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Abstract

We consider the problem of testing whether a single coefficient is equal to zero in linear models when
the dimension of covariates p can be up to a constant fraction of sample size n. In this regime, an impor-
tant topic is to propose tests with finite-population valid size control without requiring the noise to follow
strong distributional assumptions. In this paper, we propose a new method, called residual permutation
test (RPT), which is constructed by projecting the regression residuals onto the space orthogonal to the
union of the column spaces of the original and permuted design matrices. RPT can be proved to achieve
finite-population size validity under fixed design with just exchangeable noises, whenever p < n/2.
Moreover, RPT is shown to be asymptotically powerful for heavy tailed noises with bounded (1 + ¢)-th
order moment when the true coefficient is at least of order n=*/(1+%) for ¢ € [0, 1]. We further proved
that this signal size requirement is essentially rate-optimal in the minimax sense. Numerical studies con-
firm that RPT performs well in a wide range of simulation settings with normal and heavy-tailed noise
distributions.

Keywords: distribution-free test, permutation test, finite-population validity, heavy tail distribution,
high-dimensional data

1 Introduction

Testing and inference of linear regression coefficients is a fundamental problem in statistics research and
has inspired methodological innovations in many other research directions in the statistics community (e.g.

s ; , ). In this paper, we consider the setting where we have observations
(X,Z,Y) € R"*P x R™ x R™ generated according to the following model:

Y = XB+bZ +e¢, ey

where € := (¢1,...,e,)" € R™is an n-dimensional noise vector, and our goal is to test the null hypothesis
Hj : b = 0 against the alternative H; : b # 0.

Here, we are primarily interested in designing a new coefficient test with finite-population validity.
In other words, we require our test to have valid size control with arbitrary magnitude of n, instead of
requiring some asymptotic regime assumption that may be unrealistic in practice. When the noise variables
are independent and identically distributed (i.i.d.) Gaussian random variables and p < n, the ANOVA

“Equal contribution



test ( , ) can be used to test H against 4 with finite-population valid Type-I error control. While
the Gaussianity assumption is convenient for theoretical analysis, it is in general not realistic in practical
applications, which limits the applicability of the ANOVA test. Indeed, as we will see in Section 3, the size
of ANOVA test can be far from the nominal level in the presence of heavy-tailed noises. This motivates
us to propose a new test that is finite-population valid without such restrictive distributional assumptions.
In particular, instead of the independent Gaussian distribution assumption above, we only assume that the

noise € = (£1,...,e,) ' has exchangeable components:
Assumption 1 (Exchangeable noise). For any permutation ¢ of indices 1, ..., n,
d
(51a s 75n) = (50(1)7 S 750(71))'

A common approach to handle exchangeable noise is through the idea of permutation tests ( ,
,b, ). Recently, ( ) implemented this idea to the problem of regression co-
efficient testing. In their seminal work, the authors proposed a cyclic permutation test that achieved finite
population validity under Assumption 1 by exploiting the exchangeability of the noise terms. However, to
achieve a size « control, their cyclic permutation test requires that n/p > 1/« — 1. For instance, for a
sample size of » = 300 and a targeting Type-I error rate is & = 0.01, at most p = 2 covariates are allowed
in X. This limits the applicability of their test in large dimensions. In this paper, we consider the more
challenging question of finite-population Type-I error control in setting where p is allowed to be of the same
order of magnitude as n. We propose a residual permutation test (RPT), a permutation-based approach that
performs hypothesis tests by manipulating the empirical residuals after regression adjustment. The proposed
test is guaranteed to have the correct Type-I error control whenever p < n/2. Moreover, our result is fixed
design and does not require any regularity conditions on the design matrix X.

In addition to proving its finite-population validity, we further analyze the statistical power of the pro-
posed test in the high-dimensional regime of interest, especially when the ¢;’s follow a heavy-tailed distri-
bution. As we will discuss further in Section 2.3, statistical methods with robustness to heavy-tailed data
have significant demands in practice ( , ; , ; ,

), and has been actively studied in both modern statistics and theoretical computer science communi-
ties. Despite its importance, there is a lack of available tools that can handle regression coefficient testing
under this dimensional regime with heavy-tailed noise. In this paper, we fill this gap by showing that when
the &;’s are i.i.d. and have a finite (1 4 ¢)-th order moment for any ¢ € [0, 1], and that n/p > 3+ m for some
m > 0, our proposed test is asymptotically powerful whenever the coefficient b is of order at least n—%/ (140,
In proving this result, a crucial step is to establish a concentration bound for projected length of a random
vector with independent heavy-tailed components. This concentration bound may be of independent interest
for future research on statistical procedures with heavy-tailed noise, and is stated in Corollary 8. We also
studied the minimax rate optimality of high-dimensional coefficient testing with heavy-tailed noises; and
proved that in the presence of heavy-tailed noise with only a finite (1 + ¢)-th moment, the n~t/(+1) order
requirement for b is essentially rate-optimal.

Since ANOVA has been used extensively in practical applications, as an independent contribution, we
provide a more comprehensive analysis of the ANOVA test. Specifically, while ANOVA can be shown
to have finite-population validity with spherically symmetric noise, our simulations show that the it can
substantially violate the nominal size control under more general noise distributions. At the same, we
propose another permutation-based test: naive residual permutation test (naive RPT), which like ANOVA,
is also valid under spherically symmetric noise distribution whenever p < n. While naive RPT is still not
valid for non-spherically symmetric noises, it does appear to have smaller Type I error violations compared
to ANOVA.



In summary, we make the following contributions in this work:

* We propose a new test that has finite population validity with fixed-design linear models and ex-
changeable noises whenever p < n/2.

* We prove that when the noise variables are heavy-tailed with bounded (1 + ¢)-th order moment for
t € [0, 1], our test is asymptotically powerful when b is at least of order nt/(+t)

* We perform numerical analysis to show that ANOVA is indeed invalid in general distributions, espe-
cially with heavy-tailed data. We also studied other theoretical properties of ANOVA.

* We discuss the minimax rate optimality of regression coefficient test with heavy-tailed distributions,
and show that our test is essentially optimal in the minimax sense.

The rest of this paper is organized as follows. In Section 2, we review existing results in regression
coefficient testing, permutation- and randomization-based tests and heavy-tailed data. In Section 3, we
provide more studies on the finite-sample properties of ANOVA test with non-Gaussian noises, and propose
a new test that is easier to implement and more robust to non-Gaussianity. As ANOVA test has been heavily
used in practical applications, we believe this is of independent interest. In Section 4, we present our method,
and prove its finite population validity. In Sections 5 and 7, we provide power analysis of RPT and study its
minimax rate optimality under some heavy-tailed assumptions. Finally, in Section 8 we provide numerical
analysis. In Section 9, we end the manuscript with a discussion.

Notation

We conclude this section by introducing some notation used throughout the paper. For any n X p dimen-
sional matrix A, we denote by span(A) the subspace spanned by the p column vectors of A; and we write
span(A)L as the space that is orthogonal to span(A). Given an n-dimensional vector a, we denote by
Proj 4 (a) the projection of a onto the subspace span(A), and denote by ||al|2 as the 3-norm of the vector
a. Given two n x ¢ and n X g2 dimensional matrices A, B, we denote by (A, B) as the n X (q1 + ¢2)
matrix via column concatenation of matrices A and B. We write N'(0, 1) as standard normal distribution.
For two sequences (a,)nen and (b, )nen, we write a, = O(by,), or equivalently b, = $(a,), if there ex-
ists a universal constant C' > 0 such that |a,| < C|b,| for all n; we write a,, = o(by,), or equivalently
by, = w(an), if |an|/|bn| — 0.

2 Literature review

Our work spans a wide range of research directions, including hypothesis testing of regression coefficients,
permutation- and randomization-based hypothesis tests and heavy-tailed data analysis. In this section, we
compare our research to works within each direction.

2.1 Hypothesis testing of regression coefficients

The most classical approach for testing the null hypothesis b = 0 is through the analysis of variance
(ANOVA) test ( , ). ANOVA test was originally proposed by Sir Ronald Fisher in the 1920s, and
has been widely used in economics ( , ), finance ( , ) and biology ( ,

) etc. Under the context of single coefficient testing, when n > p + 1 and € ~ N(0,0%1) for some



02> 0,if § == argming||Y — X 8|3 and (3,b) := argmin gy [|[Y — X3 — bZ||3, then under Hy, the test

statistic B o

s Y = XBI3 Y - X5 - b2
S Y - XB-b2)3/(n-p-1)

~ Fl,nfpfl (2)

can be used to construct a test where H is rejected when ¢anova €xceeds the 1 — o quantile of the F7 5,1
distribution. As the above distributional result is nonasymptotic and holds whenever n > p + 1, the associ-
ated test is valid even when p diverges as a constant fraction of n. However, as we will discuss in Section 3,
beyond Gaussianity and some other class of restrictive assumptions on €, ANOVA test is usually not guaran-
teed to have a valid Type-I error control. This encourages us to construct hypothesis tests with valid Type-I
error control allowing a broader class of noise distributions.

As emphasized by ( ), this is a challenging problem, with a “century long effort” in
the statistical community to alleviate the strong Gaussianity assumption of ANOVA. Some representative
works include ( ); ( ). However, the two methods mentioned above still
require the noise to follow certain geometric constraint, which is either symmetric about 0 or rotationally
invariant. ( ) represented, to the best of our knowledge, the first work that established
finite-population size control with only exchangeable noise. However, as mentioned in the introduction,
despite its striking distribution-free property, the cyclic permutation test proposed in ( )
requires the dimension of p to be much smaller than n for valid size control, and no corresponding statistical
power analysis was provided. Alternatives with less restrictive assumptions on dimension p were proposed
in ( ) and ( ), where the authors proposed “stratified
randomization test” and “conditional randomization test”, respectively. Different from our test that is fixed
design and allows arbitrary X, these two works both assume random designs, where the former stipulates
that rows of X must follow a discrete random distribution with a relatively small number of unique values
and the latter assumes either knowledge or a sufficiently good estimator of the sampling distribution of rows
of X.

Besides finite-population validity, a less demanding criteria for coefficient test is the asymprotic validity.
The idea of permutation or randomization have been heavily used to propose asymptotically valid test; see
Section 2.2 for more details. In the high-dimensional regime where p is proportional or even much larger
than n, debiased / desparsified Lasso was proposed to construct confidence intervals and perform coefficient
tests ( , ; , ; , ). By invoking
1) certain sparsity conditions on the regression coefficients; 2) some regularity conditions on the design
matrix X and 3) sharp tail bounds on the noise variables, debiased / desparsified Lasso is guaranteed to
establish asymptotically valid p-value and confidence intervals for regression coefficients. We remark that
the additional sparsity assumption on the regression coefficients allow for the dimension p to diverge at a
much faster rate than n compared to asymptotic regime studied in the current paper. Other follow up studies
include ( ); ( ); ( ), to name a few.

More broadly speaking, regression coefficient test can be viewed as a subdomain of the more general
conditional independence testing, i.e., testing the null hypothesis Y I Z | X, treating X,Y, Z as i.i.d.
realizations from some hypothesized superpopulation. Unfortunately, when one has no assumption on the
joint distribution of the random variables X, Y and Z, ( ) proved that it is a “statistically
hard problem”, in the sense that a valid test for the null does not have power against any alternative. This
means that some restrictions must be added to the class of null distributions to have some power. Follow-
ing this insight, an important research question then, is to propose valid test under minimal distributional
assumptions. In this paper, we show that a linear functional relationship between Y and X is sufficient to
have exact validity with non-trivial power.



2.2 Permutation- and randomization-based hypothesis tests

As also mentioned in the introduction section, our new method is based on permutation test ( ,

,b, ). Application of permutation and related randomization techniques for statistical inference

has a long history in statistics and econometrics ( , ; s ; , ; ,

; , ; , ; , ; , ). Permutation

test was originally developed for independence testing. Specifically, using the exchangeability properties

of the sampled data, permutation test is guaranteed to have finite-sample validity guarantee, without any
geometric or moment constraints on the underlying distributions.

For the task of regression coefficient testing, ( ) and ( ) pro-
posed tests based on bootstrapped and permuted regression residuals respectively, and proved asymptotic
size validity in a fixed dimension. ( ) considered a permutation test using the
studentized partial correlation of Y and Z given X and derived asymptotic size and power of the test in
a fixed dimension setting. ( ) studied a test based on permuting the residuals of Y regression
against (Z, X'). More recently, ( ); ( ) used permu-
tation test and its extensions to obtain exact size control for testing a single component or a subvector of
regression coefficients.

Other related applications of permutation tests include sharp null hypothesis tests (

, : , ), instrumental variable tests ( , ), and
conditional independence tests ( , ; , ).

2.3 Heavy-tailed data

To understand the efficiency of the proposed method in heavy tailed data, in this paper, we further provide
power analysis when the noise terms follow a heavy-tailed distribution. In classical high-dimensional lit-
erature, due to the simplicity of theoretical analysis, existing methods usually focus on data with sharp tail

bounds, such as sub-Gaussian or sub-exponential tail bounds (see, e.g. s ). However, as
also discussed by ( ), such strong tail condition may not be reasonable in real world
applications, such as neuroimaging ( , ), gene expression analysis (
, ), and finance ( , ).
Since the pioneering work by ( ), the problem of extracting useful information from heavy-

tailed data (or the related adversarially contaminated data) has been an active area of research in mathe-
matical statistics and theoretical computer science literature in the past ten years (

, ; , ). When we allow the dimension p to grow with n, heavy-tailed data

has been actively studied in mean estimation ( , , ), regression coefficient
estimation ( , ; , ; , ; , ) and
covariance matrix analysis ( , ; , ). The definition of “heavy-tail”
may vary across different articles. Among all literature working with heavy-tailed noise, our assumptions
are most similar to those in ( ); ( ), which

assume that the noise variables has at most a finite (1 + ¢)-th order moments for some ¢ € (0, 1] without any
geometric or shape constraints. To our knowledge this is also the weakest heavy tail assumption studied in
the literature.

In the context of coefficient testing, few methods have been proposed that can work with heavy-tailed
data. We fill this gap by providing statistical power guarantees of our constructed test in the presence of
heavy-tail noises. Our power analysis stems from our new theoretical insight on the asymptotic convergence



of heavy-tailed random variables after subspace projections. It would be of interest if these results could
be extended to understand the power of permutation-testing based hypothesis tests in other heavy-tailed
scenarios.

3 Finite-population validity of ANOVA beyond Gaussianity

As ANOVA has been frequently used in empirical analysis, it would be of interest to provide a more com-
prehensive analysis on the sensitivity of ANOVA test with respect to the Gaussianity assumption, both
empirically and theoretically. In fact, although not explicitly stated in ( ), Fisher recognized that
ANOVA’s validity only requires the noise to be spherically symmetric instead of Gaussian ( , ,
pp. 163-164). We provide a slight generalization of this result in Lemma 1, which shows that ANOVA is
valid when either the design or the noise is spherically symmetric, in the sense defined below.

Definition 1. We say that a random matrix A € R"™*? follows a spherically symmetric distribution if for

d . .
any @ € Q""" A = QA, where Q"*" is the set of n x n orthonormal matrices.

Lemma 1. Suppose Y is generated under (1) with 5 € RP b = 0. Suppose also that € is a random vector
that is almost surely not a zero vector, (X, Z) is either deterministic or independent from €. If either €
or (X, Z) follows a spherically symmetric distribution, then the test statistic ¢anova defined in (2) satisfies
¢anova ~ Fl,nfpfl-

For the sake of completeness we provide a proof of Lemma 1 in the Supplementary Material. The spher-
ical symmetry in the noise or the design is slightly weaker than the usual Gaussianity constraint, however, it
is still too strong for many real data applications. For instance, if we assume that observations (X;, Z;, Y;)
are independent, then this assumption amounts to either i.i.d. normal noise or an i.i.d. multivariate normal
design.

We now perform a numerical experiment to analyze the validity of ANOVA test under general distribu-
tional classes of €. We generate data (X, Z,Y") according to the model specified in (1) and that

Z=XpB%+e. (3)

In the simulation, we set b = 0; since the result of ANOVA is invariant to 3, 5%, we simply set them to be
zero vectors. We also set X as n x p matrices with i.i.d. entries following either A/(0, 1) or ¢; distribution,
with (n, p) = (300, 100), (600, 100) or (600, 200); and e and € have i.i.d. components from one of A/(0, 1),
to or tq distributions.

Table 1 summarizes the performance of ANOVA test from 100000 Monte Carlo simulations. We con-
sider the sizes of the ANOVA test at nominal levels a = 0.01,0.005. According to the simulation results,
when the noises of e and e follows a standard normal distribution, the ANOVA test has the correct size
control, which is consistent with Lemma 1. However, when normality is violated, the ANOVA test will be
overly optimistic, with an empirical size more than twice as large as the nominal level in some cases. In
particular, the performance of noise type #; is in general worse than that of ¢, this means that ANOVA test is
more vulnerable to heavy-tailed noises. Moreover, the performance of ANOVA is worse with a heavy-tailed
design matrix X.

To better understand the empirical distribution of the simulated p-values, we plot their histogram in
Figure 1(a)-(c). Apparently, all the histograms are far from uniform on [0, 1] under the null hypothesis, with
a large spike near zero. In addition, the magnitude of the spike increases as n becomes smaller or that € or
X becomes more heavy-tailed. Another interesting property is that the histograms are usually “U-shaped”,



ANOVA Naive

n p Xtype noisetype | 1% 05% | 1% 0.5%
300 100 Gaussian Gaussian | 1.01  0.50 | 1.00 0.49
300 100 Gaussian t1 1.81 1.60 | 1.58 1.16
300 100 Gaussian to 1.53 1.07 | 1.39 0.89
300 100 t1 Gaussian | 1.01 0.50 | 1.03 0.49
300 100 t1 t1 2.43 2.08 | 1.58 1.07
300 100 t1 to 1.80 1.30 | 1.41 0.88
600 100 Gaussian Gaussian | 0.95 0.50 | 0.96 0.48
600 100 Gaussian t1 1.63 1.43 | 1.28 0.80
600 100 Gaussian to 1.69 1.20 | 1.28 0.76
600 100 t1 Gaussian | 1.05 0.50 | 1.02 0.52
600 100 t1 t1 1.88 1.66 | 1.06 0.58
600 100 t1 to 1.74 1.30 | 1.14 0.63
600 200 Gaussian Gaussian | 1.01 0.49 | 1.03 0.50
600 200 Gaussian t1 141 1.22 | 1.24 0.90
600 200 Gaussian to 1.50 1.04 | 1.36 0.89
600 200 t1 Gaussian | 1.01  0.49 | 0.98 0.49
600 200 t1 tq 2.02 1.73 | 1.33 0.86
600 200 t1 to 1.70 1.20 | 1.34 0.80

Table 1: Percentage of rejection of the ANOVA test and naive residual permutation test, estimated over
100000 Monte Carlo repetitions, for various noise distributions at nominal levels of & = 1% and « = 0.5%.
Data are generated by models (1) and (3), with X, € and e having independent components distributed
according to the various X types and noise types described in the table. Standard errors for all entries are in
the range of 0.02% to 0.05%.

where the peaks appear at regions near either 1 or 0. In sum, when data are generated from non-Gaussian
and in particular heavy-tailed distributions, the ANOVA tests are usually far from the correct level.

It is worth noting that when 8 = 0 in (1), we can easily construct a valid permutation test by comparing
the correlation of Y to Z and to its permutations. From this intuition, a straightforward approach is to
first regress both Y and Z onto X to eliminate the influence of X, and then to use regression residuals
for permutation test construction. Specifically, let R, := (I — X(X'X) !X ")Y and R, := (I —
X(X X )IX T)Z be the regression residuals after projecting Y and Z onto X respectively. Let Vg €
R"™*("=P) be a matrix with orthonormal columns spanning an (n — p)-dimensional subspace of span(X )",
then I — X(XTX)_lXT = VOVJ. Hence under Hy : b = 0, the regression residuals Ra satisfy
RE = VOVJ Y = VOVJ €. From above, we construct a test, which we call as naive residual permutation
test, based on the projected residuals é == VR, = VY andé:= V] R, = V| Z as

1 = T 2 cTP.é
Dnaive = -7 1+;1(re el<le' Piel) |, )

where the P, € R("P)*("=P)’s are random permutation matrices that are sampled uniformly at random
from the set of all permutation matrices. Lemma 2 shows that under a slightly weaker condition than
Lemma 1, ¢paive 1s a valid test.
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Figure 1: Histogram of p-values under the null for ANOVA test and naive residual permutation test from
100000 Monte-Carol replicates. The first line are the histograms of the ANOVA test under different spec-
ifications. Specifically, (a) is the result with Gaussian design, n = 300,p = 100 and € has independent
t1 components; (b) is the histogram with the same setting as in (a) except that we switch from Gaussian
design to ¢; design; (c) is the histogram with Gaussian design, n = 600, p = 100 and € has independent
t1 components. The second line are the histogram for naive test. (e)-(f) use the same simulation settings as

(a)-(c).

Lemma 2. Suppose Y is generated under (1) with B € RP, b = 0. If either

(a) € or (X, Z) follows a spherically symmetric distribution;

(b) Z is generated under (3) and either e or (X,Y') follows a spherically symmetric distribution,
Onaive is valid p-value, i.e., for all a € (0,1), P(¢naive < @) < o

While Lemma 2 is slightly less stringent than Lemma 1, it still requires the spherical symmetry in dis-
tributions. To better understand their empirical performances, we also show the performance of ¢paive With
non-Gaussian noises or non-Gaussian designs in Table 1 and Figures 1(d)-(f) . Without the strong Gaus-
sianity or spherically symmetry assumption, @anova 1S also not guaranteed to have finite-population validity.
Nevertheless, when both tests are invalid, the size of naive permutation test is closer to the correct level than
its competitor. This indicates that naive test is more robust to non-Gaussian distributions. Moreover, the
naive test is an intuitive method and is easy to implement. Thus, the naive test could be used as a preferrable
alternative to ANOVA in real data analysis when n/2 < p < n.

4 Residual permutation test: methodology and validity

In Section 3, we have shown from simulation experiments that a naive permutation test on the residuals,
although more robust than ANOVA, is still not guaranteed to have finite-population validity with just ex-
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changeable noise. In this section we describe a more refined test using the projected residuals &€ and e,
which we call the residual permutation test (RPT), and present its finite-population validity guarantee in
Theorem 2. For intuition behind such construction, we refer the readers to Section 4.1.

To describe RPT, we write P for the set of all permutation matrices in R”*" and we denote by Py = I €
‘P the identity matrix. To successfully perform the regression permutation test, we first need to randomly
generate of a sequence of K permutation matrices { P1,..., Px} C P\ { Py}, such that together with Py
they form a group:

Assumption 2. The set of permutation matrices Pg := {Py, P1, ..., Pk} satisfies that for any P;, P},
there exists a k € {0,..., K} such that P}, = P; P;.

We write Vg € R™("~P) a5 a matrix with orthonormal columns spanning an (n — p)-dimensional
subspace of span(X )+ and V}, := P, V,.! In addition, we denote by Vi € RX(=20) 3 matrix with
orthonormal columns spanning a subspace of span(V ) N span(Vy). Recall that & := V] Z and & :=
VY. Givena fixed T : R"% x R"~? — R, we can calculate the p-value of our coefficient test via:

¢ = K+1 ( JrZJl{~ min T (V'Voe, V' Vee) gT(V,IV@,VZV@)}), 5)

ve{Vi,..,.Vk}

where T' can be any bivariate function. For example, one can choose T'(z,y) = |(z,y)|. As demonstrated
in the Supplementary Material, the above definition of ¢ can be simplified as the following equivalent form

K
1 - - - -
¢=——(1+3 13 min_ T (VTZ, VTY) <T (ng, V,:PkY) . (®6)
K+1 1 Ve{Vy,..,.Vk}
The following theorem shows that the proposed p-value is uniformly valid under the null:

Theorem 2. Suppose that (X, Z,Y) is generated under model (1) with p < n/2 and that the noise €
satisfies Assumption 1. Suppose { Py, : k =0, ..., K} satisfies Assumption 2. Under Hy : b = 0, ¢ defined
in (6) is a valid p-value, i.e. P (¢ < o) < aforall a € [0,1].

We remark that as shown in Theorem 2, an important advantage of RPT is that the result is finite-
population such that it holds for arbitrary size of n. Moreover, our result assumes a fixed-design matrix and
does not require any assumption on X for finite-population validity. For example, the rank of X even does
not necessarily need to be p. Also, Theorem 2 shows that RPT has valid size for any choice of function
T'(-,-) and number of permutations K. However, in practice, to have good power under the alternative, we
typically set T'(x,y) = |(z,y)| and choose a moderate size of K = O(1/«).

4.1 Some intuition of RPT

In this section, we discuss the intuition behind (5). As demonstrated in Section 3, a naive permutation test
on the residuals is in general not valid in the finite population setting with just exchangeable noises. This is
because under the null, ¢paive performs permutations on the vector € = VOTE instead of ¢ itself. Even if €
is an exchangeable random vector, Vg € may no longer be so, which renders the naive test invalid.

'If X is full column rank, then Vo V] = I—-X (X "X)"'X T and span(V) and span(X )~ are the same space. Otherwise,

span(V) is a subspace of span(X)*.



To overcome this challenge, we may want to construct a new test that, under Hy, is equivalent to per-
muting the noise vector € directly, instead of the transformed noise VJ €. Interestingly, this goal can be
achieved based on a further transformation of the vector VOTE. Specifically, given a permutation matrix Py,
recall that V', = P;V(, we may use the transformation that under Hy,

E=Vie=V|P/Pe=V]Pe. (7

In light of this transformation, we have that under Hy, V€ = VkaTPks = Projy, (Pye), ie.,
a projection of the noise vector Pre onto the space span(V'y), and equivalently, Voé = Projy (€).
However, this is still not enough, as Projy, (€) and Projy,, (Pxe) corresponds to the projections of the
vectors € and Pe onto different subspaces, which are not directly comparable. This means that we need to
further propose a more refined strategy to project € and Pje onto some same space for a fair comparison.

Now recall that we already have Projy, (¢) and Projy,, (Pxe), an ideal choice of such space would
then be span(V;), i.e., the intersection of span(V) and span(V'). Specifically, using that V', spans a
subspace of span(V'y), it is straightforward that ‘72 = VZVk V;. From this and (7), we have that under
Ho,

V, Vie=V,V, V] Pe=V, P

and equivalently V;Voé = ‘726 since V', spans a subspace of span(V ) as well.
From the above analysis, we further have that under Hy,

T (V;VOé, f/Zvoé) —T (V;Voé, f/}:) and T (V;V[)é, VZVM::) —T (ffgvoé, V;Pks> .

This allows us to control ¢ as that

1 K
¢:M<1+;1{~ ~Irlln.~

Ve{Vl’va}

K
1 . .
> 1+>» 1 min T(V Ve,V 8)
K+l ( ; {VG{th,VK} 0

S~
/~
<h
4{
<
o
\.m>
<k
_‘
U]
~
I

T (V,Ivoé, f/’lP;ﬁ) })

B min _ T (VTVQé, VTPks) })
VG{Vl,...,VK}

IN

K

_ K1+1 (1 + ; 1{g(e) < g(Pke)})

for some function g(-) that depends only on (X, Z, Pk ). Since here we consider a deterministic P, ¢(-)
is also a deterministic function.

Now our only remaining job is to prove that the p-value displayed at the end of the above inequality
is valid. The following lemma, which is a key ingredient in the proof of Theorem 2, shows that once we
construct Px such that Assumption 2 holds, ¢ is a valid p-value:

Lemma 3. Suppose € satisfies Assumption 1 and let { Py = I, P1,..., Px} be a fixed set of permutation
matrices satisfying Assumption 2. Then for any function g : R" — R, we have that



S Analysis of statistical power

This section provides power analysis of RPT under mild moment assumptions of noises €; and e;’s where,
e.g., the second order moments are not necessarily finite. For simplicity of exposition, throughout this
section we assume without loss of generality that n is a multiple of |[Px| = K + 1, where K is a fixed
constant that is chosen such that K > 1/« for the prespecified Type-I error . The scenario where 7 is not
divisible by K + 1 can be handled by randomly discarding a subset of data of size at most K to make n
divisible. We will focus on the version of RPT defined in (6) with T'(z,y) = |(z,y)|. Moreover, we are
primarily interested in the dependence of the power of RPT on the tail heaviness of the noise distributions.
To this end, we make the following assumption on the model:

Assumption 3. £;’s are i.i.d. from some distribution P. with mean 0, Z follows the model in (3) with ¢;’s
i.i.d. from some distribution P, with mean 0. ¢ is independent from e.

In addition, we make following assumption on the permutation matrices Py, ..., Pk.
Assumption 4. Forany k = 1,..., K, |tr[V V| Py]| < v/2pK and tr[Py] = 0.

Notice that when the covariate matrix X is of full column rank p, Assumption 4 is equivalent to that
[tr[ X (X X)) ' X TP.]| < /2pK.

In Theorem 3, we showcase the pointwise signal detection rate of ¢ given any fixed P. and P.. Moreover,
we just require PP. to have bounded (1 + ¢)-th order moment.

Theorem 3. Fix K € N. Suppose that (X,Z,Y) is generated under model (1) where € and Z satisfy
Assumption 3 and
0 <E[le]?] <00 and 0 < E[|e|'] < o0

for some constant t € [0,1]. Assume P satisfies Assumption 4. In the asymptotic regime where b and p
vary with n in a way such that n > (3 + m)p for some constant m > 0 and

bl=Qn ) if t<1 or |bl=wln 2)if t=1, )
we have lim,,_,o P (qﬁ > ﬁ) =0.

Notice that here we need to assume without loss of generality that E[e?] > 0 and E[|e1|'™?] > 0 to ensure
that both two random variables are not almost surely equal to zero. Otherwise, ¢ is almost surely equal to 1,
and cannot have any statistical power with any size of b. Theorem 3 shows that under certain assumptions on
the Px, RPT has power to reject the alternative classes even with heavy-tailed noises. Moreover, our analysis
is high-dimensional and allows the number of covariates to be as large as n/3. Remarkably, the statistical
power guarantee in Theorem 3 does not require the ¢;’s to have a bounded second order moment. This
distinguishes us from the class of empirical correlation based approaches, such as debiased / desparsified
Lasso or OLS fit based tests, which requires ¢;’s to have at least a bounded second order moment or even
stronger conditions such as sub-Gaussianity to have statistical power.

As we will see in Section 5.1, Assumption 4 is a mild condition that can be checked in practice. However,
an inspection of the proof of Theorem 3 reveals that, even if Assumption 4 does not hold for P, RPT is still
asymptotically powerful under the same signal strength condition (8) and a slightly stronger requirement on
the number of covariates. Specifically, we require that n > (4 + m)p for some constant m > 0 that does
not depend on n. In Theorem 3, for simplicity we assume that K is a fixed constant. In the Supplementary
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Algorithm 1: Permutation set construction

Input: The number of permutation matrices K, the orthonormal matrix Vj € R™*("=2P) guch that
Vg X = 0, the maximum number of loops T’

1 repeat
2 Generate an independent random permutation 7 of indices {1,...,n}
3 fork=1,..., Kdo
4 Construct a permutation function oy, := 7! o &}, o 7, where o denotes a composition of
two functions and o, is a permutation function such that
54(0) i+ k ifimod ( K+1)<K+1—k ©
o) ==« . .
i—(K+1-—k) otherwise,
and set Py, as the permutation matrix corresponding to o.
5 end

6 until (i) [tr[V(V§ Py]| < V2Kp'/2 forallk = 1,..., K or (ii) the number of iterations has
reached its limit T
Output: Set of permutation matrices P := { Py := I, Py, ..., Pk} satisfying the criteria (i).
When none of the Pg’s comply, report the Px with the smallest Zszl [tr[V oV § P4l

Material we further provide an extension of Theorem 3 where we allow K to diverge with n. In particular,

2t
we show that for ¢ < 1, RPT is still guaranteed to have non-trivial power whenever K = O(n1+t).
In the following theorem, we show that when p/n — 0, we can further relax e;’s finite second order
moment condition to a finite first order moment condition.

Theorem 4. Fix K € N. Suppose that (X,Z,Y ) is generated under model (1) where € and Z satisfy
Assumption 3 and
0<E[le]] <oo and 0<E[ler|'] < o0

for some constant t € |0, 1]. In the asymptotic regime where b and p vary with n in a way such that p/n — 0
and b satisfies (8), lim,, oo P (d) > ﬁ) = 0.

The statistical power guarantee in Theorem 3 requires the set of permutations to follow Assumption 4,
whilst the finite-population validity requires instead Assumption 2. Then an important question is, how to
effectively construct a Py that satisfies both assumptions. In Section 5.1, we provide an algorithm to answer
this question. In order to prove Theorems 3 and 4, we are faced with two questions, the first is that we do not
have any assumption on X, so that \% ;j can follow arbitrary pattern; the second is the heavy tails of e;’s and
€i’s. We defer the proof of the two theorems to the Supplementary Material. To help the readers understand
the intuitions of the proof, we provide a proof sketch of the main Theorem 3 in Section 5.2.

5.1 An algorithm for construction of permutation set

As demonstrated in Theorems 2 and 3, to successfully perform a test that is valid under the null and has
sufficient statistical power to get the rate in (8) when n/p > 3 4+ m for some constant m > 0, one needs
a set of permutations satisfying both Assumptions 2 and 4. As demonstrated in Proposition 1 below, such
permutation set always exist, so that we can at least apply a brute-forth algorithm to find a desired set. To
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improve computational efficiency, we further develop a randomized algorithm that can discover the desired
permutation set with high probability (Algorithm 1). To understand this algorithm, notice that if we are just
interested in Assumption 2, one simple way is to divide the n indices into m := n/(K + 1) ordered list
of indices and perform cyclic permutation on each sub-list. Specifically, we first denote S, ...,S5,, asm
ordered list of indices such that

(I,....n):=(1,...., K+1, K+2,....2(K+1), (m-—1)(K+1)+1,..., m(K + 1)),

Then we define the Pk for k > 1 (or equivalently its permutation function ) as that

(G1(1),...,6k(n)) == (SF,...,SF),

where each Sf is created via shifting all the elements in S; by k places. Taking S} for example, it means
SF = (K+2—k,...,K+1,1,2,..., K+1—k). One can easily verify that the resulting set of permutation
matrices P = {I, P,,...,P K} satisfies Assumption 2 since it is constructed by cyclic permutations.
However, since P is blind of X, Assumption 4 may not hold. To overcome this challenge, in Algorithm 1
we apply an iterative algorithm where in each round, we set 0}, := 7~ ! 05y, 07 for some random permutation
7 and loop until it reaches the number of rounds limit or the resulting Pk satisfies Assumption 4 (Step 6).
This allows Algorithm 1 to still preserve Assumption 2, while being more adaptive to X. In Proposition 1,
we show that after doing 7-th round of such iterations, Algorithm 1 is able to deliver a Py satisfying the
1

desired properties with probability at least 1 — +==.

Proposition 1. Given K, T and assume that n > 2, we have that there exists a Py satisfying Assumptions 2

and 4. Moreover, with probability at least 1 — ﬁ Algorithm 1 returns a Py that satisfies Assumptions 2
and 4.

Notice that throughout this article, we assume that the alternative class isinthe formY = X5+bZ +¢
for some b # 0, whence we invoke Assumption 4 to increase its statistical power. When the alternative
class follows other forms, such as Y = X + f(Z) + e with some nonlinear function f : R” — R",
one may not necessarily need Assumption 4 anymore. Instead, one may need other assumptions on Pg to
adapt to the nonlinear function f(-). In light of Algorithm 1 and our theoretical statements, we summarize
an implementation of RPT in Algorithm 2. The maximum time complexities of Algorithms 1 and 2 are
O(TKn?) and O(TKn?+ Kn?) respectively, where T is the maximum number of iterations. The expected
time complexities of the two algorithms are instead O(Kn?) and O(Kn?), respectively.

5.2 Proof sketch of Theorem 3

As K is finite, we mainly need to prove that for any fixed P;, P) € P, with probability converging to 1,
e'viv; V]-TVoé| >le'vy f/kf/ZV,géy To achieve this goal, we need to prove that
e’V VjTe\
bn

(i.e., that the empirical correlation between the projection of e and € onto the space spanned by f/j is
negligible with high probability) and that with high probability,

=op(1) (10)

T" "’T T" ’*T T" "’T T" "’T
e V.V.e—e' V.V, PLe e V.V.e+e V.V, PLe
AS EEETE >0 and AS ERTE > (11)

Y
n n

2Notice that the “54” described here is exactly the same as the “61” in (9)
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Algorithm 2: Residual Permutation Test (RPT)

Input: design matrix X € R™*P, additional covariate of of interest Z € R", response vector

Y < R”, number of permutations K € N, maximal number of iterations 7" € N.
1 Find an orthonormal matrix Vo € R™*("~P) such that V|j X = 0.
2 Apply Algorithm 1 with inputs K, T and Vg to generate K permutation matrices { P1, ..., Px}.
3fork=1,...,Kdo
4 Set Vi := P.Vy.
5
6

Find an orthonormal matrix V', € R"*(»~2P) such that span(V;) C span(V ) Nspan(V).
Compute

aj = (V,:Z,f/gw and by, := <‘7;<;FZ,V;:P1¢Y> ;

where < -, - > denotes the inner product.
7 end

Output: p-value ¢ := ﬁ(l + Zle ]l{minlSjSK a; < b })

To prove (10), when ¢ = 1, the result is straightforward from Chebyshev’s inequality; hence the main
challenge is to prove the case ¢ € [0,1). In Corollary 8, we establish a more general result, which char-
acterizes the stochastic convergence of |w ' e| where w is an arbitrary deterministic vector and & can be
heteroscedastic. We refer the readers to Section 6 for its statement as well as the intuitions for its proof.

Thanks to the bounded second order moment of e;’s, the analysis of (11) is simpler. Specially, by using
a variant of weak law of large number we develop in this paper to control the weighted sum of e?’s and a
Chebyshev’s inequality to control the sum of cross terms e;e;’s, we can have that with probability converging
to 1,

e V;V e—e ViV Pre _ n—3p— u[X(X X)"'XT Py

~

n n

Using that Py, satisfies Assumption 4, we easily obtain the desired result.

6 Statistical power under broader classes of alternatives

In Theorems 3 and 4, for simplicity of illustration, we consider the class of alternative hypotheses where
Z 1s a linear model and all the noises are i.i.d. In this section, we consider two relaxations of these as-
sumptions. First, we assume that Z follows a linear model with respect to the covariates and all noises are
heteroscedastic; second, we allow Z to have some nonlinearity, at the cost of slightly more restrictions on
the degree of heteroscedasticity of €;’s.

Assumption 5. Z follows the model in (3); the random vectors € and e are first n components of two inde-
pendent infinite sequences of independent random variables €1, €2, . . . and ey, ea, . . ., respectively. Suppose
also that

« for some universal constants C,, ¢, > 0, we have E[e?] < (Cgforalll <7 < oo, and

a—)OOnzl n “ n—,oo N “

1 n 1 n
lim sup — Z:]E[eg]l(ez2 >a)]=0 and liminf— ZE[@%] > Ce. (12)
=1 =1

14



» for some fixed ¢ € [0, 1] and some universal constant C. > 0, we have E[|¢;|'*?] < C. for all i and
given any fixed B > 0,

o0
D P (lei"t" = Bi) < oc. (13)
i=1
Informally speaking, instead of requiring all noises to be i.i.d., Assumption 5 allows noises to be het-
eroscedastic, under certain restriction on the degree of heteroscedasticity of ¢;’s and e;’s. To intuitively
understand (13) and the first equation in (12), taking (13) for example, a sufficient condition for it to hold
is that there exists a zero-meaned random variable e+, satisfying that E[|e~|!'T] < oo and that for any
1 <i < o0, |g| 24 e, i.e., that |g;] is stochastically dominanted by |eo,| uniformly for all €;’s. When
such e, exists, for any n > 1,

n Lt . n Lt . 0o |€OO|1+t \500]1“
> P (el sz)g;P(yeoo| sz)g/O P<32m>dx:]E[B} < o0,
1=

i=1

which satisfies (13). Analogously, when there exists a zero-meaned random variable e, with E[|es|?] < oo
and |eo | stochastically dominates all |e;|’s, we can also have

1 n
sup > Elef1(e} > a)] < E[el1(el = a)),
=t =1

which, from dominated convergence theorem, converges to zero as a — co. Armed with Assumption 5, we
have the following theorem on the power of RPT.

Theorem 5. Fix K € N. Assume that (X,Z,Y) is generated under model (1) with € and Z satisfying
Assumption 5; Py satisfies Assumption 4. In the asymptotic regime where b and p vary with n in a way such

that n > (3C./ce +m)p for some constant m > 0 and b satisfies (8), we have lim,,_, o IP (¢ > ﬁ) =0.

In the following, we show that when we are willing to impose slightly more restrictions on the degree of

_t . .
heterogeneity of ¢;’s, we can still maintain the n~ 1+¢ rate even when the expectation of Z cannot be viewed
as a linear function of X.

Assumption 6. Z is generated according to Z = X 3% + h + e, where h is an n-dimensional deterministic
vector; € and e follow the same assumptions as the € and e in Assumption 5, with the addition that

lim sup E[|e;|" ™ 1(|e;|'t" > a)] = 0.
a—00 i>1

In Assumption 6, to alleviate the linearity requirement of Z, we introduce an additional uniform con-
straint concerning the tails of ¢;’s. It is worth noting that this new condition is satisfied when there exists a
0o With E[|eoo '] < oo that stochastically dominates all &;’s. Specifically, when such e, exists, then

SngHa\”tﬂ(lsilHt > a)] < Elles| ™ L(leoo|" > a)],
i>1

which, from dominated convergence theorem, converges to zero as a — o0.

Theorem 6. Fix K € N. Assume that (X, Z,Y) is generated under model (1) with € and Z satisfying
Assumption 6, Pk satisfies Assumption 4. In the asymptotic regime where b, p and h vary with n in a way
such that for some constants m,r withm > 0,7 < c., limsup,,_,, [|h|3/n <7, n > (3Ce/(ce —7)+m)p
and b satisfies (8), we have lim,,_, P(cgﬁ > ﬁ) =0.
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In fact, when Z and P;,..., P are all deterministic and we keep the data generating model of Y
as (1), following an analysis analogous to the proof of Theorem 6, we can prove that ¢ is still asymptotically
powerful whenever

|b] = Q(z;lnf%ﬂ) if t<1 or |b]= w(z;ln_%) if t=1, (14)

where

— ~ ~T - AT
L HV[—)FZHQ ' . . ZTVjVj Z+(—1)ZZTVka P.Z
- = - Imin min X (15)

n - \/ﬁ

In other words, Z does not necessarily need to be random for RPT to have power. To formally describe the
above intuition, we have the following corollary.

1<j,k<K 2€{0,1} n

Corollary 7. Fix K € N. Assume that (X, Z,Y) is generated under model (1) with € as in Assumption 6
and p < n/2. Z, Pk are deterministic such that |V ] Z||2 > 0 and z, > 0 uniformly for all n. > 3. In the
asymptotic regime where b satisfies (14), we have lim,, IP’((b > ﬁ) =0.

When Z satisfies the random model as prescribed in Assumption 6 and (n, p) is as in Theorem 6, with
probability converging to 1, z, =< 1, and the scale delivered by (14) and (8) coincide. In practice, one can
choose P1, ..., Pk to maximize (15).

In order to prove Theorem 6, one needs to understand the rate of convergence of the term |hTf/ j VJ-TE|.
Based on our analysis of this term in the proof of Theorem 6, it is straightforward to get the following
corollary, which characterizes the rate of convergence of w ' e for arbitrary deterministic n-dimensional
vector w, which we believe is of independent interest:

Corollary 8. Consider the € as in Assumption 6 with t € [0,1). Then for any fixed constant 6 > 0,

1—t
lim sup P (|wT€| > (5n2(1+t>> =0,
N0 yesn—1

where S"~! := {w € R" : |w||z = 1} is the (n — 1)-sphere in the n-dimensional Euclidean space.

Informally then, Corollary 8 means that |w €| = op(||w||2n21+9) for any choice of n-dimensional
unit vector w. For example, one can even allow maxi<;<p, |w;|/||wl||2 < 1. This enables us to prove the

e . . ..
rate of convergence of AV ;V ; e without any regularity condition on X or h.

To prove Corollary 8 (or equivalently to find the rate of convergence of h'v j V;e), the main challenge
is to deal with the heavy-tailedness of ¢;’s. We apply a truncation f; := ¢;1(|e;| > Bi) and seek to control
w' f and w' (e — f) separately, where for simplicity we write f := (f1,...,f,)'. We seek to control
w ' f via proving the following two convergence results (see the Supplementary Material for its proof):

1—

* For any fixed B > 0, sup,,cgn-1 E[|fwT(f —E[f]D|?] = o(nTF);

&

* As B — oo, we have that sup,,~; ||I[-E[f]||%/n%r7tS — 0 (notice that here |E[£]||2 is a function of B).

With the above results, it is straightforward that for any constant § > 0, by choosing the constant Bs > 0
sufficiently large, uniformly for all n > 2,

) 1t
2

. 210

sup |w E[fs]] < |E[fs][l2 <
wesSn—1

)
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where we rewrite f as fs to emphasize its dependence on Bs. Moreover, by Chebyshev’s inequality, we
further have from the above convergence results that as n — oo,

sup P (\wT(f _E[f)| > gn<+>> 0. (16)

wesSn—1

Taking together, we control w f 5; and our only remaining job is to control the convergence of w ' (¢ — f5),
which we prove by an argument similar in spirit to Borel-Cantelli Lemma ( , ).

7 Minimax rate optimality of coefficient tests

In this section, we investigate the minimax rate optimality of RPT by deriving the statistical efficiency
limit of coefficient tests with heavy-tailed noises. Without loss of generality, we denote D; as the class of
distributions with ¢-th order moment bounded between [1, 2], i.e., for some ¢ > 0 and some random variable
& with distribution PP,

Pe € Dy iff E[¢]=0and 1 <E[¢]"] <2.

Notice that in the above definition, the thresholds 1 and 2 are chosen for notational simplicity, in fact, the
general conclusions in this section still hold for 7; < E[[¢ ] < mo with arbitrary 71, 72 > 0. We further let
D denote the class of distributions such that

~ 1 1
P.cD iff P >— ) > .
ced it B(lg>5) >
With a slight abuse of notation, given by € R, we write P, as a distribution of (Y, Z) such that the b in (1)
is equal to by. Note that we have suppressed the dependence of Py, on X, 3, %, P, and P, for notational
simplicity. In particular, Py corresponds to the null hypothesis.
From above, we define the minimax testing risk indexed by ¢, X as

Rix(7) = ing sup  sup  sup Po(p=1)+sup sup sup sup Pp(p=0),.
$EL | P€D: P, eDND B,87 ERP [b|>7 Pe€D: p.eD; "D 8,87 €ERP

Here ® corresponds to the class of measurable functions of data (X, Z,Y") taking value in {0, 1}. We first
establish the following nonasymptotic minimax lower bound for testing Hy : b = 0 against H; : b # 0 in
the presence of heavy-tailed noises.

Theorem 9. Lett € [0, 1] be given and assume that € and e satisfy Assumption 3. For any n € (0, 1), there
exists a constant ¢;) > 0 depending only on 1) such that for any fixed design X,

Ritt,x <Cnn_%“> >1—n.

Theorem 9 shows that when entries of € have finite (1 + ¢)-th moment, the minimax separation rate
in b for testing Hy against H; is at least of order n_l%t, which matches the upper bound in Theorem 3.
This indicates that the rate n ™~ T+ may be a tight lower bound, and that our constructed test may be an rate
optimal test. Nevertheless, Theorems 3 and 4 are pointwise convergence results, where both P¢ and PP, are
considered as fixed and does not depend on n, p. To match the lower bound in Theorem 9, we further provide
a power control of RPT uniformly over classes of noise distributions of P, and IP.. Just as in Section 5, we
assume without loss of generality that n is divisible by K + 1.
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Theorem 10. Fix K € N. Assume that (X, Z,Y) is generated under model (1) with € and Z satisfying
Assumption 3 and that Py satisfies Assumption 4. In an asymptotic regime where b and p vary with n in a
way such that n > (3 + m)p for some constant m > 0 and |b| = Q(n_%ﬁﬂs)for some constants t € (0, 1]
and § > 0, we have for any constant v > 0 that,

1
lim sup sup P <¢ > g 1) =0. a7

NP Dy Pe€Doy

If we drop Assumption 4 and instead assume p/n — 0, then we have for any constant v > 0 that,

1
li P =0. 1
im sup sup <<b > K+ 1) 0 (18)

WO P.ED1 4t PoeDy4,ND

In Theorem 10, the separation rate is slightly worse than (8) by a factor of n’, where § can be any positive

constant. Also, it is slightly worse than the lower bound in Theorem 9. This shows that the separation rate
t

n~ T+ is a nearly optimal rate of coefficient testing in the minimax sense. At the same time, it also shows
that our residual permutation test is a nearly rate-optimal hypothesis test in the minimax sense.

8 Numerical studies

8.1 Experimental setups

In this section, we evaluate the performance of RPT, together with several competitors, in the following
synthetic datasets. The observations (X,Y, Z) € R"*PxR" xR" are generated according to the models (1)
and (3) where

* X is generated according to X := WX1/2, where & = (2717#l), 11 is the Toeplitz matrix and W
is an n X p dimensional matrix with i.i.d. entries from either NV (0, 1) or ¢; distribution;

* 3 and 3% are p-dimensional vectors with the first 10 components equal to 1/1/10 and the rest com-
ponents equal to 0;

* e and ¢ have independent and identically distributed components drawn from N (0, 1), #; or t.

We vary n € {300,600}, p € {100,200} and b in different simulation experiments.

In practice, we find that the p-value calculated by Algorithm 2 is slightly on the conservative side. Hence,
in addition to the test with p-value constructed by Algorithm 2, we also study a variant in our numerical ex-
periments, where the p-value is computed as ﬁ(l + Zszl 1{ar < by }) instead (we call this variant as
RPTgm, where “EM” stands for empirical). To benchmark the performance of RPT and RPTgy, we also
look at the naive residual permutation test in (4). Other tests used for comparison include the ANOVA test
described in the introduction, the robust permutation test by ( ) (DR), the resid-
ual bootstrap method of ( ) (RB), the residual permutation approach of
( ) (FL), the conditional randomization test (CRT) of ( ), the residual randomization
(RR) procedure of ( ), the desparsified Lasso approach for high-dimensional inference as imple-
mented in the hdi R package (HDI) ( , ) and the cyclic permutation test of
(2021) (CPT).

We note that RPT relies on tuning parameters /X and 7. For a test to have a size of a, we need to have
K +1 atleast 1/a. We suggestusing K +1 = [1/«] in practice, though empirical simulation results suggest
that our method is robust to the choice of K. We also set 7' = 1 to boost the computational efficiency of
Algorithm 1.
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RPTEeMm RPT DR FL CRT
n p X mnoise | 1% 05% | 1% 05% | 1% 05% | 1% 05% | 1% 0.5%
300 100 G g 0 0 0 0 098 0.5 |0.99 0.52 0 0
300 100 G t1 0.51 0.12 | 0.24 0 0.88 0.43 | 1.28 0.81 | 1.89 1.66
300 100 G to 0.14 0.02 | 0.04 0 0.67 0.3 | 123 0.64 | 053 0.37
300 100 ¢ g 0 0 0 0 3.33 222 | 1.01 0.51 0 0
300 100 ¢ 1 0.01 0 0 0 1.28 0.66 | 1.21 0.72 | 0.33 0.29
300 100 ¢ 12 0 0 0 0 254 1.49 | 1.09 0.55 0 0
600 100 G g 0.21 0.07 | 0.01 0 095 05 |0.95 0.47 0 0
600 100 G 1] 0.73 043 048 0.28 | 092 048 | 1.09 0.59 | 1.68 1.49
600 100 G to 0.61 0.33 | 0.20 0.12 | 0.68 0.33 | 1.09 0.58 | 0.61 0.45
600 100 ¢ g 0.23 0.07 | 0.01 0 3.95 265 | 093 0.47 0 0
600 100 ¢ t1 0.13 0.03 0 0 1.37 0.72 | 1.04 0.54 | 0.25 0.22
600 100 ¢ 12 0.10 0.03 0 0 3.33 204 | 1.05 0.52 | 0.01 0
600 200 G g 0 0 0 0 1.04 0.53 | 1.02 0.53 0 0
600 200 G 1 0.46 034 |0.26 0.17 | 0.89 0.44 | 1.18 0.7 | 1.5 1.3
600 200 G to 0.12 0.10 | 0.04 0.03 | 068 0.33 | 1.2 0.67 | 049 0.34
600 200 ¢ g 0 0 0 0 3.45 2.28 {098 0.49 0 0
600 200 ¢ 11 0.01 0 0 0 1.25 0.63 | 1.13 0.63 | 0.27 0.23
600 200 ¢ to 0 0 0 0 271 1.64 | 1.01 0.51 0 0

Table 2: Percentage of rejections of various tests under the null, estimated over 100000 Monte Carlo repeti-
tions, for various noise distributions at nominal levels of & = 1% and « = 0.5%. Data are generated from
the model in (1) and (3) with b = 0. X, € and e are generated according to the various distribution types
prescribed in the table. Here “G” stands for standard normal distribution. Percentage signs are omitted.

8.2 Numeric analysis of validity under the null

We start by analysing the validity of various tests under the null described in Section 8.1. We estimated
the size of RPT, RPTgy, DR, FL, CRT, RB, RR and HDI at nominal levels of 1% and 0.5% for (n,p) €
{(300, 100), (600, 100), (600, 200)} (see Table A2 in the Supplementary Material for estimated size at 5%
nominal level). RB, RR and HDI displayed more serious violation of the empirical sizes in these simula-
tion settings (see Table Al in the Supplementary Material). The results for the remaining procedures are
summarised in Table 2. Notice that since the p-values of both ANOVA and the naive RPT are invariant with
respect to the choices of 3, 3% and ¥, the results in Table 1 are directly comparable to the ones in Table 2.
Therefore, we do not repeat the simulations of the two tests here.

From Table 2, we see that DR has good size control when the design matrix X has Gaussian components
and exceeds the nominal size levels when X is generated with ¢; components. FL performed the best when
n/p is relatively large, consistent with the asymptotic validity of the test established in
( ), though with low n /p ratios and heavy-tailed noise, the empirical sizes can exceed the nominal level.
CRT is conservative when components of X and the noise have the same distribution, but can violate the
size control when the noise distributions have much heavier tails than that of components of X. On the
other hand, RPT exhibits valid size controls in all settings, which is consistent with our theoretical findings.
More interestingly, the size of RPTgy is also valid across all the simulation settings, even with heavy-tailed
noises and heavy-tailed design. In Section 8.3, we further study the empirical power of RPT and RPTgy;.
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Figure 2: Power (proportion of rejections) with nominal level & = 0.01 (represented by the horizontal
dashed line) over 10000 replicates for b = 0 or on a logarithmic grid between 0.01 and 2. Here X, € and e
are generated according to various distribution types prescribed in the caption of each figure.

8.3 Numeric analysis of alternative power

In Section 5, we established asymptotic power guarantees of RPT under fixed design and heavy tailed noises.
In this section, we validate these theoretical insights via numerical analysis. To benchmark the results, we
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investigate the power of all tests considered in Section 8.1. We set n = 600, p = 100 and vary the b in (1)
for b equals to 0 or one of the 25 different values on an equally spaced logarithmic grid in the range of
0.01 to 2. We analyze the power of all methods with design following Gaussian and ¢; distributions and
noises following Gaussian, ¢1, and ¢, distributions. The estimated power curves for RPTgy;, RPT, ANOVA,
naive RPT, DR, FL and CRT over 10000 repetitions are displayed in Figure 2 (see also Figure Al in the
Supplementary Material for power curves of RB, RR and HDI).

From Figures 2(a)-(c), (d) and (f), we can conclude that in most of the settings, the power of RPT is
slightly worse than ANOVA, the naive RPT and FL. The difference is more pronounced when both the design
and the noise follow a heavy-tailed distribution (Figure 2(e)). However, bearing in mind the lack of valid
size control of ANOVA, naive RPT, DR, FL and CRT, especially when design and noise are heavy-tailed, we
would argue that the gap in power between RPT and these competitors is the price to pay for distribution-free
finite-population validity in high dimensions. Moreover, RPT is nevertheless still guaranteed to reject the
alternative with high probability given a signal size b not too much larger than the competitors. In addition,
we observe that DR does not seem to have power converging to 1 as b increases for heavy-tailed noise, while
the power of CRT is substantially reduced for heavy-tailed design distributions.

Another interesting phenomenon is that the power of RPTgy is generally stronger than RPT, especially
in the setting displayed in Figure 2(e), where both design and noise follow ¢; distribution. This, together
with the validity display in Section 8.2, suggests RPTgy, although being lack of theoretical support, can
serve as a viable alternative of RPT in empirical analysis. We leave the theoretical investigations of RPTgy
as future work.

Finally, we compare RPT with the cyclic permutation test (CPT) proposed in ( ).
As CPT is not well-defined for n/p < 1/a + 1, we consider a relatively low dimensional setting where
n = 1000, p = 40 and o« = 0.05. The data generation mechanism is the same as that described in Sec-
tion 8.1. Figure 3 shows the power curves of RPTgy;, RPT and CPT under various design matrix and noise
distributions. We see that all three methods are well-calibrated at 5% level when b = 0, with RPT slightly
more conservative than CPT and RPTgy. For all the settings, the power of RPT and RPTgy converges to 1
faster than CPT, though CPT has higher rejection rate than RPT as b begins to diverge from zero.

9 Discussion

In this paper, we propose a new method for fixed design regression coefficient test with moderately high-
dimensional covariates. RPT is a permutation-based approach that exploits the exchangeability of the noise
terms to achieve finite-population validity control. Our approach uses the fact that the empirical residuals
of the classical OLS fit is equivalent to the projection of the n-dimensional noise vector onto an (n — p)-
dimensional subspace to construct a valid test for p < n/2 based on multiple subspace projection. At the
same time, we provide power analysis of RPT, and derived the signal detection rate of the coefficient b in the
presence of heavy-tailed noise vector €. As a by product, we propose RPTgy and demonstrate its validity
and power via numerical experiments. It would be of interest to understand the theoretical properties of
RPTgy in future study.

In the higher dimensional regime n/2 < p < n, we propose the naive RPT, and prove its finite-
population validity under spherically invariant distributions, and compare it with ANOVA as well as other
competing approaches via numerical experiments. In the meanwhile, we provide a more profound analysis
of ANOVA test, which is of independent interest for practitioners interested in ANOVA.

Distribution-free inference and test is an important topic in statistics research. In this paper, permu-
tation test facilitates an important basis for construction of finite-population tests hypothesis tests with
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Figure 3: Power (proportion of rejections) with nominal level o = 0.05 (represented by the horizontal
dashed line) over 10000 replicates for b = 0 or on a logarithmic grid between 0.01 and 2. Here X, and e
are generated according to various distribution types prescribed in the caption of each figure.

distribution-free validity. This sheds light on extending permutation tests to solve other distribution-free
problems in modern statistics, which we leave as future work. In addition, permutation tests and its related
the rank based tests have also been applied in model-free uncertainty quantification of machine learning
predictions ( , ; , ;

, ). It would be of interest if the power analysis techniques invented in this paper could be
used to understand the efficiency of these approaches in modern machine learning applications.
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SUPPLEMENT TO “RESIDUAL PERMUTATION TEST FOR HIGH-DIMENSIONAL
REGRESSION COEFFICIENT TESTING”

Appendix Al provides additional power analysis of RPT when K diverges with n.

Appendix A2 provides proof of all validity statements of the ANOVA test, naive RPT and RPT. It in-
cludes the proof of all the theoretical statements in Sections 3 and 4 and also the discussion of the equivalence
between (5) and (6).

Appendix A3 provides a preliminary lemma for RPT’s power analysis.

Appendix A4 provides proof of the statistical power results of RPT when K is fixed and noises are i.i.d.
It includes the proof of the theoretical statements in Section 5.

Appendix A5 provides proof of the rest of the power results of RPT. In includes proof of the theoretical
statements in Section 6 and Appendix Al.

Appendix A6 studies the minimax rate optimality of coefficient test with heavy-tailed noises. It includes
proof of the theoretical statements in Section 7.

Appendix A7 provides additional numerical analysis.

Notations we define ||||o, as operator norm, ||||2 as fo-norm, |||| 7 as Frobenius norm. We define a; /as = oo
if a; = a2 = 0 or ag = 0. Without loss of generality, we assume b > 0. Let 1 be an n dimensional vector
with all entries equal to 1.

Al Statistical power of RPT with a diverging K

In this section, we discuss the power of RPT when we allow K to diverge with n. We have the following
theorem:

Theorem Al. Suppose that (X, Z,Y) is generated under model (1) where € and Z satisfy Assumption 3
and
0 <E[ler]*™] <00 and 0<E[le;|'™] < o0

for some constants t € [0,1] and k > 0. Assume also that Py satisfies Assumption 4. In the asymptotic
regime where K varies with n with rate

K:O(nﬁﬁ)ifﬁ<2 or K=o(n)if k> 2,
and p, b vary with n and K such that n > (3 + m)p + min{p, \/2pK } for some constant m > 0 and
b = QWVEn ) if t<1 or |b|=w(VEn 2)if t=1, (ALD)

we have lim,,_yoo P (d) > ﬁ) =0.

When K = o(n/,/p), we require n/p to be asymptotically larger than 3 to get the desired power. As K
gets larger, the threshold becomes 4 instead. When K is a constant, then the power rate in (A1.1) matches
the main result (8). As the size of K increases, we need more moments for e; to maintain the rate (Al.1).
In particular, when the fourth order moment exists for e;, K can be as large as o(n).

In the rest of this section, we discuss the power of RPT when data generating mechanism satisfies
Assumption 6 and K is not a constant. Extending the proofs of Theorems 6 and A1, we can conclude that
under Assumption 6, with additional constraints that
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« uniformly for all 4, E[|e;|**?] < C, for some constant C, > 0;

* for any fixed constant B > 0,

o0
Y P(le? — E[e}]|"t/? > Bi) < oo;
=1

* sup;sy Eflef — Efef]|'™/?1(|ef — E[¢]]|'*/? > a)] = Oasa — o,

and that n > (3C./(cc—7)+m)p+C./(ce—r)-min{p, \/2pK} for some fixed constant m > 0, RPT is still
asymptotically powerful when b and K scales as in Theorem A1. In other words, even with heteroscedastic
noise or nonlinear Z, RPT is still guaranteed to be asymptotically powerful with a diverging K.

A2 Proof of finite-population validity statements

A2.1 ANOVA validity

Proof of Lemma 1. Recall that Projyx := X (X ' X)"'X " and Projx 7 := (X, 2){(X,2)7(X,2)} (X, 2)".
First assume that € is spherically symmetric. Since € has a spherically symmetric distribution, we can write

e = p&, such that & ~ Unif(S™), i.e., a random vector that is sampled uniformly from the unit sphere with

respect to the Haar measure; and that p is some random variable taking value in [0, c0) and is independent

from £. Then, we have almost surely,

P I(X = Projx)(e)l3 — (T — Projx Z)(e)l3 ~  [[(Projx z — Projx)(€)I3

e I(I = Projx z)(e)3/(n—p—1) I(I = Projx z)(€)II3/(n—p—1)
Hence, the distribution of ¢ap0va does not depend on p.

By Cochran’s theorem, we know that ¢anova ~ F1,n—p—1 Whene ~ N(0,1I),i.e., amultivariate standard
normal distribution. Moreover, when € ~ A (0, I'), we have € satisfies the above decomposition € = p& for
some random variable p. Now recall that ¢,0vs does not depend on p (as shown in (A2.2)), we must have
@anova ~ F1.n—p—1 for all spherically symmetric € as desired.

If instead (X, Z) is spherically symmetric, let @ be an independent random matrix that is sampled
uniformly from Q"*™ with respect to the Haar measure, then

4 |I(Projgx.gz — Projox)(e)l3 _ |(Projx z — Projx)(Q'e)3
(I, = Projox,0z)(e)l3/(n —p—1)  ||(In — Projx z)(Q 'e)|l3/(n —p—1)

(banova -
Since Q' has a spherically symmetric distribution, the desired conclusion follows from the first case. [

(A2.2)

A2.2 Validity of naive residual permutation test

Proof of Lemma 2. Without loss of generality we just prove the lemma with Condition (a). We first consider
the case where ¢ follows a spherically symmetric distribution. Then using an analogous analysis as in
Lemma 1, we have

K
1 T A .
Pnaive = K—i—il (1 + E ]l(|eT€‘ < eTPkE‘)>

1
1
- |1
K+1<+

>
Il

Nk

1(1Z2TVeVig| < \ZTVoPkV§£!)> :

b
Il

1

A2



This means that just like ¢anova, the distribution of ¢paive does not depend on p. Moreover, when € follows a
multivariate standard normal distribution, V ge is a n — p dimensional multivariate standard normal random
vector and thus ¢paive is a valid p-value. Then using an analogous argument as in the proof of Lemma 1, we
have that ¢paive 1S a valid p-value for all spherically symmetric noises.

If instead (X, Z) is spherically symmetric, again let @ be an independent matrix sampled uniformly
from Q™*"™, then

K
braive = K1+1 (1 +_1((Q2)'QVoV Qe[ <|(Q2)'QVoPLV( QTsD)
k=1

= T o’ TOT
TK+1 (”EW VoV Qe <ZVoPrViQ eo).

Then using an analogous argument, we prove the validity of ¢pajve- 0

A2.3 Validity of residual permutation test

We first show that the two definitions of RPT defined in (5) and (6) are equivalent. Since by definition,
g = VOTY, we easily have V;Voé = V,:VOVJ Y = VZY, where for the last equality we apply
Lemma Al. Using an analogous argument, we can prove that V,:Voé = V,:Z . Now for ‘N/Z Vi€, we
apply that

~ T R ~ T T ~ T TpHT ~ T T ~ T

Vi Vee=V, V;VyY =V, V,VoP P,Y =V, V,V,P,Y =V, P,Y,

where for the last equality we apply again Lemma A 1. Putting together, we see that the two definitions of ¢
in (5) and (6) are numerically equivalent.

In the rest of this section, our goal is to prove Theorem 2. We start with the following preliminary
lemmas. Recall that for any matrix U € R"™*? with orthonormal columns and any vector a € R",
Projy(a) := UU " a.

Lemma Al. Let U € R™Pt gnd V' € R"*P2 pe two matrices with orthonormal columns spanning sub-
spaces of R". Let W € R™*? be a matrix with orthonormal columns spanning a subspace of span(U) N
span (V). Then for any vector a € R", W 'a = W Proj;;(a) = W ' Projy (a).

Proof. This is straightforward using that
Wi =wvu'=w'vv'
since V' spans a subspace of span(U) and span(V'). O

Lemma A2. Under Hy, Vo& = Projy (€). Moreover, for any permutation matrix Py, we have that
Vk(:: = PI‘Oij (Pké')

Proof. Since we are under the H, we have that
E=ViY =V](XB+e).

Then as a direct consequence of that span(Vg) is orthogonal to span(X ), we have that VJ X = 0 and thus
& = V| e. From above, we have
Voé = V(V e = Projy, ()

A3



and that
Vg =V Vie =V, V(P Py =V,V]Pye =Projy, (Pe).

O]

Proof of Theorem 2. Throughout the proof we work on a fixed (X, Z) and a fixed set of permutation ma-
trices { Py, . . ., Pk} satisfying Assumption 2.
From Lemmas Al and A2, we have that for any « € [0, 1],

1 K . ~ T =T T =T
I ::]ID(KH <1+21{V6{‘%}?‘7K}T(V Ve,V Vos) gT(Vk Vee,V, Vke>}> §a>
. - T T - T T
:p( (1+Z]l{ve{‘£rl11nVK}T<V Ve,V s) gT(VkVOe,VkPke)}> ga).

.....

Then using that for any k € {1,..., K},

1 {  min T (V Voe, VT5> <T (Vk Voe, V;Pks>
VeV, Vi)

>1 { ~ min T <V Voé,VTs) < min T (VTVoé,f/TPks) } )
VE{Vl,...,VK} VE{Vl,...,VK}

we have

K
1 ~ T ~ T
I, <P|—— 1—|—§ 1 min T(V Voe,V s)
<K+1 < — {VG{Vh SV} ’

< min_ T (VTVOé,VTPkE)}> < oz) .
ve{Vvi,.,.Vk}

By defining g : R™ — R as a fixed projection depending only on (X, Z) and Pg such that for any a € R",

g(a) = min (VTVOé, VTa) ,
VE{Vl, ,VK}

we can further rewrite the above inequality as

K
I, <P <Kl+1 (1 1 iale) < g(Pka-)}) < a> |

Using Lemma 3, we can finally have that

I, < ]P’( <1+Z]1{g <ngs)}>§a>§a,

which proves the desired results. O
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A2.3.1 Proof of Lemma 3

Proof. Let &, ..., k s N (0, 1) and independent of all other randomness in the problem. Let

K

Ry =) 1{g(Pye) < g(Pye)},
k'=0

and
) K
Bii= " (Hg(Pre) < g(Pre) + 1{g(Pre) = g(Ppe) and & < &} ).
k'=0
In other words, R, is the rank of g(Pje) among (g(Pye) : k' = 0,...,K) in a decreasing order, with
random tie-breaking. Also, observe that Ry > Rk. By Assumptions 1 we have & 4 P for all k, hence

K K

Ro = Y L{g(Pre) < g(PpPre)} = > 1{g(Pre) < g(Pwe)} = Ry,
=0 k=0

where we used Assumption 2 in the penultimate equality. Thus, forallk € {0,..., K}andz € {1,..., K+

1},

K
(A2.3)

On the other hand, almost surely (Ro, Rl, ..., Rk) is a re-arrangement of~(1, ..., K +1). This means
that for any fixed j € {1,..., K + 1}, almost surely there is a &’ such that Rys = j. In other words, for
jed{l,....K+1},

K ~
> P(Ry =j)=1.
k'=0

By taking this back to (A2.3), we may further bound (A2.3) as

X
P < <
(Rg 90)_KJrl
Then
1 K R (K +1)]
Pd— (1 1 < g(P <ab=P( 0 <4) < 2T o
{K+1(+; o) <g(Pio)})) sa=( 0 <a) < L <
as desired. O

A3 A preliminary lemma for power analysis

In this section, our main goal is to prove Lemma A5, which can be used to characterize the stochastic

convergence of eV}, VZ& or RV, V;g in the proofs of Theorems 3, 4, 6 and Al.
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Lemma A3. Let M,..., M € R"™ " be K deterministic matrices that varies with n and satisfies
[ Mgllop < 1forallk =1,...,K; letw = (wi,...,w,)  be an n-dimensional deterministic vector that
varies with n. Assume that € satisfies Assumption 6 witht = 1. Then if b = w (\/E n~Y 2), we have that for
any fixed 6,y > 0,

™M
lim B(31 < k< Kst 10 MrEL__5) g
=0 bmax{]|w|3, yn}

Proof. We have forany 1 < k < K,
E[|wTMk5]2] = E[wTMkssTMZw] < C’EHwH%,

and thus by Chebyshev’s inequality and a union bound, for any ¢ > 0,

K
|wTMks| ]'wTMks\
P31 <k <K s.t. ) <EIP’ 1)
== 88 maxq [|[w||3, YN o - maxq ||w||3, YN
b 5 - k=1 b ; -

i‘: Elw Mel]  _ C.K
6202 max{||w||3,v2n?} ~ 8279b%n

From above, the desired result follows from K /b*n = o(1). O

Lemma A4. Consider the € in Assumption 6 with t € [0,1); let w € R"™ be an n-dimensional vector that
varies with n, we have that for any fixed B > 0, there exists a sequence of positive real values c,, — 0 that
does not depend on w such that

ZE w2e1(|e;| < Bith)] < cp - |w]2niFe.

Moreover,

lim sup {Z (E[ei]l(\si\ < Biﬁ)]f /nil’i} =0.
=1

B—oo p>1
Proof. Without loss of generality we assume throughout this proof that C; = 1. To control the first in-

1 .
equality, let f; := €;1(|g;| < BiT+t), let a,, be a sequence of integers such that as n — oo, a,, — oo and
an/n — 0, then

n

Zm zsz £y il
1=an+1

< szzﬁz[ﬁn(w < Bith )] + > wiE[1(lei < Ba“t)]

=1 i=an+1 (A34)

+ Z w?E[e1 Baﬁ“ <&l < le+t)]

i=an+1
n

_1
< Zw2E5 1(|ei| < Bal“)] + ) wE[g]1(Bay" < s < BitT)).
=1 1=an+1
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For the first term in the above inequality,

1—t
Zw2E€ 1(’51‘ < Ba1+t ZwQE ‘52‘1+t|5z’1 t]l(‘gz‘ < Ba1+t < Zw ‘Ez‘lthBlfta%-H]

=1 =1
1—t

1—t
< B w|3 - an™ = einllw| - 01,

-t 4
where ¢y, := B'~t . a3 /nTF — 0is a sequence of real values that does not depend on w.
For the second term on the right hand side of (A3.4), we have

n n
Z QE[g ]l(BaHt <lei| < BZlH)] = Z 2E[|5z|1+t|52|1 t]l(BaHt <leg| < BZHt)]
i—an—i—l i=an+1

< Z W2E[|e;| "1 (BT < |&i| < Bith)] - Bt
i=an+1

< B Y||w|3n 15 SupIE[If:‘ZIHJI(!E | > Ba“t)]-
Recall the restrictions we have about ¢;’s in Assumption 6, we have as n — oo,
cop = B supIEHeZ|1+tll(|5 | > Ba”t)] — 0.

Notice further that with the above definition, cg,, also does not depend on w. In light of the above two
results, we prove the first inequality where we select ¢, := c1,, + cop.

For the second inequality, we first prove it when ¢ € (0, 1). Using that all ;s are mean-zeroed, we have
for any fixed B > 0,

n n

STESD? = Y (Eleil(ei] > Bit)] 2 Z ) (E [{ﬂ(!a! N BH)}+D+

=1 =1
n

=3 (Ellei ) T (E[L(Jes| > Bit))) T < wa“t > Bl
=1 3

2t

2t 11¢
(i4) n s 1+3)\ 1+ o
2, (ShHelr > B)H (ZP (e > B ) | (A3.5

n

where (i) uses Holder’s inequality; (i7) uses Jensen’s inequality. Now given a fixed n > 0, from the
conditions of £;’s we must have that there exists a N;, such that %y P (|ei]**t > i) < n/2. Moreover,

form Markov’s inequality we further have that there exists a B, such that forany B > B,, S0 P(|e;| ' >
Bi) < n/2. Putting together, we have that for any B > maX{Bn, 1},

o
ZP(‘&'P—H > B1+ti) < n.
i=1

Since the above result holds for arbitrary > 0, we have as B — oo,

o
> P(ls|" > Bi) — 0.
=1
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In light of above and (A3.5), we prove that the second result in the lemma statement holds with ¢t € (0, 1).
We now turn to the case with ¢ = 0. In this case, we have for any fixed B > 0,
n

2
S < (supBlu(el > B0]) < n- (spEleia(sl > B)

=1

2

Using the requirement in Assumption 6 we have sup;; E[|e;|1(|e;| > B)] converges to zero as B — oo,
which proves the second result in the lemma statement in the ¢ = 0 case.
Taking together, we prove the desired result. O

Lemma AS. Consider the M1, ..., M i and w in Lemma A3; assume that € satisfies Assumption 6 with
t € [0,1] and that b satisfies (A1.1). Then for any fixed 6,7y > 0,

™™
tim B3 < k< Ksp 10 MEL 5 g
n—00 bmax{||w||2,'yn}

Proof. When t = 1 the result follows from Lemma A3. In the rest of the proof we assume throughout

t € [0,1). From the scaling of b we have that there exist C, N}, > 0 such that for all n > Ny, b > C’bn_l%rt,
which yields that for any B > 0,n > N,

uwwg;l (Bl (e < Biv))’ < Jzz;l (Bl (led < Bim))’

bmax{||w|3,yn} JACyn T

In light of the above and with Lemma A4, we have that for any fixed §,y > 0, there exists a constant
B, s > 0 depending on (v, §) such that for n sufficiently large,

folloy/ S0y (Bl < Bygirho)

_ (A3.6)
bmax{|w|3, yn}

<

Wl

Writing f; := g;1(|&;] < B%(;il%rt) and f := (f1,..., fa) ', then we have that
' Mye| < |w' My(f = E[f])| + |[w" ME[f]| + |w Mp(e - f)
< [w " My(f —E[f]) + |wl2E[f]ll2 + wllze — £l2.

In light of this decomposition and also (A3.6), we only need to prove that as n — oo,

w" M (f — E[f)] 5)
P <31 Sk Kt o e ~5) 0 (A3.7)

and that

Jwlille = £l _ 6 le—flls _ 6
P — | <Pl —=> - 0. A3.8
(bmax{||w||%,m}>3 =P\ 3) 7 (A38)

To prove (A3.7), applying Chebyshev’s inequality and a union bound, we have
K

]P’(Hl <k <Kst. lw" M, (f — E[f])] - 5) < ZP(WTMk(f—E[fM S 5)

bmax(w[Zm} ~ 3) =2 \ bmax{fw[Fyn} 3

5\ 9E[lw” My(f — E[f])?)
< 2 P mlwlf )
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Then by applying Lemma A4 where we select w as M g'w and using that all the €;’s are independent and
the basic inequality that E[(f; — E[f;])*] < E[f?], we have

P (31 < k< Ksp W MBI 5) =0 ( Kljwlfn i > = o(1),

bmax{||wl|3,yn} = 3 b? max{||wl|3, v*n?}

which proves (A3.7).
To prove (A3.8), apparently we already have

SOB(fi #ei) = > Pleil > By sith) < oo.
=1

i=1
Then given any constant 77 > 0, there exists a constant /V,, depending only on 7 such that

o

P(Fi> Nyst. fi£e) < Y P(fi#e) <

i=Np+1

N3

Using that V,, is finite, we further have there exists a constant M, such that

P30 < N,, st. |eg > M) < g
Writing the event &, := {Vi > N,, fi = ¢; & V£ < N, |e;| < M,} then we easily have that under
this event, with n sufficiently large, ”Z\_/%h < %. In other words, given any fixed > 0, with n sufficiently

large,
le—=Fll2 _ 0

Pl——> =) <P(&) <n,

< byyn  3) " (&) =
which proves (A3.8). In light of our control of (A3.7) and (A3.8), we prove the desired result. ]

A4 Proof of basic power results

In this section, we prove the power result of RPT in the basic model where Z follows a linear function with
respect to X and all noises are i.i.d.

A4.1 Proof of Theorem 3

Lemma A6. Let M € R™™" be a matrix with all diagonal entries equal to zero. Then for any P, € Do, we

have for any fixed 6 > 0,
T 2
e Me 4| M |5
Pl —- < .
< n 5) ~  n26?

Proof. Observe that

T 2
e' Me €i€;
E[( - ) ] =E § M, ; fnj

ij



Using that for any 7 # j, e; L e, we have

e Me 2
n

Then by applying Chebyshev’s inequality, we obtain the desired result. O

E

bl p2 - n2

2.2
& ZM2,eieJ < AIMIE
i

Lemma A7. For each n, let Vm-(l < i < n) be independent random variables. Suppose that there exists a
constant C > 0 such that for any i,n, E[|V,, ;|] < C and that

1 n
lim sup — E[|\Vail1(|Vhs| > a)] =0,
i s 3 SVl 1(Va > )

then L3 | (Vs — E[V,,4]) converges in probability to zero.

Proof. We just need to prove that for any fixed €1, €2 > 0, there exists a IV, ., such that for any n > N, ,,

|

Let € = €1€2/3; then there exists a constant a, > 0 such that for any n > 1, 2 3% | E[|V,,;|1(|Vn| >
ac)] <e )
Write V,,; = V;,i1(|Vii| < ae) and V,, ; = V;, ;1(|V5.,5] > ac). Then it holds that

n

=3 (Vi — ElVid)
i=1

> 61> < €9. (A4.9)

1< R _ IR -
E E Z(Vn,i - E[Vmi]) =E [ ﬁ Z(Vn,i - E[Vmi]) + ﬁ Z(Vn,i - E[Vmi])
i=1 i=1 i=1
R _ 1~ - -
<E||- Vni—EVni E|- Vni—EVni
< || 3000 - 0|+ |13 - w8

For the second term on the right hand side of the above inequality, we have

E

A -
= " Voi = E[Vail|
n =1

2 e~ -
S _ E E’Vn72| S 26.
n
i=1

For the first term, using the basic inequality that for any random variable V, E[|V|] < /E[V?] and the
independence of Vm-’s, we have

" . o7\ 1/2
1 _ 1 _ _
E ||~ (Vai —E[Vai)|| < | —E ||D_(Vai — E[Va])
=1 =1
1 _ 2 e
s(Tﬂ;E\VH,i—E[Vn,i]\) <

Hence for any n > a2 /e,
1 n
= (Vi — E[Vai])

n <
=1

E [ < 3e.
In light of above, and by a Markov’s inequality, we can have (A4.9) with N, ., := a? /€2, thereby proving
the desired result. O
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Lemma A8. The assumption of € in Theorem 3 is a sufficient condition of that of € in Assumption 6.

Proof. We have

o] [e’e) 0o
D P(leil't = Bi) =) P(ley|'™" > Bi) < / T =

1+t 1+t
<|€1‘ Zx) d:c:IE[|€1| ] < 00.
i=1 i=1 0

Moreover, for any constant a > 0,
sup Efle;| " L(|es|"T > a)] = Eller | L(|ea T > a)).
i>1

Since E[|e1]1*!] is bounded, by dominated convergence theorem, the above quantity converges to zero as
a — Q. O

Proof of Theorem 3. Without loss of generality, we assume throughout this proof that P, € Dy and P, €
D14y
To prove the desired result, it suffices to prove that for all § > 0,

T o T
IP(ﬂgkg[@.t.Wgé)—m;
mn

T o T
]P’(E{lngKs.t. le V’“;/’“P’“€| 25) 0
mn

(A4.10)

and that with probability converging to 1, forall 1 < j, k, < K,
eTVjV;—e — eTVkV,:Pke > m
n ~2(4+m)’
T o T T T
e VjVjeJre ViV, Pre S m
n ~2(4+m)’

(Ad.11)

To prove the first claim of (A4.10), since P, € D5, we have from the law of large number,
1 5)

Let £ denote the above event, applying basic inequalities of random events, we have

T T T T
P(ngkng.t.‘evb’“V’“E25> gP(ngkng.t.WZMS)P(EHP(SC)
m n

- T
(i) e ViViel 2

Fe >
bmax{]lell3. 3n} 5

Up (31 <k <K st 5| 5) P(E) + P(£°)

where () straightly follows from that we are under £. Then as a direct consequence of Lemma A5 with e
as w and f/k VZ as M, and also Lemma A8 and that K is a constant, we prove the first claim of (A4.10).
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For the second claim of (A4.10), by instead taking VkVZPk as M, the result follows from the same
argument as the first claim of (A4.10).

In the rest of the proof we focus on proving the first statement of (A4.11), and the second statement can
be proven via a similar argument. Since we assume K as fixed, it boils down to proving that for any fixed
J, k, with probability converging to 1, the first statement of (A4.11) holds. To achieve this goal, we apply
the decomposition

eTf/'jf/;re - eTf/kVZPke _eT(f/jVjT - diag(f/jf/;r))e - eT(f/k‘N/ZPk - diag(f/kf/ZPk))e

n n
N eriag(f/jf/;)e - eriag(ka/;Pk)e

n

= 1+1I,

where for any matrix A € R™*", diag(A) corresponds to the diagonal matrix such that all the diagonal
elements are equal to the diagonal elements of A.
For I, observe that

and that
- =T NP - =T - =T - =T
ViV, Pr — diag(ViVy P < ViV Pillf = te(ViVy PP ViV )
= te(ViVy) =n—2p,
we can apply Lemma A6 to show that for any constant § > 0,

lim P(T] < §) — 1. (A4.12)

SRS R
_ (VV, =V Vi Pyl

For II, given any fixed P; and Py, define a,,; := - and write V,, ; := nan,ief. Then
we can rewrite IT as II = % > i1 Va,i. Notice that for each n, it holds that ’an7i| < 2/n. From this, we can
have that E[|V,, ;|] < 2 uniformly for all 4, n and that for any a > 0,

1 n
sgli - ZEHVM\H(\VMI > a)] <E[2e21(2¢% > a)].
n=t =1

Using dominated convergence theorem and that E[e?] < oo, we have that E[2e31(2¢? > a)] — 0 as
a — o0; this allow us to apply Lemma A7 to get that for any constant § > 0,

Thus, it remains to control E[II | P, Pi] = Y | an ;. We write
A Al =T - V,V,, (A4.14)
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where Ay is a n x (n — 2p) matrix with orthonormal columns. Since the column space of V) is at the
intersection of span(X )+ and span(P;X )", we have that span(X) must be a subspace of span(Ay).
Hence without loss of generality we can write Ay := [Ag, Bg], where Ag € R™*P is a matrix with
orthonormal columns spanning span(V o). With the above notations, we calculate

n
1~ =T -~ =7 1
E[II| Pj, Pyl => an; = ~tx[V;V; = ViV P = —((n —2p) - tr[A, A} Py))
i=1
— X((n - 2) — 1[AvA] P, + BB P
= —((n —2p) — tr[A9Ag Py, + By By Pi]).
From Assumption 4, we have tr[AgA] Pi] < +/2pK, and using Lemma A 13, we have tr[B B} P}] <
tr[B B} ] < p, putting together we further have

m
>

E|IL| P;, P| >
[’ 7 k]_ _4—|-TTL7

((n—2p) —p— /2pK)

1 (A4.15)
n

where the last inequality holds for sufficiently large n. From above and (A4.13), and also our control of
the term I in (A4.12), we have that the first statement of (A4.11) holds with probability converging to 1.
Using an analogous argument we prove the second statement of (A4.11). In light of this and our analysis
of (A4.10), we obtain the desired result. L]

A4.2 Proof of Theorem 4

Lemma A9. Consider a deterministic permutation matrix P € R"*™ that varies with n and tr[P] = 0. We
have that for any fixed § > 0,

VP, € Dy, nlggopquPe\/n > §) =0.

Proof. Let o be the permutation corresponding to P. From Lemma Al1, we have there exists a partition
Ui, Us, Us with |U; N o(U;)| = 0 and that |U;| > % — 1 for j = 1,2, 3 such that

Then
3 1 5
. T
nlin;OP(\e Pe|/n >0) < ]Z_;]P’ ] EZU: CiCo(i)| > 3
= 1 ]

From above, it remains to prove that for any j and any fixed 6 > 0,

1
m Z 67;60-(2') > 1) — 0.
J i€Uj

P
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Let ¢; be a sequence of i.i.d. random variables that is independent from w and that ¢; 4 eies. Then we
easily have that €; are i.i.d. random variables with zero mean and bounded first order moment. Then using
the weak law of large number, we have that with a,,(6) := sup,,>, P(| Y%, &/m| > 0),

>5>:limP< >5>:0.
n—0o0

Using that the U; and o (Uj;) has no overlap, we have

n

Zéi/n

i=1

n

Zéi/n

lim a,(6) =limsupP (
i=1

n—oo n—o0

1Uj 4
€= ) eicoli
=1 iEUj
and thus
1
P m Z eiea(i) >0 < a|Uj|((5) < a[n/4_ﬂ (5) — 0,
J 1€Uj
where for the last inequality we use that a,,(0) is non-increasing and |U;| > n/4 — 1. O

Lemma A10. Assume that P, follows a distribution that is symmetric around zero; and let U € R" " be a
positive semi-definite matrix. Then we have that for any § > 0,

U
p(eTUe>5|\e\|§)g uly

Proof. Let J be a random diagonal matrix where all diagonal entries J; ; are i.i.d. binary random variables
with P(J;; = 1) = P(J;; = —1) = 1. We write P for a uniformly random permutation matrix that is

independent from J. Since PP, is symmetric and all the e;’s are independent, we have that e L pJg e ie.,
they are equal in distribution.
This allows us to prove the statement by controlling P(e" J " PTUPJe > §||e||3) due to that

i (eTUe > 5\\e\|§) —P (eTJTPTUPJe > 5eTJTPTPJe)
=P (eTJTPTUPJe > 5HeH§) . (A4.16)
First, for any fixed eg € R", we have
Ele' J T PTUPJele = eg] = e E[J " PTUP.J]e.
Second, for any fixed matrix M € R™*", we have E[(J "M J); ;] = E[J;; M, ;J;;] = 0 whenever
1 # j and E[(JTMJ)Z-J-] =E[J;;M,;J;;| = M. Putting together and applying Lemma A12, we have
tr(U)
n

Ele' JTPTUPJele = ey = eJE[J"PTUPJ)ey = lleo]|3.

From above and Markov’s inequality, we have
P(e' JTPTUPJe > d||e|?) =E [P (eTJTPTUPJe > dlle|2 | e)}
[Ele'J'TPTUPJe | eq
- dllel3
[tr[U]]  tr[U]
| on | on
In light of the above equality and (A4.16), we obtain the desired result. O

=E
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Lemma A1l. Consider a permutation o of {1,...,n} such that for any i € {1,...,n}, o(i) # i. Then

there exists a partition Uy, Us, Us of the set {1, ... ,n} such that
Vie{1,2,3}, |Uje [% 1, g +1] &|U; no(Uy)] = 0.
Proof. Let G be a directed graph on vertices {1,...,n} where there exists a directed edge i — j in G if
and only if j = (). Then the cycles in G are of length at least 2.
Let U denote a set with the maximum number of notes such that (U N o(U)| = 0, then apparently

|U| < &+ 1. Let G’ denote the subgraph of G removing all the edges of the type (u, o(u)) foru € U. Then
we must have that a node is in U* if and only if the node has an out edge in G’. Moreover, we claim that (i)
G’ does not contain a circle with length 2; (ii) all the connected component of G’ has no more than 2 edges.
To prove claim (i), suppose in contradiction there exists a circle a — b — a in G’, then we must have that
a,b & U. This means that the set U" = U U {b} can still satisfy that [U’ N o(U’)| = 0, which contradicts
that U is maximal. To prove claim (ii), suppose in contradiction there exists a connected component with at
least 3 edges, then in this component there must exists a patha — b — ¢ — dora — b — ¢ — a. Then
we easily have that b, ¢ ¢ U. This means that the set U’ = U U {b} can still satisfy that |U’ N o(U’)| = 0,
which contradicts that U is maximal.

From the two claims, we must have that all the connected components in G’ must be of the form a — b
or a — b — c. We now introduce three sets of nodes A, B, C, where A consists of all the nodes a such
that @ — b formalizes a connected component in G’; B consists of all the nodes a such that a — b — ¢
is a connected component in G’; and C' consists of all the nodes b such that « — b — ¢ is a connected
component in G’. Now recall the claim that a node is in U¢ if and only if the node has an out edge in G/,
we have that the four disjoint sets A, B, C, U formalizes a partition of all the nodes; moreover, o(A) C U,
o(B)=C,0(C)CU,o(U)=AUB.

From above, we split A into two sets Aq, Ay with size |A1| and |A2| differ by at most 1; and set U; =
U,Us = A1 U B,Us = Ay U C. Then it is straightforward that for all ¢ = 1,2, 3,

Z—1§W§1Ui\§rU1|sg+1
and that
|Ui N U(U1)| =0,
which proves the desired result. O

Proof of Theorem 4. Without loss of generality, we assume throughout that P, € D; and P. € Di4y.
Following analogous argument as in the proof of Theorem 3, we tackle this problem via proving that for any
fixed 6 > 0,

Ter T
P(Ellgkg[(s.t.’e‘/kvks’25>—>0;

bllel3
e T (A4.17)
ViV, P
P31 <k< st EVEVEPEL S 5)
bllell3
and that with probability converging to 1, for all 7, k,
eTf/jf/jTe — eTf/kf/;—Pke 1
2 =5
o lel® . (A4.18)
eTVjVj e—i—eTVka Pre 1
le]l? 2
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To prove (A4.17), since P, € D;, we have that there exists some threshold 7 > 0 such that % <
E[le;|?1(|e;] < 7)] < oo, from this and by standard results of weak law of large number, we have

. I, o 1
Jim P <n 2 leilLlled <7) 2 2> =1
i—
which also means that
I, 1
; f§ 2> 2| =
nlLH;OP <n > e; > 2) 1. (A4.19)

Denote the above event by £; then we have

V.V T T
Pan<k<ist Vel 51e) p(a1<p< st N V’“Vz’ff‘ >s|€).
bllell2 bmax{|le]3, 3}

(A4.17) then follows from exactly the same proof as that of (A4.10).
In the rest of the proof we assume throughout that both P; and P}, are fixed permutation matrices or
equivalently being conditioned on. Since we assume K is fixed, we only need to prove that for any fixed
7, k, with probability converging to 1, the two inequalities in (A4.18) hold. In the rest of this proof we prove
the first inequality of (A4.18), and the second inequality follows from an analogous argument. To prove this,
let €’ denote an independent replication of e. Recall the definition of Ay, in (A4.14), we have
(e—e)(V,V, = ViV, Pp)(e—¢€)
=lle—€|3—(e—¢€) Prle—e)—(e—e) (A;4;" — ArAy Py)(e —€)
14]614];r + P;AkAkTPk
2

(6 - 6,),

(A4.20)
where for the last inequality we apply Cauchy-Schwartz inequality. As e; — €, is symmetric around zero,
we have from Lemma A 10 that the following event £; holds with probability 1 — 1071” — 1

> le—eli—(e—) Pule—e)—(e—¢)T (AjAf n

T T T
& i {<e_e'>T<AjAf+ Aefle TP Al Py o) < §<e—e’>T<e—e’>}-

. - T o T :
In addition, as ||V ;V; — V V. Pylop < 2, we have from Lemma A5 that the following two events
& and &3 hold with probability converging to 1:

=
o

Working on the intersection of the three events £ N > N &3, and applying the decomposition

- AT ~ -~ T 1
e’ <VjVj - ViVy Pk) 6‘ < 5H€H%}S

T
J

o 1
7 (VjV - VkV;Pk) e( < 5||.s||§}.

— VkV;Pk)e + 6/T(‘~/]‘V; — ka/'ng)e’
— e (V,V, —V,V Py —T(V,V, —V,V, Ppe,



we have from (A4.20) that

eT(f/jf/jT — ‘N/kf/;Pk)e + e/T(f/jVjT — f/kV;Pk)e/

O o~

> L€l (e~ ) Pile—e) — el + l]}) (A421)
= J(llel3 +IlB) ~ (e~ )T Pule — &)~ SeTe!
Define random events
ei={le— ) Pue—¢) < fllelt]. &= {eTe < fllelp].
For &4, we have
P(£5) <P (€5 & lel3 = n/2) + P (lel} < n/2)

7 ({(e= )T Pute—¢) > JlelB} & el = n/2) +P (el < n/2)
<P({e-e)"Pile—e)> 15} &llel} =n/2) +P(llel} < n/2)

<P({e-e)"Prle—e)> 1) + P (el < n/2)

Then using Lemma A9 and (A4.1 9), we have that the event £, holds with probability converging to 1.

For &, using that all the e;e}’s are i.i.d. random variables with E[|e;e}|] = El|e;||E[|e}|]] < oo, we
have e e’ /n — 0 in probability; thus using a similar argument as £, we have & holds with probability
converging to 1.

Now working on the event £&; N - - - N &5 (which, as shown above, occurs with probability converging to
1), we have from (A4.21) and also the definitions of £, and &5 that

- T - T s 1
e (V;V; =ViViPpe+e (V;V; - ViV, Pp)e g(llellfz +le’]13)-
In other words, with probability converging to zero,

ST o - 1 ST o - 1
T <VjV]T —V,V, Py — 51) e+el (VjvjT —V,V, Py — 51) e <0,

1 T

Since I and I’ are two i.i.d. random variables, we have using their independence and identically distributed
property that

P(I < 0)=+/PI<0)PI <0)=+/P(I<0,T<0)<+PA+T <0)—0,

which proves (A4.18). In light of this and our control of (A4.17), we prove the desired result. ]

A4.3 Auxiliary lemmas

Lemma A12. Let P be a uniformly random permutation matrix. Let M € R™ "™ be a fixed n X n matrix.
Then foranyi=1,...,n, E(PMP");] =1 > i1 M.
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Proof. Let o be the random permutation corresponding to P, we have

1
E[(PTMP)’L7Z:| = E[Mo(i),a(i)] = E Z Mj7j7

where the second inequality is due to that o(7) can be viewed as a random variable that samples uniformly
at random from the set {1,...,n}. O

Lemma A13. Consider a symmetric positive semi-definite matrix M € R™ "™ and a permutation matrix
P c R™™ we have

tr[M P] < tr[M].

Proof. Using the positive semi-definiteness and symmetry of M, we have for any ¢, j (¢ and j can be equal
or unequal),

M., < Mii+M;;
2
Let o be the permutation associated with P, we have
+ M,
ZM“, <Z M D@ _ 1M,
which proves the desired result. O

A4.4 Theoretical analysis of the algorithms

We will first show an lemma.

Lemma A14. Consider a fixed matrix M & R™ ™ withn > 2 and a fixed permutation matrix Py € R™*"
satisfying tr[Po] = 0. Let P € R™"™ be a uniformly randomly sampled permutation matrix and define

P = PilPOP. Then for any 6 > 0, we have that

’ . 2tr[MM ] 5
t > — | <
tr[MP]| > 7 <

Proof. Let ¢ be the random permutation corresponding to P. Then we have that for any Py, Py, =1
if and only if (Po)a(u),&(v) = 1. Now that since ¢ is a uniformly random permutation, we have that
(6(u),d(v)) is a pair that is uniformly at random drawn from the set {(¢,7) | ¢ # j € {1,...,n}}. From
this, we have for any fixed (u, v),

P(Pu,v = 1) = P((PO)&(u),&(v) = 1) = n2 =

and equivalently, E[PZ}U] =E[P,,] = -1
Notice also that since P is a random permutation matrix, we have that for any fixed » and any fixed

v1 # Vg, almost surely Py, o, Py, = 0.
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Putting together, we have

E[tr[M P]?] (ZZMWPW> gnZE (ZMU,UPW>
=n) > E[M P ]=—"

From above, the desired result follows from Chebyshev’s inequality. O

tr[MMT] < 2tr[M M.

Proof of Proposition 1. Throughout the proof we only consider the case with number of iterations 7" = 1,
and the case of 7' > 2 can be proven via analogous argument. Let P be the random permutation matrix
associated with permutation 7, and let P}, be the permutation matrix associated with G, then we have that

P, =P_'P,P,,

so that for any k1, ko € {1,..., K}, we have that by setting k3 as the remainder after dividing k1 + k2 by
K +1,
p,, Py, =P, 'P, P.P,'P,,P, =P, P, P,P, = P.'P,,P, = Py,.

This proves that the returned Py satisfies Assumption 2.
In addition, we have from Lemma A 14 and tr[V ¢V VoV ] = tr[V (V| = p that for any k,

1
P (|tr[V0VJPk]| > @K) <

The desired result then follows by applying a union bound for all &.
Note that since Algorithm 1 returns with non-zero probability, there must exist a Pg that satisfies both
assumptions. O

AS Proof of additional power results

A5.1 Proof of Theorem 5

The following is an extension of Marcinkiewicz-Zygmund strong law of large numbers to the sum of non-
i.i.d. random variables.

Lemma A15. Consider the € in Assumption 5. If t < 1, for any constant § > 0, it holds that,
lim P(|le||2 > nTH) = 0.
n— oo

Proof. Without loss of generality, we assume throughout this proof that C. = 1. For any constant §, ¢ > 0,
1 1 1 1

set B := e1-¢ - §1-¢ /61-¢. Define f; = ¢;1(|e;| < Bit+1 ), by Assumption 5, we have that > -2, Pr(f; #

g;) < oo. Thus given € > 0, there exists an integer N, such that

S OP(fi #ei) <

1=Ne

Wl ™
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Moreover, given N, and €, we have from Markov’s inequality that exists a constant M, > 0 such that

N

S Pl 2 M,) <

€
3
i=1

Define the two random events

E:={UN.<i<n,fi=¢e;} & & :={¥i<N,le| <M}
Now for any n > N, we then have

P(lel3 > 6 nTe) < P(le]3 > 6 nT & & & &) + P(EF) + P(ES)
2
<P(e2>06-nT & & & &) + =

3
Under &; & &, itholds that "7 &2 < S | f2 + N M2, whence

P(lc| > 6 niee & & & &) <P (foJrNer > 50T & & &&)
=1

n
<P 2 L NM2>6§-niit |
3 €

=1

Now it remains to understand the concentration of Y1~ ; f2. We have

SCE2) < S Bl < Bit)] < YO E[E21(e] < Bnt)]
=1 =1 i=1

n n
= S E[le e (el < B < BUtniw S E(le " (e| < B
=1

i=1
2 e 2
< Bl_tnlth = —ni+t,

where for the last inequality we apply that E[|;|'*!] < 1 for all 4. In light of the above and by Markov’s
. . 6N M2\ 1£t
inequality, we have for n > max{N,, (—5—<)2 },

€0
- " E[f2] + N M2
B(S ™ f2 4 N 3 5 it < Di BT E N
=1

<

Wl ™

2
J - nitt

Concluding, we have that given any fixed €,0 > 0, for all n > max{N,, (6N;§\462 )% 1,
P(lle]3 > 6-nT¥) <.
The proof is then complete.

O
Lemma A16. Consider the M € R"*" with | M||op < 1 and random vectors € and e satisfying Assump-
tion 5. Let t € [0, 1] be given and assume that b satisfies (8). Then for any fixed 6 > 0,

M
lim P<M>5> — 0.
n—00 bn
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Proof. When t = 1, the result is a direct consequence from Chebyshev’s inequality since both e;’s and €;’s
are independent random variables with uniformly bounded second order moments. We now focus on the
t < 1 case. In this case, we have for any fixed ¢, ¢’ > 0, by Chebyshev’s inequality and union bound,

™M ™
(0 2 0) <r (M5 st tels < onte) 4 p 1l o)

Elle Me[21{[e]} < 5'nTi}]
<
- 02b2n2

C.8' - T
—  62h2n?

2 2
+P (Jlel}3 > o'nri7)
2
+P (Jlell3 > o'n7i))
where ¢’ > 0 can be an arbitrary constant that does not depend on n. From above, and that
lim inf b/rfl%rt > 0,
n— oo
we have that there exists a constant C such that for any fixed 6,6’ > 0, with n sufficiently large,

)
P (15 > 6) < 018+ Blel} > i), (A522)
n

In light of the above, we have that given any 1 > 0, by choosing &' as &, := §2/(2C),

-
e Me 2
P <|bn’ > 6> < g+IP(Hs||§ > 0nT+H ).

From above, and by applying Lemma A 15 we prove that by choosing V,, > 0 large enough, for any n > N,

T
bn

which proves the desired result. O

Proof of Theorem 5. Applying Lemma A16 and that K is fixed, it follows from the proof of Theorem 3 that
the only remaining task is to prove that for any fixed P, P}, with probability converging to 1,

eTVjV;e - eTVkVZPke cem .
n T 2(4Cc/ce +m)’
eTf/jV;e + eTVkVZPke Cem
n ~ 2(4Cc/ce +m)

Without loss of generality we just prove the first inequality. We can write

eTf/jVjTe — eT‘N/kV;Pke _eT(VjVjT — diag(VjVJ-T))e — eT(VngPk — diag(f/kf/kTPk))e

n n
N eriag(f/jf/jT)e - eriag(f/kf/ZPk)e
n

= T411,
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The term I can be controlled by a Chebyshev’s inequality following the same proof in Lemma A6, since
the proof of Lemma A6 can also be generalized to the case where e;’s are heterogeneous but have uniformly
bounded variance. For term II, knowing that we are under Assumption 5, it follows from the same lines of
proof as the term II in the proof of Theorem 3 that (A4.13) still holds.

Now the only remaining job is to understand E[II | P, P}]. Recall the definition of Ay; by setting D,
as a diagonal matrix with (i, 7)-th entry equal to E[e?], we have

S
"V, V] — ViV, Ppis
IE[II|Pj,Pk]:Z< AS B AL k>’E[6?]

X n
=1

1 1 . 1 .

1 2 1
> —tr[De] — C. =2 — ZC.tr[(AgA] + BpBJ ) Py).
n n n
Using that liminf, o tr[D¢]/n > c., we have that there exists some N such that for all n > N,
tr[De]/n > c¢; and therefore following the same proof as (A4.15), we have that with n sufficiently large,

B 3Cep — Cer/2pK S Cem

; >
E[II | P;, Py] > c. " = 10 Jeo

(A5.23)

i.e., that it is bounded by a constant that does not depend on n. Putting together, we prove the desired
result. O

AS5.2 Proof of Theorem 6

Proof of Theorem 6. We first need to prove that for any fixed 6 > 0,

T T
IP’(EIlgkng.t.,W26>—>O;
mn

T T
P(ﬂlgkg}(s.t. b ViV Prel za) 0
mn

and that the same inequalities still hold but with h replaced by e. Since limsup,,_,, ||k||3/n < r, we have
that there exists an N such that for all n > N, ||h||3/n < 2r. Then as a direct consequence of Lemma A5
where we select w = h, M, = ‘N/;C‘N/; or ‘N/kVZPk, the above two inequalities still hold. To prove that
the above two inequalities still hold with h replaced by e, since K is taken as fixed, we may instead apply
Lemma A16 where we select M = VkVZ or VkVQPk.

Following again the proof of Theorem 3, it remains to prove that for any fixed P;, Py, with probability
converging to 1,

(e+h) V,V,(e+h)—(e+h) V,V, Pyle+h) . (ce—r)ym
n ~2(4C./(ce — 1) +m)’
(e+h)V,Vi(et+h)+(e+h) ViViPieth)  (cc—rm
n —2(4C./(ce —T)+m)’
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In the rest of the proof we focus on the first inequality, and the second can be proven via an analogous
argument. Notice that

Pie hV,V, h—h"V,V, Ph
n n
n eT‘}jV;h - eTf/kV;—th n hTVjV;e — hT‘N/kV;—Pke

n n

As a direct consequence of Chebyshev’s inequality and that lim sup,,_, . [|h||3/n < r, we can easily prove
that the last two terms on the right hand side of the above inequality converge in probability to zero; for the
second inequality, we have that for any fixed constant § > 0, with sufficiently large n,

hV,V, h—h"V,V, Ph

n

> ||l /n > —r 5.

In light of the above and using exactly the same lines of proof as in Theorem 5 to deal with the first term,
we have that for any constant 6 > 0, as n goes to infinity, then with probability converging to 1,

(e+h)TV,V,(e+h)—(e+h)V,V, Pyle+h)

n
> - 3Cep — Ce/2pK D (ce —T)m iy
n 4C.[(ce — 1) +m
which proves the desired result since § > 0 can be chosen arbitrarily small. O

AS.3 Proof of Corollary 7

Proof. Without loss of generality we just consider the case with ¢ € [0, 1), and the case with t = 1 follows
from an analogous argument. Let

Zoi= min min Z'V, V] Z+(—-1)°Z V,V, P,Z.
1<5,k<K 2€{0,1}

It boils down to proving that for any 1 < k < K and for any fixed § > 0,

T T
lim P (ZV’“V’“& > 5) -0, (A5.24)

n—00 bin

and that the same conclusion holds with V', f/,: replaced by f/kVZPk In this proof we just prove the for-

mer, and the later follows from an analogous argument. To achieve this goal, write wy, := V'V, VZZ /IVoZ||2.
Since V', spans a subspace of V', it is straightforward that ||wy||2 < /n; and to prove (A5.24), it suffices

to prove that for |o/| = Q(n_l%rt ), limy, oo P (% > 5) = 0, which is a direct consequence of Lemma A5
where we select K = 1, w = wy, My =I,b=1V and vy = 1. O
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AS5.4 Proof of Corollary 8

Proof. From Lemma A4, we have that for any fixed § > 0, there exists a constant Bs > 0 such that
uniformly for all n,

11715 i (E[Ez‘ﬂ(\&\ < B(sil%rt)D2 < g (A5.25)

nitt ;1

Now writing f; := &;1(|g;| < Bg’i%ﬁ) and f as in the proof of Lemma A5, we have for any w € S" 1,
lw'el < |w' (f —E[f])| + [w E[f]| + |w' (e — £)| < [w" (f —E[f])| + [[E[f]ll2 + lle — Fl2-

In light of the above and (A5.25), we have that to prove the desired statement, we only need to prove that

lim  sup P(”“’T(fl_tEm)' > 5) —0 & lim P(Hs_l{h > 5) = 0.

N—00 1yegn—1 n20+8) 3 n— 00 nI0TH 3

The second inequality follows from exactly the same lines of proof as in the proof of (A3.8). For the first
inequality, we apply Chebyshev’s inequality, Lemma A4 and the basic inequality E[(f; — E[fi])?] < E[f?]
to get that

T Tig )
sup PP w (fl_tE[fm >é < sup Ellw (1 1_tEm)| | < 9%,
wesn—1 n 20+ 3 wesn—1 52nitt 1)

which converges to zero as n — oco. Notice that in the last inequality we use the fact that ¢,, does not depend
on w. Putting together we prove the desired result. O

AS5.5 Proof of Theorem Al

Since Lemma A5 can also work on the case where K diverges with n, with the help of the proof of Theo-
rem 3, it remains to prove that (A4.11) still holds with a diverging K. Write

gl . A ~ =T . ~ -~ T
Iy = e' (ViV, —diag(VV,))e Ly = e' (ViV, Py — diag(V,V, Py))e
n ’ ’ n )

L =T T NPT S
Iy, = erlag(Vka )6 — E[e%]tr[Vka] Iy = erlag(Vka Pk)e — E[e%]tr[Vka Pk]
n ’ T n ’

and T -
tr[V; V] 9y [V Vy Py

———— —Elej] - —

We first consider I;;. From Lemma A6, we have that by Chebyshev’s inequality and a union bound, as

n — oo, for any fixed § > 0,

I, := E[ed] -

P(V1 < k < K, [Lig| > 8) = O(K/n) = o(1).

Using an analogous argument we can prove that the above result still holds with Iog.

Second, we consider I1;;. In the following, we control this by applying Lemma A5 where we select

e? — Ele?] as g, diag(f/kf/;—) as M, 1 as w, k/2 as t and set 7 = 1. We now discuss by cases based on

7 7
K.
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—K/2
1. When 0 < k < 2, we can set the bin Lemma A5 as b := VEnT/z , then it follows from Lemma A5
that
sup Za’“ e? —E[e?)) = op(b- |[1]3/n) = o]p(\/?n_%%) = op(1).
1<k<K M

2. When k > 2, we can choose the b in Lemma A5 as b = 1 = w(y/K/n) (note that K = o(n) here).
Then it follows from Lemma A5 that

sup Zame —E[e7]) = op(bl[1]3/n) = op(1).

1<k<K T

In light of both cases we have sup; << g I = op(1). Analogously we can derive the same bound for IT5.
We thirdly consider III; . Using exactly the same analysis as the E[II | P;, P}] in the proof of
Theorem 3, we have forany 1 < j, k < K,
1
T, > — (n— 3p — min{+/2pK p}) > 4—|—Lm
In light of our control of Iy, Isg, IT1x, IIo; and II1; 5, we prove the desired result.

A6 Proof of minimax rate optimality results

A6.1 Proof of Theorem 9

Without loss of generality we consider the scenario where 3 = 32 = 0. Let H;(7) be the class of alterna-
tives such that |b| > 7, with 7 to be specified later. Then using Neyman-Pearson lemma, we have that for
any (Z,Y)in Hp and any (Z',Y") in Hy(7),

Rix (1) > 1—-TV(Py z,Py’ 7).

Hence, the problem becomes constructing a (Z,Y ) and (Z',Y") belonging to Hy and H1 () such that their
total variation distance is smaller than 7.

We can do the following construction. First, we construct Z; as i.i.d. binary random variables such that
P(Z; = n/vy) = vy/nand P(Z; = —(1 —v/n)~') = 1 — v/n, where v = —log(1 — 1) /2, and without
loss of generality, n is sufficiently larger such that v/n < 1. Moreover, we construct Z; such that for each
i, Z; = Z! almost surely.

We then construct ¢;, €/ as i.i.d. Rademacher random variables that are independent from Z;, Z}; and
construct ZZ- as i.i.d replicates of Z; which are independent from other randomness in the problem. Finally
let Y; = bZ; + ¢; and Y/ = bZ] + ¢; where b = cnn_t/ (1+1) for some constant ¢y > 0 depending only on 7
such that E[|Y;|'*!] = E[|Y/|'*!] = 2. Then it is straightforward that the distribution of Y; is in Dj 4, so
that (Y, Z) and (Y”, Z') are feasible choices in Hy and Hi(7) respectively with 7 := ¢,n ="/ (1+1),

Using the above construction, we control their total variation distance as

TV(Py.z. Py ) = sup{P (Y. 2) € B) - P (Y. Z)) € B))}
<sup{P((Y,Z) € B)—P((Y',Z') € B,(Y,Z) € B)}
B
Ss%pIP’((Y,Z)EB (Y',Z') ¢ B)

SP(Z;AZ) <1-(1—q/n)<1—e? =
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A6.2 Preliminary lemmas for Theorem 10
We first invoke the following lemma, which is a uniform convergence extension of Lemma A4.
Lemma A17. Lett € (0,1),~v > 0 be given. For any fixed B > 0,

1
n T
wp s S~ Elufedi(e] < BT

weRS P-€D1 1+ 53 ||w|]§n%§+7

= o(1).

Moreover,
n 1NZ e
S (Blein(leil < Birm)]) /nt= = o),
i=1
where R? denotes the n-dimensional Euclidean space excluding the original point and t, denote a constant

in (—1,t) such that
1—¢; 1-¢

T+t 1+t
Proof. As a direct consequence of Jensen’s inequality it is straightforward that

.

1+t 1+t
sup E[je['] < sup (E[jey|'H]) T < 27T (A6.26)
PeeD11t Pe€D1yt

1
Let f; := ¢;1(|e;] < Bi'+4). To prove the first statement, following the proof of Lemma A4, we only
need to prove that

1
~ E[w?ef1(lei| < Ban™)]

sup  sup Z — =o0(1) (A6.27)
weRY P56D1+t i=1 H’IU|’%7'L17H+’Y
and that )
1 1
E[w?e21(Ba, ™ < |g;| < Bithn
sup  sup wie 1 (Ban 1_’5:1’ < Bith )] =o(1). (A6.28)
WERS Pe€Drtt =g, 11 [wl|3n e

For (A6.27), following exactly the same lines of proof as in Lemma A4 but with ¢ replaced by ¢, we can eas-
ily have that its left hand side is of order o(supp_cp, ,, E[le1|'T"]), which is of order o(1) knowing (A6.26).
For (A6.28), following again the proof in Lemma A4 but with ¢ replaced by ¢;, we only need to prove that
1
sup E[le|" T 1(|e1] > Ban™)] = o(1).
P.€D14¢
This follows from the fact that

1

1
Efler] " L(jea| > Ban ™)) < Eflea] || L(Jer| > Bay™)]

t—t1

)] < E[|61|1+t]/(Bt—t1a7}L+t1 )

1

Elle1|* 1 (Je1| > Ban™
< t—t;
Bt*tl a/TlL+t1

Now for the second claim, recall again the proof in Lemma A4, we have

2t

n 2 1—t > m
SCE[AD? < 20 ( SOP(le 0 > B )

=1 =1
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and the desired result follows from that

|5i|1+t1 ‘Ei|1+tl]

= 1+t 1+t > E[
+ Ft1 _
> P(lei* > B 1@)§/0 P<Bm1 >x>dﬂf—31+tl
=1

and (A6.26). O
Armed with the above lemma, we now introduce Lemma A 18, which is an extension of Lemma AS5.

Lemma A18. Consider the M € R™ " with ||M|op < 1 and lett € (0,1) be given. Then if b >
An_ﬁt"‘mY for some constants v, A > 0, we have that for any fixed 6,~' > 0,

™M
lim sup sup ]P’( [w 5’ — > 5) =0.
N—00 pcR™ P.€D14+ bma'X{Hw‘b?Py TL}

Proof. When t = 1, the result follows from an argument analogous to the proof of Lemma A3. Therefore
we just need to prove that the result holds for ¢ € (0,1).

Let f; be defined as in Lemma A 17 for some constant B > 0 and write f := (f1,..., fn) . Then we
only need to prove that

TM(f-E
lim sup sup P (\'w (f 3 ['/fm > 5> =0,
N—=00 pecR" P.€D141 bma’X{Hw‘b”Y n}

lim sup sup ]wTMIE[f]\ =0
N—r00 1y cR™ Pe€D14¢ bmaX{HwH%,'y’n} ’

lim sup sup ]P’( ‘UJTM(EQ_f)’ > 5) =0.
N=00 weR" P.€Dy 44 b max{ Hw||2? lyln}

and that

The first inequality follows from exactly the same lines of proof as in Lemma A5, except that we re-
place Lemma A4 with Lemma A17; the second inequality follows from a Cauchy-Schwartz inequality and
Lemma A17. Now we are still left with the task of dealing with the third inequality.

Following the proof of Lemma A5, to prove that the third inequality holds, it remains to prove that given
any constant 77 > 0, there exists constants N,,, C;, such that the following result hold:

sup P (87‘73) <n, where &, :={Vi> N, fi=¢e;, V<N, || <Cp}. (A6.29)
P.€D1 4t

To achieve this goal, observe that for any integer N > 0,

0 0 )

> B(fite) = > B(al > B < [ TRt > B s

i=N+1 i=N+1 N

— /mp{<|51|1+t1 - N) 1(jey|*T > BT N) > 1:} dz
) B+t 1

‘E1|1+t1 ‘€1|1+t1
=E [( BiTh —N) ]1(151‘1+t1 > Bl+t1N)} <E [

1(’61‘1—”1 > Bl+t1N) ’

Bl+t
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whence
‘1th|51 ‘trt

1+t
E |:|€1 :[]_(|€1|1+t1 > B1+t1N):| —F |:|€1

B+ I(ler["" > BYON)

Bl+t:

t—t1

<r B et s g ] gy <o T
<E | G e > )| =SB
1+t
From above, by choosing Ny, := (ﬁ) "™ we have for any P, € D;4,
- U
P(3i> Nyst. fiFe) < Y P(fi#&) < 7
i=Ny+1
Further letting C), := (4N,7/n)%+t, we have for any P. € D; 4,
2N, n
P(3¢ < Ny, s.t. |eg| > Cy) < NyP(leq] > Cy) < C’,%J:]t =5
In light of the above two inequalities we prove (A6.29), thereby proving the desired result. O

Lemma A19. Let ay; (i,n = 1,2,...) be a deterministic array with Y ;" lani? < %. Let V; (1 =
1,...,00) be a sequence of independent random variables obeying the law Pv;,. Then for any v > 0,

lim sup E = 0.

NPy Py, €Dy

> ani(Vi — E[Vi)
=1

Proof. Leta = n2(v1+1) ; define
Vi =Vil([Vi] > a), V" =V;1(|Vi| < a).
We first have
> ang BV = lans EIVIL( V] > )] = > lan B[ ViV VL Vi] > a)]
i=1

i=1 =1
" n
< a7y lan BV UV > )] <207 Jan ]
1 =1
" n 1/2
< 20!/ (Z \) <da”.
i=1

where (i) uses Cauchy-Schwartz inequality. From above, we have

=E (|3 ani(V — EV/]+ V' —E[V)
i=1

E||>_ ani(Vi - E[Vi])
i=1

+2) langE[V/]]

< | |3 ana(V — EIVY)
i=1 i=1

<E||Y ani(V/' —EV/))|| +8a7
=1

A28



To deal with the first summand on the right hand side of the above inequality, we apply Holder’s in-
equality to get that

977 1/2
n n
E [ > ani(V =BV < B || ani(V" —E[V])
i=1 i=1
- n 1/2 n 1/2 n 1/2 A
= |E Zai’i(vi” — E[V/])? < [E Za%’i4a2 ] =2a [Z aiyi] < 2a
i=1 i=1 i=1 v
Putting together, we have
i 4a 2
sup E an;(Vi —E[Vi])|| <8a™7 4+ —= < 12n 26+D),
Py, s Py, €D1 4y ; e ' Vn
which gives us the desired result. O

A6.3 Theoretical analysis of (17)

Proof. Following the proof of Theorem 3, we only need to show that for any fixed j, k, for all 6 > 0,

T T
e'V.V.e
TV, Vel

sup sup P 5| —o0;
Pe ED2+V Pe ED1+t bn
T (A6.30)
——_
V.V, P
sup  sup P[1EVEVEPREL5) g,
Pe€Daty Pe€D1 44 bn
and that,
N v T 1
e ViVie—e ViV, Pge m
sup sup P < 0
P6€D2+U P€€D1+t n 2(4 + m)
A ~ ~ T (A6.31)
eTVjVj e+€TVka Pe m
sup sup P < 0.
Pe€Doyy P-€D1 44 n 2(4 + m)

To prove the first claim of (A6.30), since P, € Dy, using Lemma A19 yields

1
sup E HH@H% — Elef]
PEED2+V n

]—>07

whence by Markov’s inequality,

sup P (|le]|3 > 2E[ef]n) — 0.
P€€D2+V

For P, € Dy, using Holder’s inequality, we have

E[e%] < (EH61’2+V])2/(2+V) < 22/(2+1/).
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From the above two inequalities, we have the random event £ := {||e|3 < 203+¥)/2HV)n} satisfies that
SUPp,eD, ., P(£¢) — 0. Therefore, by choosing v/ = 2(3+)/(2+v) we can control the first inequality
of (A6.30) via that

|eTVjVjT(-:| TV V 5[
sup sup P|———>§| < sup sup P >0|E|+ sup P(E9)
P66D2+v Pe 6D1+t bn Pe 6D2+u Pe 6D1+t Pe ED2+V
T T
; e ViV.e 9
© sup sup P | 4 2] ,| S| E+ sup P(E°)
Pe€Doyy Pe€D1yt bmaX{HeHQﬂ Y TL} 7 Pe€D2yy
- T
< sup sup P 5s—— > — | + sup P(&°),
weR" P.€D; 44 bmaX{Hw||27 ymy Ty Pe€Dayy

where for the equality (i) we apply that we are under £. Then as a direct consequence of Lemma A 18, we
prove the first claim of (A6.30). The second claim of (A6.30) follows from an analogous argument.
In the rest of the proof we focus on proving the first statement of (A6.31), and the second statement can
be prove via a similar argument. To prove this statement, we apply again the decomposition
eTf/'jVjTe - eTf/kf/;Pke _eT(VjVjT - diag(VjVjT))e - eT(f/kV;Pk - diag(VkaTPk))e

n n
e diag(V f/ Je — eriag(VkV;Pk)e

n

=141,

where recall that for any matrix A € R™*", diag(A) corresponds to the diagonal matrix such that all the
diagonal elements are equal to the diagonal elements of A.

For I, using the same lines of proof as the term I in Section A4.1, we have that for any constant § > 0,
9(6+)/(2+v)

sup P(|I] <4) <

(A6.32)
Pe€Doyy n(SZ

For IT, we apply the same lines of proof as the control of term II in Section A4.1, except that we replace
Lemma A7 with Lemma A19. Putting together, we obtain the desired result. O

A6.4 Theoretical analysis of (18)
Lemma A20. Let P € R™"™ be a completely random permutation matrix. We have that for any fixed § > 0,
lim sup P(le' Pe|/n>d)=0.

n—oo P. €D1+V

Proof. Letejq,e12,...,€1n,...and €21,€29,...,€25,... be two sequences of i.i.d. random variables
from a distribution P.. Then apparently if P, € D44, 1 < E[le1 se2;|'™] < 4. Then using Lemma A 19,
we have from Markov’s inequality that for any 6 > 0,

> 6) =0.

: 1 ¢
lim sup P <‘n E 1 €1,€2,
1=

n—oo P€D1+V
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The desired result then follows from the same lines of proof as in Lemma A9.

O
Lemma A21. We have n
lim sup P (HEH% < —) =0.
oo P, 67.3 16
Proof. Let & := 31 (|e;| > 1), then E[¢?] > 1. By Hoeffding’s inequality,
= n n
=2 2
P ( 2( - Bl&)| > 16) <exp (—155) -
In light of the above inequality and that almost surely, |e;| > |é€;|, we obtain the desired result. O

Proof of (18). Following analogous argument as in the proof of Theorem 4, we tackle this problem via
proving that for any j, k € {1,..., K} and for all 6 > 0,

- T
’eTVjVj E‘
sup sup P | ——5—26] —0;
Pe€Di.,NDPe€D1 4 b”e”Q
- (A6.33)
V.V, Pie
sup sup P e Vi k2 k‘Z(S — 0
PecDyy,NDP€D11¢ bH6||2
and that
T T T T
e VjVje—e ViV, Pre 1
sup 3 <=1 =0
PSED1+Vmﬁ ||e” 5
- T o AT (A6.34)
e'ViV,e+e' ViV, Pre 1
sup P 5 <=1 —=0.
PEEDH_VFTﬁ ||€|| )
For the first claim of (A6.33), writing £ := {||e||3 > n/16}, we have with v := 1/16,
|eTf/j‘~/ij-:| ]eTf/jf/st]
sup sup P| ——5—2>6| < sup sup P | ——"5—2>0|& | + sup P(&)
Po€D14,NDP€D1 41 bllell3 P.eD14,NDP€D1 4+ bllell3 P.eD
- T
|6TV]V] €| c
= sup sup P 5—— >0 | & |+ sup P(E9)
P.eDy D P-eD1y, | bmax{]lel|3,7'n} PP
- T
< sup sup P 5—— >0 | & |+ sup P(£9),
wER" P5€D1+t bmaX{Hw”Q’fY n} Peef)

which converges to zero knowing that we have Lemmas A18 and A21. The second claim of (A6.33) can be
proven via a similar argument.
We now focus on (A6.34), recall the definitions of £; — &5, it remains to prove that

lim sup P(ETU---UE) =0.
"Op,eDyy,ND
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RB RR HDI

n p X mnoise | 1% 05% | 1% 05% | 1% 0.5%
300 100 G g 3.36 2.11 | 3.72 241 | 733 546
300 100 G t1 206 142 | 197 1.2 1.86 1.64
300 100 G to 3.07 1.84 | 314 19 | 432 282
300 100 ¢ g 3.64 211 | 3.74 234 | 70.33 69.33
300 100 ¢4 t1 2.060 138 | 2.04 1.31 | 47.06 44.56
300 100 ¢ to 2.74 154 | 283 1.65 | 64.15 61.9
600 100 G G 1.93 1.08 | 1.89 1.06 | 5.36 4.23
600 100 G 31 099 059 | 1.3 073 1.8 1.6
600 100 G 1) 1.73 093 | 1.65 092 | 4.38 3.12
600 100 ¢ g 1.93 1.06 | 1.91 1.01 | 77.05 76
600 100 ¢ 1 1.37 084 | 1.29 0.74 | 51.2  48.5
600 100 ¢ to 1.66 091 | 1.58 0.83 | 71.18 69.46
600 200 G g 3.55  2.11 | 3.1 2.26 | 6.7 5.3
600 200 G 141 146 093 | 1.75 1.04 | 1.95 1.75
600 200 G 12 253 134 1296 1.77 | 433  2.58
600 200 ¢ g 3.92 259 | 3.74 234 | 7818 76.43
600 200 ¢ 31 1.68 1.12 | 1.72 1.03 | 56.9 54.83
600 200 ¢ 1) 255 149 | 246 1.36 | 74.05 72.05

Table Al: Percentage of rejections of various tests under the null, estimated over 100000 Monte Carlo rep-
etitions, for various noise distributions at nominal levels of & = 1% and « = 0.5%. This table supplements
Table 2 in the main text and the same data generation mechanism is used. Percentage signs are omitted.

We can control £ — &5 following the same lines of proof as in the proof of those events in Section A4.2,
except that for & and &3 we replace Lemma A5 by Lemma A 18; for £4, we replace Lemma A9 and (A4.19)
by Lemmas A20 and A21 respectively; and for &, we additionally control the uniform convergence of
leTe’|/n with Lemma A19.

In light of our control of all the random events, the desired result follows. O

A7 Additional numerical comparisons

We report here additional simulations for sizes of the residual bootstrap (RB) procedure ( , ),
residual randomization (RR) procedure ( , ) and the desparsified Lasso coefficient test as imple-
mented in the hdi R package (HDI) ( , ) at nominal levels of 1% and 0.5%. As can

be seen from Table Al, all the methods are above the nominal size level in the majority of the simulation
settings considered here, especially when the design or the noise is heavy-tailed.

We have focused primarily on size controls at « = 1% and a = 0.5% in the main text. This is partly due
to the fact that the size invalidity of many procedure are most obvious at small nominal levels. For instance,
the distribution of the p-values of ANOVA under the null shown in Figure 1 shows a single large spike
near 0. Moreover, in many applications, coefficient tests are conducted multiple times, which necessitates
consideration of test validity at small nominal levels due to multiple testing corrections. Nonetheless, for
completeness, we include in Table A2 the estimated sizes of all tests considered in our numerical simulations
at the 5% nominal level. We observe that at this nominal level, in addition to RPT,,, and RPT, ANOVA,
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n p X noise RPT,; RPT ANOVA Naive DR FL CRT RB RR HDI

300 100 G g 0.1 0 S S 5 5 0.1 11 111 17.0
300 100 G 1 1.1 0.5 3.1 34 47 38 3 6.3 66 3.3
300 100 G to 0.5 0.1 4.8 48 39 49 19 97 99 109
300 100 ¢ g 0.1 0 5 ) 9 5 0 114 11.2 76.1
300 100 ¢ 1 0.2 0 4 42 57 44 06 69 69 556
300 100 ¢ 12 0.1 0 5 5 85 5 0 99 98 717
600 100 G g 1.8 0.1 4.9 49 49 49 0 75 7.4 139
600 100 G 131 2.3 1.2 2.5 34 48 38 25 41 46 26
600 100 G 12 2.3 0.5 4.6 4.8 4 49 19 6.7 6.6 10.8
600 100 ¢ g 1.7 0.1 4.9 49 95 49 0 75 74 822
600 100 ¢ 1 1.5 0 2.8 3.8 58 41 04 53 5 609
600 100 ¢ to 1.5 0 4.8 5 9.2 5.1 0 7 6.8 77.8
600 200 G g 0.1 0 5 49 49 49 0 109 11 177
600 200 G 1 1 0.5 2.5 28 48 34 24 58 6.1 26
600 200 G to 0.5 0.1 4.7 4.7 41 48 19 9 9.8 122
600 200 ¢ g 0.1 0 5.1 51 9.1 5.1 0 114 11.3 828
600 200 ¢ 31 0.3 0 3.3 3.7 56 41 05 6.2 62 634
600 200 ¢ 12 0.1 0 4.6 4.7 87 4.8 0 96 94 80.6

Table A2: Percentage of rejections of various tests under the null, estimated over 100000 Monte Carlo
repetitions, for various noise distributions at nominal levels of &« = 5%. The data generation mechanism is
the same as in Table 2. Percentage signs are omitted.

naive RPT, FL, CRT also show valid size control. This is inline with our observation in Figure 1, where
the violation of uniformity of p-value null distributions from ANOVA and naive RPT is mostly manifested
through a large spike near 0, which would be smoothed out at higher nominal levels. However, we would
like to point out that the task of single coefficient testing is typically carried out multiple times in many
applications, and in view of the multiple testing correction needed, it is the size validity at small p-values
that are more relevant for practitioners.

Finally, we report in Figure A1 a power comparison of RPT with the additional methods mentioned in
Table A1. RB, RR and HDI procedures exhibit better power than RPT and RPTgy; in most of the simulation
setups. However, this should be viewed in the context of their above nominal size under the null as reported
in Table Al.
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Figure Al: Power (proportion of rejections) with nominal level « = 0.01 (represented by the horizontal
dashed line) over 10000 replicates for b = 0 or on a logarithmic grid between 0.01 and 2. Here X, and e
are generated according to various distribution types prescribed in the caption of each figure.
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