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Abstract. In this paper we investigate the Bayesian approach to inverse Robin problems. These are problems
for certain elliptic boundary value problems of determining a Robin coefficient on a hidden part of
the boundary from Cauchy data on the observable part. Such a nonlinear inverse problem arises
naturally in the initialisation of large-scale ice sheet models that are crucial in climate and sea-level
predictions. We motivate the Bayesian approach for a prototypical Robin inverse problem by showing
that the posterior mean converges in probability to the data-generating ground truth as the number
of observations increases. Related to the stability theory for inverse Robin problems, we establish a
logarithmic convergence rate for Sobolev-regular Robin coefficients, whereas for analytic coefficients
we can attain an algebraic rate. The use of rescaled analytic Gaussian priors in posterior consistency
for nonlinear inverse problems is new and may be of separate interest in other inverse problems. Our
numerical results illustrate the convergence property in two observation settings.
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1. Introduction. The Bayesian approach has in recent years gained traction as a power-
ful and flexible framework for solving inverse problems by allowing the user to model prior
knowledge, regularize reconstructions and quantify uncertainty, see [53]. In this paper, we
investigate the Bayesian approach to an emerging class of nonlinear inverse problems known
as inverse Robin problems.

Inverse Robin problems appear in boundary value problems for partial differential equa-
tions (PDEs), where the boundary is partitioned into at least two parts: a hidden and an
observable part. The hidden part carries information of a boundary effect modelled by a
Robin boundary condition. Then the Robin inverse problem is the inverse problem of recov-
ering the Robin coefficient from Dirichlet and Neumann data on the observable part of the
boundary. Our focus will be on the inverse Robin problem for a scalar Laplace equation and a
Stokes’ system of equations. The former is an inverse problem also known as corrosion detec-
tion and was considered in the early contribution [33]. The latter appears when initialising ice
sheet models for climate and sea-level predictions. This inverse problem asks for the unknown
basal drag coefficient of the ice sediment from observations of ice velocity at the surface, see
[6]. Addressing this inverse problem in a statistical framework is a crucial step in improving
the robustness and accuracy of ice sheet models for future sea-level projections.
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Reconstruction for the inverse Robin problem for the Laplace equation has been stud-
ied using classical regularization methods based on penalized least squares, see [15, 41, 34]
and the references therein. In [33, 23] accurate direct methods are provided given that the
domain is sufficiently thin. The problem has been posed in a Bayesian framework in [43],
which determines the Robin coefficient and the hidden boundary simultaneously. The related
inverse Robin problem for the Stokes PDE has been considered in the Bayesian framework in
[5, 44, 7], whereas in the two latter works the framework is similar to the general approach in
[53].

Despite the success of the Bayesian approach to inverse problems, different paths of the-
oretical guarantees have been explored only recently. Statistical convergence analysis for the
posterior distribution in nonlinear inverse problems has seen a recent interest with the frame-
work devised in [42] based on the work in [24], see also [45]. In this approach, the main
conditions of the forward map are that of forward regularity: the data should be uniformly
bounded and depend continuously on the parameter given that it is sufficiently smooth, and
conditional (inverse) stability: the inverse of the forward map is continuous when restricted to
a sufficiently small subset of the range. For forward regularity, we require a certain smooth-
ness of solutions of the governing equation near the observable part of the boundary. This
can be achieved by classical techniques in PDEs. Inverse stability results, however, rarely
come cheap and require in-depth knowledge of the inverse problem at hand. For the Stokes
model we consider, some conditional stability results have been developed, see Theorem 1.5
and Remark 3.7 in [11], which quantifies the unique continuation result of [22]. Common for
the inverse Robin problems is the fact that the spatially varying Robin coefficient β enters in
a Robin condition of the form ∂νu+ βu = 0 at the hidden boundary, where ν is the outgoing
unit normal and u is the solution of the governing equation. So if u is known and nonzero
here, the reconstruction is a matter of algebra: β = −u−1∂νu. However, determining con-
ditions for which u in a Stokes’ model is nonzero on the hidden boundary remains a largely
unsolved problem, see [11]. For this reason we motivate our approach for general Robin-type
inverse problems by the prototypical model for the scalar Laplace equation, see [15]. It is not
uncommon that methods used in solving the Robin inverse problem for the Laplace equation
have stimulated the development of approaches for solving the corresponding problem for the
Stokes model, see [6] which makes use of the Kohn-Vogelius functional [35].

Inverse Robin problems are related to the Cauchy problem of determining a solution to a
Laplace equation in a domain from Cauchy data on parts or the whole of the boundary. This
is because the ‘known’ in our inverse Robin problems consists of Cauchy data on a part of
the boundary. The global Cauchy problem of determining the solution in the entire domain is
known to be severely ill-posed since [29]. Conditional stability estimates of logarithmic kind
exist for this global problem [2, 14, Theorem 1.9], while for stability in the interior, Hölder
estimates can be obtained, see Theorem 1.7 and Remark 1.8 of [2]. Combining the latter
with analytic continuation for ‘uniformly’ analytic (in the sense of R2(M) defined below)
solutions near the hidden boundary, one obtains conditional Hölder stability for the inverse
Robin problem. This is essentially the content of [32], which we modify to our setting below
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in Lemma 2.4. We note that in [52] a Hölder stability estimate is obtained for the scalar
Laplace equation, when the Robin coefficient is piecewise constant on a priori known sets.
Using properties of the derivative of the forward map, a Lipschitz stability for the inverse
problem in Stokes’ model has been established in [20] given that the Robin coefficient belongs
to compact and convex subset of a finite dimensional vector space. Unlike [11] it provides an
estimate independent of observations of the pressure.

For inverse problems with regular forward maps and conditional stability estimates, guar-
anteeing the statistical convergence of the posterior distribution reduce to the choice of prior
[42]. In this paper, we consider two classes of numerically tractable and popular choices of
Gaussian process priors that fit the stability regimes of the inverse problem. Our theoretical
results are two-fold: For a Matérn type Gaussian prior we show that as the number of ob-
servations increases, the posterior mean converges in probability to the true Robin coefficient
given this has some Sobolev smoothness. Not surprisingly the convergence rate is logarithmic.
On the other hand, if the Robin coefficient is analytic, the squared exponential Gaussian prior
provides an algebraic rate of convergence. This is the content of Theorem 3.1 below. Our
approach for the analytic set of parameters follows the approach in [42, 24, 45] using results
in [55]. Unlike [55], which considers analytic Gaussian processes with a change at time scale,
we consider ‘rescaled’ (in the sense of (3.15)) Gaussian processes. In Lemma C.4 we show
that such priors satisfy the usual conditions for posterior consistency. This result is new and
may be of independent interest in other inverse problems when modelling analytic functions.
This seems to be a useful a priori class of functions to consider for some stability estimates,
see for example [37].

We perform numerical experiments on the Laplace and Stokes models using Markov chain
Monte Carlo (MCMC) methods and finite element methods. The experiments support the
theoretical findings on the improvements in the reconstruction of the Robin coefficients as the
number of observations increases.

In Section 2 we give the setting of two inverse Robin problems in the context of a Stokes
system of PDEs and a Laplace equation in two dimensions. We state results on the regularity
properties of the forward maps as well as conditional stability estimates. When not relying on
existing results, these are proved in Appendix A and B. In Section 3 we recap the Bayesian
approach to inverse problems, describe the observation model, and present the Matérn-type
and squared exponential Gaussian priors. Here we also give the main result, Theorem 3.1,
which is proved in Appendix C. In Section 4, we present the numerical approach and results
for the scalar Laplace model and the Stokes model.

In the following, we let random variables be defined on a probability space (Ω,F ,Pr). For
a metric space X the Borel σ-algebra is denoted by B(X ). Given a random elementX : Ω → X
that is F − B(X ) measurable, we denote its law or distribution by the probability measure
L(X) defined by L(X)(B) = Pr(X−1(B)) for all B ∈ B(X ).
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2. Inverse Robin problems.

2.1. Stokes’ model. We consider the constant viscosity Stokes ice sheet model for a
velocity field u : O → Rd and pressure p : O → R in a bounded and smooth domain O ⊂ Rd,
d = 2, 3,

(2.1)

−∆u+∇p = ρg in O,

∇ · u = 0 in O,

∂νu− pν = h on Γs,

∂νu− pν + βu = 0 on Γβ,

where ν is the outward unit normal, ρ is a constant density of the ice, g is the gravitational
field and h is the prescribed boundary stress. Here Γs and Γβ are disjoint and connected open
subsets of the boundary such that ∂O = Γs∪Γβ. We denote by Γ an open subset of Γs, where
we make our measurements. The Robin inverse problem is then to recover β given u|Γ, that
is, to invert the nonlinear forward map

G : β 7→ u|Γ.

For physical accuracy, we assume β is a positive function, β ≥ mβ > 0. We reparametrize the
forward map to

G(θ) := G(mβ + eθ) = u|Γ

defined on our parameter space

Θ := H1(Γβ).

The choice of the parameter space Θ makes θ 7→ G(θ) continuous into (C(Γ))2, which, as we
shall see in Section 3, leaves us with a well-defined posterior distribution. It follows from Lax-
Milgram theory in the Hilbert space of divergence-free (H1(O))d-functions that there exists
a unique solution u ∈ (H1(O))d to (2.1) for any positive and bounded β, hence the forward
map is well-defined. Further, when β is continuous, unique continuation results [11, Corollary
1.2] imply injectivity of G, see for example [10, Proposition 3.3]. These facts are proven in the
following lemma for the case d = 2. For d = 3 this follows in the same way, but for example
for the choice Θ = H2(Γβ).

Lemma 2.1. Let h ∈ (L2(Γs))
2, ρg ∈ (L2(O))2 and θ, θ1, θ2 ∈ L∞(Γβ). We have the

following:
(i) Set β = β(θ) := mβ + eθ. Then there is a unique solution u ∈ H1(O))2 to (2.1).
(ii) If ∥θ1∥H1(Γβ), ∥θ2∥H1(Γβ) ≤ M and Γ ⊂⊂ Γs, then there exists α > 0 such that

∥G(θ1)− G(θ2)∥(C(Γ))2 ≤ C(O,mβ, h, ρ, g)∥θ1 − θ2∥αH1(Γβ)
.

(iii) Θ ∋ θ 7→ G(θ) ∈ (C(Γ))2 is injective.
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Figure 2.1: Diagram of the domain

2.2. Scalar Laplace equation. Consider the following Laplace equation for a potential
u : O → R, surface normal current h ∈ H−1/2(Γ) and Robin coefficient β ∈ L∞(Γβ),

(2.2)

∆u = 0 in O,

∂νu = h on Γ,

u = 0 on Γ0,

∂νu+ βu = 0 on Γβ,

where ∂O = Γ ∪ Γ0 ∪ Γβ. Here a homogeneous Dirichlet condition is introduced for the
stability estimate in [1], which we use in Lemma 2.4 below. As before our goal is to invert the
reparametrized forward map

(2.3) G(θ) := G(mβ + eθ) = u|Γ,

where we with a slight misuse of notation keep the notation G and G for this model.

Assumption 1 (Domain). We assume Γβ = (0, 1)× {0} and define Γβ,ϵ := (ϵ, 1− ϵ)× {0}
for some 0 < ϵ < 1. Furthermore, we assume ∂O is a simple closed curve decomposed into
four subarcs oriented as Γβ, Γ

1
0, Γ, Γ

2
0, and where Γ0 = Γ1

0 ∪ Γ2
0.

We assume Γβ = (0, 1)×{0} since we want to avoid defining Gaussian processes on manifolds.
Occasionally, we identify Γβ with (0, 1) ⊂ R. For the two stability estimates in Lemma 2.4 we
could generalize to a C2 or analytic Γβ, respectively. To analyze the stability of the forward
map we find it useful to restrict it to two well-chosen bounded and closed subsets of Θ.

Assumption 2. Assume first β = β(θ) := mβ + eθ for θ ∈ Θ with

Θ := H1(Γβ).

Depending on the setting we accept either of the two following assumptions for some M > 0:
(i) Assume θ ∈ R1(M) with

R1(M) := {θ ∈ H1(Γβ) : ∥θ∥H1(Γβ) ≤ M}

(ii) Assume θ ∈ R2(M) with

R2(M) := {θ ∈ C∞(Γβ) : ∥θ∥L∞(Γβ) ≤ M, sup
x∈Γβ

|(∂kβ)(x)| ≤ M(k!)Mk}
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It is well-known that β is analytic on Γβ if and only if β ∈ C∞(Γβ) with

sup
x∈Γβ

|(∂kβ)(x)| ≤ Mβ(k!)M
k
β

for some Mβ > 0, see [36, chapter 1]. We can think of R2(M) as functions that are ‘uniformly’
analytic with the added condition ∥θ∥L∞(Γβ) ≤ M to ensure θ 7→ β is continuous in both
directions. The sets R1(M) and R2(M) are exactly the ‘regularization sets’ for which stability
results for the inverse problem are available, see Lemma 2.4. To this end, we make the following
assumption.

Assumption 3. We assume that h is not identical to a constant and that h ∈ H1 := {h ∈
H1/2(Γ) : h ≥ 0, ∥h∥H1/2 ≤ Mh} for some Mh > 0.

The positivity assumption is only needed for the stability estimate stated in Lemma 2.4 (ii),
and it might be avoided as in [1]. In the following we prove a number of auxiliary results,
where we specify sufficient conditions on θ and β. First, we note that the forward map is
well-defined.

Lemma 2.2. For β = β(θ) with θ ∈ L∞(Γβ) and h ∈ H−1/2(Γ), there exists a unique
solution u ∈ H1(O) of (2.2) with

(2.4) ∥u∥H1(O) ≤ C∥h∥H−1/2(∂O),

for some constant C = C(O,mβ) > 0.

Secondly, the forward map is Lipschitz continuous on certain bounded sets of Θ and the
observations are uniformly bounded.

Lemma 2.3. Let h ∈ H1 and θ1, θ2 ∈ L∞(Γβ). Then,
(i) if β = β(θ1) and ∥β(θ1)∥H1(Γβ) ≤ M we have

∥G(θ1)∥C(Γ) ≤ U(O,mβ,M,Mh),

(ii) if βi = β(θi) for i = 1, 2 with ∥θ1∥L∞(Γβ), ∥θ2∥L∞(Γβ) ≤ M then

∥G(θ1)− G(θ2)∥L2(Γ) ≤ K(O,mβ,M)∥θ1 − θ2∥L∞(Γβ).

(iii) if θ1, θ2 ∈ R1(M) then there exists an α > 0 such that

∥G(θ1)− G(θ2)∥C(Γ) ≤ C(O,mβ,M)∥θ − θ′∥αL∞(Γβ)
.

The following result is that of conditional (inverse) stability, where the condition is either
θ ∈ R1(M) or θ ∈ R2(M).

Lemma 2.4 (Conditional stability). Let O satisfy Assumption 1 and h satisfy Assumption
3.

(i) If θi ∈ R1(M), i = 1, 2, then there exists constants K1 > 0 and 0 < σ1 < 1 such that

∥θ1 − θ2∥L∞(Γβ,ϵ) ≤ K1| log(∥G(θ1)− G(θ2)∥L2(Γ))|−σ1 ,

where K1 and σ1 depend only on O, h, mβ, M and ϵ.
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(ii) If θi ∈ R2(M), i = 1, 2, then there exists constants K2 > 0 and 0 < σ2 < 1 such that

∥θ1 − θ2∥L2(Γβ,ϵ) ≤ K2∥G(θ1)− G(θ2)∥σ2

L2(Γ)
,

where K2 and σ2 depend O, Mh, M and ϵ.

The stability result (ii) generalizes to three dimensions. In this case, one technical obstacle
is to analyze the smoothness of the solutions near the corner singularities.

3. The Bayesian approach. Central in the Bayesian framework is the posterior distri-
bution, which is the normalized product of the prior distribution and the likelihood-function
modelling the measurement process. In this paper we take the natural viewpoint of [45] that
the measurements are discrete, taken at uniformly random locations on the observable part
of the boundary, and are contaminated with Gaussian noise. In the context of Stokes’ model,
we let V = R2 and d = 2, whereas for the Laplace equation we set V = R and d = 1. In
both cases we let | · |V denote the Euclidean norm. Our observations arise as the sequence of
random vectors DN := (Yi, Xi)

N
i=1 in (V × Γ)N of the form

(3.1) Yi = G(θ)(Xi) + εi, εi
iid∼ N(0, 1), i = 1, . . . , N,

where Xi
iid∼ λ, the uniform distribution on Γ independent of the noise εi. More precisely,

we endow Γ with a Borel σ-algebra B(Γ) generated by the open sets in Γ with respect to
arc length metric. We have µ(B) = |Γ|−1

∫
B dS, where dS is the usual length measure and

|Γ| =
∫
Γ dS.

The random vectors (Yi, Xi) are i.i.d, and we denote their law Pθ with corresponding
probability density (Radon-Nikodym derivative)

pθ(y, x) ≡
dPθ

dµ
(y, x) =

1

(2π)d
exp

(
−1

2
|y − G(θ)(x)|2V

)
, y ∈ V, x ∈ Γ,

with respect to dµ = dy × dλ, where dy is the Lebesgue measure on V . We call θ 7→ pθ(y, x)
the likelihood function, and denote by PN

θ the joint law of the random variables (Yi, Xi)
N
i=1.

The likelihood function is suitable to enter in the Bayesian approach: Lemma 2.1 and 2.3
implies that x 7→ G(θ)(x) is continuous and that Θ ∋ θ 7→ G(θ) ∈ C(Γ)d, where d = 2 for
Stokes’ model and d = 1 for the Laplace equation. This implies (θ, x) 7→ G(θ)(x) is jointly
B(Θ) ⊗ B(Γ) − B(V ) measurable by Lemma 4.5.1 in [3], which is enough for a well-defined
posterior distribution, see [45].

Given a prior distribution Π supported in Θ, Bayes’ formula, see [25, p. 7] or [45], updates
Π by the likelihood function to obtain the posterior distribution Π(·|DN ) of θ given DN ,

(3.2) Π(B|DN ) =

∫
B eℓN (θ)Π(dθ)∫
Θ eℓN (θ)Π(dθ)

, B ∈ B(Θ),

where

ℓN (θ) := −1

2

N∑
i=1

|Yi − G(θ)(Xi)|2V .
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Note that 0 ≤ |y−G(θ)(x)|2 < ∞ for all (y, x) ∈ V ×Γ and θ ∈ Θ, and hence the normalization
constant satisfies

0 <

∫
Θ
e−

1
2

∑N
i=1 |yi−G(θ)(xi)|2V Π(dθ) ≤ 1

for all (yi, xi)
N
i=1 ∈ (V × Γ)N . It follows that B 7→ Π(B|DN ) is a measure for each DN ∈

(V × Γ)N and that ω 7→ Π(B|DN (ω)) is measurable for every B ∈ B(Θ). In particular,
ω 7→ Π(B|Y (ω)) is a [0, 1]-valued random variable. Before we state our main theorem on the
convergence features of the posterior distribution, we specify our choice of prior distributions.

3.1. Choice of prior. In this section we recall well-known prior distributions that are
supported in Rj(M), j = 1, 2, allowing us to make use of the stability estimates in Lemma
2.4. Our focus will be on the Matérn-type and squared exponential Gaussian priors. For
simplicity we define the Gaussian priors on the [−π, π)-torus T and restrict to Γβ when
necessary. Note any torus in which Γβ is embedded is relevant and can be used. In the case
of the Matérn priors, as we shall see, this allows us to recover any sufficiently regular Sobolev
function defined on Γβ. On the other hand, the squared exponential Gaussian processes
allows us to recover analytic functions defined on Γβ whose extension is 2π-periodic. This
setting benefits from the fact that properties of Sobolev regularity and analyticity of periodic
functions are straightforwardly characterized by a decay of the Fourier coefficients. We can
think of this setting as an implicit choice of approximation of the ground truth by the periodic
trigonometric functions. One could instead define a prior distribution on R with exponentially
decaying spectral measure, and show that it is supported in R2(M), see [55]. This can be
more technical due to the non-compactness of R and is unnecessary for our case.

Consider the usual L2(T) real orthonormal basis of trigonometric functions {ϕk}k∈Z and
for j = 1, 2 the random series

(3.3) θ̃j =
∑
k∈Z

gkwk,jϕk, gk
i.i.d∼ N(0, 1)

with

wk,1 = (1 + k2)−α/2, α > 1/2,(3.4)

wk,2 = e−
r
2
k2 , r > 0,(3.5)

where α > 0 and r > 0 are parameters to be chosen. We consider for example ϕk(x) =
1/

√
π cos(kx) for k > 0, ϕk(x) = 1/

√
π sin(kx) for k < 0 and ϕ0 = 1/

√
2π. Since wk,j ∈ ℓ2(Z)

for j = 1, 2, the series (3.3) converges for each x ∈ T in the mean-square sense. In fact it is a
Gaussian random variable, see [25, p. 13], and the limit θ̃j(x) exists almost surely. The choice
of wk,j is here motivated by the span of {wk,jϕk}k∈Z. Indeed, {wk,1ϕk}k∈Z is an orthonormal
basis of

(3.6) Hα(T) := {f ∈ L2(T) : ∥f∥2Hα,T :=
∑
k∈Z

|fk|2(1 + k2)α < ∞}.

Here fk := ⟨f, ϕk⟩L2(T) denotes the coefficients in the orthonormal basis. Note we can write f =∑
fkϕk in a standard complex Fourier expansion

∑
f̂ke

ikx with the usual Fourier coefficients
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f̂k expressed in terms of fk. Conversely, any real function in the standard complex Fourier
expansion can be written as

∑
fkϕk. Then Hα(T) is the usual periodic Sobolev space of

regularity α, see [54]. Similarly, {wk,2ϕk}k∈Z is an orthonormal basis of

(3.7) Ar(T) := {f ∈ L2(T) : ∥f∥2r,T :=
∑
k∈Z

|fk|2erk
2
< ∞}.

A closed ball in any space of functions with exponentially decaying Fourier coefficients is in
R2(M) for some M > 0, see Lemma C.1, and so the choice of the ‘square’ here is only in honor
of the squared exponential prior. Note both spaces are Hilbert spaces as closed subspaces of
L2(T) with their respective obvious inner products. Note also that Ar(T) embeds continuously
into Hα(T) for any r, α > 0, which in return embeds continuously into C(T) for α > 1/2 by
a Sobolev embedding, see [54].

3.1.1. RKHS and support. The random series (3.3) converges almost surely in Hβ(T)
with β < α − 1

2 and Aq with q < r for j = 1 and j = 2, respectively. Indeed, by Fubini’s
theorem

E[∥θ̃1∥2Hβ ,T] = E[
∑
k∈Z

g2kw
2
k,1(1 + k2)β] =

∑
k∈Z

(1 + k2)β−α < ∞,

and similarly for θ̃2. Then also θ̃2 ∈ Hβ(Γβ) almost surely. Likewise we define

Ar(Γβ) := {f = g|Γβ
: g ∈ Ar(T)},

endowed with the quotient norm

(3.8) ∥f∥r = inf
g∈Ar(T):g=f in Γβ

∥g∥r,T = ∥f∥r,T,

where the last equality holds because f has a unique analytic continuation to T. Then
θ̃2 ∈ Aq(Γβ), q < r almost surely.

The series (3.3) is the Karhunen-Loeve expansion of a Gaussian random element of Hβ(T)
and Aq(T) for j = 1 and j = 2, respectively, see [17]. We set α > 3/2 and r > 0 such that
the laws of θ̃1 and θ̃2 define Gaussian probability measures in Θ. By a Sobolev embedding θ̃1
and θ̃2 are almost surely in C(Γβ), the separable Banach space of continuous functions on Γβ

endowed with the usual supremum norm, which we denote by ∥ · ∥∞. Then the laws of θ̃j ,
j = 1, 2, define Gaussian probability measures on C(Γβ), see [30, Exercise 3.39]. We denote

Π̃j := L(θ̃j), j = 1, 2.

The reproducing kernel Hilbert space (RKHS) of the Gaussian random element θ̃j is Hα(T)
for j = 1 and Ar(T) for j = 2, see Theorem I.23 [25]. Since the restriction Hα(T) → Hα(Γβ)
is onto, see [54, Section 4.4], the RKHS of the restricted Gaussian random element is H1 :=
Hα(Γβ) in the case j = 1 and H2 := Ar(Γβ), see [26, Exercise 2.6.5].
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3.1.2. Covariance function. Since θ̃j(x) is a Gaussian random variable for each x ∈ T
and j = 1, 2, it is in fact a Gaussian process. The covariance function Kj : T× T → R of the
process takes the form, for j = 1, 2,

(3.9) Kj(x, x
′) = E[θ̃j(x)θ̃j(x′)] =

∑
k∈Z

w2
k,jϕk(x)ϕk(x

′),

see for example [25, p. 586]. Choosing for example ϕk(x) = 1/
√
π cos(kx) for k > 0, ϕk(x) =

1/
√
π sin(kx) for k < 0 and ϕ0 = 1/

√
2π, and using the identity cos(a) cos(b)+ sin(a) sin(b) =

cos(a− b) we find

Kj(x, x
′) =

w2
0,j

2π
+

1√
π

∞∑
k=1

w2
k,jϕk(x− x′),(3.10)

=
1

2π

∑
k∈Z

w2
k,je

ik(x−x′),(3.11)

=
∑
k∈Z

mj(x− x′ + 2πk),(3.12)

using the Poisson summation formula with

m1(s) = F−1[(1 + 4π2ξ2)−α](s) = Csα−1/2Kα− 1
2
(s),(3.13)

m2(s) = F−1[e−4π2rξ2 ](s) = Ce−
s2

4r2 ,(3.14)

where Kν , ν > 0 is a modified Bessel function, see [48, Section 4.2.1]. Thus Kj is the 2π-
periodization of the usual Matérn covariance function on R when j = 1 and the squared
exponential covariance functions on R when j = 2, which justifies our naming convention.

3.1.3. Rescaling. Take α > 1 and r > 0 such that Π̃j(Θ) = 1 for j = 1, 2. We then let
Πj be the ‘rescaled’ Gaussian distribution for j = 1, 2,

(3.15) Πj := L
(
κN,j θ̃j

)
, θ̃j ∼ Π̃j ,

for some decreasing sequence in N , κN,j defined as

κN,1 := N−1/(4α+2),(3.16)

κN,2 := log(N)−1.(3.17)

Letting the covariance of the prior depend on the observation regime is natural: it updates
the weight of the prior term in the posterior (3.2) formally as

dΠ1(θ) ∝ exp

(
−N1/(2α+1)

2
∥θ∥2H1

)
in the case of j = 1. In this way we penalize large values of ∥θ∥H1 more. This is common in
the consistency literature, see [42], and in fact sufficient for convergence of regularized least-
square procedures, see [21, Section 5]. In our setting this rescaling is needed so that the prior
distributions concentrate sufficiently on the totally bounded regularization sets R1(M) and
R2(M).
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3.2. Convergence of the posterior mean. Before we state the main result, the conver-
gence of the posterior mean to the ground truth as N → ∞, we recall some preparatory
definitions. In the following we let Πj(·|DN ) denote the posterior distribution (3.2) in Θ aris-
ing from the prior distribution Πj defined in (3.15) for j = 1, 2. The posterior mean Ej [θ|DN ]
is defined in the sense of a Bochner integral, see for example [18, p. 44]. Indeed, for all
DN ∈ (V × Γ)N

(3.18)

∫
Θ
∥θ∥Θ dΠj(θ|DN ) ∝

∫
Θ
∥θ∥ΘeℓN (θ) dΠj(θ) ≤

∫
Θ
∥θ∥Θ dΠj(θ) < ∞,

by Fernique’s theorem [30, Theorem 3.11], since Πj is supported in Θ for j = 1, 2. Then
DN 7→ Ej [θ|DN ] is a Θ-valued random element by the definition of the Bochner integral
and since the pointwise limit of a sequence of measurable functions is measurable, see [19,
Theorem 4.2.2]. Let ϵN > 0 be some decreasing sequence in N converging to zero. We say that
a sequence of real-valued random variables {fN (DN )}∞N=1 converges to zero in PN

θ0
-probability

with rate ϵN as N → ∞ if there exists a constant C > 0 such that

(3.19) lim
N→∞

PN
θ0 (DN : |fN (DN )| > CϵN ) = 0

Then we have the following convergence results for the reconstruction error of the posterior
mean, where we take fN (DN ) = ∥Ej [θ|DN ]− θ0∥ for j = 1, 2, and a suitable norm ∥ · ∥.

Theorem 3.1. Consider the posterior distribution Πj( · |DN ) arising from observations (3.1)
in the model (2.3) and prior distributions Πj, j = 1, 2.

(i) If θ0 ∈ Hα(Γβ), α > 3/2, then

∥E1[θ|DN ]− θ0∥L∞(Γβ,ϵ) → 0 in PN
θ0 -probability

with rate | log(CδN )|−σ as N → ∞ for some 0 < σ < 1 and constant C > 0 and where
δN = N−α/(2α+1).

(ii) If θ0 ∈ Ar(Γβ), r > 0, then

∥E2[θ|DN ]− θ0∥L2(Γβ,ϵ) → 0 in PN
θ0 -probability

with rate δσN for some 0 < σ < 1 as N → ∞, and where δN = N−1/2 log(N).

Proof. (i) This is the result of Theorem 2.3.2 [45] and [45, Exercise 2.4.4] whose conditions
are satisfied by Lemma 2.3, 2.4 (i) and by the choice of prior (3.15) for α > 3/2.
(ii) This fact is proven in Appendix C, since we deviate slightly from the setting of Theorem
1.3.2 in [45].

Remark 3.2. Note the continuity of θ 7→ mβ+eθ leaves us with convergence in probability
on the level of β. However, the lack of uniform continuity leaves us without a rate. A
result with the above convergence rates on the level of β is most easily achieved by replacing
β(θ) = mβ + eθ with a smoothened ‘regular link function’, in the sense of [46]. Our concern
is only the well-definedness of the mean. Indeed, Bochner integrability as in (3.18) seems not
straightforward with θ replaced by eθ.
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This theorem justifies and quantifies the use of the Bayesian methodology for the two inverse
problems. Note the theorem does not generalize immediately to the problem for Stokes’
model with for example an L2-norm on a set K ⊂⊂ Γβ in which u ̸= 0 as in [11, Remark 3.7].
Indeed, the estimate includes the pressure p and its normal derivative ∂νp|Γ at Γ. Improving
this estimate to be independent of observations of the pressure remains largely open to the
authors knowledge.

4. Experimental results. In this section, we illustrate the Bayesian methodology for both
the Laplace problem (2.2) for which the theoretical results where proven, and for the Stokes
problem (2.1) which motivated this study.

4.1. General methodology. We consider a simple ground truth of the form

θ0 =

2∑
k=−2

θ0,kϕk

for (θ0,−2, θ0,−1, θ0,0, θ0,1, θ0,2) = (−0.6, 0.7, 2, 0.1,−0.08), and with ϕk(x) = sin(2πkx) for
k > 0, ϕk(x) = cos(2πkx) for k < 0, and ϕ0 = 1. For simplicity, we truncate the prior
series (3.3) at |k| = 2 for both j = 1 and j = 2. Furthermore, we choose mβ = 0. As
the computational domain, we consider the rectangle O = (0, 1) × (0, 0.2) with Γ = Γs =
(0, 1)× {1}, Γ0 = {0} × (0, 0.2) ∪ {1} × (0, 0.2), and Γβ = (0, 1)× {0}. For the Stokes’ model
(2.1), we add a homogeneous Neumann condition on Γ0. The domain is represented by a
triangular mesh consisting of 400 × 50 elements. Forward computations are implemented in
Python using FEniCSx [4]. The code is available at [51].

4.1.1. Synthetic data. The data is generated following (3.1), where we introduce σnoise to
model the noise standard deviation. In the case of the Laplace model, the noisy observations
can be seen in Figure 4.1 for the choice h(x) = 10(sin(12πx) + 1) and σnoise = 0.1. Then the
likelihood function takes the form ℓ̃N (θ) := − 1

2σ2
noise

∑N
i=1 |Yi − G(θ)(Xi)|2V .

4.1.2. MCMC. We sample from the posterior distribution using the preconditioned Crank-
Nicolson MCMC method, see [31]. To speed up the convergence, we employ methods of adap-
tive Monte-Carlo, see for example [28]. Here, we adapt the step size every 1000 iterations
to maintain an acceptance ratio close to a target rate of 0.33 which seems to give reasonable
sample diagnostics, starting at a step size of

√
2γ with γ = 10−7.

For the Stokes model, the underlying PDE is more computationally expensive to solve. For
this reason, we combine the adaptive step size (started this time with γ = 10−3) with a mul-
tilevel Monte Carlo approach, see [16]. In practice, two chains are run in parallel, one on
a coarse mesh consisting of 150 × 30 elements and the other on the fine mesh consisting of
400 × 80 elements. For every proposal, the pCN iteration is first performed on the coarse
mesh, where the likelihood is less expensive to compute. If the proposal is accepted on the
coarse mesh, then the pCN iteration is performed on the fine mesh using the same proposal.
Monte Carlo estimates are performed using only samples of the chain at the fine level. In both
problems, the chain is started close to the ground truth, with a shift drawn from N (0, 0.52)
for each dimension.
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4.2. Laplace problem. Figures 4.2 and 4.3 show the marginals of the posterior distribu-
tion, as well as the posterior mean estimate of the basal drag coefficient for a noise realization
of noise level σnoise = 0.1. For both the Matérn and the squared exponential priors the un-
certainty decreases as N increases. In addition, the reconstruction from the posterior mean
(i.e. β(θ̂), where θ̂ is the empirical posterior mean) visibly converges to the ground truth.
We note that the ground truth is consistently contained in a 95% credible interval. One may
notice a bigger uncertainty on the end points of the interval (at x = 0 and x = 1). This
can be explained by the constraints on the model 2.2, where a Dirichlet boundary condition
forces the solution of the PDE system to be u = 0 on the sides the domain, resulting in a
“loss of information” affecting the reconstruction. For N = 100 observations, the performance
of the Matérn prior and squared exponential prior are comparable. However, for N = 1000,
we observe a narrower credible interval. This effect is particularly visible for the coefficients
corresponding to a “large” frequency, which is expected for the squared exponential prior.

Figures of Markov chains (D.1) for these experiments can be found in Appendix D. As the
number of observations N increases the variance displayed for each chain decreases, matching
what we observe when recovering the marginals.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3
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5
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u

Surface observations, sampled at the covariates X (N=100)

Noisy observations
Noiseless observations

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

u

Surface observations, sampled at the covariates X (N=1000)

Noisy observations
Noiseless observations

Figure 4.1: Surface observations for the Laplace problem. The orange line corresponds to
the noiseless solution of the PDE parameterised with the true coefficients. After selecting
covariates uniformly at random and adding independent Gaussian noise, one obtains the blue
dots: noisy observations mimicking measurements and corresponding to the (Yi)

N
i=1 in 3.1.
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Figure 4.2: Histograms of θ and reconstruction of the drag coefficient β for a Matérn-type
prior (α = 1), with a number of observations of N = 100 and N = 1000 respectively. For the
histograms and the reconstructions, 5000 samples are taken equidistantly from the 500, 000
iterations of the chain after removal of the burn-in (first 100, 000 iterations).
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MCMC results for N=100, squared_exp regularisation
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Figure 4.3: Histograms of θ and reconstruction of the drag coefficient β for a squared expo-
nential prior (r = 1), with a number of observations of N = 100 and N = 1000 respectively.
For the histograms and the reconstructions, 5000 samples are taken equidistantly from the
500, 000 iterations of the chain after removal of the burn-in (first 100, 000 iterations).
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Figure 4.4: Reconstruction of the drag factor β for a squared exponential prior (r = 1), for
the Stokes problem, with a number of observations of N = 100 and N = 1000 respectively.
For reconstruction, we take 1000 samples equidistantly from the fine chain after removal of
the burn-in (first 1000 iterations, out of respectively 9000 and 7000 iterations for N = 100
and N = 1000). The coarse chains respectively consist of 44k and 61k iterations.

4.3. Stokes problem. Going back to the motivating problem for this study, we perform
the same simulations as in Sec. 4.2, this time with the Stokes PDE model (2.1) instead of
(2.2). We choose h(x) = 10((sin(12πx) + 1), 0) and pick ρ = 1 and g = (5, 5). Here, we found
σnoise = 0.5 to be a suitable noise level. We consider only the squared exponential prior, since
this prior shows the most promising theoretical and numerical results for the Laplace problem
and this choice of ground truth.

Similarly as previously, as the number of observations N increases the reconstruction
from the posterior mean gets closer to the ground truth and the uncertainty is reduced. The
marginals of the posterior distribution for these experiments can be found in D.2. Contrary
to the experiments for the Laplace problem, at N = 100 observations the ground truth is not
consistently contained within the 95% credible intervals, which is revised after increasing the
number of observations to N = 1000.
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5. Conclusions. In this paper we considered a Bayesian approach to two inverse Robin
problems with theoretical convergence guarantees as the number of observations increases.
We have motivated to popular and numerically tractable Gaussian priors and show under
appropriate rescaling that each lead to a convergent posterior mean. If the ground true
Robin coefficient is a priori known to be analytic, then the logarithmic convergence rate can
be upgraded to a rate on the form N−τ for some τ > 0. Interesting future work includes
generalizing Theorem 3.1 to the inverse problem for Stokes’ model. In its current form,
Theorem 3.1 allows recovering analytic functions in the space Ar(Γβ). Another interesting
future direction is to generalize this to a larger class of analytic functions on Γβ using Gaussian
processes and a continuous version of Lemma C.1. For ideas in this direction we refer to [55].
Numerical experiments empirically confirmed that the reconstructions of the Robin coefficient
improve as the number of observations increases. The main difficulty in the computations
stems from the number of iterations required for the MCMC, since the likelihood needs to be
evaluated at every step which requires solving a Laplace or Stokes PDE for every proposal of
the parameter vector. In this paper, the pCN scheme was chosen for its simplicity. To speed
up convergence further, one may consider the use of gradient-based MCMC methods.
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Appendix A. Forward regularity.

Proof of Lemma 2.1. (i) Consider the general Stokes’ equation for f ∈ (L2(O))2, h ∈
(H−1/2(Γ))2 and h̃ ∈ (H−1/2(Γβ))

2,

(A.1)

−∆u+∇p = f in O,

∇ · u = 0 in O,

∂νu− pν = h on Γs,

∂νu− pν + βu = h̃ on Γβ.

The corresponding variational form is

(A.2)

∫
O
∇u : ∇v +

∫
Γβ

βu · v =

∫
O
f · v + ⟨h, v⟩− 1

2
, 1
2
,Γs

+ ⟨h̃, v⟩− 1
2
, 1
2
,Γβ

,

where ∇u : ∇v denotes the double dot product of the two matrices, ⟨·, ·⟩− 1
2
, 1
2
,Γs

denotes the

(H−1/2(Γs))
2, (H−1/2(Γs))

2 dual pairing, and where v ∈ Vs := {v ∈ (H1(O))2 : ∇· v = 0}. By
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the generalized Poincaré inequality, see for example [13, Proposition 5.3.4],∫
O
|∇ui|2 +

∫
Γβ

u2i ≥ C(O)∥ui∥2L2(O),

for each i = 1, 2, where ui is the i′th component of the vector field u. It follows that∫
O
∇u : ∇u+

∫
Γβ

βu · u ≥ C(mβ,O)
2∑

k=1

∥ui∥2H1(O),(A.3)

and hence the bilinear form is coercive. It is straightforward to check that it is also bounded,
and likewise that the right-hand side is a bounded linear functional on Vs. By standard
Lax-Milgram theory, there is a unique weak solution u ∈ Vs to (A.1) satisfying

(A.4) ∥u∥(H1(O))2 ≤ C(O,mβ)(∥f∥(L2(O))2 + ∥h∥(H−1/2(Γs))2
+ ∥h̃∥(H−1/2(Γβ))2

).

Note (A.1) is in the form that Theorem IV.7.1 in [12] considers with the compatibility condition
being (A.2) for v = 1. Then there is also a unique solution p ∈ L2(O) to (A.1). In the
following we take some care in bounding this function. Initially de Rhams’ theorem [12,
Theorem IV2.4] gives a pressure term p̃ ∈ L2

0(O) = L2(O)/R unique up to a constant and
satisfying −∆u+∇p̃ = f . Take then the mean-zero solution satisfying

∥p̃∥L2(O) ≤ C(O)∥∇p̃∥H−1(O),(A.5)

= C(O)∥∆u∥H−1(O) + ∥f∥H−1(O),(A.6)

≤ C(O,mβ)(∥f∥(L2(O))2 + ∥h∥(H−1/2(Γs))2
+ ∥h̃∥(H−1/2(Γβ))2

)(A.7)

using [12, Lemma IV.1.9] and (A.4). The proof of Theorem IV.7.1 in [12] shows that p = p̃+C0

is the unique solution to (A.1) matching the boundary conditions. If h ∈ (L2(Γs))
2 and

h̃ ∈ (L2(Γβ))
2, this constant can be bounded as

|C0| ≤ C(O)(∥h∥(L2(Γs))2 + ∥h̃∥(L2(Γβ))2 + ∥β∥L∞(Γβ)∥u∥L2(O)(A.8)

+ ∥∂νu∥H−1/2(∂O) + ∥p̃∥L2(O)),(A.9)

hence if ∥β∥L∞(Γβ) ≤ M , then

(A.10) ∥p∥L2(O) ≤ C(O,mβ,M)(∥f∥(L2(O))2 + ∥h∥(L2(Γs))2 + ∥h̃∥(L2(Γβ))2)

using (A.7).
(ii) The difference (v, q) for v = u1 − u2 and q = p1 − p2 of solutions (u1, p1), (u2, p2) of (2.1)
corresponding to β1 = β(θ1), β2 = β(θ2) is the unique solution of

(A.11)

−∆v +∇q = 0 in O,

∇ · v = 0 in O,

∂νv − qν = 0 on Γs,

∂νv − qν + β1v = u2(β2 − β1) on Γβ.
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Note that [10, Lemma 2.3] implies

∥u2(β2 − β1)∥(L2(Γβ))2 ≤ ∥u2∥(L2(Γβ))2∥β2 − β1∥H1(Γβ),

and hence by (i) above,

∥v∥(H1(O))2 ≤ C(O,mβ)∥u2(β2 − β1)∥(H−1/2(Γβ))2
,(A.12)

≤ C(O,mβ, h, ρ, g)∥β1 − β2∥H1(Γβ).(A.13)

To upgrade this we prove additional smoothness of v near Γ as follows. Define an open set
V ⊂ O that meets Γ, i.e. Γ ⊂ V . Define then the larger set U ⊂ O with V ⊂ U and
U ∩ ∂O ⊂ Γs. We then define the smooth cutoff function η ∈ C∞(U) with η ≡ 1 in V and
supp η ⊂ U (hence η is zero near Γ0 and Γβ). Then (ηv, ηq) solves the system

(A.14)

−∆(ηv) +∇(ηq) = f̃ in U,

∇ · (ηv) = ∇η · v in U,

∂ν(ηv)− (ηq)ν = η(∂νv − qν) + v∂νη on ∂U,

for f̃ = v∆η + 2∇v · ∇η + q∇η ∈ L2(O). Note η(∂νv − qν) + v∂νη = v∂νη ∈ (H1/2(∂U))2.
Then Theorem IV.7.1 of [12] states that

∥ηv∥(H2(U))2 ≤ C(U)(∥f̃∥(L2(U))2 + ∥∇η · v∥H1(U) + ∥v∂νη∥(H1/2(∂U))2).

Since η ≡ 1 in V and using (A.10), we have

∥v∥(H2(V ))2 ≤ C(O,mβ,M, h, ρ, g)

By Sobolev interpolation, there exists α, α̃ > 0 such that (denoting vi the i′th component of
v)

2∑
i=1

∥vi∥(H7/4(V ))2 ≤
2∑

i=1

∥vi∥α(H1(V ))2∥vi∥
α̃
(H2(V ))2 ,(A.15)

≤ C(O,mβ, h, ρ, g)

2∑
i=1

∥vi∥α(H1(V ))2 ,(A.16)

≤ C(O,mβ, h, ρ, g)∥β1 − β2∥αH1(Γβ)
.(A.17)

Now we argue that θ 7→ eθ is locally Lipschitz continuous in H1(Γβ), i.e.

(A.18) ∥β1 − β2∥H1(Γβ) ≤ C(Γβ,M)∥θ1 − θ2∥H1(Γβ).

Note first by the mean value theorem that

∥eθ1 − eθ2∥L∞(Γβ) ≤ eM∥θ1 − θ2∥L∞(Γβ).
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If Γβ ⊂ R it is clear that

∥β1 − β2∥H1(Γβ) ≲ ∥eθ1 − eθ2∥L2(Γβ) + ∥∇(eθ1)−∇(eθ2)∥L2(Γβ),(A.19)

≤ ∥eθ1 − eθ2∥L2(Γβ) + ∥eθ1∇θ1 − eθ2∇θ2∥L2(Γβ),(A.20)

≤ ∥eθ1 − eθ2∥L2(Γβ) + ∥∇θ1∥L2(Γβ)∥e
θ1 − eθ2∥L∞(Γβ)(A.21)

+ ∥eθ2∥L∞(Γβ)∥∇θ1 −∇θ2∥L2(Γβ),(A.22)

≤ C(M)∥θ1 − θ2∥H1(Γβ),(A.23)

using also the continuous Sobolev embedding H1(Γβ) ⊂ C(Γβ). By the definition of Sobolev
spaces on boundaries, see [27, (1,3,3,2)], the case where Γβ is a smooth curve follows in the
same way. Indeed, this amounts to showing

∥β1 ◦ ϕ− β2 ◦ ϕ∥H1(I) ≤ C∥θ1 ◦ ϕ− θ2 ◦ ϕ∥H1(I)

for any smooth parametrization ϕ : I → R2 of a section of Γβ with I an open subset of R.
In this case we just repeat the argument above. Finally, combining (A.15) with (A.18) and a
Sobolev embedding it follows that

∥u1 − u2∥(C(Γ))2 ≲
2∑

i=1

∥vi∥C(Γ) ≤ C(O,mβ, h, ρ, g,M)∥θ1 − θ2∥αH1(Γβ)
.

(iii) This is proved in Proposition 3.3 of [10] for a stationary Neumann condition g(x, t) = h(x)
in (H1/2(Γs))

2.

Proof of Lemma 2.2. Consider more generally the equation (2.2) for an inhomogeneous
Robin condition ∂νu+ βu = h̃ ∈ H1/2(Γβ). The corresponding variational form is

(A.24)

∫
O
∇u · ∇v +

∫
Γβ

βuv =

∫
Γ
hv +

∫
Γβ

h̃v,

for v ∈ V := {u ∈ H1(O) : u|Γ0 = 0}. By the generalized Poincaré inequality, see for example
[13, Proposition 5.3.4], ∫

O
|∇u|2 +

∫
Γβ

u2 ≥ C(O)∥u∥2L2(O),

hence the left-hand side of (A.24) is a coercive bilinear form on V . Since h and h̃ are H1/2-
functions, the right-hand side is a bounded linear functional on V . By standard Lax-Milgram
theory, there is a unique weak solution u ∈ V to (A.24) satisfying

(A.25) ∥u∥H1(O) ≤ C(O,mβ)(∥h∥H−1/2(Γ) + ∥h̃∥H−1/2(Γβ)
).

In particular, (2.4) is satisfied.

Lemma A.1. For β ∈ H1(Γβ) with ∥β∥H1(Γβ) ≤ M , h as in Assumption 3, and any 0 <

s < 1
2 there exists a constant C = C(O,mβ,M,Mh, s) such that

(A.26) ∥u∥H1+s(O) ≤ C,

where u solves (2.2).
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Proof. Far away from the ‘corners’ (where different boundary conditions meet) the esti-
mate is straightforward using standard techniques. Near the corners the estimate is essen-
tially due to [27], although we are aided by [8]. Since βu ∈ H1/2(Γβ) by Lemma 2.3 in [10]
(u ∈ H1/2(Γβ) by Lemma 2.2 and β ∈ H1(Γβ) by assumption), the trace theorem in [8, Theo-
rem 2.1] provides a function v ∈ H2(O) such that ∂νv = h on Γ, v = 0 on Γ0 and ∂νv = −βu
on Γβ, i.e. w = u− v solves

(A.27)

∆w = −∆v in O,

∂νw = 0 on Γ,

w = 0 on Γ0,

∂νw = 0 on Γβ.

Indeed this trace operator T : H2(O) → H1/2(Γ) × H3/2(Γ0) × H1/2(Γβ), defined by u 7→
(∂νu|Γ, u|Γ0 , ∂νu|Γβ

), is bounded [39] and surjective [8, Theorem 2.1], so there exists a contin-
uous right-inverse, see the general remark after Theorem 8.3 in [39]. Then

∥v∥H2(O) ≤ C(∥h∥H1/2(Γ) + ∥βu∥H1/2(Γβ)
),(A.28)

≤ C(∥h∥H1/2(Γ) + ∥β∥H1(Γβ)∥u∥H1/2(Γβ)
),(A.29)

The regularity decomposition of [8, Theorem 3.11] decomposes the unique solution w ∈ H1(O)
as

w = wr +
J∑

j=1

cjSj ,

where wr ∈ D2 := {w ∈ H2(O) : ∂νw = 0 on Γ ∪ Γβ, w = 0 on Γ0}, cj = cj(f) are functionals
of f = −∆v in L2(O), see [8, Remark 3.1.2] and Sj are certain ‘singular’ function supported
near the corners. They depend only on the geometry of O, see (3.2.26) and Proposition 3.2.3
in [8], and satisfy ∆Sj ∈ L2(O) and Sj ∈ H1+s(O) if and only if s < 1/2. Since ∆ : D2 → L2 is
injective by uniqueness of solutions to (A.27), it is bijective onto its image. The open mapping
theorem then states that there exists a constant C > 0 such that ∥wr∥H2(O) ≤ C∥∆wr∥L2(O),
and hence

∥wr∥H2(O) ≤ C∥∆wr∥L2(O),(A.30)

≤ C(∥∆v∥L2(O) +
J∑

j=1

|cj |∥∆Sj∥L2(O)),(A.31)

≤ C(O)∥v∥H2(O).(A.32)

Combining (A.32) with (A.28) and using the standard estimate of ∥u∥H1(O) we have

∥u∥H1+s(O) ≤ C(O)∥v∥H2(O) + ∥
J∑

j=1

cjSj∥H1+s(O),(A.33)

≤ C(O, s)∥v∥H2(O) ≤ C.(A.34)

with C = C(O,Mh,M,mβ).
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Proof of Lemma 2.3. (i) is an immediate consequence of a Sobolev embedding and Lemma
A.1.
(ii) The difference v = u1 − u2 of solutions u1, u2 corresponding to β1 = β(θ1), β2 = β(θ2) is
the unique solution to the equation

(A.35)

∆v = 0 in O,

∂νv = 0 on Γ,

v = 0 on Γ0,

∂νv + β1v = u2(β2 − β1) on Γβ.

Since u2(β2 − β1) ∈ H−1/2(Γβ), we use the estimate (A.25) with h = 0 and h̃ = u2(β2 − β1)
to the effect that

∥v∥H1(O) ≤ C(O,mβ)∥u2(β2 − β1)∥H−1/2(Γβ)
,(A.36)

≤ C(O,mβ)∥β1 − β2∥L∞(Γβ),(A.37)

≤ C(O,mβ,M)∥θ1 − θ2∥L∞(Γβ),(A.38)

using a simple mean value theorem argument. Boundedness of the trace operator implies (ii).
(iii) By Sobolev interpolation, there exists α, α̃ > 0 such that

∥v∥H1+1/8(O) ≤ ∥u1 − u2∥αH1(O)∥u1 − u2∥α̃H1+1/4(O)
,(A.39)

≤ C(O,mβ,M,Mh)∥θ1 − θ2∥αL∞(Γβ)
,(A.40)

where we used (A.36) and Lemma A.1. Then boundedness of the trace operator and a Sobolev
embedding give the wanted result.

Appendix B. Conditional stability estimates.

Proof of Lemma 2.4. Notice first that the mean value theorem for θ̃(x) ∈ [θ1(x), θ2(x)],

β1 − β2 = eθ1 − eθ2 = eθ̃(θ1 − θ2),

implies
∥θ1 − θ2∥Lq(Γβ) ≤ C(M)∥β1 − β2∥Lq(Γβ),

for any 1 ≤ q ≤ ∞, since ∥θ̃∥L∞(Γβ) ≤ M in either case of our assumptions. It is then sufficient
to consider stability estimate on the level of β.
(i) Theorem 2.2 of [1] states that

(B.1) ∥β1 − β2∥L∞(Γβ,ϵ) ≤ K̃| log(∥G(θ1)− G(θ2)∥L∞(Γ))|−σ

for some K̃ > 0 and 0 < σ < 1 dependent on O, h, M1 and ϵ. Sobolev embedding and
interpolation results gives for some 0 < δ < 1

4

∥G(θ1)− G(θ2)∥L∞(Γ) ≤ ∥G(θ1)− G(θ2)∥
H

1
2+δ(Γ)

,(B.2)

≤ ∥G(θ1)− G(θ2)∥pL2(Γ)
∥G(θ1)− G(θ2)∥1−p

H
1
2+2δ(Γ)

,(B.3)

≤ M(O,mβ,Mβ,Mh, δ)∥G(θ1)− G(θ2)∥pL2(Γ)
,(B.4)
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where p = 2δ
1+4δ , and where we used Lemma A.1. Inserting this into (B.1) for some fixed δ

gives (i) for K = K(K̃,M).
(ii) We follow the argument of [32, Section 3], which relies on two auxillary results:

1. minx∈Γβ,ϵ
u(x) ≥ η, where η > 0 is a constant dependent on ϵ, but independent of the

imposed boundary condition on Γ.
2. the solution u to (2.2) can be analytically extended in a fixed neighborhood U of Γβ

with ∥u∥H2(U) ≤ C(M), where it is also harmonic.
In the presence of these two results, the estimate follows exactly as in [32, Theorem 3.1] with
K > 0 and 0 < σ < 1 depending only on M , ϵ, O, Mh, M , and we will not repeat it here.

(1) Note first that u(x) ≥ η for any x ∈ Γβ,ϵ, where η > 0 is some constant depending
on ϵ, but independent of h. This follows from continuity of u on O and maximum principles
for harmonic functions as in [32, Lemma 3.2]. Indeed, one can conclude that u ≥ 0 everywhere
on O by a standard contradiction argument as in [47, Theorem 9, Chap. 2]. Then [15, Lemma
2] concludes positivity on Γβ using Hopf’s lemma. The compactness argument of [32, Lemma
3.2] is then adapted to our case to show u(x) ≥ η for any x ∈ Γβ,ϵ.

(2) Corollary 1.1 in [40, Chapter 8] shows that the solution u to (2.2) is analytic near and up
to Γβ. For δ small and Ũ := O ∩ ((0, 1)× (−δ, δ)) it further states that for k = (k1, k2)

sup
z∈Ũ

|∂ku(z)| ≤ C(M)(k!)C(M)|k|,

for |k| ∈ N0 and where k! = k1!k2!. Then the Taylor series of u in (α, 0) for any α ∈ [0, 1] has
a convergence radius of at least r = C(M)−1. Indeed, for any (x, y) with distance at most r
to (α, 0) we have

u(z) = u(x, y) =
∞∑

n1=0

∞∑
n2=0

∂nu(α, 0)

n!
(x− α)n1yn2 ,(B.5)

≤ C(M)

∞∑
n1=0

∞∑
n2=0

C(M)|n|(x− α)n1yn2 ,(B.6)

≤
∞∑

n1=0

∞∑
n2=0

(C(M)r)|n|(B.7)

where we denoted n = (n1, n2). Since a power series is analytic in the interior of its re-
gion of convergence, u is analytic in sufficiently small balls centered in (α, 0). A cover-
ing argument then gives a unique analytic extension in for example (0, 1) × (−δ̃, δ̃)) with
δ̃ = min(δ, (2C(M))−1). Repeating (B.7) for ∂ku(z) for k = 1, 2, we note that

(B.8) ∥u∥C2((0,1)×(−δ̃,δ̃)) ≤ C(M).

We also conclude ∆u = 0 in O∪((0, 1)×(−δ̃, δ̃)). Indeed, ∆u is analytic in O∪((0, 1)×(−δ̃, δ̃))
and coincides with 0 on O and hence is zero in O∪ ((0, 1)× (−δ, δ)) by uniqueness of analytic
functions.
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Using the general property of uniform analyticity up to the boundary we avoid the argument in
[32, Theorem 3.1], which uses a reflection formula provided by [9]. Inspection of this reflection
formula reveals that we do need a condition like θi ∈ R2(M), i = 1, 2, to reflect the solution
to a possible small but fixed neighborhood. We can generalize our proof to stability estimates
for any analytic Γβ for d = 2 and d = 3.

Appendix C. Consistency for analytic functions. The result of Theorem 3.1 is derived
from the property of posterior consistency, see [25, Chapter 8] for a general treatment. In the
following we address posterior consistency for analytic functions. We start by establishing a
relationship between the space Ar(Γβ) and the set of functions R2(M). We prove a result,
which is well-known and particularly simple in the setting of the m-dimensional [−π, π)-
torus Tm. Analogously, it generalizes to function spaces defined by the decay of the Fourier
transform by the Paley-Wiener theorem, see [49, Theorem IX.13]. We consider m ≥ 1, since it
follows in much the same way as m = 1. To this end, let Γβ be an open compactly embedded
subset of [−π, π)m for m ∈ N. Let {ϕk}k∈Zm be a real orthonormal Fourier basis and define
for fk = ⟨f, ϕk⟩L2(Tm) the more general space

Ar,m(Γβ) := {f = g|Γβ
: g ∈ Ar(Tm)}

with

Ar(Tm) = {f ∈ L2(Tm) : ∥f∥2r,Tm :=
∑
k∈Zm

|fk|2er|k| < ∞}

and the corresponding quotient norm of (3.8), denoted ∥ · ∥r,m. Note we write |k| := |k1| +
. . .+ |km| and not for example ∥k∥2 to make a sharper result. We keep the definition of R2(M)
as in Assumption 2, and note that the condition

sup
x∈Γβ

|(∂kβ)(x)| ≤ M(k!)M |k|

should be understood in multi-index notation (i.e. ∂k = ∂k1
x1

. . . ∂km
xm

and k! = k1! . . . km!)
and for each |k| ∈ N0. Again this is closely related to the usual characterization of analytic
functions on Γβ, see [36, Proposition 2.2.10]. We also denote d∞(x, S) := infy∈S ∥x − y∥∞,
the sup-norm distance of the point x to the set S.

Lemma C.1. Suppose f ∈ Ar,m(Γβ), r > 0 with ∥f∥r ≤ M0. Then,
(i) there exists an analytic extension of f to Gr := {z ∈ C : d∞(z,Γβ) ≤ r

4} with

(C.1) sup
z∈Gr

|f(z)| ≤ M1

for some M1 = M1(r,M0,m).

(ii) supx∈Γβ

∣∣(∂k)f(x)
∣∣ ≤ M2(k!)M

|k|
2 for some M2 = M2(M1, r).

(iii) f ∈ R2(M) for some M = M(M1).

Proof. We complete the proof for m = 2 and note that the case for other m ∈ N follows
in the same way.
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(i) By assumption f is the restriction of a function in Ar(T2) with ∥f∥r,T2 ≤ M0, which

implies for the usual Fourier coefficients f̂k := 1
2π ⟨f, e

ik·x⟩L2(T2)

|f̂k| ≤ M0e
− r

2
|k|.

Define the ‘polycylinder’

Pρ = {w ∈ C2 : |w1| < eρ/2, |w2| < eρ/2}.

Take a compact set K ⊂ Pr, then for any w ∈ K, the family of functions {f̂kwk}k∈N2
0
(where

wk = wk1
1 wk2

2 ) is bounded. Then by the argument of [50, Corollary 1.5.9.2], the function

w 7→
∑

k∈N2
0
f̂kw

k is complex analytic in Pr. In fact, by the same argument the four power
series

(C.2) w 7→
∑
k∈N2

0

f̂±k1,±k2w
k

are complex analytic in Pr. Further, for all w ∈ P r/2

(C.3)

∣∣∣∣∣∣
∑
k∈N2

0

f̂±k1,±k2w
k

∣∣∣∣∣∣ ≤
∑
k∈N2

0

|f̂±k1,±k2 ||w|k ≤ C(M0, r)

Now decompose the following Laurent series into four similar power series as∑
k∈Z2

f̂kw
k =

∞∑
k1=1

∞∑
k2=0

f̂−k1,k2w
−k1
1 wk2

2 ,(C.4)

+
∞∑

k1=1

∞∑
k2=1

f̂−k1,−k2w
−k1
1 w−k2

2 ,(C.5)

+

∞∑
k1=0

∞∑
k2=0

f̂k1,k2w
k1
1 wk2

2 ,(C.6)

+

∞∑
k1=0

∞∑
k2=1

f̂k1,−k2w
k1
1 w−k2

2 .(C.7)

Consider first the first term. This has the form w 7→ g(w−1
1 , w2) for a function g1 on the form

(C.2) complex analytic in Pρ. The function w 7→ (w−1
1 , w2) is complex analytic in for example

{w ∈ C2 : w1 > e−r/2, w2 < er/2}, since w 7→ wi is complex analytic everywhere and w 7→ w−1
i

is complex analytic for wi away from zero, i = 1, 2, see [50, Proposition 1.2.2]. Then also
w 7→ g1(w

−1
1 , w2) is complex analytic in {w ∈ C2 : w1 > e−r/2, w2 < er/2}, since compositions

of analytic functions are analytic, see again [50, Proposition 1.2.2]. Continuing this argument
for each term above, we find that

g(w) :=
∑
k∈Z2

f̂kw
k
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is complex analytic in the ‘polyannulus’ {w ∈ C2 : e−r/2 < wi < er/2, i = 1, 2}. Using that
z 7→ ez is entire on C and again the composition rule, we find that

z 7→ g(eiz1 , eiz2) =
∑
k∈Z2

f̂ke
ik·z

is complex analytic in {z ∈ C2 : |Im(zi)| < r/2, i = 1, 2}. Moreover, since (C.3) is a bound for
each of the four power series which make up f and Gr is a subset of the strip of where it is
defined, we conclude

(C.8) sup
z∈Gr

|f(z)| ≤ M1(r,M0).

(ii) The Cauchy integral inequality in [50, Theorem 1.3.3] gives the estimate

sup
|zi|<r/4,i=1,2

|(∂kf)(z)| ≤ (k!)(r/4)|k| sup
|zi|=r/4,i=1,2

|f(z)|.

Since Γβ is compact, we can cover it by real translations of {z ∈ C2 : |zi| < r/4, i = 1, 2} and
conclude by (C.8) that there exists a constant M2 = M2(M1, r) such that

sup
x∈Γβ

|(∂kf)(x)| ≤ M2(k!)M
|k|
2 .

(iii) Since z 7→ ez is entire, also z 7→ ef(z) is complex analytic inGr with a bound supz∈Gr
|ef(z)| ≤

eM1 . Repeating the same arguments as of (ii) we conclude that f ∈ R2(M) for some
M = M(M1).

We now return to the question of consistency, which involves precise statements on the
prior we use. Since Π̃2 is a Gaussian measure in C(Γβ), a covering number bound of the unit
norm-ball in the RKHS H2 = Ar(Γβ), yields a bound on the measure of small norm balls,
see [38]. To make use of this, we define the notion of covering numbers as follows. Let the
covering number N(A, d, ρ) for A ⊂ X of some space X endowed with a semimetric d, denote
the minimum number of closed d-balls {x ∈ X : d(x0, x) ≤ ρ} with center x0 ∈ A and radius
ρ > 0 needed to cover A, see for example [25, Appendix C] or [26, Section 4.3.7]. When d is
replaced by a norm, we mean the metric induced by the norm. The following consequence of
[25, Proposition C.9] allows us to bound the unit norm ball of Ar(Γβ).

Lemma C.2. The class A(M1) of all functions f : [0, 1]m → R that can be extended to
a complex analytic function on Gr with supz∈Gr

|f(z)| ≤ M1 for some M1 > 0 and r > 0,
satisfies for all ρ > 0 sufficiently small

(C.9) logN(A(M1), ∥ · ∥∞, ρ) ≤ C(r,m,M1) log(ρ
−1)1+m.

Proof. Proposition C.9 in [25] states that

logN(A(1), ∥ · ∥∞, ρ) ≤ C(m)r−m log(ρ−1)1+m

for all 0 < ρ < 1/2. Since ∥ · ∥∞ ≤ ∥ · ∥C([0,1]m) [26, eq. (4.172)] gives

logN(A(1), ∥ · ∥∞, ρ) ≤ logN(A(1), ∥ · ∥C([0,1]m), ρ).
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Then, combining the two last displays with [26, eq. (4.171)] we have

logN(A(M1), ∥ · ∥∞, ρ) = logN(A(1), ∥ · ∥∞, ρM−1
1 ),(C.10)

≤ logN(A(1), ∥ · ∥C([0,1]m), ρM
−1
1 ),(C.11)

≤ C(r,m) log(M1ρ
−1)1+m.(C.12)

By the convexity of x 7→ x1+m, m ≥ 1, we have the inequality (x+y)m+1 ≤ 2m(xm+1+ym+1)
for x, y ∈ R. Then for ρ small enough,

log(M1ρ
−1)1+m ≤ C(M1,m) log(ρ)1+m,

and hence (C.9) is satisfied.

Since we constructed Π2 for m = 1, we consider from now only this case, although every-
thing generalizes to higher dimensions. See also Remark C.5 below. To this end, denote the
unit norm ball of H2 = Ar(Γβ) by

BH2 := {f ∈ H2 : ∥f∥H2 ≤ 1}.

Note that BH2 ⊂ A(M1) for some M1 = M1(r) by Lemma C.1 (i).

Lemma C.3. Let ϕ(ρ) := − log Π̃2(θ ∈ C(Γβ) : ∥θ∥∞ ≤ ρ) where Π̃2 is dependent on r > 0.
For all ρ > 0 sufficiently small,

(C.13) ϕ(ρ) ≤ C(r) log(ρ−1)2.

Proof. We follow [55, Lemma 4.6]. Theorem 1.2 of [38] initially gives the estimate

(C.14) ϕ(ρ) ≤ C(r,M1)ρ
−2,

for all ρ > 0 sufficiently small, since

logN(BH2 , ∥ · ∥∞, ρ) ≤ C(r)ρ−1,

for all ρ > 0 sufficiently small by Lemma C.2 for m = 1. The first display of the proof of
Lemma 4.6 in [55] provides the inequality

ϕ(2ρ) ≤ logN(BH2 , ∥ · ∥∞, 2ρ[2ϕ(ρ)]−1/2).

Combining this with (C.14) then gives (C.13).

The following result corresponds to Theorem 2.2.2 of [45] for rescaled Gaussian priors for
analytic functions. We define dG(θ1, θ2) := ∥G(θ1)− G(θ2)∥L2(Γ) for all θ1, θ2 ∈ Θ.

Lemma C.4. Let θ0 ∈ H2 = Ar(Γβ), r > 0, and Π2 be as defined in (3.15). Set,

(C.15) δN = N−1/2 log(N).

Let U > 0 be large enough depending on Π̃2, r and such that ∥G(θ0)∥C(Γ) ≤ U . Then, there
exists Borel measurable sets ΘN such that
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(i) Π(θ : dG(θ, θ0) ≤ δN , ∥G(θ)∥C(Γ) ≤ U) ≥ e−C1Nδ2N for some C1 > 0,

(ii) Π2(Θ
c
N ) ≤ e−C2Nδ2N for C2 > C1 + 2.

(iii) logN(ΘN , dG ,m0δN ) ≤ C(C2, r)Nδ2N for m0 > 0 large enough
for all N sufficiently large.

Proof. First we give the form of ΘN . Define BH2(δ) and B∞(δ) to be the closed norm
balls of radius δ > 0 in H2 and C(Γβ), respectively. That is,

BH2(δ) := {f ∈ H2 : ∥f∥H2 ≤ δ},(C.16)

B∞(δ) := {f ∈ C(Γβ) : ∥f∥∞ ≤ δ},(C.17)

Recall, also that BH2(M0) ⊂ A(M1) for some M1 = M1(r,M0) by Lemma C.1 (i). Then we
take

(C.18) ΘN := (BH2(M) +B∞(MδN )) ∩R2(M).

for M > 0 sufficiently large determined by (ii) below.

We also recall the following triangle inequality fact needed for (ii) below: a CδN -covering
of BH2(M) is a (M + C)δN -covering of BH2(M) +B∞(MδN ) so that

(C.19) N(BH2(M) +B∞(MδN ), ∥ · ∥∞, (M + C)δN ) ≤ N(BH2(M), ∥ · ∥∞, CδN ).

This implies for C̃ large enough that

(C.20) N(ΘN , ∥ · ∥∞, C̃δN ) ≤ N(BH2(M), ∥ · ∥∞, (C̃ −M)δN ).

In addition, we will use repeatedly below that

κN,2 =
1√
NδN

.

(i) We proceed as in [45, Theorem 2.2.2]. Recall that Π̃2(Aq(Γβ)) = 1 for any 0 < q < r.
Hence also Π2(Aq(Γβ)) = 1. Fernique’s theorem [26, Theorem 2.1.20] initially gives that
E[∥θ̃2∥q] ≤ D for some constant D depending only on the prior Π̃2, and next

Π2(θ : ∥θ∥q > M0) = Π̃2(θ̃ : ∥θ̃∥q > M0

√
NδN ),(C.21)

≤ Π̃2(θ̃ : ∥θ̃∥q − E[∥θ̃∥q] >
1

2
M0

√
NδN ),(C.22)

≤ e−CM2
0Nδ2N ,(C.23)

for some sufficiently large constant M0 = M0(D) and some constant C = C(Π̃2). By Lemma
C.1, this implies

(C.24) Π2(θ : ∥θ∥H1(Γβ) > M1) ≤ e−CM2
0Nδ2N ≤ 1

2
,
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for M0 large enough depending on C and M1 = M1(M0, r). Note we have

∥θ − θ0∥H1(Γβ) ≤ M1 ⇒ ∥θ∥H1(Γβ) ≤ M1 + ∥θ0∥H1(Γβ) ≡ M̄,

which by Lemma 2.3 implies ∥G(θ)∥C(Γ) ≤ U = U(M̄), since

∥eθ∥H1(Γβ) ≲ ∥eθ∥∞(1 + ∥θ∥H1(Γβ)).

Using again Lemma 2.3 and Corollary 2.6.18 [26] permitted since θ0 ∈ H2 and Π2(Θ) = 1, we
get

Π2(dG(θ, θ0) ≤ δN , ∥G(θ)∥C(Γ) ≤ U)(C.25)

≥ Π2(dG(θ, θ0) ≤ δN , ∥θ − θ0∥H1(Γβ) ≤ M1),(C.26)

≥ Π2(∥θ − θ0∥∞ ≤ K−1δN , ∥θ − θ0∥H1(Γβ) ≤ M1),(C.27)

≥ e
− 1

2
∥θ0∥2H2,N Π2(∥θ∥∞ ≤ K−1δN , ∥θ∥H1(Γβ) ≤ M1),(C.28)

≥ e−C(θ0)κ
−2
N,2Π2(∥θ∥∞ ≤ K−1δN )Π2(∥θ∥H1(Γβ) ≤ M1),(C.29)

where we used the Gaussian correlation inequality, see [45, Theorem 6.2.2], and the relation
∥θ0∥H2,N

= κ−1
N,2∥θ0∥H2 for the last line. We also note that K depends on M1. Lemma C.3

implies

− log Π2(θ : ∥θ∥∞ ≤ K−1δN ) = − log Π̃2(θ̃ : ∥θ̃∥L∞(Γβ) ≤ κ−1
N,2K

−1δN )(C.30)

≤ C(r) log

(
KκN,2

δN

)2

,(C.31)

= C(r) log
(
K
√
N log(N)−2

)2
,(C.32)

≤ C(r)

[
log(K) +

1

2
log(N)− 2 log(log(N))

]2
,(C.33)

≤ C(K, r) log(N)2,(C.34)

≤ C(K, r)Nδ2N ,(C.35)

for a sufficiently large constant C = C(K, r). Equation (C.24) shows

Π2(θ : ∥θ∥H1(Γβ) ≤ M1) ≥ 1− 1

2
=

1

2
.

The three last displays shows (i) for (C.15) and a constant C1 = C1(θ0,K,M1, r).
(ii) Lemma C.1 implies there exists M = M(q,M0) such that

{f ∈ Aq(Γβ) : ∥f∥q ≤ M0} ⊂ R2(M),

and hence by (C.21) we can pick M0 large enough dependent on C2 such that

(C.36) Π2(R2(M)c) ≤ 1

2
e−C2Nδ2N .



30 AKSEL K. RASMUSSEN, FANNY SEIZILLES, MARK GIROLAMI, IEVA KAZLAUSKAITE

We simply pick q = r/2 to fix constants. Then it suffices to prove

(C.37) Π2(BH2(M) +B∞(MδN )) ≥ 1− 1

2
e−C2Nδ2N .

We prove the stronger bound

(C.38) Π2(BH2(M) +B∞(MδN )) ≥ 1− e−2C2Nδ2N .

By similar computations as with (C.35) for M ≥ 1, we find

− log Π2(θ : ∥θ∥∞ ≤ MδN ) ≤ C(r) log(δ−1
N ),(C.39)

≤ C(r)(1/2 log(N)− log log(N)),(C.40)

≤ 2C2 log(N)2,(C.41)

≤ 2C2Nδ2N ,(C.42)

for any given C2 > 0 and N sufficiently large. As in [45, Theorem 2.2.2] we denote

BN = −2Φ−1(e−2C2Nδ2N ),

where Φ is the standard normal cumulative distribution function. Then by [25, Lemma K.6]
we have

BN ≤ 2

√
2 log(e2C2Nδ2N ) ≤ 4

√
C2

√
NδN .

Then for M > 4
√
C2 such that BN ≤ M

√
NδN we use the isoperimetric inequality [26,

Theorem 2.6.12] to conclude that

Π2(BH2(M) +B∞(MδN )) = Π̃2(BH2(M
√
NδN ) +B∞(M

√
Nδ2N )),(C.43)

≥ Π̃2(BH2(BN ) +B∞(M
√
Nδ2N )),(C.44)

≥ Φ(Φ−1[Π̃2(B∞(M
√
Nδ2N ))] +BN ),(C.45)

≥ Φ(Φ−1[e−2C2Nδ2N ] +BN ),(C.46)

= Φ(−Φ−1[e−2C2Nδ2N ]),(C.47)

= 1− Φ(Φ−1[e−2C2Nδ2N ]),(C.48)

= 1− e−2C2Nδ2N ,(C.49)

using also Φ(−x) = 1− Φ(x).
(iii) We recall that BH2(M) ⊂ A(M1) for some M1 = M1(M, r) by Lemma C.1 so that Lemma
C.2 gives

logN(BH2(M), ∥ · ∥∞, δN ) ≤ C(r,M) log(δ−1
N )2,(C.50)

≤ C(r,M) (1/2 log(N)− log log(N))2 ,(C.51)

≤ C(r,M)Nδ2N ,(C.52)
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for N large enough. Then using Lemma 2.3 with m0 = m0(K,M) sufficiently large and (C.20)
we get

logN(ΘN , dG ,m0δN ) ≤ logN(ΘN , ∥ · ∥∞,K−1m0δN ),(C.53)

≤ logN(BH2(M), ∥ · ∥∞, (K−1m0 −M)δN ),(C.54)

≤ C(r,M)Nδ2N ,(C.55)

Note M depends only on r and C2 through M0.

Remark C.5. Extending Lemma C.3 and C.4 to m > 1 and other exponential decay is
straightforward. Indeed, define a Gaussian prior by the restriction to Γβ ⊂ [−π, π)m of the
random series

(C.56) θ̃2 =
∑
k∈Zm

gke
− r

2
|k|ϕk, gk

i.i.d∼ N(0, 1).

This is an element of Aq,m(Γβ) a.s for q < r and its RKHS is H2 = Ar,m(Γβ). Then Lemma
C.3 follows in the same way by noting BH2 ⊂ A(M1) for some M1 = M1(r) by Lemma C.1
(i). Given a Lipschitz continuous forward map G, Lemma C.4 follows for δN = N−1/2 log(N)ζ

for some exponent ζ dependent on m.

Proof of 3.1 (ii). By Lemma C.4, conditions (1.32) and (1.33) of Theorem 1.3.2 [45] are
satisfied for the choice (C.18) of ΘN . Lemma C.4 (ii) and the bound on the Hellinger distance
h(pθ, pϑ) ≤ 1

2dG(θ, ϑ), see [45, Proposition 1.3.1], implies

(C.57) N(Θ̃N , h,
1

2
m0δN ) ≤ N(ΘN , dG ,m0δN ) ≤ eC(C2,r)Nδ2N

hence for all ε > 2m0δN
N(Θ̃N , h,

ε

4
) ≤ eC(C2,r)Nδ2N ,

with

Θ̃N := {pθ : θ ∈ ΘN}.

Note the right-hand side of (C.57) is independent of such ε. Setting ε = mδN for m > 2m0,
Theorem 7.1.4 of [26] gives the existence of statistical tests ΨN : (R×Γ)N → {0, 1} satisfying

PN
θ0 (ΨN = 1) → 0,

as N → ∞, and

sup
θ∈ΘN :h(pθ,pθ0 )>mδN

EN
θ (1−ΨN ) ≤ e−κNδ2N

for m large enough also depending on C(C2, r) and κ. Then the proof of Theorem 1.3.2 [45]
implies that for all 0 < b < C2 − C1 − 2 we can choose C0 = C0(C1, C2, r,m0, b, U) large
enough such that

PN
θ0

(
ΠN (θ ∈ ΘN : dG(θ, θ0) ≤ C0δN |DN ) ≤ 1− e−bNδ2N

)
→ 0.
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Lemma 2.4 (ii) implies

{θ ∈ ΘN : dG(θ, θ0) ≤ C0δN} ⊂ {θ ∈ ΘN : ∥θ − θ0∥L2(Γβ,ϵ) ≤ KCσ
0 δ

σ
N}

so that we also have

PN
θ0

(
ΠN (θ ∈ ΘN : ∥θ − θ0∥L2(Γβ,ϵ) ≤ KCσ

0 δ
σ
N |DN ) ≤ 1− e−bNδ2N

)
→ 0.

Then the argument of Theorem 2.3.2 [45] applies in the same way here to the effect that

∥E2[θ|DN ]− θ0∥L2(Γβ,ϵ) → 0 in PN
θ0 -probability

with rate δσN as N → ∞.

Appendix D. Additional figures from experiments.
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Figure D.1: Chains from the MCMC from the Laplace problem with respectively Matérn
regularisation and N = 100 and squared exponential regularisation and N = 1000. The
method used is adaptive Monte Carlo as described in 4.1.2, with a total of 500k iterations.
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Figure D.2: Posterior densities from the Stokes experiments 4.3, constructed using 1000 sam-
ples taken equidistantly from the chain after removal of the burn-in.
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