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Abstract

We study optimal designs for clinical trials when the value of the response and its variance
depend on treatment and covariates are included in the response model. Such designs are gen-
eralizations of Neyman allocation, commonly used in personalized medicine when external
factors may have differing effects on the response depending on subgroups of patients. We
develop theoretical results for D-, A-, E- and Da-optimal designs and construct Semidefinite
Programming (SDP) formulations that support their numerical computation. D-, A-, and E-
optimal designs are appropriate for efficient estimation of distinct properties of the parameters
of the response models. Our formulation allows finding optimal allocation schemes for a gen-
eral number of treatments and of covariates. Finally, we study frequentist sequential clinical
trial allocation within contexts where response parameters and their respective variances re-
main unknown. We illustrate, with a simulated example and with a redesigned clinical trial
on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived
under the assumption of known variances, converge asymptotically to allocations obtained
through the sequential scheme. Procedures to use static and sequential allocation are proposed.

KEYWORDS
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1. Motivation

In the customary model for clinical trials, for example Rosenberger and Lachin (2016);
Rosenberger and Sverdlov (2008), the expected response to treatment includes a linear model
to allow for the effect of prognostic factors, or covariates, and an additive constant for the
effect of the treatment. There is a single model for all patients. With normal response, with
which we are chiefly concerned, the errors are usually assumed to be independent and nor-
mally distributed, with constant variance. The test with the highest power for the difference
of two treatments then has equal allocation to the treatments.

The simple linear model does not hold for the forms of personalized medicine with which
we are concerned. One departure is due to patient-treatment interaction. Yang et al. (2024)
discuss a sequential Phase III trial to compare Anastrozole versus Tamoxifen for cancer treat-
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ment in postmenopausal women. The patients were randomly assigned (1:1) to receive either
oral Tamoxifen or Anastrozole per day for 5 years. Margolese et al. (2016) reported the pri-
mary results from this study. A total of 3104 patients were enrolled; Anastrozole was found
superior to Tamoxifen in the younger than 60-year-old group, but in the 60 and older group
Tamoxifen was the preferred treatment. Different models of response are thus required for the
younger and older patients.

A second set of examples for Phase III trials is mentioned by Hyun et al. (2016). They
recall the observed heterogeneity of the results of patients’ response to treatments in a stroke
prevention trial (The Stroke Prevention in Atrial Fibrillation Investigators, 1990); a differ-
ence between the Aspirin treatment group and the placebo group in the number of strokes
was found in patients receiving anticoagulation, but not among patients without anticoagu-
lation therapy. If this patient-treatment interaction had not been noticed, Aspirin would have
been recommended for the general population. Here again a different response-treatment re-
lationship is required for the two groups. There may then be sets of covariates for which one
treatment is to be preferred and other sets of covariates for which another treatment is pre-
ferred. When the covariates of the patient are known, the case in sequential clinical trials, it
is then possible to choose the best treatment for that particular patient. Even if these effects
are strong, there may also be regions in which there is little to choose between treatments and
some other criterion, such as cost, will be the major consideration.

At present, numerous trials incorporating personalized medicine practices are being uti-
lized for a variety of purposes, including optimizing the selection of the most effective proce-
dures to implement (Burnett et al., 2020).

It is reasonable to expect that not only will the response relationship vary between sub-
groups, but that there may also be a difference in the variance of the response between sub-
groups. In the major simulations in their papers, both Yang ef al. (2024) and Hyun et al.
(2016) consider logistic responses, so that there is no independent variance parameter to be
varied between subgroups. However, both write their regression models for patient-treatment
interaction with a variance independent of subgroup. In our paper, both the model for the
response and the variance of the observations may depend upon treatment allocation.

Throughout we are concerned with designs for sequential clinical trials. To this end, we
use the methods of optimal experimental design to obtain procedures providing efficient pa-
rameter estimates and so powerful tests of hypotheses. In order to understand the properties
of these designs, we start by exploring the properties of non-sequential designs for treatment-
interaction models. For example, even if only the variances differ in the two (or more) treat-
ment groups, generalizations of the results of Neyman (1934) to regression show that, in
general, the treatment allocation will be skewed, rather than 1:1.

There is an appreciable computational load, both in finding the optimal designs and in
simulating the clinical trial. We provide details of our algorithms in the hope that they will
be of use in the development and evaluation of designs for this problem. Furthermore, our
findings demonstrate that non-sequential optimal designs, obtained for scenarios with known
response variances, provide the limits for stable allocation ratios obtained from sequential
designs.

This paper contains three elements of novelty: (i) the development of theoretical results
for D-, A-, E- and D -optimal designs for Neyman allocation when covariates are considered
and the treatments have unequal (known) variances of the response; (ii) the development
of Semidefinite Programming (SDP) formulations to generalize numerical computation of
designs to larger trials (both more treatments and more covariates) for scenarios where the
variances are known; and (iii) the development of sequential designs to simultaneously (and
optimally) allocate the patients and update the model response parameters and variances.

The paper is organized as follows. Section 2 provides the background and the notation



used for problem formulation. Section 3 presents the theoretical tools developed to help in the
computation of optimal designs for allocation. Section 4 presents SDP-based formulations to
handle the problem systematically and Section 5 exhibits the properties of sequential designs.
While Sections 3 and 4 delve into the static allocation of individuals to competing treatments
— defined as the determination of the proportion of individuals allocated to each model prior to
the trial’s initiation — Section 5 addresses the sequential optimal allocation problem utilizing
information criteria. The findings from the preceding sections serve as asymptotic results
for those presented in Section 5 and can offer valuable insights into delineating sequential
optimal allocation schemes, particularly when error variances are either available or estimable
before the trial is initiated. In Section 6, we present the results from the application of the
developed tools for both static and sequential allocation to a problem concerning Parkinson’s
disease patients, where they are assigned to two alternative treatments. Although the focus
in our paper is on optimum experimental designs, we conclude with a brief discussion of the
application of our results to sequential clinical trials.

2. Background and Notation

2.1. Generalized Neyman Allocation

Neyman allocation (Neyman, 1934) allocates patients with a weight proportional to the stan-
dard deviation of the observations receiving each treatment. There are, however, no covariates.
Atkinson (2015) presents optimum experimental designs for first-order regression models,
that is, models with covariates but no interaction or higher-order terms, when the responses
to the two treatments have different variances. Wang and Ai (2016) extended these results
to an arbitrary number of treatments and a general regression model. Although these papers
provide designs when response variance depends on treatment, the model for the expected
response is the same for all treatments. We find designs when both the expected response and
its variance depend upon treatment.

2.2. Purposes of Optimal Experimental Design

Here we describe some advantages of optimal experimental design and introduce some of
the procedures. Berger and Wong (2009) give an introduction to optimal design in social and
biomedical research. A survey of the use of optimal experimental in clinical trials is Sverdlov
et al. (2020).

Optimal experimental designs are model-based. They provide a structured data collection
plan aimed at maximizing the amount of information gathered, the way in which the experi-
ment is designed depending upon the information sought. This paper focuses specifically on
estimation of the parameters of the model. Our aim is to find optimal experimental designs to
minimize the variance of the estimates of the model parameters in specific models for clin-
ical trials. These models establish a relationship between the response and the covariates as
elucidated by Kiefer (1961). Various measures can be employed to minimize the confidence
ellipsoid for the parameters, including: (i) D-optimality criterion, corresponding to the ellip-
soid’s volume; (ii) A-optimality, corresponding to the sum of diagonals of the ellipsoid in
each dimension; (iii) E-optimality, corresponding to the minimum of the diagonals of the el-
lipsoid; and (iv) Da-optimality, representing the volume concerning a specific combination
of parameters denoted by matrix A. Each of these criteria is formulated as a convex (con-
cave) function of the Fisher Information Matrix (FIM), the inverse of which is a lower bound
for the parametric covariance matrix (Cramér, 1999; Rao, 1945). Thus, optimal experimen-



tal designs emerge through the minimization of a convex function of the inverse of the FIM.
The first three criteria (i.e., (i)-(iii)) belong to Kiefer’s class of optimality criteria, denoted
by @5, where § € (—o0,0) represents the coefficient in the Kiefer general class of criteria.
A-optimality corresponds to § = —1 and is formulated as the minimization of the trace of
the inverse of the FIM, E-optimality to § — —oco and corresponds to the maximization of the
minimum of the eigenvalues of the FIM, and D-optimality to 6 — 0 where it corresponds to
the maximization of the determinant of the FIM.

2.3. Fundamentals of Optimal Experimental Design

This Section establishes the nomenclature and the fundamental background used in the sub-
sequent sections.

In our notation bold face lowercase letters represent vectors, bold face capital letters con-
tinuous domains, blackboard bold capital letters discrete domains and capital letters are for
matrices. Finite sets containing ¢ elements are compactly represented by [¢] = {1,--- ,¢}.
The transpose operation of a matrix or vector is represented by “T”. The cardinality of a vector
is represented by card(e) and the trace of a matrix by tr(e).

Let k € [K] represent categorical covariates in the linear response model, i € [I] rep-
resent treatments, and j € [.J] represent the levels each factor can have in the experiment.
Here, K, I, and J denote the number of categorical covariates, treatments, and factor lev-
els in the response model, respectively, while &, ¢, and j are counters used for covariates,
treatments, and levels. In this simplified configuration, we consider ategorical covariates with
only two levels: one designated as —1 (lower) and the other as +1 (upper). According to the
bound on the determinant of a Hadamard matrix (Hadamard, 1893; Brenner, 1972), extreme
observations are the most informative for the D-optimality criterion in first-order models.

We stress that these limited points of support of the designs reduce the computational
burden in demonstrating the properties of our designs in the non-sequential setting. In the
application to the construction of sequential clinical trials in §5, the values of the covariates
are sampled from continuous distributions.

When i € {1, 2} (two treatments) and we have k covariates, the model is as follows

mx,0)=a1+priz1+Prexe+ -+ Prgxk, var(m)=o
n2(x,0) = as + Pa1 w1+ Po2 o+ -+ -+ Pog Xk, var(ne) =o

where 7,(x, ) represents the response when the individuals are submitted to treatment 7,
x = (z1, 22, -+ ,xK) is the vector of covariates, X the design space, € the set of parameters
to be estimated, which contains all o’s and 5’s, and @ C R™¢ the domain of the parameters to
be estimated, ng being the number of parameters involved in all treatment models. Here, each
model in (1) is associated with a treatment ¢, featuring unique parameters and observational
error. Practically, a total of 2 (K + 1) parameters needs to be estimated, although the number
is reduced if, for some treatments k, 51 = 2. In general, all i € [I] treatments have a
normally distributed error with expectation 0 and standard deviation o, this being distinct for
each treatment.

The allocation is optimized to maximize the information extracted from the patients’ re-
sponses while considering the predictions from the model. Consequently, our objective is to
determine the allocation of individuals to treatment 1, enabling the estimation of parameters
(o1, B, P, K)T, and to allocate individuals to treatment 2 for estimation of the param-
eters of the second treatment model. In the context of approximate optimal designs, such as
we have here, w represents the fraction of individuals allocated to treatment 1, while 1 — w



denotes the fraction assigned to treatment 2. This yields the design matrix:

w 1—w
(1Y)
Here, the upper row of ¢ signifies the fraction allocated to each treatment, while the lower
row denotes the treatment counter itself. In instances where the number of individuals is small
enough to necessitate an exact design, rounding procedures can be employed to determine the
allocation, as outlined in Pukelsheim and Rieder (1992).

Let 7 = 03/0? and, without loss of generality (wlog), let o3 = 1. For the sake of sim-
plicity, we consider that the fraction of individuals allocated to group 1 is w and the fraction
allocated to group 2 is 1 — w. For a single model when allocation is to either +1 or —1 the
Fisher Information Matrix (FIM) for the experimental design ¢ is the (K + 1) x (K + 1)
diagonal matrix. Here o2 is a multiplicative constant, which does not affect the properties of
the design. For two treatments the FIM is the 2 - (K + 1) x 2 - (K + 1) diagonal matrix.
Consequently,

w0 0 0
0 1w 0 0

ME=1: + ...+ | (2)
0 0 w0
0 0 0 1=

T

It is clear that, now, the value of 7 will , in general, affect the design.

3. Theoretical results

Here, we present some new theoretical results for Neyman allocation developed with the help
of symbolic algebraic tools. The goal is computing continuous experimental designs (i.e., the
vector of weights) to minimize the uncertainty of all estimates of the parameters & and 8 of
interest in both models (1).

First, we consider model (1) and develop theorems for optimal allocation to treatments.
For demonstration purposes we assume models including two treatments (I = 2), two co-
variates (K = 2) and factors with two levels (J = 2), i.e. X = ®;-]:1{—1, +1} is a finite
set of points that result from the combination of levels allowed for each covariate; here,
z; € {—1,+1}, i € [I]. We note that when z; is continuous in [—1,+1] and the models
are linear with respect to the parameters, the maximum information is obtained by locating
the experiments at the bounds of the domain. Thus, by considering only the extremes of the
design space, we are maximizing the information obtained from each group through choice
over X.

The goal is to construct continuous optimal designs where all the parameters of interest
are to be estimated and the error variances of the responses to the various treatments are pre-
viously known. The premise that error variances are known, though uncommon, has been
explored in several studies (Atkinson, 2015; Bai et al., 2002; Rosenberger, 1993; Hu et al.,
2006), indicating its relevance in certain contexts. In our case, this assumption is adopted due
to our focus on deriving asymptotic results for Neyman allocation, particularly when covari-
ates are considered. This analysis is pivotal for validating the sequential designs discussed in
Section 5, where we no longer need to make this assumption, the values being estimated from



the data.

The total number of individuals to be allocated to treatments is N — +o00, i.e., we focus on
infinite sized experiments. Thus, we let w; be the fraction of individuals allocated to treatment
1, so that the number of individuals allocated is n; = N x w;. In this Section, in which we
only consider two treatments, we write w; as w and wsy as 1 — w. Further, w* is the optimal
allocation. Equivalent exact designs can be obtained from continuous designs assuming a
given number N of individuals in the design, using a rounding procedure (Pukelsheim and
Rieder, 1992) or Mixed Integer Nonlinear Programming formulations (Duarte et al., 2020).
We start with the most used information-theoretical criteria (D-, A- and E-: see Kiefer (1959);
Atkinson et al. (2007)) which measure different aspects of the efficiency of the allocation
schemes for estimation of the parameters of the response models for each group. E-optimal
designs can be hard to implement in practice. However, they correspond to § — +o0 in
Kiefer’s generalized criterion; we consider them since they provide a bound in the allocation
schemes based on the Neyman rule. In Theorems 1-4 we develop theoretical results for the
optimal allocations.

Theorem 1. The D-optimal experimental design for model (1) has weights w* = 1/2 inde-
pendently of the values of T and k.

Proof. Let det[M(¢)] = wB*t (1 — w)BE+/7E+ L and Ve det[M (€)] = (1 — 2 w) (K +
1) w® (1 — w)®X/7%. The first order condition for the optimality of the design is
that Ve det[M ()] = 0, which leads to w = 0.5. The second order condition is that
x V7 det[M(£¥)] T < 0, Vz € R and £ is the design that satisfies the first order con-

dition. By substitution, V7 det[M(¢*)] = —(K + 1)/(2**~' 75+1) which validates the
second order optimality condition. O

Theorem 2. The A-optimal experimental design for model (1) allocates w* = 1/(1 + /7).

Proof. Lettr[M~1(¢)] = (K +1)/w+ (K +1) 7/(1 —w) and V¢ tr[M ()] = 7 (K +
1)/(1—w)?— (K +1)/w?. The first order condition for optimality leads to w = 1/(1+ /7).
Further, VZ tr[M~(£*)] = 2 (K + 1) (1 + /7)*/+/T which validates the second order

optimality condition z Vg tr[M ()] 2T >0, Vo € R, O

With w} = 1/(1 + /7) and, therefore w} = /7/(1 + \/7), the A-optimal allocation is pro-
portional to the standard deviation of the responses to the two treatments, that is the original
Neyman allocation.

Theorem 3. The E-optimal experimental design for model (1) allocates w* = 1/(1 + 7).

Proof. Let min Aoy [M ~1(€)] = min{1/w, 7/(1 — w)} which minimization requires that
1/w = 7/(1 — w). Consequently, the solution is obtained for w* = 1/(1 + 7). O

These results depend on all parameters in the two models having different values. Atkinson
(2015) gives results when some of the parameters in the two response models are the same.
Here, we illustrate the point when, in models (1), a; = a. The D-optimal design leads to

w*_37—7+\/97'2—27'+9
B 10 (r — 1) '

For the E-optimal design w* = 1/(1 4 7). Finally, the A-optimal design problem leads to



an algebraic expression that requires numerical solution for each 7:

27 B 2 B T(r—1) _0
(w*—1)2  (w*)? (tw*—w*+1)2

Now, we consider estimation of (some of) the differences ai; —avp and 31, — 32, in (1). For
demonstration we consider that all the £+ 1 parameter differences are to be estimated and find
the optimal experimental design for such a purpose. This would be appropriate when interest
is in whether there is a difference between patients’ responses to treatments 1 and 2 that is
a function of the combination of covariate values in X. Da-optimal designs (Silvey, 1980)
allow efficient determination of linear combinations, such as differences, of the parameters.

Theorem 4. The D4-optimal experimental design for model (1) when

1 -10 0 --- 0 O
A e RAE+)xm . AT _ 6o 1 -1.--020
o o o o --- 1 -1

and 1 < m < K + 1 allocates w* = 1/(1 + /7).

Proof. Let the objective be ming det[AT M ~1(¢) A]. Matrix A encapsulates the linear re-
lationships between the parameters to be estimated, with m representing the total number
of such relations. Considering the 2 - (K + 1) x m size matrix A, det[AT M~1(¢) A] =
[1/w 4+ 7/(1 — w)]™. Then, the first-order optimality condition leads to w = 1/(1 + /7).
The computation of VZ det[AT M~'(¢*) A] leads to 2m (14 +/7)*"*2//T which validates
the second order optimality condition. O

Suitable modification of the matrix of contrasts A allows the generalization to problems
where only a subset of parameter differences are to be tested. Together, these theorems (1-4)
allow the construction of tables presenting w* as a function of 7 = o3 /o7.

4. Results obtained with Semidefinite Programming formulations

Here, we present SDP formulations to automate the computation of continuous optimal de-
signs for Neyman allocation in cases where more challenging setups are considered.

For demonstration we consider the model (1) including K covariates, i.e. x =
(x1,x2, - ,zK). The levels of the covariates are also {—1, 41}, and the variances of each
group are o2 and o3, respectively. Here, we consider two groups (i.e., I = 2) but the for-
mulations can be easily extended to more than two treatments and more covariate levels. The
goal is estimating all the 2 - (K + 1) parameters of both models as in §3. The formulations
for D-, A-, E-optimality criteria are currently state of the art and appear in Appendix A. In all
formulations, the optimum reached upon convergence is denoted as “Opt” and serves as the
reference for comparison. By “optimum at convergence”, we specifically refer to the value
attained by the objective function following the resolution of the SDP problem under con-
sideration. The formulation can be adapted to handle a different number of factors, factors
having a different number of levels and ranges and even continuous factors, although these
have to be discretized, see Duarte ef al. (2016).

The Da-optimality criterion can also be formalized as an SDP problem. Let the setup



be the same as in §3 before Theorem 4. To derive the SDP formulation for D4-optimality
we use the equivalence of the linear matrix inequalities [ATM ~1(¢)A]~! — C = 0,, and
M(§) — ACAT = 0q.(x41) where C' is a semidefinite positive matrix of size m X m,
see Harman and Sagnol (2015, Lema 2.1). Then, we consider the equivalence relation
ming det[ATM ~1(£)A] = maxe det{[ATM ~1(£)A]~'} to express the problem as a max-
imization program since the operator det(e) of a semidefinite positive matrix is a concave
function (Ben-Tal and Nemirovski, 2001). That is,

Opt = glca% t (3a)
st. M€ —ACAT = 0y (x41) (3b)
c BT
t< B (3d)
=1
I
Z w; =1 (3e)
=1
0<w; <1, iel[ll. (3

Equation (3) represents the Semidefinite Programming (SDP) problem aimed at determining
the Da-optimal designs for each value of 7. Here, the matrix B represents an upper triangular
matrix to be determined, C is a positive semidefinite matrix to be determined, and ¢ corre-
sponds to the hypograph (maximum value) of the convex set defined by the concave function
that we seek to maximize.

Table 1 presents D-, A- and E- optimal designs obtained for K = {2,3}, I = 2 and
zp € {—1,+1}, k € [K] as the value of 7 varies. The designs obtained are represented by
w1, the relative fraction of individuals to be allocated to the first group, and the optimum of
the objective function at convergence (Opt). The fraction of subjects allocated to group 2 is
given by we = 1 —w;. In general, the fraction of observations in the optimal design allocated,
at the points of the 2% factorial, to treatment i when there are K covariates is w; /2. Because
the optimal allocations (i.e., wj) for both values of K are equal and only differences on the
optima are noted, we use Table 1 to compactly present all results where the optima obtained
for both values of K are in adjacent columns. The results indicate that the optimal values
for D- and E-optimal designs decrease as 7 and K increase. In contrast, for the A-optimality
criterion, they increase with both 7 and K.

In the table, the optimal designs, although not the values of the optima, are independent of
K. The D-optimal designs are also independent of 7 = o2 /0. This result is consistent with
the theorems in §3.

The Da-optimal designs obtained via SDP for K = 2 by solving (3) are in Table 2. To-
gether with the results in Tables 1-3 they verify Theorems 1-4.

Now we consider the model with three groups (I = 3) and two covariates (K = 2) when
each covariate has two levels, z, € {—1,+1}, k € [K], i.e.

m(x,0) = a1+ B11x1 + Pro w2, var(nm) = oF (4a)
n2(x,0) = g + Bo1 1 + Pao v, var(ne) = o3 (4b)
n3(x,0) = az + B31 71 + B30 T2, var(nz) = o3. (4c)



Table 1. D-, A- and E-optimal designs for model (1) (including two treatments, two covariates, ) € {—1,+1}, k € [K]

and wg = 1 — wq).

D-opt. design

A-opt. design

E-opt. design

Opt Opt Opt

o? 03 wy K=2 K=3 wy K=2 K=3 w K=2 K=3
1.0000 02000 0.5000  0.2795  0.1398 0.6910  25.1331  67.0217 0.8333  0.2083  0.1042
1.0000  0.4000 0.5000  0.1976  0.0988 0.6126  31.9789 852722 07143  0.1786  0.0893
1.0000  0.6000 0.5000  0.1614  0.0807 0.5635  37.7903  100.7742 0.6250  0.1562  0.0781
1.0000  0.8000 0.5000  0.1398  0.0699 0.5279  43.0663  114.8433 0.5556  0.1389  0.0694
1.0000  1.0000 0.5000  0.1250  0.0625 0.5000  48.0000  128.0000 0.5000  0.1250  0.0625
1.0000  1.2500 0.5000  0.1118  0.0559 04721  53.8328  143.5542 0.4444  0.1111  0.0556
1.0000  1.6667 0.5000  0.0968  0.0484 0.4365  62.9839  167.9580 0.3750  0.0937  0.0469
1.0000  2.5000 0.5000  0.0791  0.0395 0.3874  79.9473  213.1929 0.2857  0.0714  0.0357
1.0000  5.0000 0.5000  0.0559  0.0280 0.3090  125.6656  335.1084 0.1667  0.0417  0.0208

Table 2. Dx-optimal designs for model (1) (including two treatments, two covariates and z, € {—1,+1}, k € [K] and
wo =1 —wy).

cr% o% w1 Opt
1.0000  0.2000 0.6910  0.4775
1.0000  0.4000 0.6126  0.3752
1.0000  0.6000 0.5635 03175
1.0000  0.8000 0.5279  0.2786
1.0000  1.0000 0.5000  0.2500
1.0000  1.2500 04721  0.2229
1.0000  1.6667 0.4365  0.1905
1.0000  2.5000 0.3874  0.1501
1.0000  5.0000 0.3090  0.0955

For simplicity we assumed o7 = 1.0 and varied 03 and o2; the latter was set to 2 - 03, i.e.
71 = 03 /0% and 75 = 2 x 71. The optimal designs are in Table 3.

Table 3. D-, A- and E-optimal designs for response model (4) (including three treatments, two covariates and xj €
{-1,+1}, ke [K],ws =1—w —wz,ag =2 O‘% andag =2 X O’%).

D-opt. design

A-opt. design

E-opt. design

o o5 w1 wo Opt w1 wo Opt w1 wa Opt
1.0000  0.2000 0.3333  0.3333  0.1934 0.4808  0.2150 51.9003 0.6250  0.1250  0.1562
1.0000  0.4000 0.3333  0.3333  0.1218 0.3958  0.2503 76.6216 0.4545 0.1818 0.1136
1.0000  0.6000 0.3333  0.3333  0.0930 0.3484  0.2699 98.8457 0.3571 0.2143  0.0893
1.0000  0.8000 0.3333  0.3333  0.0768 0.3165 0.2831 119.7770 0.2941  0.2353  0.0735
1.0000  1.0000 0.3333  0.3333  0.0661 0.2929  0.2929  139.8823 0.2500  0.2500  0.0625
1.0000  1.2500 0.3333  0.3333  0.0570 0.2703  0.3022  164.2066 0.2105 0.2632  0.0526
1.0000  1.6667 0.3333  0.3333  0.0471 0.2429  0.3136  203.3702 0.1667  0.2778  0.0417
1.0000  2.5000 0.3333  0.3333  0.0359 0.2076  0.3282  278.4658 0.1176  0.2941  0.0294
1.0000  5.0000 0.3333  0.3333  0.0226 0.1563  0.3495  491.2659 0.0625 0.3125 0.0156

To utilize the results presented in Tables 1-3 effectively in practical scenarios, researchers
should follow these steps:

(i) Use given values of 0% and o3 to compute 7;
(i) based on the number of covariates in the response model (K), select the appropriate
Table of results;

(iii) set the optimality criterion of interest;
(iv) refer to the chosen Table from step (ii) and find the corresponding value of w for the
chosen optimality criterion and the computed value of 7 from step (i);



(v) allocate [N - w; ] individuals to each treatment i.

For example, if 7 = 0.4 (as indicated in the second row of Table 1), K = 2, and the
research objective is the implementation of A-optimal designs, then w = 0.6126 (that is,
allocating 61.26 % of individuals to the first treatment and the remaining 38.74 % to the sec-
ond). These explicit designs can be used for the comparison of power. If there is uncertainty
about the parameter values, designs for several sets of numbers can be compared.

In our work, we solved all the Semidefinite Programming problems in Mat lab® using
the cvx environment combined with the solver Mosek that uses an efficient Interior Point
algorithm (Ye, 1997). The relative and absolute tolerances used to solve the SDP problem
were set to 1 x 1075,

5. Sequential Designs

When the response models are linear, as in (1), inference for all parameters, or for linear com-
binations of parameters, of the linear models does not depend on the values of the parameters.
However, as we have seen above, the optimal design does depend on K — 1 ratios of variances.

The designs found in §4 depend on the value of 7 or, in the case of Table 3, two variance
ratios. To overcome the lack of knowledge of the true value of 7 we use a sequential design,
a solution appropriate for clinical trials in which patients arrive sequentially and, given the
values of their prognostic factors, are allocated to a specific treatment. In frequentist analysis
of sequential experiments, the information from observations is used to update the parameter
estimates. Experiments are designed using the available information, with one or more ob-
servations being obtained using this design. The parameter estimates are updated using all
observations providing a new optimum experimental design. The process terminates when
sufficient accuracy has been obtained in the parameter estimates, or when all resources are
exhausted. Atkinson et al. (2007, §17.3) describe sequential and non-sequential methods for
optimal design when the information matrix depends on unknown parameters.

We consider frequentist sequential designs for Neyman allocation where K prognostic
factors are considered, see the model (1). Also, let I = 2 (i.e., two treatments) where each
treatment has an unknown variance, unlike the known variances of the classical Neyman
allocation. Our goal is to demonstrate that sequential optimal designs, where the variances
of the treatments are iteratively updated from analysis of the responses, tend to the optimal
designs obtained theoretically, or with SDP-based formulations, assuming the variances are
previously known.

The procedure starts by allocating the first arriving n s individuals randomly to either treat-
ment. For simplicity we allocate n ¢ /2 to each treatment, with n; even. The prognostic factors
of each individual are used to construct the respective FIM so that the complete set of six pa-
rameters (o1, oo, B1,1, B2,1, B1,2 and B 2) is to be estimated. The FIM of an individual
allocated to treatment ¢ (i € {1, 2}) is represented by

1 0 I 0 xTo 0

0 O 0 0 0 0

1 ry 0 22 0 zpa O
ME=%100 0o o o of

o 0 2129 O x% 0

0 O 0 0 0 0
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0 0 O 0 0 0
0 1 0 T 0 T2
110 0 O 0 0 0
M () = 67% 0 1 O :1:% 0 x1 a9 )
0 0 O 0 0 0
0 zo 0 2129 O IE%

M;(€) is the FIM used for allocating the individual to treatment i and 672 is the estimated
variance of the observational errors of the responses of individuals allocated to that treat-
ment. These estimates come from Least Squares (LS) fitting of the two models 7;(x, ) using
all available responses. The fraction of individuals allocated to each group in the initializa-
tion is therefore wz(nf ) =1 /1. In the remainder of the paper the value in the superscript is
used to designate the the number of individuals previously enrolled. This nomenclature is
also adopted for global and treatment FIM’s. For clarification, we use the term global FIM
to represent the FIM accounting for all individuals allocated previously, M ¢—1) (£), the term
treatment FIM to represent the FIM for all the individuals previously allocated to a given
treatment, My_l)(f ), and the term individual FIM to the FIM for a single individual enter-
ing the plan which is given by (5). Further, let the vector p represent the allocations of the
individuals; each element of p is 1 if the individual is allocated to the first treatment and 2 if
allocation is to treatment 2.

For simulating the procedure, we take the covariates as uniformly distributed in [—1, +1],
distinct from the design region in previous sections where z; € {—1,+1}. For the prog-
nostic factors we generate variables from the uniform distribution in [—1, +1]; i.e. z; ~
U(—1,+1), i € [I]. The global FIM obtained after enrolling evenly the n individuals is
calculated by summing the FIM’s of all the individuals allocated to each treatment.

Now, we start allocating the individuals using information-based criteria. That is, every
individual arriving (corresponding to an iteration) is enrolled to the treatment that maximizes
the amount of information measured by a given ®-optimality criterion. Consider the arrival of
individual ¢ with known prognostic factors represented by the extended vector z, = (1.0, xy).
Here, x, denotes the covariates specific to the /M individual, while in Sections 2-4, x denotes
the candidate experimental points.

The global FIM obtained considering all the £ — 1 individuals previously allocated is given

by

I
M) =S w Y MY (), ©)
i=1
where wy—l), i € [I] is the proportion of individuals allocated to each treatment and

Mgﬁfl) (&) is the treatment FIM for treatment i:
-1 .
MOV (€)= D1y, M (). )
j=1

Here 1,.—; is the indicator function, with value 1 if the jM individual (j € [¢ — 1]) was
allocated to treatment 7 and 0 otherwise. The M7 (&) are the individual FIM’s; see Eq. (5).

K3
We choose the treatment that maximizes the overall information for the allocation of in-

dividual ¢. That is, we calculate the sensitivity for each treatment to z, using the directional
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derivative of the criterion under analysis and choose the maximum. When the D-, A-, E- or
Da-optimality criteria are used, the respective sensitivity functions (Atkinson et al., 2007,
§10.1) are:

- 11
dp; =z |MUTVE|  2/62, ie[l] (82)

- 12
dai = Zy¢ MUE=D () z, /67, i€ [I] (8b)

dg,; = 2¢ (Vmin vl z}/&?, i €[] t19)

_ i B 1
dogi = [MOD(] AT (A[MOD] T AT) A[mMED ] ot e
(8d)

where dg ; is the ®-optimality criterion sensitivity to treatment i, ® = {D, A,E, D} and
Vmin € R™ is the eigenvector associated to Ay [./\/1“*1) )]

We consider the D-optimal criterion for analysis, the next steps of the allocation being
common to all criteria. After computing the sensitivities of both treatments to the arriving
individual, treatment 1 is allocated if dp 1 > dp 2 and treatment 2 otherwise. This allocation
rule may be written as

the individual is allocated to treatment 1 if dp1 >dpo = pr=1
the individual is allocated to treatment 2 if dp <dps = p¢ =2 '

We note that this allocation policy does not involve randomization rules; instead it allocates
the individual to the treatment that maximizes the information expected given their prognostic
factors.

Let individual ¢ be allocated to treatment :™** = {i : dp; = max(dp), ¢ € [I]}. Then,
we update the allocation vector p; that is, we set p; = ¢™**. We also use the updated set of
the individuals allocated to treatment i™?* to re-estimate the parameters of 7);max (x, ) using
LS and update the error variance of the model, 62,.x. The treatment FIM of treatment ™% is
also updated, as well as the weights, which become

¢
w = Zf:lglp‘ i € [1]. )
Finally, the treatment FIM’s and the global FIM are updated using (7) and (6), respectively.
The procedure is then iterated for the remaining n,, — ¢ individuals until we have enrolled n,,.
To avoid the influence of the randomness in the construction of the covariates and of the
response we repeated the procedure n, times. Then, we computed averages of the weights for
each individual allocated and of the variances of the errors of both response models.
Algorithm 1 systematically outlines the procedure for sequential allocation based on infor-
mation criteria. To demonstrate its mechanics we consider the allocation of the /" individual.
Its implementation necessitates the knowledge of the following quantitities:

(i) the optimality criterion considered for allocation, denoted as C'
(ii) the number of competing treatments, denoted as [;
(ii1) the number of covariates, denoted as K;
(iv) the vector of covariates for the /! individual, denoted as xy;
(v) the Fisher Information Matrices (FIMs) for each treatment and the global FIM after the
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allocation of (¢ — 1)™ individual, denoted as M ‘=1 (¢); and
(vi) the estimates of error variances for all treatments, denoted as &? obtained after allocating
(¢ — 1) individuals.

This iterative procedure is applied to all individuals, ¢ € [n,], as they enter the trial.

Algorithm 1 Allocation of the /" individual.

procedure ALLOCATEINDIVIDUAL(Input: Optimality Criterion (C), I, K, x¢, M¢=1)(¢), 62)
Construct the vector zy = (1, xy)
for i in [I] do
Compute the sensitivity functions dc ; for x, using Eq. 8
end for
Find the maximum sensitivity value, max; dc ;, among all treatments
Allocate the individual to the treatment with the maximum sensitivity value
Update w(®, M® (¢) and 52 (Eqgs. (6-7,9))
end procedure

To test the algorithm described and check whether the sequential designs can be used to
overcome the requirement that the variances are known, we consider two treatments with
responses

771(X,0) =054+02x21+04 29+ € (10a)
N2(x,0) = 0.6 + 0.4 21 + 0.5 x5 + €2, (10b)

respectively, both covariates z; € [—1,+1], ¢ € [I] were sampled using a uniform ran-
dom number generator. The observational error of the response to each treatment is normally
distributed with zero mean and different standard deviations, i.e. ¢; ~ N(0,02), i € [I]
where o; is the standard deviation for treatment ¢. We notice that the error variances are un-
known in this context and are to be iteratively estimated using LS as individuals accumulate
to treatments. To simulate the responses we consider that 07 = 0.4 and 03 = 1.0. That is,
o1 = 0.6325, o5 = 1.0, so that 7 = 2.5. Practically, the values of ¢ for each individual are
obtained by sampling from zero mean normal distributions with different standard deviations
using a normal random generator.

We consider the {D,A,E,D, }-optimal design criteria previously introduced for testing the
procedure. The number of individuals initially randomly allocated to each treatment is 5.
Further, we set n,, to 300 and n to 500.

The results are in Figure 1; the plots at the left present the evolution of w; for all the opti-
mality criteria and the plots at the right the estimated error variances for both treatments. We
notice that for the D-optimality criterion w; — 0.5, see Figure 1(a), corroborating the results
obtained in §4 for 7 = 2.5 and the theorems in §3. Additional numerical tests, not shown in
the paper, illustrate the lack of dependence of w; on the value of 7 for D-optimal designs. For
the A- and D4 -optimality criteria, w; tends to 0.38, and the values obtained using both SDP
and the theoretical results are 1/(1/2.5 + 1) ~ 0.3874. The weight for the E-optimal alloca-
tion is close to 0.28 and the values obtained with previous tools are 1/(2.5 + 1) =~ 0.2857.
The numerical results for other values of 7 from the sequential optimal design algorithm also
show strong agreement with the optimal allocations previously obtained. Finally, we note in
Figure 1(b), the remarkably fast convergence of the estimates of the variances of the observa-
tional errors for both treatments (and of the ratio 7), independently of the criterion.

One very interesting point is that the sequential optimal designs in [—1,+1] tend to the
optimal designs in {—1,+1} as we claimed in Section 3. The weights for the sequential
designs tend to the optimal, but the designs can’t since the sequential z; are given, not chosen.
Further, they also allow capturing the estimates of the parameters of each response model and
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Figure 1. Sequential optimal designs for response models (10) z; € [—1,+1], i € [I], &; ~ N(0,02),0% =0.4,03 = 1.0
and 7 = 2.5: (a) wy for D-, A-, E- and Dy -optimality criteria; (b) estimated observational error variances for D-, A-, E- and
Da-optimality criteria.

their respective variances.

6. Application: A Clinical Trial In Neuro-Degenerative Disease

In this section, we apply the methodologies outlined in Sections 3 and 5 to a real-world case
study with two prognostic factors, one non-normal. Specifically, we examine a clinical trial
outlined in Atkinson et al. (2023), focusing on the randomization process for Parkinson’s
disease patients. The primary aim of this study was to devise an effective randomization
protocol for allocating patients to one of two treatment groups:

(i) treatment 1: Involving a pioneering procedure centered around digital technologies com-
bined with some human intervention; and
(ii) treatment 2: Encompassing a conventional treatment and monitoring approach.

For assessing treatment efficacy, Atkinson et al. (2023) employed Quality of Life (QoL)
as the outcome measure, assessed using the Parkinson’s Disease Questionnaire with 8 items
(PDQ-8) (Peto et al., 1998), which we represent as pdg8; higher scores denote a lower quality
of life. Out of six potential explanatory variables, data analysis showed that the two important
ones were: (i) disease duration and stage, denoted as h&q, assessed on the Hoehn and Yahr
scale (Hoehn and Yahr, 1967, 1998); and (ii) psychological well-being and neuropsychiatric
symptoms, such as depression and anxiety, labeled as bdz, based on questionnaire responses
(Beck et al., 1988).

We take the models for the effect of treatment to be those in Equation (1), 1 being h&q,
while the second factor x5 represents bdi. In the dataset employed for modeling the response
to both treatments, h&q and bdi are confined to integer values. Precisely, h&q ranges from
1 to 5 (h&q € [1,5]), and bdi varies from 1 to 35 (bdi € [1,35]). Consequently, the design
space considered in this context is therefore X = [1,5] x [1,35], with the covariate values
randomly sampled from X. The variable h&y was fitted to a normal distribution with a mean
of 2.3837 and a standard deviation of 0.2857, whereas bd: was fitted to a Gamma distribution
with a shape parameter of 1.7678 and a scale parameter of 6.8145. These specific parameters
were determined through fitting to past data. In order to sample only at the points of X these
distributions were discretized. In general, the sequential procedure is the same whether the
covariates are discrete or continuous. The model parameters for each treatment are as follows:
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(i) For treatment 1: (a1, 1,1, f1,2) = (2.0941,3.9057,1.1089), and Uf = 207.9267;
(ii) For treatment 2: (a2, 82,1, f2,2) = (—0.1015,4.1312,1.5117), and 03 = 107.8993.

Although the uncertainty of treatment 1 it emerges as the preferable option due to
its lower expected Quality of Life (QoL). Upon visual examination of the graphical rep-
resentations of both models forecasts, we discern that within a specific region (2 =
(h&q,bdi) € [1,5] x [1,35] N 0.2251 - h&q + 0.4028 - bdi < 2.1956) of the design space
where both bdi and h&q are low, treatment 2 gains preference.

In this specific case, the value of 7 = 03 /07 is calculated to be 0.5189. Consequently,
applying the tools outlined in §3-§4, the static optimal allocation lead to w; = 0.5 (we =
0.5) if D-optimality criterion is used, w; = 0.5813 (wy = 0.4187) if A- or D4-optimality
criteria are considered and w; = 0.6584 (w2 = 0.3416) if E-optimality is employed. These
allocations provide validation for the observed trends in the sequential allocation scheme.

We now apply the algorithm outlined in §5 for assigning treatments to individuals using all
the optimality criteria considered (A-, D-, E- and Da-optimality). The D -optimality criterion
is used to find the parameter differences oy — aa, 51,1 — 82,1 and 51 2 — B2 2, i.e., the matrix A
have a structure similar to that considered in Theorem 4. For simulation purposes, we fix ng =
1000 and n, = 300 (equivalent to 300 individuals). The values of h&q and bdi are randomly
sampled from a normal distribution with a mean of 2.3837 and a standard deviation of 0.2857,
and from a Gamma distribution with a shape parameter of 1.7678 and a scale parameter of
6.8145, respectively, after which they are rounded to the nearest integer. The prediction error
¢; for each treatment is simulated sampling from a normal distribution N(0, 02), o2 listed
above.

The results in Figure 2, exhibit a display akin to the example illustrated in §5. We note that

(i) For the D-optimality criterion, w; — 0.5, as shown in Figure 2(a). Here, the value is
systematically below 0.5 but the difference is below 0.05.
(i) For both the A-optimality and D4 -optimality criteria, w; — 0.58.
(iii)) Under the E-optimality criterion, w; — 0.65.

In all scenarios, the convergence values closely match those derived from asymptotic de-
signs utilizing the theoretical results of §3. This exhibits the suitability of these results for
establishing optimal a priori allocation policies, particularly when good estimates of the re-
sponse variances are available before the start of the trial, or when sequential allocation is not
possible. Additionally, as depicted in Figure 2(b), we observe the convergence of the estimates
of observational error variance for both treatments towards their respective “true” values.

7. Discussion

One assumption in this paper is that it is known that both the response model and the variance
of the response depend upon the treatment allocated. However, at the start of the Phase III
trial, there may be no clear indication of the existence of a subgroup of patients with a dis-
tinct response pattern. Yang et al. (2024) describe enrichment designs in which the treatment
allocations are changed once a significant subgroup has been identified.

We have assumed that, within each group, the variance of the response is constant. A
referee has commented that the variance may depend not only on treatment, but also on other
covariates. In this case there is an additional, often linear, model for the response variance,
perhaps also depending on treatment. Atkinson and Cook (1995) derive optimum designs
when there is a single response model with Fedorov and Leonov (2014, Chapter 6 and 7)
providing pharmaceutical examples.
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Figure 2. Sequential optimal designs for response models in representing the QoL in Parkinson’s disease treatment
comparison. Two covariates; Model parameters: (a1, 31,1,01,2) = (2.0941,3.9057,1.1089), (a2,f2,1,82,2) =
(—0.1015,4.1312,1.5117); Variances: a% = 207.9267, ag = 107.8993; Covariates domain: 1 € [1,5], 1 ~
N (2.3837,0.2857), x2 € [1,35], z2 ~ I'(1.7678,6.8145) (a) wy for D-, A-, E- and D-optimality criteria; (b) estimated
observational error variances for D-, A-, E- and D -optimality criteria.

The sequential design procedures described in this paper are deterministic; given the his-
tory of covariates and allocations, conveniently summarisable as sufficient and ancillary
statistics, the allocation to the next individual is certain. Our interest in the designs and al-
gorithms described in this paper is for their use in clinical trials, when some randomization
should be introduced into the allocation to avoid biases. For sequential trials following the
standard model of a constant treatment effect, Atkinson (1982) suggested an allocation rule
based on the sensitivity function of Da-optimality with a biased-coin randomization rule cal-
culated from the sensitivity functions of the treatments. A negative effect of randomization
is a slight loss in the precision of parameter estimates. Several randomization rules, some
based on sequential optimum design for the standard model, and the associated losses are de-
scribed and compared in Atkinson (2014). A recent survey of the balance between statistical
efficiency and randomness in clinical trails is Sverdlov and Ryeznik (2023).

As demonstrated, the allocation of individuals in trials based on information criteria serves
as a natural and statistically robust method for maximizing information. This method relies
on a transparent metric to gauge the information contained within each response. Moreover,
it opens up numerous avenues for further research. One such avenue involves exploring mod-
els of increasing complexity, including nonlinear and Gaussian process models dependent on
covariates. Additionally, a common and intriguing area of investigation involves considering
the dependence of response variance on prognostic factors, mentioned above. By incorporat-
ing the relationships between predictor variables and variance into the model, we relax the
assumption of homoscedastic variance errors (Snijders and Bosker, 2012). Such an approach
would also necessitate the utilization of techniques tailored to nonlinear model responses.

However, design criteria from the theory of optimum experimental design focus on
information maximization. Ethical considerations, on the other hand, require that as many
individuals as possible receive the best treatment; in the case of personalized medicine, the
best treatment for the individual (Palmer and Rosenberger, 1999). This leads to minimum
regret designs, which seek to maximize the proportion of individuals who receive the best
treatment. Of course, if the parameters are poorly estimated many allocations will be incor-
rect. One way forward is to combine information maximization with minimum regret-based
designs. Here, ethics and information can be combined by the use of a compound design
criterion which contains a flexible parametric combination of measures of the achievement
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of the two goals. These designs offer an interesting avenue to explore in the future.
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Appendix A. Formulations to determine the optimal allocation via SDP

Here we list SDP formulations for the D-, A-, E- and D4-optimality criteria. The first three
were introduced in Vandenberghe and Boyd (1996, 1999); Ben-Tal and Nemirovski (2001).
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We start with the formulation for D-optimal designs.

Opt = t
pt = max

M BT
s.t. ( éﬁ) diag(B)> = O4(k+1)

ey /12(k+1)]
t < B}
= leIl 1,1
1
i=1
0<w; <1, iel[l].

Now, the formulation for computing A-optimal designs

Opt = %1%1 t
M(§) Iz(k+1)>
s.t. =0
<I2(k+1) B = Talk+)
2(k+1)

t> > B,
i=1
I
Zwi =1
i—1

ngigl, Y/E[[I]],
and E-optimal designs.
Opt = t
PR

S.t. M(f) -1 Iz(k;_|_1) = 02(k:+1)

1
Zwi =1
i=1

ngigl, Y/E[[I]]
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(A.1a)

(A.1b)

(A.1¢)

(A.1d)

(A.le)

(A.2a)

(A.2b)

(A.2c)

(A.2d)

(A.2¢)

(A.3a)
(A.3b)

(A.3¢c)

(A.3d)
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