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Abstract. In the competitive passenger air transport market, low-cost
airlines continue strengthening their position, contrasting sharply with
traditional carriers. This article delves into the unique operational strate-
gies of these airlines, focusing on their reliance on ancillary services.
Among these services, seat selection stands out as a crucial revenue en-
hancer. The study emphasizes the importance of low-cost carriers ensur-
ing the availability of specific seats for direct purchase, thereby avoid-
ing their allocation through automatic seat assignment algorithms, com-
monly activated for passengers who do not opt for specific seating. A
notable consumer behavior observed is the preference for passengers on
the same booking to be seated together. Low-cost airlines can capitalize
on this trend by encouraging seat purchases and using automated seat
assignments to strategically separate passengers traveling together un-
less they opt for paid seat selection. This work presents a novel approach
to the seat assignment problem based on a GRASP algorithm; this ap-
proach is beneficial due to its low requirement for extensive parameter
calibration, intuitive nature, and adaptability to different airline scenar-
ios. Using an actual flight database of a low-cost Colombian airline, we
have compared the airline’s rule-based heuristics, a network flow model,
and our metaheuristic approach; the results obtained are satisfactory in
terms of solution quality and computational cost. The proposed solution
offers a viable, cost-effective alternative to specialized software solutions,
aligning with the financial constraints typical of low-cost carriers while
effectively enhancing their seat assignment process to optimize revenue
generation.
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1 Introduction

The air transport industry has undergone a significant transformation with the
emergence and consolidation of low-cost carriers (LCCs). These airlines have
challenged the traditional model of established carriers, offering a reduced cost
structure and lower fares for passengers [19]. Unlike traditional airlines, which
focus on service differentiation, including multiple seating classes and additional
amenities, LCCs have adopted a more homogeneous approach, prioritizing effi-
ciency and simplicity in their business model [9/11].

A case in point is Allegiant Air, an LCC that reported a significant 115%
increase in net revenue in 2009, primarily attributed to the income generated
from unbundled flight products. As a global leader in converting ancillary services
into revenue, Allegiant Air saw these products constituting 30% of its total
income in 2009, demonstrating the potential for airlines to augment revenue
streams and profitability through ancillary services [8]. These services, notably
seat assignment, typically cost passengers between $5 and $25 [I1].

Intriguing developments in 2021 revealed airlines implementing novel strate-
gies to boost ancillary incomes. For instance, Eurowings allowed passengers to
pre-book middle seats, and Spirit Airlines averaged $7.00 per passenger for early
seat selection [8]. As noted, the vital auxiliary seat assignment service enables
airlines to generate additional revenue. However, optimizing seat assignment
sales is challenging, involving passenger preferences, capacity constraints, and
pricing considerations.

A study by [12] indicated that LCC passengers are more likely to purchase
auxiliary products and services than those flying with traditional airlines, with
these fees being the third most accepted auxiliary service. Offering unbundled
services, like seat reservations, can be an effective way for airlines to increase
revenue flows and meet the growing demand for auxiliary services among pas-
sengers.

The applications of operations research in the airline industry are diverse,
ranging from addressing overbooking issues [14] to online seat assignment [5],
floating allocation [15], simultaneous routing of aircraft and crew scheduling [6],
air traffic management through deterministic and stochastic optimization [IJ,
boarding strategies [4], and even addressing social distancing in aircraft seating.

Although various studies have explored revenue optimization strategies in
airlines [3U2U18], there is a lack of specific research on how Low-Cost Carriers
(LCCs) can optimize their automatic seat allocation algorithms to maximize
revenue without incurring significant costs. LCCs could significantly boost their
revenue by adjusting their seat assignment system. This adjustment would in-
volve strategically not assigning seats that historically have a high likelihood of
being purchased, thereby stimulating the sale of these seats. Additionally, by
not automatically allocating individuals from the same reservation together, the
airlines could encourage passengers to opt for paid seat selection to ensure they
are seated with their travel companions. In this work, we present a GRASP
algorithm for the seat assignment problem of a Colombian low-cost airline.
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The paper is structured as follows: Section 2 presents the definition and for-
mulation of the problem. Section 3 provides a detailed description of the proposed
metaheuristic. Section 4 conducts the metaheuristic’s performance analysis. Fi-
nally, Section 5 presents the conclusions and discusses potential future research.

2 Problem Description

The core challenge in this paper is the assignment of airplane seats, a critical
component in the operational strategy of low-cost carriers (LCCs). At the heart
of this problem lies the airline’s objective to optimize seat allocation during
check-in. The seat assignment process incorporates various factors, such as seat
preferences, pricing strategies, and passenger group dynamics [16].

The seat allocation process in low-cost airlines follows a continuous and se-
quential flow, dynamically adjusting as new bookings are received, with a signif-
icant surge in check-ins occurring just hours before flight closure. Upon receiving
a new reservation, it distinguishes between individual and group bookings. For
both, seats with special attributes should be avoided. In group bookings, ef-
forts are made to allocate seats apart from each other, typically at a distance
stipulated by the airline, encouraging the purchase of seat selection service by
offering more favorable locations for an additional fee. After each assignment,
seat availability on the plane’s seating map is updated to reflect the allocations
made.

Special seat attributes in low-cost airlines typically include seats with extra
legroom, window or aisle locations, proximity to the bathroom and/or aircraft
exit, and seats historically in high demand despite lacking the features above.
These attributes translate into additional fees when purchasing the seat selection
service. Consequently, the assignments may restrict options for future bookings
seeking to acquire this service.

Each seat assignment within a reservation can be mathematically formulated
as an optimization problem aiming to allocate seats with the lowest additional
cost while maximizing the distance between passengers belonging to the same
reservation [I7]. Logically, separation distance only applies when the bookings
have more than one person (let ¢ the number of seats in the reservation, ¢ > 1).

Without loss of generalization, let the current seating map be I, representing
only the available seats at that moment. We will use the networks-flow based
model from [I3] to represent the seats and the distance between them. For this
purpose, let G = (N, E) be the graph, where N is the set of nodes in the
network, which in this case is equivalent to the bookable seats on the plane
(N = {i},Vi € I). On the other hand, the edges of the network correspond to
relationships between seats within the same reservation (E = {(i,5)},Vi € I,j €
1li # j).

It is important to note that before the flight check-in begins, only part of the
problem information is available, and reservations are gradually revealed until
the flight closure. The additional fee of each seat is mapped to the parameter
¢;- The distances d;; between each pair of seats ¢ and j are known (measured as
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Manhattan distance). Additionally, a minimum separation distance J between
seats of the same reservation is established to encourage seat purchases. The
binary parameter a; takes value 1 if the seat ¢ € I has not been previously
assigned and 0 otherwise. Also, we will use the binary parameter 3;; to pre-
calculate whether a pair of seats ¢ and j meet the minimum separation distance.
The number of required seats (q) is revealed with each reservation. Given the
multi-criteria nature of the proposed problem, we will use parameters w; and
wsy to weigh the costs and distances, respectively.

Let x; be the binary variables representing whether seat ¢ is assigned to the
current reservation. We will use y;; as the set of binary variables to represent
whether a pair of seats ¢ and j are assigned in the reservation. This way, we can
formulate the problem as a binary linear program.

Objective Function:

min w, Z CiTi — Wo Z di;jyi; (1)

iEN (i.j)EE
Subject to:
Z Ti =4 (2)
iEN
(q— Dz — Z yij =0, VieN (3)
JlGH)EE
(@q—Dai— Y ;; =0, VieN (4)
il(i,5)€E

;i <a;y, Viel (5)

Yij < Bij, V(i,j) € B (6)
xz; €{0,1}, Vie N (7)
yi; € {0,1}, V(i,j) € E (8)

The objective function, Equation 7 minimizes the cost of the seat assign-
ment at check-in, selecting the cheapest seat available in the aircraft, and at the
same time, it maximizes the distance between each pair of seats selected (when
g > 1). Constraint guarantees that the number of seats selected equals the
number of people in the booking. Constraints and connect each node
selected and guarantee flow through the connecting arcs. Constraints ensure
that an occupied seat is not selected by the model. Constraint @ guarantees
that the pair of seats (i, j) € E are at the minimum distance 4.

Ultimately, Equations and represent the domain of the variables; in
this case, every variable is binary. This model is executed reservation by reserva-
tion, and its parameters must be recalculated each time. It must be clarified that
the model becomes infeasible when the aircraft is mainly occupied. Therefore,
the parameter § must be iteratively relaxed until a feasible solution is reached.
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An example of the graph that represents the solution to one iteration when
g = 3 can be seen in Figure[I] One can see that an undirected arc connects every
node in the solution and that there are ¢P2 = 6 arcs (counting twice each arc
since they are undirected). Each node in the solution represents a cost ¢;, and
each arc stands for a distance between each node d;;, thus representing the flow
which, in this case, we want to maximize. This solution would represent that
the seats B01, D03, and C06 have been selected for a booking whose number of
people g was 3.
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Fig. 1. Example of a solution graph with three seats in a 6-row airplane [13]

As usual, the solution gets significantly more complicated when the number
of nodes increases. All the nodes in the solution must be connected to fulfill
Equations (4) and (5) and represent the flow through the nodes chosen in the
same iteration. Moreover, the nodes that are not part of the solution are discon-
nected, and there is no flow through them. Thanks to the practitioner from the
company interested in this study, the parameters of the objective function and
minimum separation distance were set as follows: w; = 1.8, wo = 1.5, and 6 =7
(or wy; = 0.55, we = 0.45 if the decision-maker prefers them normalized).



6 Merizalde. A. et al.

The previously outlined model addresses the problem’s static component,
where seat allocation is resolved at each check-in instance for a specific book-
ing. However, this solution approach may be myopic as it focuses solely on the
aircraft’s current conditions, overlooking future demand and seat availability
projections. This short-term perspective could lead to lost seat sales opportuni-
ties for LCCs. Consequently, it is also crucial to tackle the problem’s dynamic
dimension, which significantly heightens the challenge and adds complexity to
the model.

3 Proposed Methodology

Seat assignment is not static but highly dynamic and complex. Each booking
introduces new variables—passenger preferences, group sizes, and current seat
occupancy—that can significantly alter the optimal seating arrangement. This
fluidity requires a methodology capable of responding to the immediate situation
but also adaptable enough to predict and prepare for future booking patterns.

This paper presents a novel approach based on the GRASP (Greedy Ran-
domized Adaptive Search Procedure) metaheuristic to optimize seat allocation
in low-cost airlines, incorporating airline check-ins’ dynamic and real-time na-
ture. The core innovation of this methodology lies in its consideration of ”ghost
groups,” (or more formal blocked seats introduced in [10])which represent po-
tential future bookings based on historical demand data. These blocked seats are
crucial for simulating promising future purchases, aligning with industry studies
indicating passengers are more inclined to buy seats as check-in deadlines ap-
proach. By integrating this dynamic element, our methodology aims to optimize
seat allocation for current and anticipated future passenger configurations.

The GRASP algorithm, initially proposed by Feo and Resende [7], is adapted
herein to address the seat allocation challenges within the booking process of a
Colombian low-cost airline, as delineated in Algorithm [Tl The GRASP operates
through a two-phase iterative cycle (line 1), comprising a constructive phase
(lines 3-14) and an improvement phase (lines 15-20). Notably, our work intro-
duces an initialization phase (line 2), wherein passenger reservation attributes
are mixed with the most promising seats. Specifically, this phase involves the
creation of ”ghost seats” based on historical demand data, the seating map of
the aircraft, and flight origin and destination information, thereby enhancing
predictive capabilities.

During the construction phase, a passenger in the reservation or a blocked
seat is selected randomly (line 4). If the selected passenger is a ghost seat (we will
use the terms ghost and blocked seats interchangeably), the algorithm assigns
the seat directly (lines 5-7). Otherwise (line 7), a candidate list of available seats
is created based on minimum distance constraints (line 8). Then, it forms a
restricted candidate list (RCL, line 9) using a degree of randomness («). The
algorithm selects a seat from the RCL using weighted random selection based
on seat costs (line 10). This process is repeated until all passengers and ghost
seats are chosen and assigned (line 3).
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A

lgorithm 1 Proposed GRASP

Parameters: Seats : map of seats of aircraft, (Head, T'ail) : flight origin and desti-
nation, History : historic purchased seats, ¢ : minimum distance between seats, w; :
weight cost, ws : weight distance, c: costs of each seat, Iterations : total GRASP iter-
ations, a : degree of randomness/greediness;

Input: List a : list of seats already assigned, List ¢ : passengers in the reservation.
Output: Map incumbent : seat assignment map.

—
=

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

: for i =1 to Iterations do
List GhostSeats < CreateGroup(Seats, (Head, Tail), History, q, a)
for j =1 to |q| + |GhostSeats| do
Passenger <SelectRandomlyWithoutReplacement(q U GhostSeats)
if Passenger is in GhostSeats then
Seat < Passenger
else
List CandidateSeats < CreateCandidateList(d; a, q)
List RCL +RestrictedCandidateList(CandidateSeats, a)
Seat +WeigthedRandomSelection(RCL, c)
end if
Map S +Assign(Passenger, Seat)
List a <+~ AddSeatAssigned(Seat)
end for
for each k in ¢ and each [ not in a do
Map S’ +SwapAssignment (S, k, 1)
if OF(S,w1,w2) > OF(S’, w1, w2) then
S« S
end if
end for
S, a < Unassign(GhostSeats)
if OF (incumbent, w1, w2) > OF(S, w1, w2) then
Map incumbent <+ S
end if
end for
return incumbent
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Furthermore, the proposed local search process assesses and potentially opti-
mizes assigned seats through swaps with unassigned seats (lines 15-16), factoring
in differential costs (lines 17-20). Once the constructed solution is improved, the
assigned ghost seats are released as they may be needed for the subsequent reser-
vation (line 21). Iterations continue until all reservations are allocated, with the

best objective function value and corresponding seat assignments retained (lines
22-25).

a. b. c. d.
passenger = p2 passenger = p1 passenger = AO1
5 Available Q Candidates Qcandidates QAssigned Qcandidates QAssigned
Ocupied wos os
p_= o1, p2,p3} RCL ={C05, C04, A03, CO3, D03, A02} RCL ={C05, D02, A02}
g;\zostSeats=(A01 co1, D01} Prob ={53%,18%, 7%, 9%, 8%, 5%} Prob = {83%, 9%, 8%}
i . Seat = C03 Seat = CO5 Seat = A01
bc A Dc A pc A Dc A
bifd fd | a8 @ \« 8 8\« EE 8\«
(so)fse] fug |o2 () f oz fg |o2 fg |o
(e o o o o
(s3] [s2] s = 04 s oa
(s [s2] o5 (s 05 05 (s2) 05
passenger = COL passenger = p3 passenger = D01
Ocandi Ohhssi O candi [ (O candidates [ assigned [Dassigned
a=0.5
RCL ={D02, A02}
Prob = (53%, 47%)
Seat=CO1 Seat = D02 Seat=D01
Dc A Dc A
° c A ¢ A $11 $11 $12 01
Efy s2 \ o (s sz \ o1 s fiz |\ o1
(g |oz g oz fse] (g oz (s9) 02
03 03 03 03
04 04 04 04
(s1) 05 (s2) os 05 05
e f g. h

Fig. 2. Example of the constructive phase

It is worth noting that each reservation and its passengers enter the GRASP
algorithm sequentially. The final assignment, not explicitly depicted in Algorithm
is determined deterministically, ensuring optimal passenger-seat assignments
with the lowest overall objective function, at least for the last reservation.

Figure[2]illustrates an example of the constructive process. For this example,
a minimum separation distance of two units (§ = 2) has been stipulated, and
the generated group of blocked seats coincides with the first row of the aircraft
(D01, CO01, and A01). Figure a illustrates an aircraft with five rows and three
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columns of seats, showing that seats D04, A04, D05, and A05 have already been
assigned in previous reservations. Currently, a reservation for three passengers
must be assigned.

The construction phase iteratively selects a random element among the pas-
sengers to be assigned and the generated ghost seats. Figure [2]b shows that the
first chosen element is passenger p2. The list of candidate seats consists of all
available seats since no passenger has been assigned yet, and there is no min-
imum distance to be met for now. A value of o = 0.5 has been stipulated, so
the restricted candidate list (RCL) halves the candidates; a seat from this list
will be randomly assigned to the passenger, using a probability that is inversely
proportional to the seat cost. In this case, seat C03 is chosen. Figure[2]¢ depicts
the next random element among the passengers to be assigned and the generated
blocked seats is passenger pl. It also shows that a passenger was already assigned
in the previous iteration (blue seat). The list of candidate seats consists only of
the available seats that meet a minimum distance from the assigned seats. The
creation of the RCL will again halve the seats, and one seat will be randomly
selected from this RCL based on the previously described probability. In this
case, seat CO05 is chosen.

In the third iteration of the construction, the example in Figure [2/d shows
that the ghost seat A01 is randomly selected; in this case, the algorithm suggests
blocking this seat directly. This same process occurs in the fourth iteration,
where, according to the example in Figure [2e, the ghost seat CO1 is selected.
For the fifth iteration, the example in Figure [2Jf shows that passenger p3 is
selected. Their list of candidates consists of three seats (D01, D02, and A02)
because they are the only ones that meet the distancing requirements and are
available (neither assigned nor blocked). The restricted candidate list will have
only two seats ([3x0.5]). One of the two seats is randomly selected; in this case,
passenger p3 is assigned to seat D02. In the last iteration, the remaining ghost
seat is chosen, as shown in Figure[2]g, and their seat is blocked directly. Finally,
Figure[2lh shows the constructed seat assignment map. The constructed solution
has a cost of 16 units and a distance of 8 units. Using the weights suggested by
the company, an objective function value of 16.8 is obtained.

4 Computational Analysis and Results

Our GRASP-based methodology was meticulously evaluated through a series of
computational experiments. These experiments were designed to rigorously com-
pare the efficacy of our GRASP metaheuristic algorithm with a sophisticated
network flow solution proposed in the literature [I3]. For this purpose, a compu-
tational environment was established, featuring an Intel®) Core™ i5-8365U CPU
@ 1.60Hz 1.90 GHz and 8 GB RAM, operating on a 64-bit x64-based processor.
This setup ensured a reliable and efficient testing ground for our algorithm.
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4.1 Case of study

The empirical foundation of our study was grounded in a comprehensive analysis
of historical data obtained from a collaborating airline. We meticulously identi-
fied the ten most sought-after seats across a spectrum of 345 flights, leveraging
this information to construct a realistic and relevant test scenario. This data was
instrumental in synthesizing blocked seats. Additionally, the airline provided es-
sential data regarding original seat pricing, a critical input for our algorithm’s
cost calculation component; the cost of each seat ¢ € I is determined by its base
price (provided by the airline) plus a relative importance factor rank; multiplied
by an additional cost b; Equation @D describes the seat cost.

Using historical data from the airline, we identified the top 10 most frequently
purchased seats. We found that each seat has been purchased at least once,
ensuring that the rank; for every seat is above 0. Moreover, our rank model
highlights seats 24B and 24A as the most commonly purchased seats. These
chairs are often desired because a photo usually captures the plane’s wings in
this aircraft type. Also, we identified the probability distribution of passengers
per reservation. An analysis of 345 flights revealed that single passengers are
most common in a booking, followed by groups of two or three. This finding
is significant for optimizing the algorithm’s efficiency for these group sizes and
influences the probability parameters for generating ghost seats.

c; = base; +rank; xb Viel 9)

Lastly, the airline provided the original costs for the base; variable in Equa-
tion @D, listed in Table |1} These costs, expressed in thousands of Colombian
pesos (COP), are differentiated for window (A), middle (B), and aisle (C) seats
across all rows in the aircraft.

4.2 Numerical Results

We replicated the 53 instances detailed in [13] to ensure a fair comparison. This
process was instrumental in directly contrasting our metaheuristic solution with
the exact methods previously employed. It is important to note that the exact
method we are comparing is used within a loop to mimic the dynamic behavior
of the check-in process.

Key to our analysis was the calibration of the Alpha parameter, which is vital
for the algorithm’s performance. We methodically tested values ranging from 0.1
to 1.0, increasing in 0.1 increments. This iterative process, repeated 20 times for
each Alpha value, enabled us to identify the most effective setting, ultimately
settling on 0.5 as the optimal standard for our specific case.

We analyze the computational time required for seat allocation across the
sequence of 66 reservations for the flight under study. Fig. [3] presents the results
for each reservation using the proposed metaheuristic. This graph indicates that
as the aircraft becomes more occupied, the feasibility space for solutions dimin-
ishes, resulting in the algorithm taking less time to find a solution. This trend can
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Row|A Window|B Middle|C Aisle||Row|A Window|B Middle|C Aisle
1 39 34 39 17 18 12 18
2 34 29 34 18 18 12 18
3 34 29 34 19 18 12 18
4 34 29 34 20 18 12 18
5 34 29 34 21 18 12 18
6 27 22 27 22 18 12 18
7 27 22 27 23 18 12 18
8 27 22 27 24 14 9 14
9 27 22 27 25 14 9 14
10 27 22 27 26 14 9 14
11 27 22 27 27 14 9 14
12 29 24 29 28 14 9 14
13 29 24 29 29 14 9 14
14 18 12 18 30 14 9 14
15 18 12 18 31 14 9 14
16 18 12 18 32 14 9 -

Table 1. Base Costs of Aircraft Seats

be attributed to reduced available seat options as the flight fills up, streamlining
the algorithm’s decision-making process.

An additional layer of analysis was introduced by contrasting the impact
of local search utilization. The results confirmed that local search contributes
positively to refining the solution for each check-in. This refinement led to con-
siderable minimizations in the objective function for some reservations without
a significant increase in execution time—remaining below a 1% increase for all
reservations executed.

Table 2 displays the results obtained by the current heuristic of the company
(Heuristic Rule), the flow model presented by [13] (NFF), and the proposed al-
gorithm (GRASP). The primary comparison indicator is the total value of the
cost of seats sold for each booking (Sol). At a secondary comparison level, the
objective function (O.F.) (used here to guide the search), along with the average
computation time per booking (Time). The model of [13] was constrained to a
maximum computation time of two minutes. For the proposed GRASP, the total
number of iterations (Iterations) parameter was set to 100 iterations. Both cases
comply with the system’s maximum waiting time. The bookings for each flight
were sequentially recreated to calculate the total value of the cost of seats sold for
each booking. Bookings where customers are willing to purchase seats are prede-
termined, using a 23.9% probability of purchase (stipulated by the practitioner).
Assignments are executed individually (for each of the three methods). For group
bookings, the separation between seats is checked; if this criterion is met, con-
tiguous seats are purchased and reassigned, maximizing customer comfort (more
expensive ones). The same procedure is followed for individual bookings without
checking the separation between seats. As illustrated in Table 2, the proposed
algorithm achieves or exceeds the sales obtained by the company’s heuristic in
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Flight ID |# Bookings|Heuristic Rule NFF [13] GRASP
Sol(COP)  |Sol(COP) O.F. Time(s) # Opt|Sol(COP) O.F. Time(s)
59241 86 770 962 190 <1l 86 962 235 11
59301 78 888 888 223 9 77 888 253 12
57461 s 851 903 242 <1 77 903 274 11
59601 75 902 951 160 <1l 75 902 225 10
59421 70 887 887 593 1 70 887 613 9
57281 65 834 885 178 10 64 885 185 30
55221 63 807 862 623 1 63 857 228 23
55241 63 818 864 262 15 62 864 265 22
55421 62 752 816 204 2 62 816 208 21
55101 61 771 960 365 20 60 960 375 15
56221 60 778 866 324 30 59 866 326 17
59321 59 874 874 251 3 59 874 268 30
57301 59 876 903 146 40 57 903 195 33
59561 57 816 833 37 45 56 833 40 33
59281 57 753 875 160 48 54 875 208 37
56201 56 712 781 172 10 56 773 203 40
55461 56 680 770 175 10 56 770 221 45
56121 55 675 747 268 50 54 680 348 48
59221 54 709 743 306 12 54 743 310 49
59541 54 620 735 70 51 53 735 79 51
59481 52 752 756 132 53 51 756 144 50
59521 48 694 694 317 54 47 694 286 60
57481 46 660 713 117 30 46 696 121 64
55301 46 621 658 477 70 43 658 505 67
55201 45 623 627 376 68 43 623 402 69
59341 44 544 642 241 45 44 575 338 66
56261 43 597 597 127 80 41 597 114 65
55281 43 506 654 794 90 40 614 952 70
59401 42 560 560 196 95 40 560 198 72
56281 39 462 477 200 98 38 467 213 75
57261 37 432 454 332 60 37 454 336 77
55361 36 410 464 317 101 35 464 365 77
57341 34 449 459 123 103 33 449 139 80
56241 33 414 446 343 105 31 446 401 87
57441 32 416 440 146 104 29 440 151 76
58941 32 395 479 130 87 32 479 164 79
55321 31 428 428 366 80 31 428 385 89
55161 30 360 404 461 110 28 455 438 90
57321 30 345 366 417 109 29 366 403 99
56101 30 332 389 93 108 29 389 97 98
55181 27 363 363 495 111 25 363 444 95
55261 26 339 385 187 89 26 385 212 98
55381 26 368 385 473 89 26 385 478 102
58921 24 284 323 160 97 24 323 176 103
57401 22 244 251 105 90 22 251 113 104
59501 20 231 262 121 96 20 277 122 106
59581 15 304 304 23 100 15 304 30 107
83241 9 245 247 27 120 0 253 31 108
83361 9 150 180 16 120 0 232 19 109
83261 8 174 210 12 120 0 265 17 106
83381 8 190 227 15 120 0 227 17 102
TOTAL 28665 30949 30851
AVERAGE 241 62 252 63
GAP 8.0% 7.6%

Table 2. Results for the 53 instances from [13]
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all instances, with a 7.6% improvement in sales. The difference in sales compared
to the model of [I3] is less than 1%. In several bookings, the model of [13] fails
to reach optimality (# Opt), and its average computation time is 62 seconds,
similar to the times obtained by the GRASP. This comparison underscores the
effectiveness of the metaheuristic approach in a real-world application scenario,
where computational efficiency and practicality are critical. The metaheuristic’s
performance in Python, a widely-used programming language, demonstrates its
accessibility and ease of integration into existing systems, making it a valuable
tool for airlines, particularly those with limited resources for specialized com-
mercial software solutions.

354

30 4

254

201

Time (seconds)

,_.
G

0 10 20 30 40 50 60 70
Reservation number

Fig. 3. Metaheuristic’s Execution time per Booking

To complement the analysis of computation times, as demonstrated in Fig.
there is a direct correlation between the computational time required to de-
termine a check-in solution and the number of passengers and blocked seats that
the algorithm must assign in each iteration. This relationship arises because,
with more actors involved in an iteration, there is a correspondingly larger set
of potential solutions. This increase in volume leads to more combinations of
available seats and actors, as well as a more significant number of distances and
costs that need to be calculated.

This phenomenon can be attributed to the inherent complexity of the seat
assignment process, which escalates as the number of variables —in this case,
passengers and blocked seats— increases. Each additional actor introduces new
constraints and possibilities, making the algorithm’s task more computation-
ally intensive. This complexity is a critical factor in the design and efficiency
of seat assignment algorithms, especially in scenarios where time-sensitive de-
cisions are paramount, such as during flight check-in. The results highlight the
importance of optimizing these algorithms for accuracy in seat allocation and
efficiency in computational time, ensuring a smooth and swift check-in experi-
ence for passengers. In comparing the objective function results per reservation,
our metaheuristic approach delivered solutions closely mirroring those achieved
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by the exact method. This similarity in outcomes suggests that our approach is
viable and competitive in terms of computational time and objective function
performance.

5 Conclusion

Based on the comprehensive study and analysis presented, the developed meta-
heuristic with blocked/ghost seats provides a robust and innovative solution to
the seating allocation challenge faced by low-cost carriers. This technique bal-
ances operational efficiency with strategic foresight, addressing immediate seat
assignment during check-ins and anticipating future booking behaviors.

The metaheuristic’s adaptability to dynamic booking patterns and its cost-
effectiveness makes it a valuable tool for low-cost airlines looking to maximize
revenue without extensive investment in sophisticated commercial solvers. For
the first time, the concise and clear structure of GRASP has demonstrated that
the strategic seat allocation aligns with the business objectives of low-cost air-
lines.

Future research should focus on the self-calibration of GRASP parameters,
as there is a direct relationship between the Alpha value, the number of ghost
seats, and the quantity of seat selection services sold.

Additionally, the proposed algorithm could be adapted to other less mature
low-cost airlines, where seat selection can contribute to their revenue. However,
due to low occupancy and the need to maintain a longitudinal balance of weight
in the aircraft, seat selection becomes a more complex variant of the problem.
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