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Abstract. Linearised relativistic elasticity equations of motion are considered for a rod and a spinning ring encountering a
gravitational wave. In the case of the rod, the equations reduce to a wave equation with appropriate boundary conditions.
Using Fourier transforms, the resonant frequencies are found and an explicit distributional solution is given, both for a
plus- and a cross-polarised gravitational wave. In the case of the spinning ring, the equations are coupled wave equations
with periodic boundary conditions. Using a Fourier series expansion, the system of wave equations is recast as a family
of ordinary differential equations for the Fourier coefficients, which are then solved via Fourier transforms. The resonant
frequencies are found, including simple approximate expressions for slowly rotating rings, and an explicit distributional
solution is obtained in the case of the non-spinning ring. Interestingly, it is possible to tune the resonant frequencies by
adjusting the angular velocity of the spinning ring.
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1. Introduction

The aim of this article is to study the linearised relativistic elasticity equations of motion for a rod and
a spinning ring encountering a gravitational wave.

The existence of gravitational waves was predicted by Einstein already in 1916 [18,19], a year after
the introduction of the theory of general relativity. He showed that the linearised weak-field equations
corresponding to a matter source with a time-varying mass quadrupole moment admit wave solutions
that travel at the speed of light. However, their conclusive detection had to wait a century, with the
observation in 2015 of the gravitational waves arising from a binary black hole merger by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) (see [1]), ushering in a new era in astronomy.

The detection of gravitational waves can be accomplished (at least conceptually) by monitoring the
trajectories of free-falling test particles, given by timelike geodesics. To model a finite size detector,
however, one should use the theory of relativistic elasticity, as it offers a coherent framework within
general relativity which also accounts for the inevitable deformations that any real object is subject to
(for background on the modern formulation of relativistic elasticity, we refer the reader to [9,10] and the
references therein). This theory has been used extensively to model extended astrophysical objects (see
e.g. [2-7,11,12,21,22]); the specific case of the response of elastic bodies to a gravitational wave has been
recently considered in [8,13,20].

In this paper, we discuss relativistic elastic rods (open strings) and rings (closed strings), that is,
one-dimensional elastic bodies whose internal energy depends only on their stretching, first studied by
Carter [15,16] as models for superconducting cosmic strings (see also [25,26] and references therein).
We determine the linearised equations of motion in spacetimes modelling both plus- and cross-polarised
gravitational waves.

Published online: 27 March 2025
) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-025-02461-6&domain=pdf

80 Page 2 of 24 J. Natério et al. ZAMP

In the case of a rod, we show that the equations reduce to a wave equation with appropriate boundary
conditions. Using Fourier transforms, we find the resonant frequencies and give an explicit distributional
solution. In the case of the spinning ring, we show that the equations written in cylindrical coordinates are
coupled wave equations with periodic boundary conditions. Using a Fourier series expansion, we recast the
system of wave equations as a family of ordinary differential equations for the Fourier coefficients, which
we then solve via Fourier transforms. We find the resonant frequencies, including simple approximate
expressions for slowly rotating rings, and obtain an explicit solution in the case of the non-spinning ring.
Interestingly, we show that it is possible to tune the resonant frequencies by adjusting the angular velocity
of the spinning ring. This extends to general elastic laws the results obtained in [14] for spinning Cosserat
strings.

The organisation of the paper is as follows. In Sect. 2, we briefly review the theory of relativistic
elasticity of strings (that is, one-dimensional objects). In Sect. 3, we consider the case of a rod encoun-
tering a plus-polarised gravitational wave, and in Sect. 4 we repeat this analysis for a cross-polarised
gravitational wave. In Sect. 5, we discuss the case of a spinning ring encountering a gravitational wave
(for an arbitrary polarisation, since, due to the ring’s symmetry, both polarisations have similar effects).
Finally, we summarise and discuss our results in Sect. 6.

We follow the conventions of [24,32], including a geometrised system of units, for which ¢ = G = 1.
Greek letters p, v, ... represent spacetime indices, running from 0 to 3, whereas capital Latin letters
A, B, ... represent indices in the string’s worldsheet, taking the values 0 and 1. We used MATHEMATICA
for symbolic and numerical computations and also to produce, Fig. 1.

2. Preliminaries

In this section, we fix some notation and recall the set-up from [26].

We model an elastic string (that is, a one-dimensional elastic body whose internal energy depends
only on its stretching) moving on a 4-dimensional spacetime (M, g) by an embedding X : R x I — M,
where I C R is an interval labelling the points of the string. In the case of string loops (rings), we identify
the endpoints of I to obtain an embedding X : R x S — M. The curve 7 — X (7, ) is the worldline
of the point of the string labelled by A\ € I. For simplicity, we assume that the parameter A € I is the
arclength in the string’s unstretched configuration. The embedding X induces a metric

hyp = g, (X)0a X 0p X" (1)

on R x I, and we identify R x I with its image ¥ = X (R x I) (sometimes called the string’s worldsheet). If

we choose a local orthonormal frame {E,, E,} tangent to ¥ such that E. is the 4-velocity of the string’s

particles, then %—f = oE, and %—))f = BE, + oE, for some smooth local functions «, 3, 0. Note that |o|

represents the factor by which the string is stretched according to an observer comoving with it, since Ej

gives the direction of simultaneity for such an observer. The components of the induced metric are then
2

[hAB] = |::f:[_} 7[;2??0.2} )

and so
h =detlhyp] = —a?0? = h, 0%
Defining the number density n = ﬁ, we then have

n? = e 2)

h

To obtain the string’s equations of motion, we must choose an action

S = / L(X,0X)drd).

RxT
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For an elastic string whose internal energy density p depends only on its stretching, p = F(n?), the
Lagrangian density is

L =F(n*v-h,

where h = det[hap] and n? are given as functions of (X, 9X) from equations (1) and (2). This Lagrangian
density reduces to the usual Newtonian Lagrangian density for an elastic string in the appropriate limit.

The equations of motion are obtained by computing the variation 6L of the Lagrangian density
resulting from a variation 60X of the embedding. We define the string’s energy momentum tensor T4%
by the relation

1
0L = =5V =h T4 dhap.
It can be shown (see [26]) that
TA8 = 202 F' (n?)UAUP + (20 F'(n?) — F(n?))h*7

where U4, A = 0,1, denote the induced components on the string’s worldsheet of the four-velocity E.
of the string’s particles. Therefore, the string’s energy density p and the string’s pressure p are given by

p=F@n*), p=2n"F(n®)—-F(n?). (3)
The equations of motion are given by (see [26])
FaB(\/ hTAP 9, X ) + TAPT, 04X 0p X" = (4)

The speeds of local perturbations travelling on a string can be obtained by linearising the equations
of motion about a (possibly stretched) stationary string in Minkowski spacetime, aligned, say, with the
z-axis. This corresponds to taking terms up to quadratic order in the Lagrangian obtained from the
embedding

tr,A) =
x(1,A) = ng 1)\ +dx(T, \),
y(m, \) = oy(1, \),

z2(1,\) = dz(1, A).
Approximating hgg, h, F' to quadratic order, one obtains

= F(n*)v/—h = F'(no?*)no? ((2no* 1::(% + ng )5x’2 — &%)

+ %F(nOQ)nOQ ((n02 — 2no4F (n*) )5 12 52/2)

F(no2)

+ 1 F(no?)ng? ((n02 — 20t 1;((;:’2) )52’2 (52"2) )

So 0z satisfies the wave equation in the coordinates (7, \) with wave speed

FI/(nOQ)
/ — 2 1
C no \/2710 F'(noQ) + 5

whereas dy and 0z satisfy the wave equation with wave speed

F'(no®)
r_ _ 2
s =ngy/1—2ng Finod)
Since A\ = ngx for the stretched string, we see that the physical speed of sound for longitudinal waves is
F//( 2) dp
2 N
2n P2 0’ (5)
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the same expression as the speed of sound for a perfect fluid, whereas the speed of sound for transverse

waves is given by
I /(TLQ) p
/ 2 -
s=4/1—2n D) .

generalising the well-known classical result. A necessary condition for the stability of the stretched string
is that ¢ and s be real (otherwise there would exist exponentially growing modes in the limit of small
wavelengths), that is, % >0and p <0.

There are many possible choices for the ‘elastic law’ p = F(n?), each corresponding to a different kind
of elastic string. Some important examples (for a given constant energy density pg > 0 of the unstretched
string) are the following:

Non-prestressed strings with constant longitudinal speed of sound ¢>0: Here p = Czp—il(n52+1+02), yielding

p= %(nczﬂ—l). For ¢ = 1, we obtain the ‘rigid’ string, and for ¢ = 0 we have an incoherent dust string.
Strings with constant transverse speed of sound s > 0: This corresponds to p = ponlfsz, giving p = —s2p.
For s =1, we obtain the Nambu—Goto string, and for s = 0 we again have a dust string.

‘Warm’ cosmic string model with mass parameter m > 0: Here p = /(po2 — m*)n? + m?, implying
2

p = _m! (with m# < pp). In this case, the longitudinal and transverse speeds of sound coincide. For

m =0, €ve again have a dust string.

Depending on the elastic law, the string may have different properties, and we elaborate on these below.
Existence of a relaxed configuration: If the pressure is zero when the string is not stretched nor compressed
(that is, if the string is not prestressed), then F must satisfy 2F'(1) = F(1). Of the three models above,
only the first satisfies this condition.

Weak energy condition: The weak energy condition p > 0 and p + p > 0 is equivalent to F(n?) > 0
and F'(n?) > 0. In particular, if the string satisfies the weak energy condition, then p is a nondecreasing
function of n?. All the models above satisfy this condition.

Dominant energy condition: The dominant energy condition p > p > —p is equivalent to F(n?) >
n2F’(n?) > 0. If the string satisfies the dominant energy condition, then it also satisfies the weak energy
condition. Of the three models above, only the first two satisfy the dominant energy condition, and only
for ¢ <1 and s < 1. (It is clear that if an elastic string satisfies the dominant energy condition, then its
transverse speed of sound cannot exceed the speed of light.)

Well-defined longitudinal speed of sound: If the longitudinal speed of sound is well defined, then from
(5) we must have F’(n?) # 0 and Z—ﬁ > 0. Of the three models above, only the first and the third satisfy
this condition. (Technically, the second model also satisfies this condition in the trivial case s = 0.) If the
string also satisfies the weak energy condition, then p is a strictly increasing function of n2, and hence,
p is a nondecreasing function of n?.

3. Rod encountering a plus-polarised gravitational wave
3.1. Plus-polarised gravitational wave

We now assume that (M, g) is a 4-dimensional spacetime modelling a plus-polarised gravitational wave,
with a metric of the form

ds® = —dt* + (1 + @(t — 2))da® + (1 — p(t — 2))dy® + dz?,

in a Cartesian coordinate chart. Thus, the gravitational wave disturbance propagates along the z-direction
of the chart, with the profile of the wave described by the smooth function . Furthermore, ¢ is thought
of as being small (J¢| < 1), so that we can think of (M,g) as a perturbation of Minkowski spacetime
solving the linearised Einstein equations (that is, solving the Einstein equations to first order in ¢). The
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nonzero connection coefficients for the Levi-Civita connection Vg induced by g are given (up to first
order) as follows (here and henceforth we denote first-order approximations by =):

/
Iz =1z, — Il:é:cw i _igy i :’2%7: 7
PRIl e
A - T ey

T yy T2

3.2. Induced metric on the rod’s worldsheet

As explained in Sect. 2, we model a rod in the 4-dimensional spacetime (M,g) by an embedding X :
R x I — M, where I := [0, L] C R is the interval labelling the points along the rod. We use Cartesian
coordinates and assume that the rod is initially lying along the x-axis. Thus, we have

t(r,A) T
(N AHE A
XEN= 10| = e |
z(1,\) C(1,A)

where (7,\) — &(7, A), n(7,A), (7, ) describe the small perturbations of the coordinates of the particles
along the rod. The metric h = X*g on ¥ := X (R x I) has the components

hap =g, (X)0aX"0pX", A Be{\rT},
given below (blank entries in matrices are 0):

—1 1
1+t —2) 0§ ~_1

L—p(t—2) | |9
1 {o¢

h  =[10:¢ 0;n 0,

and similarly h, ) = hy,; = 0;¢ and hy) ~ 1 4+ 20,\¢ + ¢(t — z). Therefore,

-1 aﬂ'g

[hap]~ 0,6 14206+ o(t—2)]°

with determinant
h = det[hAB} ~—1— 28}\5 — gD(t — Z)

Also, we have

ABY ._ 1 [ d:¢ T 114200+t — 2) —0¢
[h*7] .= [hap] =~ {575 1+28,\$+<,0(t—z)} *ﬁ[ —0-¢ -1
~ _1 87'E
- Llf 1—26A£—<p(t—z)}
We obtain the number density n as
n? = Brr o - R1=203—p(t—2)=1+A,

h "~ —1—20\6 — o(t — 2)
where
A= =20\ —p(t—2).
If we consider a non-prestressed rod with a given elastic law p = F(n?), then we have

F(l):pﬂa F/(l):%a
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where pg is the density of the relaxed configuration. Moreover, we see from (5) that
Py = €D
4 )
where ¢ > 0 is the longitudinal speed of sound in the undeformed state. From the first-order Taylor
expansions around n? = 1 of (3), we get
A A

prp(l+3),  pRpoc®S

If U denotes the four-velocity of the particles of the rod, then
1

U= 0: X,
\% _hr‘r
and so [U4] = [(ﬂ . The energy momentum tensor T has the components T4% given by
[T47] = (p + p) [UAUP] 4 p [0*7]
N 10 -1 ¢ - J1+2 0
~ (p+p){0 0] +pL‘%£ 1_%5_@@_2)} ~po| o ° {;ZA}

The a-component of the equations of motion (4) is then given by
0= % 0:(V=hT7"0:2) + A O\(V—h T O\2)
2T (9,4)(D,) + 2T77TE, (9,2)(D, 2)
+2TMTE, (0at) (Orw) + 2TATL, (Oxx) (Or2)
that is,
0~ A0 (VI = AL+ $)0;2) + <0x(V1 — ASLOzx)
+ (14 2)¢'(t = 2)(1)(0rx) — (1 + )¢/ (t — 2)(0r2)(9r2)
+2¢'(t = 2)(0)(0r7) — 2/ (t = 2)(0r2)(0r2) -

Thus, we obtain

02+ 0N~ 2056 — ot~ 2)(1+0r8) ~ 0,
which yields the usual wave equation
026 — 03¢~ 0.
In a similar manner, one can also derive that
?n=~0 and 9?°¢=~0.

These last two equations are trivial and correspond to inertial motion of the whole rod along the y or
the z-axis. Therefore, we will only analyse the equation for &.

3.3. The boundary value problem for £ and for 9)¢&

The boundary conditions are obtained by setting p = 0 (that is, A = 0) at the endpoints A = 0 and
A = L. This results in the conditions

(Ox8)(7,0) = —30(7)

} forall TeR.
(OE)(1, L) = —5¢(7)
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It is clear that if we assume that R x [0, L] — &(7, \) is a solution to the wave equation 02§ — ¢?93¢ =0
with the above boundary conditions, then 0, satisfies the following boundary value problem:

(PDE) 97(0x¢) — c*03(0x€) =0 (T €R, A€ [0,L]),

(BC) { (028)(7,0) = f%som } reR).
(O2)(7, L) = —Lo(7)

We use the method of Fourier transforms, and set

oo

(0x8) (w, A) = /(c‘hf)(m Ne ™“7dr  (weR,Ne[0,L]).

—0o0

Then

~w(DrE)(w, \) = /af(akg)(ﬂ Ne~ 7 dr,

_028§(5)\\§)(w)\) = / — 2O2(05E) (T, Ne T dr.

Adding these, we get

RGO N) + % B8 (w. N) =0.
The general solution is given by
(OAE) (W, A) = A(w) cos (2 “\) + B(w)sin (%)\)

for some maps R 3 w — A(w), B(w) € R. Let ¢ denote the Fourier transform for ¢. Then the boundary
conditions (BC) give

(8;@)( 0) = A(w) cos0 + B(w)sin0 = A(w),

‘ﬂ) ‘ﬂ)

(8>\§)( L) = -2 cos (L) + B(w)sin (2L).
Since B(w) is a tempered distribution, the solution of the second equation is

Mm:%%%ﬂ+z% (W),

as the zeroes w = =z of the function sin(2L) are simple. The infinite sum above is the Fourier transform
of the function

oo

= ( > cmé%(w)) sin (%/\)ei‘”dw =5 > cpsin (%)\)ei%T7

meZ meZ

which is the general solution of the wave equation with homogeneous boundary conditions written in
Fourier series form. We assume that the rod is initially at rest, i.e. that the motion of the rod occurs
purely in response to the gravitational wave perturbation, and so ¢,, = 0 for all m € Z. Hence,

(0:E)(w, \) = A(Z >COS( A)_M sin(%A)

2sin(«L)
_PW) COS( (-
2 os(¢§)
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The resonant frequencies of the rod, where the response to the gravitational wave signal will be stronger,
are then given by

£7T+2m77), me L.

sz(

We show below that the above ‘frequency-domain’ description corresponds to the following ‘time-domain’
description:

8A§:—§*T, (6)

where * denotes convolution and T is the tempered distribution

T:= % (=1)™dum

m=0

_ i::l(_l)md,w,. . (7)

In other words, T is the Fourier transform of the function

(note that f is not locally integrable, but it can be interpreted as a tempered distribution by taking the
principal value of its integral against tempered functions).

In what follows, we suppose that the smooth function ¢ : R — R is compactly supported. We use the
notation D(R) for the space of compactly supported smooth (i.e. infinitely differentiable) functions on R.
The support of a function ¢ : R — C is denoted by suppt). For an open set U C R, D(U) = {¢ € D(R) :
suppty C U}. We denote the space of tempered test functions on R by S(R) and the space of tempered
distributions by S&’(R). For preliminaries on distributions, we refer the reader to [28].

o0

Proposition 3.1. Suppose that X € (0,L). Let T be the distribution given by T = 3 (—1)"0sm —
m=0
> (=1)"0-senn. Then T is tempered, that is, T € S'(R).
m=1
Proof. Let ¢ € S(R). In particular, sup |2%¢(z)| =: M < oo. Thus,
z€R
(Tl < 3 [w(ek)|+ 3 [w(==4)]
<y (M)2+Z = <OM,
m=0 m=1
o) o)

where C := mZ:O o=y t+ mz::1 =y < 00. S0 T' € S'(R). .

Proposition 3.2. Let A € (0,L). Suppose that the smooth function <p R — R is compactly supported.
(oo}

Consider the distribution T € S'(R) given by T = Z (—1)™ 8w — Z (=1)™0-rene. Then S = —£¢xT is
=0

a weak solution of 925—c*93S = 0 in Rx (0, L) satzsfymg the boundary condmons S(,0) =—tp=S5(,L).
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Proof. It is enough to consider the case when T is just one of its summands, i.e. 7" = §.... for some
integer m. Let ¢ € D(R), and x € D((0,L)). Then, we have

(Sv@x)= [(—§*T,9)x(A)dx

/ _ w(27)<5M71/)(7- + -)>drx()\) X

0 —o0
L oo
:// €0y (7 4 EAEmLY G (M) dA .
0—oc0
So
7 FA+mL
©25.090=8.v"0x) = [ [ = Ly (e 2Ly (aran,
0—o0
and

(2038, @ x) = (S, ¢ @ (—=*)X")

L oo
:// _99(27)1/)(T+ i)\tmL)(_CQ)X//()\)de)\
0—o0

() (£L)q) (74 £2£mL) (—¢2) /(A) d dA

[ = ()07 (e + 22m) (<) ()

L oo
= —// — EEY (7 4 2L ) x () drd.
0

In the above, we used integration by parts with respect to the A variable twice in order to get the equalities
in the third and forth lines and also the fact that x vanishes at the endpoints since suppy C (0, L). Thus
for all ¢y € D(R), and x € D((0,L)), we have (925 — ¢?93 5,9 @ x) = 0. By the linearity of S, and
the density of D(R) ® D((0, L)) in D(R x (0, L)), it follows that 925 — ¢203S = 0. The given boundary
conditions are satisfied, since

S(,0) = =5+ ( 2 (-1 = 3 (~1)8) =5+ (-1)°) = —%

and

O

Remark 3.3. What can actually be measured along the rod is the stretching or the pressure (see [27,29]
for possible techniques to do so), both of which are proportional to

A=-203—o(1)=¢p*T — (7).
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From this expression, it is clear that A has the same resonant frequencies as 0,§. For completeness, the
‘time-domain’ expression for A is

o0

A(r,0) = 3 (—1)mp(r — 2ek) —

m=0

M8

1(—1)%(7 +2=ml) — (7).

4. Rod encountering a cross-polarised gravitational wave
4.1. Cross-polarised gravitational wave

Consider now a 4-dimensional spacetime (M, g) modelling a cross-polarised gravitational wave, with
metric

ds® = —dt* + da® + 2 (t — 2)dxdy + dy* + dz?,

in a Cartesian coordinate chart. Thus, the gravitational wave disturbance propagates along the z-direction
of the chart, with the profile of the wave described by the smooth function . Furthermore, v is thought
of as small (]| < 1), so that we can think of M as a perturbation of Minkowski spacetime solving the
linearised Einstein equations (that is, solving the Einstein equations to first order in ). The nonzero
connection coeflicients for the Levi-Civita connection Vg induced by g are given to first order by:

r,, =r,, =~ —L(t;z) ;
Iy, =I2 =-T7 = -T2 ~-¥2)
IY, =T¥ = -TY, = —TY, ~ —¥¢2),
Iz, =Tz, ~ -2,

4.2. Induced metric on the rod’s worldsheet

The induced metric h = X*g on ¥ := X (R x I) has the components
hAB = guV(X)aAXHaBXuv AvB S {)‘aT}’v

given below (blank entries in matrices are 0):

-1 1
it — o,
hTT = []- 0-§ 9 87'(] ’L/J(tlfz) w(tl ?) afi ~ 717

and similarly h,y = hy, = 0,£ and hy, ~ 1 + 20,£. Therefore,

~ 71 67'£
[hap]~ {075 1+25»5} ’

with determinant
h:= det[hAB] ~—1— 28)\5

Also, we have
1

AB1.__ -1 -1 0-¢ N _ 1 142058 —0:¢ ~ -1 0-¢
[h7]:=[hap] N{asuz@g] _E[ —0,6 -1 }N{(?Tflfﬂ),\g]'

The number density is

2._ hTTN -1 ~ _ j—
n- = h N71726,\§N1 28A§—1+6’
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where
0= —28)\5 .

As before, given a choice of an elastic law for a non-prestressed rod with longitudinal speed of sound
¢ > 0, we obtain

) )
pmp0(1+§) and p%p0c2§.
The energy momentum tensor T has the components TAE given by

(T47)= (0+p) (UAUP L p 7] = (o40) g o 40,

~ po

1+5 0
0 I

The z-component of the equations of motion (4) is then given by
= ﬁ@T(\/ThTTTﬁTw) + ﬁ@,\(\/—ihT)"\an)
+2T77T, (0-1)(0ry) + 2T771.(0-y)(0-2)
+2TA’\ny(3,\t)(8Ay) + 2T>‘>‘FZZ(8,\y)(8,\z) ,
that is,
Omv%&4¢Tia1+ )
+ (1429 (t - 2)(1)(d-y) —
+ 5 (= 2)(0 )(8Ay) —

L 3A(m%53w)

%) (t —2)(9-y)(0-2)
— 2)(0\y)(0r2) -

Thus, we obtain
26+ S (Dr(~20,)) (1 + 9:8) ~ 0,
which yields the usual wave equation
026 — P93 ~0
In a similar manner, one can also derive that
d?n~0 and 9*C=~0,

which again trivially correspond to inertial motion of the whole rod along the y or the z-axis.

4.3. The boundary value problem for & and for 9)&

The boundary conditions are obtained by setting p = 0 (that is, 6 = 0) at the endpoints when A = 0 or
A = L. This results in the conditions

(6A§)(T’ 0) =0
(O\E)(, L) =0

It is clear that if we assume that R x [0, L] — &(7, \) is a solution to the wave equation 02§ — ¢?93¢ =0
with the above boundary conditions, then 0,¢ satisfies the following boundary value problem:

(PDE) 02(0x¢) — c®03(0x6) =0 (T € R, A € [0, L)),

(BO) { (0x8)(7,0) = 0} (r e R).
(akg)(Tv L) =0

} forall TeR.
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Assuming that the rod is initially at rest (i.e. that the motion of the rod occurs purely in response to the
gravitational wave perturbation), we conclude that

() (1, A) =0

forall T € R, X €0, L].

Remark 4.1. What can actually be measured along the rod is the stretching or the pressure, both of
which are proportional to

§=—20,¢6=0.

In other words, a rod oriented along the z-axis does not respond to a cross-polarised gravitational wave,
but only to a plus-polarised gravitational wave.

5. Spinning ring encountering a gravitational wave
5.1. Gravitational wave in cylindrical coordinates

We now consider the effect of a gravitational wave on a spinning ring. Because of the ring’s symmetry
under rotations, the effect of a plus-polarised wave and that of a cross-polarised wave will be the same
up to a 45° rotation, and so we can take the metric g to be that of a plus-polarised wave without loss of
generality. In cylindrical coordinates (¢,r,0, z), g is given by

ds? = —dt? + (1 + p(t — 2) cos(20))dr® + r?(1 — p(t — z) cos(260))db?
—2p(t — 2) sin(20)rdrdd + dz?

for a wave propagating along the z-axis. Thus, the matrix of components of g is given as follows (with
blank entries being 0):

-1
14+ ¢t —z)cos(20)  —p(t — z)sin(20)r

(8] = —p(t — 2)sin(20)r r23(1 — p(t — z) cos(20)) ’
1
and has the inverse
-1
gt ans.
—(p(t—2 r(1—(p(t—2
[g"] =

@(t—=z) sin(26) 14+p(t—z) cos(20)
r(l=(p(t=2))?)  r?(1—(p(t—2))%)
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The nonzero connection coefficients for the Levi-Civita connection Vg induced by g are given (up to first
order) as follows:

t &/ (t—2) cos(26)
F”‘T = 2 ?

Ft9 — I\é ~ _r(,o’(ifzz)sin(Zﬁ') ,
T T p
Fge ~ 7&;(#:2) cos(26) ,

FIT — F:t ~ ¢/(z—z)2cos(20) ,

F:g — Pgt ~ _w’(t—zz)sin(ze) ,

F:z — F;r ~ _L;:'(I,—z)zcos(Qﬁ) ,
Lhe = —r,

Ty, = [y e elgenan
R A
F?& — th ~ 797'(&72?2605(29) )
F?"G = Fgr ~ %7
IY, = T¢, n sitoguen,
Fzz — er ~ gp/(t—z?zcos(ﬂ?) ,
Fir ~ \fp’(:—z)Qcos(ze) ,
I3y = Dj, ~ —reliogemen,

2~ _ T2 (t—2) cos(20)
T3, ~ —reli=geno)

5.2. Induced metric on the ring’s worldsheet

As usual, we model a spinning ring in the 4-dimensional spacetime (M, g) by an embedding X : R x I —
M, where I := [0,27/k] C R is the interval labelling the points along the ring, k > 0 is a constant, and
X(-,0) = X(-,2m/k). As explained in Sect. 2, the parameter A € T is the arclength in the ring’s relaxed
configuration in Minkowski spacetime, so that 1/k is the radius of the ring in that configuration. If R > 0
is the radius of the ring when spinning with angular speed 2, and we assume that the ring is initially
lying on the xy-plane, then

t(r, \) T
(N R+ p(1, )
XN = Loen | = [ar+oa+amy |
Z(T, )\) é(Tv /\)

where (7,\) — p(1,A), a(r, ), {(7,\) describe the small perturbations of the coordinates of the particles
along the ring. The metric h = X*g on ¥ := X (R x I) has the components

hap =g, (X)0aX"0pX", A,Be{\T},

given below (with blank entries in the 4 x 4-matrix being 0):

hTT -1 1
o 1+p(t—=z)cos(20) —p(t—=z)sin(20)r Orp
= [10-p 24000, —p(t—2)sin(20)r r2(1—@(t—2z) cos(26)) | |Q2+0,
1 07-<

—1 4 R2Q2 + RQ(20:0 + 2Qp — o(t — 2) cos(2(Qr + kX)),

Q

and similarly

h,y=hy, ~ kR?Q+ R?(k0,a+Q0ya—kQp cos(2(Q7+kN)) +2RQkp,
hy\ k2 R?+ER?*(206a—kp(t—2z) cos(2(Q7 + kX)) +2RE?p .
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14+ R*Q?+ A kR’Q+ B

Sofhas]~ | gy 5 pemesc | Where
A= RQ(20:0 4+ 2Qp — o(t — 2) cos(2(Qr + kX)),
B = R*(kd;a + QOxa — kQp(t — 2) cos(2(Q71 + k))) 4+ 2ROk,
C := kR*(20xa — kp(t — 2) cos(2(Q1 + kN))) + 2REp.

Hence,

h=det[hap]~—k*R*+k*R*A—2kR*QB+(R*Q*-1)C=—k*R*(1-D),
where D := A — 2B + 221 Also, we have

k2 R?

[h4B):=[hap] '~ — b k?R?+C+k*R*D —kR?*Q—B—kR?*QD
AB ~ T ERe _ER2Q0— B—kR2QD —1+R292+A+(—1+R292)D

—1+6n  £496
945 n2(1+A)

where

511 = k2R2 C D

§:=Z=B+¢D,

o=

A= — RZQQA +D.
The number density is n? = 2= = h™™ ~ n(1 + A). As the ring is rotating, the unperturbed state (not
to be confused with the relaxed state) does not have zero pressure in general. If

F//
po = Flud). po =208 (o) = Fluf), ¢ =23 08 1

designate the density, the pressure, and the longitudinal speed of sound in the unperturbed state, then
one can easily see that

+ +
P~ po+ ﬂo2 Po (n _ ng) ~ po + Po poA
nZ 2
and
+ + po)c?
D~ po+ (po o I;O) (n 7,”13) ~ po + (po 2]70) A
o

The components of the energy momentum tensor T are then given by
TU 5 o AL gy
TT)‘ = T/\T ~ pO% + (Po-‘rpo)c QA +p05
T =~ pong + 4 (poc +(2+A)po) A.

Using the expression for the transverse speed of sound in the unperturbed state,

s=,/-L,
P

the energy momentum tensor T components can also be written as
T77 =~ po(l + 1_52A — 52611) s
TT)\:TAT%pO( 8224—(1;52)0 %A—S2(5),
TM & po(— s*nd + 2 (? — (2+ ?)s?)A).
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5.3. Linearised equations of motion

The equations of motion can now be obtained in exactly the same manner as in Sects. 3 and 4, but the
calculations are much more cumbersome and will not be shown here. To zeroth order, they yield the
equilibrium condition

2 _ 2R2

(which is simply the equilibrium condition in Minkowski’s spacetime, see [26]), and to first order we
obtain the following linearised equations:

Oz_cl’(lgjz)ﬂaia . 262528,\8.,.a @ (( +5° )a p+ ((1 & s))62
89(27132782)8 p+(92((22+3272)cos( (QTJrk)\))gp/_'_Q(szfcz)sin(Q(Q‘rJrk/\))(p (8)

T 1—s2 T 2(1 — s2) 1—s2 ’

Q(c?+52) 2—c?—s? 0% (s2—c? 1-52)Q? 2520
0~ (ks ha—" 1-s2 )aTa_ (1( 52)92)’0_( k‘z) Rp= k Or0rp
(5 + 1) BTG — s sin(2(0r-HiA))g
0 D920 - 220,0,0- LD, p L2 (9)
02(2—c?—s2 Q(2—c? — %) cos(2(Qr+ kX O (s%—c?) sin(2(Qr + kX
+ ((1752)5 ) Tp_ ( 2()178(2)( * >)50/+ ( (1>752(>.5(2 * >)SD’ (10)
0~ U D920 (14 52)02C+ 2220, (11)

Notice that the first and the third equations are the same. This is to be expected, as the equation along

2 is automatically satisfied (see [26]).

5.4. Non-rotating case

Let us consider first the case of a non-rotating ring, corresponding to 2 = s = 0. In this limit we have,
from the equilibrium condition, s = k2, and so the equations of motion become

—?0%a — APk*0\p + 0% — ?k? sin (2k\) o 20,
APOha+ Ak%p + 9%p — Pk cos (2kA) o0,
02¢~0.

The last equation is trivial and corresponds to inertial motion of the whole ring along the z-axis. The
other two equations are coupled and can be solved by decomposing p and « in Fourier series:

p(r, )= > Cm(T)eim}‘”\, a(r, ) =% dm(T)eimk/\.

mezZ meZ

Substituting into the second equation yields

3 (imkcEdy, (7) + k2 (T) + ém (1)) = L2 k(e2 ) + e 2R N ) po(7)
meZ

while substituting into the first equation yields
S (PmPk2d,, (1) — imck3 e, (T) + Jm(T))eimkA = ﬁ(e%“ — e 2N (1)

21
meZ
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Thus, we get the system of second-order ordinary differential equations
ém(T) + K% (1) + imkc?d (1) = 0
A (T) + Em2E2dy, (1) — imck3 e (1) = 0

for |m| # 2, together with

éa(7) + A2k%ea(1) + 2ikcPda (1) = ichgo(T)
{ do(7) + 42 k2dy (1) — 2ic2 k3 ey (1) = —1ck%o(T)
and
E_o(7) + PkPe_o(1) — 2ikcPd_o(T) = 1Pke(T)
{ d_o(7) + 4k d_o(7) + 2icPk3c_o(1) = LK p(T).
In other words, only the modes m = 2 and m = —2 are excited by the gravitational wave. If we assume

that the motion of the ring occurs purely in response to the gravitational wave perturbation, then we can
set ¢ (7) = di(7) = 0 for |m| # 2. To solve the system of ordinary differential equations for the m = 2
mode, we take a Fourier transform in time. Writing

[ee]

CQ(T)Zﬁ /CAQ(W)eiwdw,
do(r)=3 [ () ds,

p(1)=3 [Plw)erdo,

we obtain
—w26(w) + k26 (W) + 2ikcdy(w) = 12k3(w)
—w2dy(w) + 4c2k2dy (w) — 2ic*k3E (w) = — 1Pk P(w),
that is,
—w? + 2k? 2ikc? é3(w) %czk N
$ 2713 2 22| | 7 =1 _ P(w).
—2ic*k®  —w® +4c°k?] |do(w) 5
The determinant of the system’s matrix, A(w), is
det A(w) = w?(w? — 5c%k?),
and so for w? # 0,5c?k?, we have necessarily
G [-1k] )
dy(w)] | 2ck? ] w? =52k
The resonant frequencies for the non-rotating ring, where the response to the gravitational wave signal
will be stronger, are then given by

w = +Vbck.

To the particular solution obtained above, we can add the solutions of the homogeneous system,
which arise precisely from Dirac delta functions at the excluded values of w. For example, if we substitute
é3(w) = C26(w — v/5ck) and da(w) = Dod(w — v/5ek) into the homogeneous equation, we obtain

|:—462]€2 2ikc2} I:Cg

=04 Dy = —2ikCs,
—2i2kB — 22 DJ 27 T
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and the same result holds if we instead set ¢ (w) = Cod(w—+v/5ck) and da(w) = Dad(w—+v/bek). Therefore,

there are particular solutions of the form

EZH = E‘iﬁjﬁ (% + ES(w — Vbek) + Fo(w + \/Sck)) ,

with E, F' € C constants. Assuming that @p(w) is a continuous function, we can rewrite these particular

solutions in the form

r}(w)] — {‘.‘1162]“} (m + B(w — V/Bek) + F(w +V5ek) ) 3(w).

da(w) L k?

for E, F € C (possibly different) constants.
Let p.v. % denote the distribution given by

(pv. L, p):= lgr(l) @dw for all ¢ € D(R).
|w|>e

Then p.v. L € §'(R), and its inverse Fourier transform is given by

_ 1 .
F(p.v. ;) :ZH(T)—%7

where H denotes the Heaviside step function. For a € R, define the shift operator S,

(SaT, @) = (T, (- +a)), T € S'(R), ¢ € S(R). Then

1 1 _ 1 /
O —52k2 = 2\/5ck(S‘/ng S_\/gck)p.v. o cS (R)

Consider the tempered distribution
-~ 1

Using the well-known results

~

FUSW) = 5o and FH(fw—a) = 7 f(7),
we obtain, after a partial fraction decomposition,

smfclm- 1 E i Jekr  F o _iV/Bekr

Choosing F = —F = m}ﬁ , wWe obtam

sin(v/5ckT)

® <T) - V5ck

H(r),
corresponding to the tempered distribution

Blw) =

W2 — 5e2k2 2\/’ L 6(w 6w+ \[Ck)

—V5ck) —

\[

:S'(R) — S'(R) by

This is the distribution yielding the particular solution that corresponds to a ring initially at rest, since

it leads to the solution

2] =[] w01 - [";] 7%51f>¢< ~syds,

which vanishes for 7 smaller than the infimum of the support of p(7) (assumed to be finite).
The calculation for the mode m = —2 is very similar and results in the particular solution

Kl:zm B L_;‘i;g (®x9)(r) = E;Q Omwsa(r—s)ds_
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As one would expect, c_o(t) = co(t) and d_5(t) = da(t), where the bar denotes complex conjugation.

5.5. Rotating case

Now we consider a rotating ring, i.e. Q # 0. Equation (11) for (7, \) is decoupled from the others and is
insensitive to the presence of the gravitational wave. Assuming that the ring is initially in the equilibrium
configuration (i.e. that the perturbations of the ring occurs purely in response to the gravitational wave
perturbation), we conclude that

((r,A) =0

for all T € R, A € [0,27/K].
The other two equations, namely (9) and (8) (which is the same as equation (10)), are coupled, and,
as before, are analysed by decomposing p and « in Fourier series:

p(Tv /\) = Z Cm(T)eimkAa

mEeZ

a(r,\) = Y dp(7)ei™F .

meZ
Substituting in (9) yields

> (Q(C +s >Zmd — 5(2 o - )d,,,fle(:;);i) em+(1-52)Q%m?e,, —252Qimé,, + (2 +1)ém)

meZ
2Q7i 2kAi —2Q7i —2kAi 2Q7i 2k>\27672ﬂ71672k)\1'
L GRE eqrgﬁe () + s o),
while substituting into (8) yields
Z( m2dy —2¢2Qimd,y, — 93(6:;5 L imcp, + 1 - d +ng ;2;: )Cm)

meZ
2074 2k Xi | —207i ,—2kXi 2074 2k Xi _ ,—2Q7i ,—2kAi

=022 —-sYH)e—=¢ (157 ¢'(1) = Q*(s* = )¢ S I=%)s (7).

Thus, we obtain the system of second-order ordinary differential equations

2

{0 = Q(e?ﬁ)imd 5(216 _Sz)d A2 ((1-52)m? - 7“:_{‘)52 Yem —282Qimém +(s2+1)é,,

2 (1-s2)0? 2 20y H Q°(c*+s 1 7 Q% (2—c?—s?) .
0= <=3 —2 2 m2d,, — 262 Qimd,, — 7(5 Lime, + 1“53 dm+ Elfsz)s Ve

for |m| # 2, together with
EQQTI' eQQTi
QU = 8%) gy (1) + 855 (7)
= 92ty R0y 1 Q2 (A1 8%) — P br Jea — 452 + (2 +1)é

2Q7Ti 2Q7i

Q2 - & — 5?) 1y (1) — Q2(5% — &) grmaarer (1)

_ 462(1;§2>de2—4c2ﬂid2 _ [ (c +s )ZCQ+1 2 é, d +Q (2—52_32)é2

(1—s2)s
and
—2Q7i —2Q7i
Q2 - s%ﬁgp(ﬂ — 555—¢'(7)
—2 2D gy 2oy Q2 (A1~ 57) — (b )eoa + A2 Qg+ (7 + 1)y
—2QTi
Q2-c - 2)4(1 52)80(7')+92(9 —c )m@( 7)
2 . 2 2 2
= 420N 42Qid o 4+ 22 e 1,4 2 omle .

Again, only the modes m = 2 and m = —2 are excited by the gravitational wave. If we assume that

the motion of the ring occurs purely in response to the gravitational wave perturbation, then we can set
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em(T) = dp(7) = 0 for |m| # 2. To solve the system of ordinary differential equations for the m = 2
mode, we again take a Fourier transform in time. Writing

o0
c(r) =% | Gw) e dw,
— 00
o0
do(T) = &= /dg(w)ei‘”dw,
“co
o0
o) =% [Blw)edo,
— 00
and using again well-known result F(e!%” f(7)) = f(w — a), we obtain
s[2(1—s?)(w—29Q)— Q]+(’2( ) ~
pTge—— olw —29)
754 LL/'2 52 ST w. Q C 52 B B —~ —( —8 —9 —8 £ c s -~
_ (=sYe’—a0- )s? nl (é)( +57[3—4(2—5%)57]) (w)ﬂ 2 12(_152 2)(2)(+ Z)dg(w),
(D22 (s* ) s(w—20) (2—*—52)] ~
t I(1—s2) P(w —29)
()?[sw(z—c?—5*) -2(1-5*) ()P +5%)] . W (1=c?5?)—ac (1-s*) [t (1-57)(£)?] ~
= —1-= 1_s2 = CQ(UJ)+ 152 3 dz(u}) .

The determinant of the system’s matrix,

(1—s")w?—4(1-5%)s°wQ—(2)?(*+5>[3—4(2—57)s%]) st(z 2—s?)—2(1— 82)(*)(0 +5?)

_ 1—s2 1—s2
Alw) = Z,(%)2[sw(z—CQ—32)—2(1—32)(%)(c2+32)] W2 (1-c?s?)—4c* (1-s?)w+(1-52)(2)?] |
- 1—s2 1—s2

is given by!

QS
— 52

det A(w) = (w —2)p(

Q)
where p is the cubic polynomial
p(x) = (2 +1)(1 — sz +2(1 — s2)(1 — ?(3s° + 2))a?
—(3+ 62(123 — 2082 4+5/s% + 1) — s?)x
+2(1 — s2)(1 — (¢/s)?(4s* — 852 +1)).
Therefore, away from the zeroes of det A, we have necessarily
{c:z(w)} _ {(ﬁ)pl(w/m} Pw —29)
da(w) %’Ih(w/Q) plw/Q) 7
where where p; and ps are the quadratic polynomials
p1(z) = (1 —s2)(1+ (¢/9)%(7 — 45?)) — (1 — c?5?)x?
—1((¢/s)* = (11¢* = 3) — 52 + 8¢?s?)x,
pa(z) = 2((c/s)? + 1)(s* — 352 +2) + 3(s* + 1)(c* + s? — 2)2?
+((c/s)? = (3 —2¢%) +2(2 — ¢?)s? — 25%)z.
Generically, the resonant frequencies are then given by the zeroes of p (whose exact expressions are
too cumbersome to show here). Notice that since p is a function of w/€2, the resonant frequencies can

be tuned by adjusting the angular velocity of the ring: for example, we already know that two of these
frequencies will approach +v/5¢k (and the other will become non-resonant) as  — 0.

IThe root w = 29 might be expected from the results of [26].
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In the special case where the ring rotates with velocity equal to the longitudinal sound speed, s =
QR = ¢, the roots of the polynomial p have the simple expressions
2c¢%Q) 2(2 — )

“ 1+¢2’ w 14c¢2 v (12)

In this case, the last two roots are also roots of the polynomials p; and po (actually, pi(z) = po(x)
for s = ¢), meaning that only the first root is resonant. This is relevant for rotating ‘warm’ cosmic string
loops (see Sect. 2 and also [17,31]), which will resonate at this frequency when excited by gravitational
waves. Note that such cosmic strings can be quite relativistic, that is, s = QR = ¢ can be of order 1.

For a ring rotating at a non-relativistic speed, s < 1, assumed smaller than the longitudinal sound
speed, s < ¢, the polynomials above can be approximated by?

p(x) = 23+ 2(1 — 2¢®)2? — (3 + 5c¢2/s?)x + 2(1 — ¢*/s?),
pi(z) ~ —2? — 23+ c2/s?)x + 1+ 7c%/s%, (13)
pa(z) ~ —(1 - c?/2)x? — (3 — 2/s?)x + 4(1 + 2 /s?).

The approximate expression for the polynomial p matches that found by Bollada in [14] for the resonant
frequencies of a Cosserat string loop,® provided that we disregard the relativistic term ¢? in the second
coefficient and also that we set R = Ry = 1/k (which amounts to assuming that the radius of the rotating
ring is equal to the radius of the ring in its undeformed state). This is to be expected, since the Cosserat
string is the non-relativistic limit of any relativistic elastic string in the limit of small deformations (see
Appendix A in [26], where the Lagrangian for the Cosserat string is obtained as the Newtonian limit
of a generic relativistic Lagrangian under the assumption of small deformations). Our approach is more
general than that of [14], since we are not restricted to small deformations, and therefore, R will in general
be larger than Ry, the exact relation depending on the specific elastic law of the material composing the
ring (see equations (52) and (62) and also Theorem 3.1 in [26]). This will be especially relevant for rings
constructed out of highly deformable materials.
In the limit s < ¢, the resonant frequencies are given by the simple approximate expressions

2Q)
?7
recovering the two resonant frequencies of the non-spinning ring in the limit Q — 0, together with an
additional frequency that becomes non-resonant when 2 = 0. Taking into account that the longitudinal
sound speeds of typical materials (or even more exotic choices, such as carbon nanotubes [23]) are in
the range 1-20km/s, we see that the relativistic corrections due to the term proportional to ¢ can be
disregarded in this approximation (certainly thermal effects will be a far more significant concern; see
equation (101) in [30] for an estimate of the signal-to-noise ratio as a function of the gravitational wave
amplitude and the temperature and physical characteristics of the ring).

Note that the approximate expressions (13) also hold in the regime in which ¢/s is of order O(1)
(including s > ¢) if the material is non-relativistic (i.e. s, ¢ < 1), in which case the corrections proportional
to ¢? can be ignored. In Fig. 1, we show the three real roots of p as functions of (¢/s)? for non-relativistic
materials. Notice that two roots become complex for ¢/s < 0.47, in agreement with the results of the
stability analysis performed in [26], where it was found that elastic rings rotating with velocity QR =
s < 2¢ (in the limit ¢ < 1) are linearly stable. The three roots in (12) correspond to the red, green and
blue branches, respectively. Therefore, the green and blue branches are actually not resonant for ¢ = s,
and the ring’s response in these frequencies will be suppressed in a neighbourhood of ¢ = s.

wzj:\/g%—(2—502+0(s/c)) ?, wr—(1+0((s/c)?)) (14)

2This approximation uses the fact that either ¢ < 1 or ¢ < 02/32.

3See equation (41) in [14], where one should set k = 2 for the mode excited by the gravitational wave, perform the
substitution zg = 2wpz to obtain our variable, and make the identification p = s/c, as Bollada defines the angular velocity
to be 2w and takes the length of the ring as the length unit and the longitudinal speed of sound as the velocity unit.
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FI1G. 1. Resonant frequencies, normalised to €2, as a function of (c/s)? for a non-relativistic ring (s,c < 1)

The calculation for the mode m = —2 is very similar and results in the symmetric resonant frequencies,
since, as one would expect, c_5(t) = c2(t) and d_o(t) = da(t) (in other words, the power spectrum of a
real signal must be even).

An important point to have in mind is that whenever the mode m = 2 (respectively, m = —2)
resonates at a frequency w, it is actually responding to the frequency w — 2 (respectively, w + 2Q2) of
the gravitational wave. This shift of the received spectrum with respect to the emission spectrum must
be taken into account when adjusting the angular velocity 2.

6. Conclusion

In this work, we derived the linearised relativistic elasticity equations of motion for a rod and a spinning
ring encountering a gravitational wave and obtained the corresponding resonant frequencies (in the latter
case extending to general elastic laws the results obtained in [14] for spinning Cosserat strings). Both
the rod and the ring were assumed to be initially lying perfectly still on a plane orthogonal to the
wave’s direction of propagation, so that all subsequent movement occurs in response to the perturbation
introduced by the wave.

In the case of a rod with length L and longitudinal speed of sound ¢, we obtained the resonant
frequencies w = (¢/L)(m + 2mm) (m € Z) for polarisations with an axis parallel to the rod. The rod was
found to be non-responsive to polarisations with an axis at an angle of 45° with respect to the rod, so
that it can be thought of as an antenna capable of tuning in to a particular polarisation.

In the case of the spinning ring, we found that only the quadrupole mode is excited by the gravitational
wave. Generically, there are three resonant frequencies (counting +w as the same frequency), which for
non-relativistic materials depend only on the ratio ¢?/s? (where ¢ and s are the ring’s longitudinal and
transverse speeds of sound, respectively). These three resonant frequencies become the single resonant
frequency w = v/5¢/R when the ring is not spinning (where R is the ring’s radius), and the single resonant
frequency w = 2¢2Q/(1 + ¢?) when s = c. All these frequencies scale with the ring’s angular velocity (2,
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and so they can be tuned to a particular gravitational wave frequency by adjusting €2, keeping in mind
that the received spectrum is shifted by 202 with respect to the gravitational wave spectrum.

We note that, typically, an elastic ring will be resonantly excited by gravitational waves of wavelength
larger than the ring radius; as an example, a non-rotating steel ring of radius R ~ 1 m, whose longitudinal
speed of sound is ¢ ~ 6 km/s, will respond to gravitational waves of frequency 5= ~ 2 kHz, corresponding
to a wavelength A\ ~ 140 km. Rotation will offset this frequency by amounts of the order of the angular
velocity %, which is constrained by R} < \/Gsteel/ Psteel, Where Ogteel is the tensile strength of steel and

Q

Psteel is its density,® whence 5= < 90 Hz. Importantly, a new resonance frequency of the order of % will

appear, allowing for the detection of lower frequencies.
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