,588 126,588 43,876 43,876 96,108 85,644 85,644
Observations 1,120,566 1. 566 1,120,566 1,120,566 386,059 386,059 963,897 963,897 364,739 364,739 742,102 677,469 677,469
Pseudo-R2 0.347 0.291 0.399 0.408 0211 0.194 0.305 0.253 0.206 0.190 0.259 0.256 0.226

Note: This table show specifications similar to Table G.5 but for the broader definition of clean and with three lags of
natural gas prices and other variables that vary by country and year.
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G.4 Robustness Check: Truncated Inventor Panel

Here we implement a robustness check where we arbitrarily truncate each inventor’s time series to
half of its original length. For example, if we observe an inventor filing their first patent in 2000 and
their last patent in 2005 (i.e., total length of six years), we would keep observations for this inventor
only up to and including 2002.

This robustness check is useful because, although we directly observe when inventors produce
their first patent, we do not know for sure when they “exit.” We can, therefore, only safely input
zeros for years when inventors do not file patents when these years come in between the first and
last filing years of the inventor. This robustness check shows that our results are not sensitive to the
timing of an inventors’ last observed patent.

G.4.1 Baseline Definition of Clean

Table G.9: Baseline Poisson Estimates for Baseline Definition of Clean

(O] ()] 3 (C)) (&) 6
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) 0.446*** 0.450*** 0.573*** 0.577*** 0.480*** 0.483***
(0.093) (0.091) (0.127) (0.126) (0.118) (0.117)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 26,072 26,072 26,072 26,072 26,072 26,072
Observations 95,307 95,307 95,307 95,307 95,307 95,307
Pseudo-R2 0.310 0.311 0.443 0.443 0.289 0.289

Dependent variable: Number of Renewable/Nuclear docdb patent

ilies (citation weighted or not).

Table G.10: Distributed Lag Estimates for Baseline Definition of Clean

(€Y )] 3) (C)) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) 0.441% 0.448*** 0.538*** 0.550*** 0.724*** 0.727***
(0.144) (0.144) (0.184) (0.184) (0.168) (0.168)
Prices (log, t-2) 0.070 0.067 0.208 0.192 0.317* 0.313*
(0.143) (0.143) (0.214) 0.212) (0.172) (0.172)
Prices (log, t-3) 0.172 0.172 0.362* 0.362* -0.257 -0.256
(0.137) (0.137) (0.195) (0.195) (0.162) (0.162)
Cumulative Effect 0.683%##* 0.687%%* 1.108%##* 1.103%##* 0.784#* 0.783%#*
(0.200) (0.200) (0.303) (0.300) (0.223) (0.222)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 13,516 13,516 13,516 13,516 13,516 13,516
Observations 45,162 45,162 45,162 45,162 45,162 45,162

Pseudo-R2 0.312 0.313 0.451 0.452 0.286 0.287

Dependent variable: Number of Renewable/Nuclear docdb patent families.
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G.4.2 Broader Definition of Clean

Table G.11: Baseline Poisson Estimates for Broader Definition of Clean

(¢)) @ 3 (C)] 5 (O]
Simple Count  Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log, t-1) 0.208*** 0.218*** 0.204** 0.223*** 0.076 0.080

(0.059) (0.059) (0.082) (0.081) (0.068) (0.067)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 54,890 54,890 54,890 54,890 54,890 54,890
Observations 211,496 211,496 211,496 211,496 211,496 211,496
Pseudo-R2 0.363 0.364 0.440 0.441 0.307 0.307
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families (citation weighted or not)
Poisson pscudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table G.12: Distributed Lag Estimates for Broader Definition of Clean

(¢)) (@) 3 @ (&) 6
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log, t-1) 0.185"* 0.196** 0.153 0.175 0.251* 0.256**

(0.094) (0.094) (0.135) (0.135) (0.105) (0.105)
Prices (log, t-2) 0.083 0.081 0.119 0.117 0.139 0.139

(0.091) (0.090) (0.126) (0.126) (0.102) (0.101)
Prices (log, t-3) 0.030 0.041 0.070 0.076 -0.200** -0.190*

(0.091) (0.091) (0.127) (0.127) (0.102) (0.102)
Cumulative Effect 0.297** 0.317%* 0.342% 0.368%* 0.189 0.206

(0.127) (0.126) (0.184) (0.183) (0.142) (0.142)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 28,173 28,173 28,173 28,173 28,173 28,173
Observations 99,253 99,253 99,253 99,253 99,253 99,253
Pseudo-R2 0.375 0.376 0.451 0.452 0.317 0.317
Dependent variable: Number of Renewable/Nuclear/Enabling docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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G.5 Robustness Check: Alternative Prices

Here, we conduct robustness checks using various measures of exposure to natural gas prices.
Details on the construction of these exposure measures can be found in Subsection A.7. Results
from Table G.13 to Table G.36 confirm that our baseline findings for incumbents remain consistent
across different methods of measuring exposure to natural gas prices.
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G.5.1 Baseline Clean Definition and Geographic Weights Based on Energy Patents in Pre-

Period

Table G.13: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

[0) @ [6) “@) 5) %) ®) ©) (10) (1 (12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted  Coinventor-Weighted ~ Coinventor-Weighted  Coinventor-Weighted ~ Coinventor-Weighted
Prices (log. t-1) 0.526" 0536 0396 0399 0.551° 0.555" 04517 04537 0.489"* 0501 0374 0378
0.042) (0.042) (0.039) (0.039) (0.055) (0.056) (0.048) (0.049) (0.052) (0.052) (0.049) (0.050)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101.839 101,843 101.839 101,843 101,839 101,843 101.839 101,843 101,839 101,843 101,839 101,843
Price Panel Balanced  Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728,565 728,585 728,565 728,585 728,565 728,585 728,565 728,585 728,565 728,585 728,565 728,585
Pscudo-R2 0292 0.292 0292 0292 0375 0375 0375 0375 0.266 0.266 0.266 0266

Table G.14: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(0 [©)] 3) ) 5) (@] ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted ~ Coi v igh

Prices (log. t-1) 0.270"" 0269 0.128° 01337 0.739"" 0.699"" 06237 0633 0.108 0111 0.009 0.011

(0.067) (0.067) (0.067) (0.067) (0.079) (0.080) (0.076) (0.077) (0.082) (0.082) (0.088) (0.088)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 99,805 99,832 99,805 99,832 99,805 99,832 99,805 99,832 99,805 99,832 99,805 99,832
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 717,659 717,790 717,659 717,790 717,659 717,790 717,659 717,790 717,659 717,790 717,659 717,790
Pscudo-R2 0293 0293 0293 0293 0376 0376 0.376 0.376 0266 0266 0266 0.266

Table G.15: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

O] [©)] 3) @) 5) (6) (W) ) ©) (10) (an (12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C W Weigl
Prices (log. t-1) 0.368" 0370 0317 0317 0372 0.364" 0323 03217 04017 0.404"* 0352 0352
(0.036) (0.036) (0.035) (0.035) (0.047) 0.047) (0.044) (0.044) (0.047) (0.047) (0.049) (0.049)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101.854 101,856 101.854 101,856 101.854 101.856 101.854 101.856 101,854 101,856 101,854 101.856
Price Pancl Balanced ~ Unbalanced  Balanced ~ Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728,783 728,796 728,783 728,796 728,783 728,796 728,783 728,796 728,783 728,796 728,783 728,796
Pscudo-R2 0292 0.292 0292 0.292 0375 0375 0375 0.375 0.266 0.266 0.266 0266




44

G.5.2 Baseline Clean Definition and Baseline Geographic Weights Based on Energy Patents
in All Periods

Table G.16: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

[0) @ [6) “@) 5) %) ®) ©) (10) (1 (12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted  Coinventor-Weighted ~ Coinventor-Weighted  Coinventor-Weighted ~ Coinventor-Weighted
Prices (log. t-1) 0.507"* 0523 0378 0380 0.586" 0.602"* 04817 04847 04417 0.460"** 0329 03317
(0.038) (0.038) (0.040) (0.040) (0.052) (0.053) (0.051) (0.051) (0.047) (0.048) (0.052) 0.052)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101,672 101,745 101,672 101,745 101,672 101,745 101,672 101,745 101,672 101,745 101,672 101,745
Price Panel Balanced ~ Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 727,695 727,978 727,695 727,978 727,695 727978 727,695 727,978 727,695 727,978 727,695 727,978
Pscudo-R2 0292 0.292 0292 0292 0376 0376 0375 0375 0.266 0.266 0.266 0266

Table G.17: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(0 [©)] 3) ) 5) (@] ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted ~ Coi v igh

Prices (log. t-1) 0277 03027 0.124° 0.115° 0.730"" 0.7347" 06617 0658 0.050 0.083 -0.060 0070

(0.062) (0.062) (0.069) (0.069) (0.074) (0.076) (0.078) (0.079) (0.073) (0.074) (0.086) (0.086)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 99,441 99,551 99,441 99,551 99,441 99,551 99,441 99,551 99,441 99,551 99,441 99,551
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced alanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 715436 715965 715436 715,965 715436 715,965 715436 715965 715,436 715965 715436 715965
Pscudo-R2 0293 0293 0.293 0293 0376 0.376 0.376 0.376 0267 0266 0267 0.266

Table G.18: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

O] [©)] 3) @) 5) (6) (W) ) ©) (10) (an (12)

Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C W Weigl

Prices (log. t-1) 0366 0368 0320 0321 0424 0427 0347 0349° 0369 0373 0347 0349
0.032) (0.032) (0.036) (0.036) (0.043) (0.043) (0.045) (0.045) (0.042) (0.042) (0.045) (0.045)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101,708 101,762 101,708 101,762 101,708 101,762 101,708 101,762 101,708 101,762 101,708 101,762
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728015 728,226 728015 728226 728,015 728,226 728015 728,226 728015 728226 728015 728,226
Pscudo-R2 0292 0.292 0292 0.292 0375 0375 0.375 0.375 0.266 0.266 0375 0375
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G.5.3 Baseline Clean Definition and Geographic Weights Based on All Patents in All Periods

Table G.19: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

O] [©)] 3) (O] ®) ©) (] ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~ Coinventor-Weighted = Coi Weighted  Coi Weigh

Prices (log, t-1) 0.486" 0504 0375 0378 0.546"* 0.566"* 0450 0454 04317 0450 0330 0332

0.037) (0.038) (0.040) (0.040) (0.052) (0.052) (0.050) (0.050) (0.046) (0.046) (0.050) (0.050)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101,789 101,838 101.789 101,838 101.789 101.838 101,789 101,838 101,789 101,838 101,789 101,838
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728,481 728,673 728,481 728,673 728481 728,673 728481 728,673 728481 728,673 728481 728,673
Pscudo-R2 0292 0.292 0292 0.292 0376 0376 0375 0375 0.266 0.266 0.266 0266

Table G.20: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

8] [©)] 3) [©) 5) ©6) @] ®) © (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C Weighted  C Weigh

Prices (log. t-1) 0239 0.258"* 0.144" 0.136" 0.665"* 0.671""" 0.656"" 0656 0.061 0.081 -0.027 0.034

(0.053) (0.054) (0.061) 0.062) 0.072) 0.074) 0.077) 0.078) (0.059) 0.061) 0.075) 0.076)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 100,053 100,140 100,053 100,140 100,053 100,140 100,053 100,140 100,053 100,140 100,053 100,140
Price Panel Balanced ~ Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP 5 - - GDP 5
Observations 718,875 719,296 718,875 719,296 718,875 719.296 718,875 719,296 718,875 719,296 718,875 719,296
Pseudo-R2 0.293 0.293 0.293 0.293 0376 0376 0.376 0.376 0.266 0.266 0.266 0.266

Table G.21: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

[ 2) 3) [©) ) (6) 7 ) ©) (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log. t-1) 0356 0357 0314 0314 0.406"* 0.406"* 0326 0327 0362 0365 0324 0325

0.033) (0.033) 0.038) (0.038) (0.044) (0.044) (0.045) (0.045) (0.043) (0.043) (0.051) (0.051)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure s X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101,824 101,852 101,824 101,852 101,824 101,852 101,824 101,852 101,824 101,852 101,824 101,852
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728,787 728,904 728,787 728,904 728,787 728,904 728,787 728,904 728,787 728,904 728,787 728,904

Pseudo-R2 0.292 0.292 0.292 0.292 0.375 0.375 0.375 0.375 0.266 0.266 0.266 0.266
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G.5.4 Baseline Clean Definition and Geographic Weights Based on All Patents in Pre-Period

Table G.22: Industry Prices: Baseline Poisson Estimates for Baseline Definition of Clean

(1) @) 3) @) 5) (6) (W) ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~ Coinventor-Weighted = Coi Weighted Weigh
Prices (log, t-1) 0.519"" 0540 0.419"" 0424 0.544""" 0.560"" 0455 04617 0.460"" 0478 0356 0361°"
(0.041) (0.042) (0.040) (0.040) (0.056) (0.057) (0.050) (0.050) (0.051) (0.052) (0.050) (0.050)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101.814 101,834 101,814 101,834 101.814 101,834 101.814 101,834 101,814 101,834 101,814 101,834
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728,663 728751 728,663 728751 728,663 7287751 728,663 728751 728,663 728751 728,663 728751
Pscudo-R2 0292 0292 0292 0292 0376 0376 0.376 0.376 0266 0266 0266 0.266

Table G.23: Electricity Prices: Baseline Poisson Estimates for Baseline Definition of Clean

8] [©)] 3) [©) 5) ©6) @] ®) © (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C W Weigl
Prices (log. t-1) 0.259" 0260 0.186" 0.184"* 0692 0.678" 0.616"" 0.624° 0.121° 0.122" 0.049 0.045
(0.054) (0.056) (0.059) (0.059) (0.074) 0.075) 0.071) 0.072) (0.062) (0.064) (0.068) (0.069)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 100,159 100,201 100,159 100,201 100,159 100.201 100,159 100,201 100,159 100,201 100,159 100,201
Price Panel Balanced  Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP 5 - - GDP 5
Observations 719.617 719,775 719,617 719,775 719.617 719.775 719,617 719.775 719,617 719,775 719,617 719.775
Pseudo-R2 0.293 0.293 0.293 0.293 0376 0.376 0.376 0.376 0.266 0.266 0.266 0.266

Table G.24: Household Prices: Baseline Poisson Estimates for Baseline Definition of Clean

[ 2) 3) [©) ) 7 ) ©) (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log. t-1) 0.347" 0350 0315 0316 0365 0.364" 0313 0313 0365 0368 0322 0324

0.035) (0.035) 0.037) 0.037) (0.048) 0.048) (0.045) (0.045) (0.048) (0.048) (0.050) (0.051)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure s X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 101.836 101,847 101.836 101,847 101.836 101,847 101,836 101,847 101,836 101,847 101,836 101,847
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 728,927 728,964 728,927 728,964 728,927 728,964 728,927 728,964 728,927 728,964 728,927 728,964
Pseudo-R2 0.292 0.292 0.292 0.292 0375 0375 0375 0375 0.266 0.266 0.266 0.266
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G.5.5 Broader Clean Definition and Baseline Geographic Weights (Based on Energy Patents
in All Periods)

Table G.25: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

1) 2) 3) (O] ) (6) ) ) © (10) (an (12)
Simple Count  Simple Count  Simple Count ~ Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log. t-1) 0324 0324 0.204" 0293 0314 0307 0325 0324 0301°* 0301 0262 02617

0.026) (0.026) (0.026) 0.027) (0.041) 0.041) (0.038) (0.038) (0.028) (0.028) (0.029) (0.029)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covaria X X X X X X X X X X X X
Inventor Clusters (SEs) 191,936 192,018 191,936 192,018 191,936 192,018 191,936 192,018 191,936 192,018 191,936 192,018
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,442,303 1442626 1442303 1442626 1,442,303 1,442,626 1,442,303 1,442,626 1,442,303 1,442,626 1,442,303 1,442,626
Pseudo-R2 0341 0341 0341 0341 0397 0397 0397 0397 0.286 0.286 0.286 0.286

Table G.26: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

[0) @ G) “) ©) ©) ) ®) © (10) an 12)
Simple Count  Simple Count  Simple Count ~ Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log. t-1) 0433 04527 0.4407 04347 0.6837* 0.6757 08397 0.829° 03907 0411 0320 0314

(0.040) (0.041) (0.043) (0.043) (0.055) 0.057) (0.055) (0.056) (0.040) (0.041) (0.045) (0.046)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 189.221 189,358 189.221 189,358 189.221 189,358 189,221 189,358 189,221 189,358 189,221 189,358
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,427,649 1428280 1427649 1,428,280 1,427,649 1,428,280 1,427,649 1,428,280 1,427,649 1,428,280 1427,649 1,428,280

0.341 0.341 0.397 0.397 0.397 0.397 0.287 0.287 0.287 0.286

Pseudo-R2 0.341

Table G.27: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

(0] 2 3) “) 5) ©) @] (8) © (10) (11 (12)
Simple Count  Simple Count  Simple Count ~ Simple Count ~ Citation-Weighted ~Citation-Weighted = Citation-Weighted ~Citation-Weighted Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted ~Coinventor-Weighted

Prices (log, t-1) 0.248%* 0.251 0.244%* 0.245 0250 0256 0.264" 0.266"* 0249 0.253* 0.264* 0.266"*

(0.021) (0.021) (0.023) (0.023) (0.031) (0.031) (0.032) (0.032) (0.023) (0.023) (0.032) (0.032)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 191,980 192,041 191,980 192,041 191,980 192,041 191,980 192,041 191,980 192,041 191,980 192,041
Price Panel Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1,442,579 1,442,823 1,442,579 1,442,823 1,442,579 1,442,823 1,442,579 1,442,823 1,442,579 1,442,823 1,442,579 1,442,823

Pseudo-R2 0.341 0.341 0.341 0.341 0.397 0.397 0.397 0.397 0.286 0.286 0.397 0.397
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G.5.6 Broader Clean Definition and Geographic Weights Based on Energy Patents in Pre-
Period

Table G.28: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

[0) @ [6) “@) 5) %) ®) ©) (10) (1 (12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted  Coinventor-Weighted ~ Coinventor-Weighted  Coinventor-Weighted ~ Coinventor-Weighted

Prices (log. t-1) 0.2637 02647 0243 0244 0231 0221 0262 02617 0.258" 0260 0238 0239

0.027) (0.027) (0.025) (0.025) (0.041) 0.042) (0.035) (0.035) (0.029) (0.029) 0.027) 0.027)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 192,106 192,109 192,106 192,109 192,106 192,109 192,106 192,109 192,106 192,109 192,106 192,109
Price Panel Balanced  Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1443210 1443226 1443210 1443226 1443210 1443.226 1443210 1443.226 1443210 1,443,226 1443210 1443.226
Pscudo-R2 0341 0341 0341 0341 0397 0397 0397 0397 0.286 0.286 0.286 0.286

Table G.29: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

(0 [©)] 3) ) 5) (@] ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted ~ Coi Weigh igh

Prices (log. t-1) 0.289"" 0308 0.345"" 0349 0.458"" 0.456"" 06617 0666 0310 03317 03117 03157

(0.043) (0.043) (0.042) (0.042) (0.053) (0.055) (0.052) (0.052) (0.044) (0.044) (0.044) (0.044)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 189374 189,413 189374 189,413 189374 189.413 189374 189.413 189,374 189,413 189,374 189.413
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1428719 1428904 1428719 1428904 1428719 1428904 1428719 1428904 1428719 1,428,904 1428719 1428904
Pscudo-R2 0.341 0341 0.341 0341 0397 0.397 0.397 0.397 0286 0286 0286 0.286

Table G.30: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

O] 2) 3) @) 5) (6) (W) ) ©) (10) (an (12)

Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C Weigh Weigl

Prices (log. t-1) 0209 0214 0207 0208 0.180"* 0.183" 0207 0207 0229 0233 0229 02317
(0.023) (0.023) 0.022) (0.022) (0.032) (0.032) (0.030) (0.030) (0.025) (0.025) (0.024) (0.024)

Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 192,132 192,134 192,132 192,134 192,132 192,134 192,132 192,134 192,132 192,134 192,132 192,134
Price Pancl Balanced  Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1443434 1443447 1443434 1.443.447 1443434 1443447 1443434 1443447 1,443,434 1443447 1443434 1443447
Pscudo-R2 0341 0341 0341 0341 0397 0397 0397 0.397 0.286 0.286 0.286 0.286
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Table G.31: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) @) 3) @) 5) (6) (W) ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~ Coinventor-Weighted = Coi Weighted Weigh

Prices (log, t-1) 0.203"" 02027 0.278"" 0278 0.288" 0.282""" 0308 0306 0272 0272 0247 0.247°

(0.025) (0.025) (0.026) (0.026) (0.040) (0.041) (0.037) (0.037) (0.027) (0.027) (0.028) (0.028)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 192,095 192,149 192,095 192,149 192,095 192,149 192,095 192,149 192,095 192,149 192,095 192,149
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1443413 1443635 1443413 1443635 1443413 1443,635 1443413 1443635 1443413 1443635 1443413 1443635
Pscudo-R2 0.341 0341 0.341 0341 0.397 0.397 0.397 0.397 0286 0286 0286 0.286

Table G.32: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

8] [©)] 3) [©) 5) ©6) @] ®) © (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C Weigh Weigl
Prices (log. t-1) 0376 0389 0.407" 0.401°* 0613 0.603"* 0.802°" 0793 0364 0374 0305 0.298"*
(0.038) (0.039) 0.042) (0.042) (0.053) (0.055) (0.055) (0.055) (0.038) (0.039) (0.044) (0.044)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 190,174 190,269 190,174 190,269 190,174 190,269 190,174 190,269 190,174 190,269 190,174 190,269
Price Panel Balanced  Unbalanced ~ Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP 5 - - GDP 5
Observations 1432878 1433329 1432878 1433329 1.433,329 1432.878 1433,329 1.432,878 1,433,329 1432878 1433,329
Pseudo-R2 0341 0341 0.341 0341 0.397 0.397 0.397 0287 0.286 0.286 0.286

Table G.33: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

[ 2) 3) [©) ) 7 ) ©) (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log. t-1) 0225 0227 0.228" 0228 0233 0.238" 02447 0245 02297 0231° 0229 0230

(0.021) 0.021) 0.022) 0.022) 0.031) 0.031) 0.031) (0.031) (0.023) (0.023) (0.024) (0.024)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure s X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 192,135 192,167 192,135 192,167 192,135 192,167 192,135 192,167 192,135 192,167 192,135 192,167
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1443660 1443804 1443660 1443804 1,443,660 1,443,804 1,443,660 1,443,804 1,443,660 1,443,804 1443660 1,443,804
Pseudo-R2 0341 0341 0341 0341 0397 0397 0397 0397 0.286 0.286 0.286 0286




G.5.8 Broader Clean Definition and Geographic Weights Based on All Patents in Pre-Period

50

Table G.34: Industry Prices: Baseline Poisson Estimates for Broader Definition of Clean

(1) @) 3) @) 5) (6) (W) ®) © (10) an 12)
Simple Count ~ Simple Count ~ Simple Count ~ Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted = Citation-Weighted Coinventor-Weighted ~ Coinventor-Weighted = Coi Weighted Weigh

Prices (log, t-1) 02437 0244 0.258"" 0260 0.207"" 0.198"" 0259 0260 0.236"" 0238 0233 0236

(0.027) (0.028) (0.025) (0.025) (0.045) (0.046) (0.037) (0.038) (0.029) (0.030) (0.027) (0.027)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 192,111 192,133 192,111 192,133 192,111 192,133 192,111 192,133 192,111 192,133 192,111 192,133
Price Pancl Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1443598 1443700 1443598 1443700 1443,598 1443,700 1443598 1,443,700 1,443,508 1,443,700 1443598 1,443,700
Pscudo-R2 0.341 0341 0.341 0341 0.397 0.397 0.397 0.397 0286 0286 0286 0.286

Table G.35: Electricity Prices: Baseline Poisson Estimates for Broader Definition of Clean

8] [©)] 3) [©) 5) ©6) @] ®) © (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted  Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted C Weigh Weigl
Prices (log. t-1) 03217 0334 0369 0370 0503 0513 0.663"" 0665 0353 0366 0350 0350
(0.039) (0.040) 0.038) (0.038) (0.054) 0.057) (0.049) (0.049) (0.039) (0.040) (0.040) (0.040)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure FEs X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 190,174 190,240 190,174 190,240 190,174 190.240 190,174 190,240 190,174 190,240 190,174 190,240
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP 5 - - GDP 5
Observations 1433212 1433457 1433212 1433457 1433212 1433457 1433212 1433457 1433212 1433457 1433212 1433457
Pseudo-R2 0341 0341 0.341 0341 0.397 0.397 0.397 0.397 0.286 0.286 0.286 0.286

Table G.36: Household Prices: Baseline Poisson Estimates for Broader Definition of Clean

[ 2) 3) [©) ) 7 ) ©) (10) an 12)
Simple Count  Simple Count  Simple Count  Simple Count ~ Citation-Weighted ~ Citation-Weighted ~ Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log. t-1) 0173 0177 0.194"* 0196 0.167"* 0172 0.199°** 02017 0193 0.198"** 0206 0209

0.022) 0.022) 0.022) 0.022) (0.034) (0.034) (0.031) (0.031) (0.025) (0.025) (0.024) (0.024)
Year FEs X X X X X X X X X X X X
Inventor FEs X X X X X X X X X X X X
Tenure s X X X X X X X X X X X X
Country-Year Covariates X X X X X X X X X X X X
Inventor Clusters (SEs) 192,140 192,155 192,140 192,155 192,140 192,155 192,140 192,155 192,140 192,155 192,140 192,155
Price Panel Balanced  Unbalanced  Balanced  Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced
Price Weights - - GDP GDP - - GDP GDP - - GDP GDP
Observations 1443804 1443861 1443804 1,443,861 1,443,804 1,443,861 1,443,804 1,443,861 1,443,804 1,443,861 1443804 1443861
Pseudo-R2 0341 0341 0341 0341 0397 0397 0397 0397 0.286 0.286 0.286 0286
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G.6 Robustness Check: Dropping Multi-Firm Inventors

Table G.37: Dropping Multi-Firm Inventors - One Lag

(1) 2 (3) (4) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) 0.174* 0.179* 0.185 0.176 0.227* 0.193*
(0.096) (0.092) (0.129) (0.128) (0.122) (0.112)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 10,018 10,017 10,018 10,017 10,018 10,017
Observations 44,953 44,929 44,953 44,929 44,953 44,929
Pseudo-R2 0.222 0.224 0.334 0.335 0.230 0.232

Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.

Table G.38: Dropping Multi-Firm Inventors - Distributed Lags

(1) 2) 3) (4) (5) (6)
Simple Count  Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) 0.475%* 0.470** 0.629*** 0.629*** 0.240 0.255
(0.139) (0.141) (0.206) (0.210) (0.166) (0.164)
Prices (log, t-2) -0.112 -0.119 -0.044 -0.044 0.334* 0.330*
(0.146) (0.146) (0.213) (0.211) (0.187) (0.186)
Prices (log, t-3) -0.102 -0.123 -0.054 -0.076 -0.123 -0.186
(0.146) (0.133) (0.189) (0.177) (0.180) (0.157)
Cumulative Effect 0.261 0.228 0.530%%** 0.509%* 0.451%* 0.399%%*
(0.164) (0.150) (0.206) (0.199) (0.204) (0.175)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 5,160 5,160 5,160 5,160 5,160 5,160
Observations 23,605 23,587 23,605 23,587 23,605 23,587

Pseudo-R2 0.220 0.223 0.324 0.326 0.230 0.233

Dependent variable: Number of Renewable/Nuclear docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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G.7 Additional Results: Effect on Grey, Dirty, and Non-Energy Patenting

In this section, we look at the effect of changes in natural gas prices on other types of patenting,
mainly: grey, dirty, and non-energy. The regression tables below replicate the specifications shown
in Panels a and b of Table 1 but with different outcome variables. The data sample used in these
regressions is also the same as in Table 1, meaning it focuses on clean incumbents. Since only a few
clean incumbents also patent in grey and dirty, the number of observations in regressions using grey
or dirty patenting as outcome variables is smaller.

We find that increases in natural gas prices lead to a higher number of grey and dirty patents.
One caveat here is that this effect concerns only the sample of inventors patenting both in clean
and grey or dirty. We interpret this effect as increased incentives to innovate in efficient natural
gas technologies or other fossil fuel technologies, such as coal, that could replace natural gas for
electricity generation.

We also find that increases in natural gas prices lead to a lower number of non-energy patents.
This indicates that the induced innovation effect in energy technologies might come at the expense
of innovation in other sectors.

G.7.1 Effect on Grey Patenting

Table G.39: Baseline Poisson Estimates for Grey Patenting (Baseline Definition of Clean)

(1) 2 (3) ) ) (6)
Simple Count  Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted

Prices (log, t-1) 0.375%* 0.352%* 0.574** 0.506*** 0.353%* 0.350**
(0.085) (0.091) (0.094) (0.096) (0.111) (0.116)
GDP per capita (log, t-1) 6.659™* 6.804** 7.277* 7.404%* 5.073"* 5.182%*
(0.950) (0.970) (0.745) (0.754) (1.144) (1.161)
Energy RD&D (log, t-1) 0.064 0.052 0.212* 0.194* 0.106 0.100
(0.073) (0.076) (0.086) (0.091) (0.085) (0.087)
Low-Carbon RD&D (log, t-1) -0.117 -0.052 -0.323%** -0.174* -0.147 -0.109
(0.096) (0.093) (0.099) (0.100) (0.103) (0.099)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 18,989 18,989 18,989 18,989 18,989 18,989
Observations 177,049 177,044 177,049 177,044 177,049 177,044

Pseudo-R2 0.233 0.234 0.296 0.297 0.213 0.213

Number of grey docdb patent families.

imu likelihood. Standard errors clustered by inventor in parentheses.
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Table G.40: Baseline Poisson Estimates for Grey Patenting (Broader Definition of Clean)

[¢Y) 2 3) “ (5 (6)
Simple Count ~ Simple Count Citation-Weighted Citation-Weighted ~Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) 0.096 0.136* 0.176** 0.204** 0.128 0.169*
(0.070) (0.077) (0.077) (0.080) (0.088) (0.096)
GDP per capita (log, t-1) 6.000"** 5.459*** 6.051"** 5.869"** 5.185%** 4.703***
(0.699) (0.770) (0.586) (0.621) (0.837) (0.916)
Energy RD&D (log, t-1) 0.210™* 0.198* 0.356*** 0.358** 0.210%* 0.195%*
(0.081) (0.079) (0.101) (0.101) (0.077) (0.075)
Low-Carbon RD&D (log, t-1) -0.089 -0.124 -0.354"* -0.346"** -0.090 -0.128
(0.088) (0.087) (0.104) (0.102) (0.085) (0.084)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 26,641 26,641 26,641 26,641 26,641 26,641
Observations 276,159 276,151 276,159 276,151 276,159 276,151
Pseudo-R2 0.217 0.218 0.268 0.269 0.201 0.202

Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses
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Table G.41: Distributed Lag Estimates for Grey Patenting (Baseline Definition of Clean)

M (@) 3 @ ) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) -0.197* -0.187* -0.008 0.017 -0.316"** -0.300**
(0.104) (0.106) (0.125) (0.126) (0.121) (0.123)
Prices (log, t-2) 0.207** 0.176* 0.032 -0.023 0.425** 0.400***
(0.104) (0.104) (0.138) (0.138) (0.123) (0.121)
Prices (log, t-3) 0.422%** 0.406*** 0.712%** 0.666*** 0.322%** 0.313**
(0.103) (0.104) (0.136) (0.135) (0.117) (0.118)
L.GDP per capita (log, k$) 8.002"** 8.307** 6.869** 7.129*** 7757 8.084***
(1.988) (1.909) (1.781) (1.705) (1.969) (1.873)
L2.GDP per capita (log, k$) -1.077 -0.804 -1.082 -0.768 -2.075** -1.721*
(0.918) (0.900) (1.070) (1.045) (0.994) (0.958)
L3.GDP per capita (log, k$) -0.714 -0.668 1.594* 1.536* -1.046 -1.007
(0.957) (0.907) (0.854) (0.834) (0.980) (0.927)
L.Energy RD&D (log, m$) -0.006 0.001 0.208 0.236* 0.056 0.064
(0.114) (0.115) (0.128) (0.131) (0.117) (0.124)
L2.Energy RD&D (log, m$) -0.193* -0.190* -0.046 -0.033 -0.035 -0.038
(0.109) (0.111) (0.111) (0.114) (0.104) (0.109)
L3.Energy RD&D (log, m$) -0.081 -0.077 0.034 0.035 -0.081 -0.078
(0.069) (0.069) (0.092) (0.093) (0.080) (0.082)
L.Low-Carbon RD&D (log, m$) 0.008 0.086 -0.232 -0.121 -0.127 -0.074
(0.128) (0.130) (0.141) (0.146) (0.123) (0.129)
L2.Low-Carbon RD&D (log, m$) 0.183 0.206* 0.047 0.089 0.167 0.184
0.117) (0.119) (0.117) (0.117) (0.126) (0.130)
L3.Low-Carbon RD&D (log, m$) -0.004 0.006 -0.190* -0.166* 0.007 0.012
(0.076) (0.076) (0.097) (0.099) (0.089) (0.091)
Cumulative Effect 0.432%** 0.395%** 0.736%** 0.660%** 0.431%** 0.413%**
(0.099) (0.106) (0.123) (0.124) (0.114) 0.121)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 16,293 16,293 16,293 16,293 16,293 16,293
Observations 146,060 146,056 146,060 146,056 146,060 146,056

Pseudo-R2 0.235 0.236 0.297 0.299 0.213 0.214

Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.



55

Table G.42: Distributed Lag Estimates for Grey Patenting (Broader Definition of Clean)

M (@) 3 @ ) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted ~Coinventor-Weighted
Prices (log, t-1) -0.197* -0.187* -0.008 0.017 -0.316"** -0.300**
(0.104) (0.106) (0.125) (0.126) (0.121) (0.123)
Prices (log, t-2) 0.207** 0.176* 0.032 -0.023 0.425** 0.400***
(0.104) (0.104) (0.138) (0.138) (0.123) (0.121)
Prices (log, t-3) 0.422%** 0.406*** 0.712%** 0.666*** 0.322%** 0.313**
(0.103) (0.104) (0.136) (0.135) (0.117) (0.118)
L.GDP per capita (log, k$) 8.002"** 8.307** 6.869** 7.129*** 7757 8.084***
(1.988) (1.909) (1.781) (1.705) (1.969) (1.873)
L2.GDP per capita (log, k$) -1.077 -0.804 -1.082 -0.768 -2.075** -1.721*
(0.918) (0.900) (1.070) (1.045) (0.994) (0.958)
L3.GDP per capita (log, k$) -0.714 -0.668 1.594* 1.536* -1.046 -1.007
(0.957) (0.907) (0.854) (0.834) (0.980) (0.927)
L.Energy RD&D (log, m$) -0.006 0.001 0.208 0.236* 0.056 0.064
(0.114) (0.115) (0.128) (0.131) (0.117) (0.124)
L2.Energy RD&D (log, m$) -0.193* -0.190* -0.046 -0.033 -0.035 -0.038
(0.109) (0.111) (0.111) (0.114) (0.104) (0.109)
L3.Energy RD&D (log, m$) -0.081 -0.077 0.034 0.035 -0.081 -0.078
(0.069) (0.069) (0.092) (0.093) (0.080) (0.082)
L.Low-Carbon RD&D (log, m$) 0.008 0.086 -0.232 -0.121 -0.127 -0.074
(0.128) (0.130) (0.141) (0.146) (0.123) (0.129)
L2.Low-Carbon RD&D (log, m$) 0.183 0.206* 0.047 0.089 0.167 0.184
0.117) (0.119) (0.117) (0.117) (0.126) (0.130)
L3.Low-Carbon RD&D (log, m$) -0.004 0.006 -0.190* -0.166* 0.007 0.012
(0.076) (0.076) (0.097) (0.099) (0.089) (0.091)
Cumulative Effect 0.432%** 0.395%** 0.736%** 0.660%** 0.431%** 0.413%**
(0.099) (0.106) (0.123) (0.124) (0.114) 0.121)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 16,293 16,293 16,293 16,293 16,293 16,293
Observations 146,060 146,056 146,060 146,056 146,060 146,056

Pseudo-R2 0.235 0.236 0.297 0.299 0.213 0.214

Dependent variable: Number of grey docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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G.7.2 Effect on Dirty Patenting

Table G.43: Baseline Poisson Estimates for Dirty Patenting (Baseline Definition of Clean)

&) 2 (3) “) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) 0.307*** 0.386"** 0.332%** 0.382%** 0.239*** 0.315%*
(0.073) (0.075) (0.093) (0.092) (0.083) (0.087)
GDP per capita (log, t-1) 2.071%* 1.105** 2,757 2.003*** 1.484** 0.490
(0.448) (0.487) (0.505) (0.548) (0.466) (0.504)
Energy RD&D (log, t-1) -0.081 -0.081 -0.034 -0.031 -0.126 -0.129*
(0.067) (0.065) (0.082) (0.079) (0.077) (0.075)
Low-Carbon RD&D (log, t-1) 0.230™* 0.173* 0.167* 0.112 0.207** 0.151*
(0.074) (0.072) (0.086) (0.084) (0.079) (0.077)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 18,636 18,636 18,636 18,636 18,636 18,636
Observations 197,466 197,458 197,466 197,458 197,466 197,458
Pseudo-R2 0.251 0.251 0.306 0.307 0.230 0.231

Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses

Table G.44: Baseline Poisson Estimates for Dirty Patenting (Broad Definition of Clean)

(1) 2 (3) ) (5) 6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) 0.111* 0.201** 0.090 0.143* 0.129* 0.225"*
(0.059) (0.060) (0.074) (0.074) (0.069) (0.070)
GDP per capita (log, t-1) 2.548"* 1.409*** 3.125% 2.416** 1.932%* 0.735*
(0.366) (0.400) (0.422) (0.469) (0.373) 0.411)
Energy RD&D (log, t-1) -0.085* -0.105* -0.087 -0.102 -0.116* -0.134**
(0.051) (0.050) (0.064) (0.062) (0.060) (0.058)
Low-Carbon RD&D (log, t-1) 0.284** 0.219** 0.234** 0.171* 0.284** 0.220™**
(0.057) (0.056) (0.069) (0.067) (0.064) (0.063)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 29,491 29,491 29,491 29,491 29,491 29,491
Observations 329,052 329,044 329,052 329,044 329,052 329,044

Pseudo-R2 0.235 0.236 0.276 0.276 0.223 0.224

Dependent variable: Number of dirty docdb patent families

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table G.45: Distributed Lag Estimates for Dirty Patenting (Baseline Definition of Clean)

1) 2 3) “) () (6)
Simple Count  Simple Count Citation-Weighted ~Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) -0.009 -0.033 0.123 0.081 -0.084 -0.107
(0.103) (0.104) (0.121) (0.121) (0.114) (0.115)
Prices (log, t-2) 0.093 0.153 0.087 0.133 0.114 0.171
(0.097) (0.097) (0.131) (0.130) (0.114) (0.115)
Prices (log, t-3) 0.343*** 0.416*** 0.211* 0.284** 0.371%** 0.4437**
(0.088) (0.091) (0.116) (0.119) (0.098) (0.099)
L.GDP per capita (log, k$) 2.531% 1.993** 2.962** 2.469* 2.352%* 1.771
(0.874) (0.907) (1.087) (1.119) (1.154) (1.190)
L2.GDP per capita (log, k$) -0.981 -1.461 -0.244 -0.627 -0.241 -0.734
(0.887) (0.920) (1.070) (1.108) (1.062) (1.112)
L3.GDP per capita (log, k$) -0.491 -0.438 0.140 0.129 -1.276 -1.271
(0.705) (0.712) (0.764) (0.780) (0.795) (0.799)
L.Energy RD&D (log, m$) -0.141 -0.182* -0.129 -0.169 -0.244** -0.283***
(0.096) (0.097) (0.121) (0.121) (0.108) (0.109)
L2.Energy RD&D (log, m$) -0.049 -0.095 0.154 0.099 0.063 0.014
(0.084) (0.085) (0.102) (0.102) (0.088) (0.089)
L3.Energy RD&D (log, m$) -0.035 -0.057 0.052 0.021 0.056 0.034
(0.066) (0.067) (0.086) (0.086) (0.072) (0.074)
L.Low-Carbon RD&D (log, m$) 0.256** 0.198* 0.137 0.096 0.223* 0.178
(0.115) (0.115) (0.141) (0.142) (0.122) (0.121)
L2.Low-Carbon RD&D (log, m$) 0.163** 0.159** -0.104 -0.101 0.054 0.053
(0.081) (0.081) (0.113) (0.111) (0.087) (0.087)
L3.Low-Carbon RD&D (log, m$) 0.106 0.088 0.066 0.062 0.123 0.103
(0.070) (0.071) (0.084) (0.085) (0.081) (0.083)
Cumulative Effect 0.427%** 0.535%** 0.422%** 0.498*** 0.402%** 0.507***
(0.095) (0.097) (0.126) (0.126) (0.109) (0.114)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 16,758 16,758 16,758 16,758 16,758 16,758
Observations 166,201 166,194 166,201 166,194 166,201 166,194
Pseudo-R2 0.248 0.249 0.307 0.308 0.228 0.229

Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table G.46: Distributed Lag Estimates for Dirty Patenting (Broad Definition of Clean)

1) 2 3) “) () (6)
Simple Count  Simple Count Citation-Weighted ~Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) -0.131 -0.163* -0.086 -0.133 -0.104 -0.126
(0.085) (0.086) (0.101) (0.102) (0.095) (0.097)
Prices (log, t-2) 0.079 0.134* 0.188* 0.228** 0.041 0.100
(0.078) (0.079) (0.104) (0.104) (0.092) (0.093)
Prices (log, t-3) 0.244** 0.318*** 0.043 0.114 0.316"** 0.388***
(0.070) (0.072) (0.089) (0.091) (0.081) (0.082)
L.GDP per capita (log, k$) 3.445% 2.965%** 4.292%** 4.008*** 3.164"* 2.707*
(0.699) (0.718) (0.892) (0.912) (0.916) (0.937)
L2.GDP per capita (log, k$) -0.405 -0.821 0.766 0.453 -0.263 -0.752
(0.723) (0.751) (0.898) (0.932) (0.873) (0.915)
L3.GDP per capita (log, k$) -1.315% -1.341%* -1.428** -1.598** -1.778** -1.827*
(0.629) (0.638) (0.694) (0.711) (0.726) (0.737)
L.Energy RD&D (log, m$) -0.186** -0.248*** -0.203** -0.258** -0.243* -0.300%**
(0.076) (0.077) (0.101) (0.100) (0.090) (0.090)
L2.Energy RD&D (log, m$) -0.023 -0.077 0.132 0.074 0.054 0.000
(0.067) (0.068) (0.082) (0.081) (0.072) (0.073)
L3.Energy RD&D (log, m$) -0.052 -0.079 0.050 0.014 -0.019 -0.045
(0.052) (0.052) (0.067) (0.066) (0.060) (0.061)
L.Low-Carbon RD&D (log, m$) 0.283*** 0.223** 0.136 0.104 0.293*** 0.240"*
(0.090) (0.089) (0.113) (0.114) (0.102) (0.101)
L2.Low-Carbon RD&D (log, m$) 0.156** 0.146** -0.031 -0.026 0.088 0.082
(0.065) (0.065) (0.091) (0.090) (0.075) (0.075)
L3.Low-Carbon RD&D (log, m$) 0.153*** 0.138** 0.099 0.099 0.201%* 0.187***
(0.055) (0.056) (0.067) (0.068) (0.067) (0.067)
Cumulative Effect 0.192%* 0.290%** 0.146 0.209%* 0.254%** 0.362%**
(0.076) (0.078) (0.097) (0.098) (0.089) (0.091)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 26,234 26,234 26,234 26,234 26,234 26,234
Observations 272,701 272,694 272,701 272,694 272,701 272,694
Pseudo-R2 0.233 0.234 0.276 0.276 0.222 0.223

Dependent variable: Number of dirty docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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G.7.3 Effect on Non-Energy Patenting

Table G.47: Baseline Poisson Estimates for Non-Energy Patenting (Baseline Definition of Clean)

&) 2 (3) “) (5) (6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) -0.299** -0.211% -0.496*** -0.429*** -0.238"* -0.163
(0.058) (0.055) (0.053) (0.050) (0.103) (0.100)
GDP per capita (log, t-1) 6.550"** 4.688""* 6.202"** 51217 5.616"** 3.835%
(0.256) (0.276) (0.268) (0.274) (0.348) (0.375)
Energy RD&D (log, t-1) -0.016 -0.058*** -0.056* -0.078*** 0.019 -0.020
(0.024) (0.022) (0.029) (0.028) (0.032) (0.028)
Low-Carbon RD&D (log, t-1) 0.075* 0.011 -0.089* -0.122% -0.000 -0.044
(0.045) (0.042) (0.045) (0.041) (0.066) (0.062)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 97,656 97,656 97,656 97,656 97,656 97,656
Observations 767,685 767,685 767,685 767,685 767,685 767,685
Pseudo-R2 0.659 0.661 0.636 0.639 0.600 0.603

Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses

Table G.48: Baseline Poisson Estimates for Non-Energy Patenting (Broader Definition of Clean)

(1) 2 (3) ) (5) 6)
Simple Count Simple Count Citation-Weighted Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) -0.285"** -0.184** <0441 -0.353" -0.248"* -0.164*
(0.039) (0.036) (0.041) (0.039) (0.066) (0.063)
GDP per capita (log, t-1) 6.914"* 5.101%* 6.408** 5.228** 5.921"* 4147
(0.181) (0.195) (0.211) (0.229) (0.237) (0.253)
Energy RD&D (log, t-1) 0.001 -0.035 -0.048** -0.066** 0.054** 0.019
(0.016) (0.015) (0.024) (0.022) (0.021) (0.019)
Low-Carbon RD&D (log, t-1) 0.046* -0.020 -0.059* -0.114% -0.024 -0.071*
(0.028) (0.027) (0.031) (0.028) (0.041) (0.039)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 176,219 176,219 176,219 176,219 176,219 176,219
Observations 1,419,338 1,419,338 1,419,338 1,419,338 1,419,338 1,419,338
Pseudo-R2 0.620 0.623 0.650 0.652 0.563 0.566

Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table G.49: Distributed Lag Estimates for Non-Energy Patenting (Baseline Definition of Clean)

1) 2 3) “) () (6)
Simple Count  Simple Count Citation-Weighted ~Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) 0.435%** 0.305"** 0.322%* 0.217* 0.429*** 0.308***
(0.043) (0.039) (0.049) (0.050) (0.060) (0.050)
Prices (log, t-2) -0.357** -0.318** -0.391*** -0.380*** -0.297*** -0.250***
(0.044) (0.043) (0.056) (0.057) (0.075) (0.072)
Prices (log, t-3) -0.651% -0.503** -0.701%** -0.582%** -0.628** -0.4797**
(0.059) (0.049) (0.069) (0.065) (0.119) (0.096)
L.GDP per capita (log, k$) 4.630%* 3.962%* 3.930"* 3.596"** 4.634" 3.885%*
(0.450) (0.452) (0.517) (0.517) (0.566) (0.551)
L2.GDP per capita (log, k$) 0.910** 0.613 2.403"* 2,187 0.263 -0.050
(0.459) (0.462) (0.465) (0.482) (0.750) (0.751)
L3.GDP per capita (log, k$) 0.744 0.527 0.752* 0.555 1.257 1.036
(0.556) (0.562) (0.450) (0.458) (0.974) (0.980)
L.Energy RD&D (log, m$) 0.271% 0.180*** 0.173** 0.130** 0.314% 0.217*
(0.062) (0.054) (0.066) (0.065) (0.094) (0.078)
L2.Energy RD&D (log, m$) 0.121%* 0.047 0.103** 0.057 0.181** 0.109*
(0.047) (0.041) (0.051) (0.049) (0.070) (0.057)
L3.Energy RD&D (log, m$) 0.091*** 0.054** 0.099*** 0.078*** 0.098*** 0.064***
(0.024) (0.022) (0.028) (0.027) (0.029) (0.024)
L.Low-Carbon RD&D (log, m$) 0.224*** 0.211%* 0.052 0.081 0.061 0.049
(0.069) (0.065) (0.055) (0.055) (0.082) (0.078)
L2.Low-Carbon RD&D (log, m$) 0.085* 0.081* -0.014 -0.002 0.025 0.016
(0.047) (0.044) (0.045) (0.041) (0.061) (0.057)
L3.Low-Carbon RD&D (log, m$) -0.043* -0.049** -0.044 -0.046 -0.067** -0.068**
(0.026) (0.024) (0.045) (0.048) (0.028) (0.027)
Cumulative Effect -0.574%%* -0.515%** -0.771%%* -0.744%** -0.496%** -0.421%**
(0.073) (0.070) (0.065) (0.064) (0.144) (0.140)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 86,469 86,469 86,469 86,469 86,469 86,469
Observations 660,863 660,863 660,863 660,863 660,863 660,863

Pseudo-R2 0.663 0.664 0.642 0.643 0.601 0.602

Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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Table G.50: Distributed Lag Estimates with Non-Energy Patenting (Broader Definition of Clean)

1) 2 3) “) () (6)
Simple Count  Simple Count Citation-Weighted ~Citation-Weighted Coinventor-Weighted Coinventor-Weighted
Prices (log, t-1) 0.391"** 0.279*** 0.327** 0.248"* 0.386** 0.280%**
(0.038) (0.033) (0.069) (0.067) (0.057) (0.047)
Prices (log, t-2) -0.398*** -0.344% -0.435%* -0.397** -0.360*** -0.302%**
(0.033) (0.031) (0.055) (0.054) (0.055) (0.051)
Prices (log, t-3) -0.569** -0.429%* -0.671% -0.569*** -0.568"** -0.430"**
(0.043) (0.034) (0.063) (0.061) (0.084) (0.064)
L.GDP per capita (log, k$) 4.146% 3.490*** 3.061°* 2.706*** 4.093*** 3.369"**
(0.309) (0.310) (0.390) (0.388) (0.405) (0.391)
L2.GDP per capita (log, k$) 1.593%** 1.275% 2.990*** 2,737 1.083** 0.742
(0.308) (0.310) (0.329) (0.333) (0.511) (0.515)
L3.GDP per capita (log, k$) 0.488 0.300 0.770** 0.525 0.864 0.683
(0.383) (0.388) (0.348) (0.344) (0.696) (0.704)
L.Energy RD&D (log, m$) 0.311% 0.216%* 0.258*** 0.205*** 0.377** 0.273**
(0.044) (0.037) (0.060) (0.058) (0.070) (0.055)
L2.Energy RD&D (log, m$) 0.088*** 0.018 0.029 -0.014 0.159*** 0.088**
(0.034) (0.029) (0.040) (0.038) (0.051) (0.041)
L3.Energy RD&D (log, m$) 0.067*** 0.033** 0.009 -0.012 0.085*** 0.052**
(0.019) (0.017) (0.027) (0.026) (0.024) (0.021)
L.Low-Carbon RD&D (log, m$) 0.248"** 0.217** 0.064 0.063 0.097 0.068
(0.051) (0.047) (0.042) (0.041) (0.069) (0.064)
L2.Low-Carbon RD&D (log, m$) 0.108*** 0.095*** 0.096** 0.095** 0.047 0.031
(0.034) (0.031) (0.043) (0.040) (0.049) (0.044)
L3.Low-Carbon RD&D (log, m$) -0.052%** -0.058*** -0.066™* -0.064* -0.076*** -0.077***
(0.019) (0.018) (0.034) (0.035) (0.024) (0.022)
Cumulative Effect -0.576%** -0.494#%* -0.779%** -0.719%** -0.542%** -0.452%%*
(0.054) (0.048) (0.053) (0.050) (0.099) (0.091)
Year FEs X X X X X X
Inventor FEs X X X X X X
Tenure FEs X X X
Country-Year Covariates X X X X X X
Inventor Clusters (SEs) 153,443 153,443 153,443 153,443 153,443 153,443
Observations 1,202,257 1,202,257 1,202,257 1,202,257 1,202,257 1,202,257

Pseudo-R2 0.626 0.627 0.657 0.659 0.565 0.566

Dependent variable: Number of non-energy docdb patent families.

Poisson pseudo-maximum likelihood. Standard errors clustered by inventor in parentheses.
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H Robustness of Inventor Entry Results

H.1 Primary Outcomes: Entry by Renewable and Nuclear Inventors

Table H.1: Renewable and Nuclear Inventor Entry Elasticities, Balanced Panel

()] @ (3) ()] (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy
Prices (log, t-1) 0.212* 0.237 0.143 0.535%* 0.122 0.423**
(0.127) (0.180) (0.099) (0.139) (0.105) (0.163)
Prices (log, t-2) -0.040 -0.351*** -0.251*
(0.155) (0.134) (0.148)
Prices (log, t-3) 0.311 0.469*** 0.031
(0.210) (0.124) (0.158)
Cumulative Effect 0.509%#%* 0.653%#%* 0.203
(0.168) (0.122) (0.160)
Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 3,822 3,680 4,970 4,777 4,930 4,708
Observations 52,982 43,262 68,709 55,612 68,223 55,075
Pseudo-R2 0.671 0.680 0.591 0.595 0.624 0.631

Dependent variables: number of renewable/nuclear inventors per group.
Sample: balanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.

Table H.2: Renewable and Nuclear Inventor Entry Elasticities, Unbalanced Panel

(1) 2) 3) ) ) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy
Prices (log, t-1) 0.242** 0.228 0.070 0.509** 0.106 0.356**
(0.118) (0.170) (0.097) (0.132) (0.095) (0.155)
Prices (log, t-2) 0.079 -0.415% -0.257*
(0.147) (0.130) (0.144)
Prices (log, t-3) 0.182 0.410%* 0.078
(0.197) (0.119) (0.151)
Cumulative Effect 0.490%3#* 0.504 %% 0.177
(0.158) (0.115) (0.146)
Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 8,422 6,915 9,461 8,320 9,628 8,215
Observations 87,377 65,258 105,833 80,858 106,254 80,329
Pseudo-R2 0.613 0.638 0.544 0.555 0.566 0.583

Dependent variables: number of renewable/nuclear inventors per group.
Sample: unbalanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.
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H.2 Alternative QOutcomes: Broader Definition of Clean

Table H.3: Clean Inventor Entry Elasticities, Balanced Panel

(e)) @ (3 ()] (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy
Prices (log, t-1) 0.157 0.367** 0.046 0.443** -0.039 0.441%*
(0.101) (0.132) (0.092) (0.129) (0.084) (0.126)
Prices (log, t-2) -0.023 -0.056 -0.255**
(0.138) (0.131) (0.115)
Prices (log, t-3) 0.153 0.216* -0.059
(0.171) (0.119) (0.118)
Cumulative Effect 0.497%#%* 0.603%#* 0.126
(0.132) (0.103) (0.117)
Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 5,779 5,532 4,958 4,722 6,720 6,422
Observations 80,145 65,030 68,583 55,069 93,089 75,181
Pseudo-R2 0.728 0.740 0.566 0.567 0.688 0.696

Dependent variables: number of clean inventors per group.
Sample: balanced panel from 2000 to 2014.
Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.

Table H.4: Clean Inventor Entry Elasticities, Unbalanced Panel

()] @ (3) ()] (5) (6)
New to Patenting New to Patenting From Grey/Dirty From Grey/Dirty From Non-Energy From Non-Energy
Prices (log, t-1) 0.153 0.343*** -0.060 0.358*** -0.051 0.399***
(0.096) (0.123) (0.090) (0.125) (0.078) (0.121)
Prices (log, t-2) 0.054 -0.082 -0.267*
(0.130) (0.127) (0.111)
Prices (log, t-3) 0.037 0.146 -0.041
(0.162) (0.115) (0.113)
Cumulative Effect 0.434#5%% 0.422%#% 0.092
(0.125) (0.101) (0.108)
Year FEs X X X X X X
Firm FEs X X X X X X
Country-Year Covariates X X X X X X
Firm Clusters (SEs) 13,190 10,773 9,474 8,248 14,052 11,836
Observations 135,662 100,377 105,814 80,034 151,739 113,549
Pseudo-R2 0.670 0.695 0.516 0.525 0.633 0.651

Dependent variables: number of clean inventors per group.
Sample: unbalanced panel from 2000 to 2014.

Poisson pseudo-maximum likelihood. Standard errors clustered by firm in parentheses.



64

I Carbon Pricing Details and Robustness

I.1 Implementation

Our empirical strategy allows us to estimate elasticities that characterize how natural gas price
variation induces innovation through the intensive margin by increasing the rate at which incumbent
inventors patent, and through the extensive margin by increasing the number of inventors that work
on clean technology. This section details the back-of-the-envelope calculation we use to combine
the effects along those two margins and to analyze the potential impacts of a broad-based policy to
price carbon.

The total number of clean patent families in a given year can be written as the product of the
average number of patents filed per year by an inventor and the number of active inventors:

PATC = PATCN,. (L.1)

To study the role of entry by inventors of different types, we decompose the number of incumbent
inventors based on its evolution over time:

N, =N,_, —I—Ef/d +E;wn—energy +E;1€W - X, (1.2)

where EF denotes the number of inventors of type k who enter at the beginning of period 7, and X;
denotes the number of incumbent inventors who exit at the beginning of period ¢.’

Taking the derivative of both sides of equation I.1 with respect to lagged natural gas prices and
substituting equation 1.2 yields

—1-C
dPATC  dPAT, — ¢ dN,
= N; + PAT 1.3
Py dr AR (13)

—“-C g/d non—energy new
dPAT ——~c [ dN;_ dE dE dE dX,
_ LN, + PAT, ( =1, 2 t t ! ) (1.4)

db db_y  dF * db * dP_;  dP_,

The first term captures the intensive margin change in patenting from a change in natural gas
prices, holding the number of incumbent inventors fixed.

The second term captures the extensive margin change in patenting from a change in the number
of inventors of each type, holding expected patenting per entrant fixed. This term is comprised of

several parts. For clarity, the measure of average patenting output, W,C, is unconditional and does
not depend directly on the type of inventor (we relax this below). Within the parentheses, the first
derivative is assumed to be zero based on timing: individuals enter and exit at the beginning of
the year based on prices in the prior year, before prices for the coming year are realized, so there
is no contemporaneous effect of prices on the number of incumbents. We use firm-level data to

7. Entrants are classified into types based on their prior patenting activity. g/d denotes inventors who have previously
patented in grey and/or dirty technology but not in clean technology. non — energy denotes inventors who have previously
patented in technology areas outside of the set of energy technologies studied in this paper. new denotes inventors who
were not previously observed in the patent data.
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estimate the effects of natural gas prices on entry by inventors of each type, as described in Section
3.3. Since we do not directly observe exit, we assume that the rate of exit is not affected by natural
gas prices. If higher natural gas prices led to lower rates of exit, this analysis would understate the
role of extensive margin responses (and vice versa).

We approximate the aggregate impact of a change in natural gas prices by rewriting equation 1.4
in terms of elasticities and multiplying both sides by the percentage change in prices, AF;(%):

APATC = }SAT PAT, N;AP, (%) + ZPAT £ AP(%), (1.5)

where EIIZA " 1s the elasticity of output with respect to natural gas prices, and 8};: is the elasticity of the

number of entrants of type k with respect to natural gas prices. To provide a richer characterization
of the mechanisms of induced innovation, we allow for average patenting rates to vary by entrant

type, as denoted by the k subscript in Wtc’k. To compute effects of a persistent price change over a
time horizon longer than one year, we further allow for average patenting by new entrants to vary
over the course of their tenure. We also account for how a persistent price change has persistent
effects on entry.

We use this framework to quantify the potential effects of carbon pricing on the amount and
sources of clean innovation. To do so, we first compute how pricing carbon would increase the
price of natural gas. For the social cost of carbon, we use the current U.S. Government value of
$51 per metric ton of CO; (in 2020 terms). We deflate this value to base year dollars using the U.S.
GDP implicit price deflator from OECD (2023). We then convert the social cost of carbon into the
same units as the natural gas price data (dollars per megawatt-hour) using conversion factors of
2,204.6 pounds per metric ton,® 0.97 pounds CO, per kilowatt-hour for electricity generation from
natural gas,’ and 1,000 kilowatt-hours per megawatt-hour. After deflation and conversion, the U.S.
Government value of the social cost of carbon corresponds to 54% of the GDP-weighted global
average price of natural gas in 2014.

Focusing on 2014 as our base year, we compute the predicted number of additional clean patents
that would be generated over the course of 10 years in response to a permanent increase in the
natural gas price equivalent to the social cost of carbon. Table 3 in the main text presents the
resulting predictions in aggregate and by margin of response. Tables I.1 and 1.3 in this appendix
present analogous results from different model specifications and outcome variables to assess the
robustness of the results.'”

Inference. We compute standard errors via the delta method. To simplify notation, equation 1.5
can be rewritten as

8. Source: EPA’s Greenhouse Gases Equivalencies Calculator - Calculations and References, https://www.epa.gov/
energy/greenhouse- gases-equivalencies-calculator-calculations-and-references, accessed May 10, 2023.

9. Source: U.S. Energy Information Administration State Electricity Profiles Tables 5 and 7, with data from 2021,
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11, accessed May 10, 2023.

10. For the appendix results that use distributed lag models, we use the cumulative effect estimates and treat them as if
they take effect immediately rather than phasing in over three years for simplicity. This approach is conservative insofar
as accounting for the gradual phase in of the effects would shrink the contribution of the extensive margin relative to the
intensive margin, which is the main focus of our analysis. This is because the intensive margin effects phase in quickly
(Table G.3), whereas the extensive margin effects phase in more slowly (Table H.1).


https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
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: C k
C __ inc PAT k E
APAT; =C SP +E C 8P
k

where all the non-stochastic terms are subsumed into a type-specific constant, c*, with ¢ denoting
the constant for incumbents.

Using this notation, the level of the change in patents attributable to incumbents is ¢ and
the derivative of the level with respect to the output elasticity is ¢/*. Applying the delta method, we
approximate the standard error of the change in patenting attributable to incumbents as the product
of the standard error of the output elasticity and ¢”*. Standard errors for the other level changes are
computed analogously using their respective elasticities’ standard errors and type-specific constants.

The share of the change in patents attributable to incumbents can be written as:
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By the delta method, the variance of the share is approximately
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Since the elasticities are estimated separately using different data, their covariances are unknown,
so we assume they are independent and use the individual variance estimates to construct the
variance-covariance matrix X. Standard errors for the other shares are computed analogously using
their respective gradients.

I.2 Limitations

First, this analysis is an approximation. While the price change we study is on the same order of
magnitude as the country-level natural gas price variation observed in the raw data, our first-order
approximation does not account for higher-order effects of natural gas prices on innovation by
incumbents and entry by new inventors. If the supply of patents or inventors are highly convex, our
predictions may overstate the magnitude of induced innovation.
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Second, our analysis focuses on the effects of a change in natural gas prices. In reality, carbon
pricing would also increase the price of other emitting sources of electricity generation such as coal.
Furthermore, economy-wide carbon pricing could lead to increased demand for electricity from
other sectors, such as electric vehicle charging from the transportation sector, which would also
affect the returns to clean innovation. Both of these effects are beyond the scope of our analysis.

Third, our analysis does not account for differences in the quality of different patents. The
results in Tables 3 and I.1 through 1.3 are simple counts of patent families. Given the relative
magnitudes of the estimates in Table 1, the effects are likely to be larger for alternative measures
such as citation-weighted patents that attempt to proxy for the quality of innovations.
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I.3 Robustness of Carbon Pricing Simulation Results

I.3.1 Alternative Specifications

Source Patents Share (%) Source Patents Share (%)
Intensive margin response Intensive margin response
Incumbent inventors 32,169 81.4 Incumbent inventors 37,886 66.1
(4,241) (6.8) (5,326) (5.8)
Extensive margin response Extensive margin response
Entry from grey/dirty 1,285 33 Entry from grey/dirty 5,884 10.3
(894) (2.2) (1,099) (2.1)
Entry from non-energy 1,381 35 Entry from non-energy 2,299 4.0
(1,188) (2.9) (1,812) 3.1
Entry to patenting 4,672 11.8 Entry to patenting 11,237 19.6
(2,797) 6.4) (3,709) (5.6)
Total 39,508 100.0 Total 57,307 100.0
(5,293) . (6,828)

(a) Single lag, balanced firm panel (b) Distributed lag, balanced firm panel
Source Patents Share (%) Source Patents Share (%)
Intensive margin response Intensive margin response

Incumbent inventors 32,169 76.6 Incumbent inventors 37,886 61.4
(4,241) (7.8) (5,326) (6.4)
Extensive margin response Extensive margin response
Entry from grey/dirty 865 2.1 Entry from grey/dirty 6,224 10.1
(1,198) (2.8) (1,420) 24
Entry from non-energy 1,501 3.6 Entry from non-energy 2,498 4.0
(1,346) 3.1) (2,060) 3.2)
Entry to patenting 7,467 17.8 Entry to patenting 15,094 24.5
(3,637) (7.4) (4,867) 6.4)
Total 42,004 100.0 Total 61,702 100.0
(5,870) . (7,637)
(c) Single lag, unbalanced firm panel (d) Distributed lag, unbalanced firm panel

Table I.1: Predicted Impacts of Carbon Pricing for Narrow Definition of Clean

Note: Predicted changes in the number of renewable and nuclear patent families due to a persistent 54% increase in
natural gas prices over the course of 10 years, relative to a base year of 2014. Each panel uses elasticities and other
inputs based on a different lag structure and firm dataset. Both the balanced and unbalanced firm panels range from
2000 to 2014. Standard errors are constructed using the delta method. Panel a reproduces the results from Table 3 in the
main text. The total change in patenting in Panel a represents an increase of 36% relative to baseline patenting rates.
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1.3.2 Alternative Base Year: 2010

The qualitative findings are robust to using alternative base years other than 2014. Table 1.2 presents
results using 2010 as the base year. Both the level of induced patenting and the share of induced
patenting attributable to incumbent inventors are higher than in Table I.1.

Source Patents Share (%) Source Patents Share (%)
Intensive margin response Intensive margin response
Incumbent inventors 44,484 83.3 Incumbent inventors 52,389 69.1
(5,864) 6.1) (7,365) (5.6)
Extensive margin response Extensive margin response
Entry from grey/dirty 1,823 34 Entry from grey/dirty 8,346 11.0
(1,267) (2.3) (1,559) 2.2)
Entry from non-energy 2,620 4.9 Entry from non-energy 4,361 5.8
(2,254) 4.1 (3,438) (4.3)
Entry to patenting 4,458 8.4 Entry to patenting 10,723 14.1
(2,669) “4.7) (3,539) 4.3)
Total 53,385 100.0 Total 75,819 100.0
(6,942) . (9,001)
(a) Single lag, balanced firm panel (b) Distributed lag, balanced firm panel
Source Patents Share (%) Source Patents Share (%)
Intensive margin response Intensive margin response
Incumbent inventors 44,484 78.3 Incumbent inventors 52,389 63.6
(5,864) (7.3) (7,365) (6.3)

Extensive margin response Extensive margin response
Entry from grey/dirty 1,180 2.1 Entry from grey/dirty 8,484 10.3
(1,632) (2.8) (1,936) 2.4)
Entry from non-energy 2,991 53 Entry from non-energy 4,975 6.0
(2,681) 4.5) (4,104) 4.7
Entry to patenting 8,174 144 Entry to patenting 16,522 20.1
(3,981) (6.2) (5,328) (5.6)
Total 56,828 100.0 Total 82,370 100.0
(7,752) . (10,160) .
(c) Single lag, unbalanced firm panel (d) Distributed lag, unbalanced firm panel

Table 1.2: Predicted Impacts of Carbon Pricing for Narrow Definition of Clean

Note: Predicted changes in the number of renewable and nuclear patent families due to a persistent 58% increase in
natural gas prices over the course of 10 years, relative to a base year of 2010. Each panel uses elasticities and other
inputs based on a different lag structure and firm dataset. Both the balanced and unbalanced firm panels range from 2000
to 2014. Standard errors are constructed using the delta method. The total change in patenting in Panel a represents an
increase of 37% relative to baseline patenting rates.
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1.3.3 Alternative Outcome: Clean Patenting

Source Patents Share (%) Source Patents Share (%)
Intensive margin response Intensive margin response
Incumbent inventors 45,405 87.1 Incumbent inventors 63,274 66.0
(5,082) 9.0 (7,073) 5.4)
Extensive margin response Extensive margin response
Entry from grey/dirty 452 0.9 Entry from grey/dirty 5,908 6.2
(900) (1.7) (1,009) (1.2)
Entry from non-energy -1,061 -2.0 Entry from non-energy 3,416 3.6
(2,264) 4.4) (3,172) (3.2)
Entry to patenting 7,351 14.1 Entry to patenting 23,270 24.3
(4,724) (7.9) (6,180) (5.3)
Total 52,146 100.0 Total 95,868 100.0
(7,354) . (9,965)

(a) Single lag, balanced firm panel (b) Distributed lag, balanced firm panel
Source Patents Share (%) Source Patents Share (%)
Intensive margin response Intensive margin response

Incumbent inventors 45,405 86.6 Incumbent inventors 63,274 64.0
(5,082) (10.9) (7,073) (6.2)
Extensive margin response Extensive margin response
Entry from grey/dirty -792 -1.5 Entry from grey/dirty 5,592 5.7
(1,195) (2.3) (1,338) (1.4)
Entry from non-energy -1,680 -3.2 Entry from non-energy 3,036 3.1
(2,569) (5.1) (3,564) (3.5)
Entry to patenting 9,493 18.1 Entry to patenting 26,896 27.2
(5,921) 9.5) (7,747) (6.1)
Total 52,427 100.0 Total 98,798 100.0
(8,301) . (11,159)
(c) Single lag, unbalanced firm panel (d) Distributed lag, unbalanced firm panel

Table 1.3: Predicted Impacts of Carbon Pricing for Broad Definition of Clean

Note: Predicted changes in the number of clean patent families due to a persistent 54% increase in natural gas prices
over the course of 10 years, relative to a base year of 2014. Each panel uses elasticities and other inputs based on
a different lag structure and firm dataset. Both the balanced and unbalanced firm panels range from 2000 to 2014.
Standard errors are constructed using the delta method.
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J Robustness to Using the Log of Exposure-Weighted Prices

In this section, we present the main results based on constructing prices as the natural logarithm
of inventors’ exposure-weighted prices, rather than the inventors’ exposure-weighted average of
the natural logarithm of prices as in the main text. This alternative approach provides an intuitive
interpretation of the weighted average of prices as the price that inventors are exposed to.!! For this
appendix, we calculate the price inventor i is exposed to in year 7 as:

i«cGDP,
InP; =1n Zsijzsﬂ—cpcz
i ~ Y. 5jcGDP,

Tables J.1, J.2, and J.3 summarize the results of using this approach to produce Tables 1, 2, and 3 in
the main text. Our results are robust to using this alternative functional form.

11. The paper focuses instead on results that use the exposure-weighted average of the log of prices because that
approach follows prior work in this area (e.g., Noailly and Smeets 2015; Aghion et al. 2016) and it is able to rely on
results from the methodological literature on shift-share research designs (e.g., Adao et al. 2019; Goldsmith-Pinkham
et al. 2020; Borusyak et al. 2022).
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Table J.1: Estimates of Incumbent Inventors’ Elasticity of Patenting with Respect to Natural Gas
Prices

Count of Clean Patent Families

Simple Count Citation-Weighted Coinventor-Weighted

(1 2 (3) 4) (5) (6)

Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.589 0.511 0.618 0.535 0.538 0.469

(0.038) (0.038) (0.049) (0.050) (0.048) (0.048)
Inventors 101,823 101,823 101,823 101,823 101,823 101,823
Observations 728,482 728,482 728,482 728,482 728,482 728,482
Pseudo-R2 0.291 0.292 0.373 0.375 0.265 0.266
Panel B: Instrumental variable estimates
Prices (log, t-1) 0.586 0.391 0.847 0.626 0.471 0.281

(0.061) (0.062) (0.085) (0.086) (0.075) (0.076)
Inventors 101,823 101,823 101,823 101,823 101,823 101,823
Observations 728,482 728,482 728,482 728,482 728,482 728,482
First-stage F-statistic 163 163 163 163 163 163
Panel C: Distributed lag estimates
Cumulative effect (3 lags) 0.672 0.583 0.622 0.544 0.677 0.578

(0.052) (0.053) (0.070) (0.071) (0.060) (0.062)
Inventors 80,787 80,787 80,787 80,787 80,787 80,787
Observations 572,174 572,174 572,174 572,174 572,174 572,174
Pseudo-R2 0.294 0.295 0.370 0.372 0.267 0.268
Year fixed effects X X X X X X
Inventor fixed effects X X X X X X
Tenure fixed effects X X X
Country-year covariates X X X X X X
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Table J.2: Estimates of the Elasticity of Inventor Entry with Respect to Natural Gas Prices

Number of Clean Inventors

New to Patenting From Grey/Dirty From Non-Energy

(D ) 3)
Panel A: Baseline Poisson estimates
Prices (log, t-1) 0.252 0.312 0.215
(0.129) (0.111) 0.122)
Firms 3,822 4,970 4,930
Observations 52,982 68,709 68,223
Pseudo-R2 0.671 0.592 0.625
Panel B: Distributed lag estimates
Cumulative effect (3 lags) 0.570 0.639 0.161
(0.172) (0.127) (0.176)
Firms 3,680 4,777 4,708
Observations 43,262 55,612 55,075
Pseudo-R2 0.680 0.595 0.631

Year fixed effects X X X
Firm fixed effects X X X
Country-year covariates X X X

Table J.3: Predicted Impacts of Carbon Pricing on Clean Patenting

Source Patents Share (%)
Intensive margin response
Incumbent inventors 49,656 71.1
(5,326) (5.0
Extensive margin response
Entry from grey/dirty 5,758 8.2
(1,144) (1.7)
Entry from non-energy 1,824 2.6
(1,994) (2.8)
Entry to patenting 12,584 18.0
(3,797) 4.7)
Total 69,821 100.0

(6,933)
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