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Abstract

This paper extends the validity of the conditional likelihood ratio (CLR) test developed

by Moreira (2003) to instrumental variable regression models with unknown homoskedastic

error variance and many weak instruments. We argue that the conventional CLR test with

estimated error variance loses exact similarity and is asymptotically invalid in this setting.

We propose a modified critical value function for the likelihood ratio (LR) statistic with es-

timated error variance, and prove that our modified test achieves asymptotic validity under

many weak instruments asymptotics. Our critical value function is constructed by repre-

senting the LR using four statistics, instead of two as in Moreira (2003). A simulation study

illustrates the desirable finite sample properties of our test.

1 Introduction

Inference in regression models with endogenous variables and many weak instruments is becom-

ing increasingly relevant in applied research. Researchers often rely on standard asymptotic

approximations when conducting inference in the presence of many weak instruments. However,

asymptotic approximations to the finite sample distributions of conventional estimators and test

statistics have been shown to be poor when instruments are weak. The use of many instruments

can improve the efficiency of estimators or their associated tests, but when instruments are weak

it can also exacerbate the poor finite sample properties of standard inference procedures.

Several previous papers have noted this issue. Chao and Swanson (2005), Han and Phillips

(2006), and Newey and Windmeijer (2009) generalize the many instruments asymptotic theory
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to allow for weak instruments or moments. Andrews and Stock (2007b) show that the Anderson-

Rubin (AR), Lagrange multiplier (LM), and conditional likelihood ratio (CLR) tests are robust

to many weak instruments, as long as the number of instruments, k, grows slower than the cube

root of the sample size, n1/3. For the case where k may be proportional to n, Hansen, Hausman,

and Newey (2008) develop a many instruments robust standard error and a modification of

the LM test, while Hausman et al. (2012) propose Wald tests with the limited information

maximum likelihood (LIML) and Fuller estimators that are robust to heteroskedasticity and

many instruments. More recent developments in conducting robust inference with many weak

instruments include the jackknife AR tests by Crudu, Mellace, and Sándor (2021) and Mikusheva

and Sun (2022), and the jackknife LM test by Matsushita and Otsu (2024).

For the weak (but fixed number of) instruments problem, the seminal work of Moreira (2003)

sparked a growing literature on conditional inference. Moreira (2003) introduces a general condi-

tional inference framework for instrumental variable regression models with homoskedastic errors

and advocates for the CLR test. Andrews, Moreira, and Stock (2006) establish a nearly-optimal

property of the CLR test, while Mills, Moreira, and Vilela (2014) propose approximately un-

biased conditional Wald tests with comparable power to the CLR test. Moreira and Moreira

(2019) extend the conditional inference framework to heteroskedastic and autocorrelated errors.

In this paper, we set out to investigate the performance of Moreira’s (2003) CLR approach

when k is relatively large and is allowed to grow proportionally with the sample size, n. Size

robustness of the CLR test under k = o(n1/3) has already been established by Andrews and Stock

(2007b). However, we show that in a setting with homoskedastic normal errors and unknown

variance, if k is allowed to grow much faster than n1/3, then the conventional CLR test loses

exact similarity and is asymptotically invalid under many weak instruments asymptotics. We

propose a modified version of Moreira’s (2003) CLR test, hereafter called the modified CLR

(MCLR) test, which is robust to: (i) many instruments, where the number of instruments can

grow at the same rate as (or slower than) the sample size and (ii) weak instruments. We use

the same test statistic as Moreira (2003) (“LR1” in his paper), but our proposed test employs

a different critical value function which is constructed by representing the likelihood ratio using

four statistics, instead of two as in Moreira (2003). Our MCLR test retains asymptotic validity

when there are many weak instruments, under a mild condition on identification strength. This

result holds even when we relax the assumption of normally distributed error terms, as long as

we impose an additional moment condition.

A substantive limitation of our approach is that all theoretical results are derived under the

assumption of homoskedastic errors. Several existing inference methods (e.g., Hausman et al.
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(2012), Crudu, Mellace, and Sándor (2021), Mikusheva and Sun (2022), and Matsushita and

Otsu (2024)) are robust to error terms being heteroskedastic, which is admittedly the more

relevant case for applied research. This paper should be considered a building block toward

further generalizations of the CLR approach. A key observation of our MCLR approach is that

in the case of homoskedastic errors, the likelihood ratio statistic with many weak instruments

can be written as a function of four statistics, instead of two for the conventional CLR statistic

(see Proposition 1 below). In the case of general heteroskedastic errors, such a representation of

the test statistic by a finite number of statistics is typically unavailable. While this is beyond

the scope of this paper, it is an interesting avenue for future research to extend our approach to

allow certain patterns of heteroskedasticity, such as the Kronecker product structure studied by

Moreira and Moreira (2019).

The rest of this article is organized as follows. Section 2 introduces our setup and the LR

statistic when error variance is unknown. We discuss a representation of the LR statistic by four

statistics as well as the properties of those statistics. In Section 3, we propose our MCLR test

by constructing a robust critical value function and establish its asymptotic validity in a many

weak instruments setting. We also discuss why the conventional CLR critical value function

lacks validity in our setting. Section 4 illustrates the usefulness of our proposed method through

a simulation study and proposes a pre-test procedure using our MCLR test. It also outlines how

an applied researcher may compute critical values for the MCLR test. All proofs are contained

in Appendix A.

2 Setup and test statistics

2.1 Setup

Consider the following instrumental variable regression model:

y1 = y2β + u, (1)

y2 = Zπ2 + v2,

where y1 is an n×1 vector of dependent variables, y2 is an n×1 vector of endogenous regressors,

β is a scalar unknown structural parameter, u is an n × 1 vector of mean-zero disturbances,

Z is an n × k matrix of instruments, π2 is a k × 1 vector of unknown parameters, and v2 is

an n × 1 vector of mean-zero error terms. We assume without loss of generality that there are

no exogenous regressors in (1) since one can always partial them out using standard projection
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methods. Throughout this paper, we focus on the model with a single endogenous regressor,

leaving the case of multiple endogenous regressors to future research (see Section 5 for some

discussion).

The reduced form system can be written as

Y = ZΠ+ V, (2)

where Y = (y1, y2), Π = (π1, π2), and V = (v1, v2) with π1 = π2β and v1 = v2β + u.

This paper is concerned with testing the null hypothesis H0 : β = β0 on the structural

parameter, against the alternative H1 : β ̸= β0, where the coefficients π2 are treated as nuisance

parameters. We focus on the situation where researchers only have many weak instruments at

their disposal for testing H0 : β = β0 .

To proceed, we impose the following assumptions. Let a0 = (β0, 1)
′.

Assumption.

1 [Normal errors] The rows of V are independent and identically distributed, and follow N(0,Ω)

with a positive definite matrix Ω. Ω is unknown to the researcher.

2. [Many weak instruments] Z is non-random. One of the following two conditions holds.

(a) k
n → α ∈ (0, 1) as n→ ∞, and the concentration parameter

µ2 = (a′0Ω
−1a0)

−1a′0Ω
−1Π′Z ′ZΠΩ−1a0, (3)

satisfies µ2 = O(n) and µ2
√
k
→ ∞ as n→ ∞; or

(b) k
n → 0 as n→ ∞ (without any condition on µ2), where k is fixed or diverging.

Normality of the reduced form errors in Assumption 1 is useful to motivate our conditional

inference approach, which is inspired by the exact similarity of the LR statistic with known

Ω. Indeed, Moreira (2003) proves that, conditional on a sufficient statistic for Π and when

errors are normally distributed, the LR statistic with known Ω has a finite-sample distribution

independent of nuisance parameters under H0 and its quantiles can be used to construct a similar

test (as long as this distribution is continuous). Since we maintain Moreira (2003)’s conditional

inference framework, we begin with normally distributed error terms, although we show that this

assumption can be relaxed in our asymptotic analysis (see Theorem 3). Throughout this paper,

we focus on the case where Ω is unknown to researchers.

Assumption 2 concerns the instrumental variables. In this paper, we restrict Z to be non-

random, which is equivalent to conditioning on Z. To allow k to grow proportionally with n,
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as in Assumption 2 (a), we need to impose an additional condition µ2
√
k
→ ∞, which imposes a

lower bound on the strength of the instruments. For the MCLR test we propose, the condition
µ2
√
k
→ ∞ is required to control the asymptotic size. Note that this condition is not required for

correct size of alternative tests, such as the jackknife AR tests by Crudu, Mellace, and Sándor

(2021) and Mikusheva and Sun (2022), and the jackknife LM test by Matsushita and Otsu (2024).

In particular, if µ2
√
k
= O(1), the result in (17) will be satisfied with a different normalization.

However, under such a normalization, the result in (18) is typically violated. The main reason

for this is that the normalized statistic T̄ ′T̄−k−µ2
√
k

with known Ω (see, (5)) is not asymptotically

equivalent to T̂ ′T̂−k−µ2
√
k

with estimated Ω̂ (see, (10)) due to a non-negligible contribution of the

estimation error of Ω as shown in (30). See Appendix A.3.2 for a detailed discussion. If k grows

slower than n, as in Assumption 2 (b), there is no requirement on µ2; that is, the instruments

can be arbitrarily weak.

Note that Wald tests based on many-instrument robust standard errors (Hansen, Hausman,

and Newey 2008; Hausman et al. 2012) are asymptotically valid under Assumption 2 (a), but

not under Assumption 2 (b). Our MCLR test is asymptotically valid in both cases. Simulation

studies in Section 4 illustrate this distinction numerically. Andrews and Stock (2007b) show that

the conventional CLR test is asymptotically valid for relatively small numbers of instruments,

that is when k3/n → 0. Assumption 2 allows the number of instruments k to be much larger,

and as illustrated in our simulations, the MCLR test is especially preferable when k/n is large.

2.2 Likelihood ratio statistic with known Ω

We first introduce some notation. When the variance Ω of V is known, the LR statistic for testing

H0 against H1 is written as

LR0 =
b′0Y

′PZY b0
b′0Ωb0

− λ̄, (4)

where b0 = (1,−β0)′, PZ = Z(Z ′Z)−1Z ′ is the projection matrix with respect to Z, and λ̄ is the

smallest eigenvalue of Ω−1/2Y ′PZY Ω−1/2 (Moreira 2003).

To derive a more convenient expression for LR0, note that Z ′Y is a sufficient statistic for the

parameters (β,Π) under the assumption V ∼ N(0,Ω) with known Ω. This implies that Z ′Y D is

also a sufficient statistic, for any nonsingular matrix D. So, we set D = (b0,Ω
−1a0) and obtain

the partition Z ′Y D = [S : T ], where

S = Z ′Y b0, T = Z ′Y Ω−1a0.

This is a convenient partitioning because S and T are independent and only T depends on the
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nuisance parameters, π2. Indeed, under H0, T alone is a sufficient statistic for π2.

By using standardized versions of S and T :

S̄ = (Z ′Z)−1/2Z ′Y b0(b
′
0Ωb0)

−1/2, T̄ = (Z ′Z)−1/2Z ′Y Ω−1a0(a
′
0Ω

−1a0)
−1/2, (5)

the LR statistic LR0 can be alternatively expressed as

LR0 = S̄′S̄ − λ̄ ≡ ψ0(S̄
′S̄, S̄′T̄ , T̄ ′T̄ ), (6)

where λ̄ is the smallest eigenvalue of (S̄, T̄ )′(S̄, T̄ ). See the proof of Proposition 1 in Moreira

(2003). If Ω is known, we can apply the conventional CLR test by Moreira (2003) based on

LR0, even with many weak instruments. Notice that in contrast to the AR statistic, S̄′S̄, the

nonlinearity of LR0 in (S̄, T̄ ) is non-quadratic. Conditional inference is typically conducted by

conditioning on T̄ , or an estimator of T̄ , which leads to the distribution of the test statistic

becoming non-standard and the critical values must be computed by simulation. This is a

common feature for both the CLR test by Moreira (2003) and MCLR test proposed in this

paper.

This paper focuses on the case of unknown Ω, as stated in Assumption 1, so the conventional

CLR test is infeasible. Its feasible counterpart, obtained by plugging in a consistent estimator

of Ω, turns out to be invalid under many weak instruments asymptotics (see Remark 2 below).

2.3 Likelihood ratio statistic with unknown Ω

We now introduce our test statistic of interest for the case of unknown Ω. The error variance

matrix Ω can be estimated by

Ω̂ =
1

n− k
Y ′MZY, (7)

where MZ = In−PZ and In is the n×n identity matrix. By replacing Ω in (4) with the estimator

Ω̂, the LR statistic for testing H0 with unknown Ω is written as

LR1

n− k
=

b′0Y
′PZY b0

b′0Y
′MZY b0

− λ̂, (8)

where λ̂ is the smallest eigenvalue of 1
n−k Ω̂

−1/2Y ′PZY Ω̂−1/2.1

1We note that Ω̂ is a natural choice to estimate Ω because (i) it is unbiased and consistent, and (ii) it yields
independence of the denominator and numerator in the first term of (8), which greatly simplifies our theoretical
development. Other estimators or proxies for Ω may be employed, as long as an analogous representation in
Proposition 1 can be obtained.
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To obtain an analogous expression to (6) for LR1, we introduce two more objects:

S̃ =MZY b0(b
′
0Ωb0)

−1/2, T̃ =MZY Ω−1a0(a
′
0Ω

−1a0)
−1/2.

Based on this notation, we obtain the following representation of the LR1 statistic.

Proposition 1. LR1 can be written as a function of (S̄′S̄, S̄′T̄ , T̄ ′T̄ , S̃′S̃, S̃′T̃ , T̃ ′T̃ ):2

LR1

n− k
= ψ1(S̄

′S̄, S̄′T̄ , T̄ ′T̄ , S̃′S̃, S̃′T̃ , T̃ ′T̃ ).

This proposition says that the LR statistic LR1 depends on six objects, instead of three as

for LR0 = ψ0(S̄
′S̄, S̄′T̄ , T̄ ′T̄ ) in (4). In order to develop our conditional inference method based

on LR1, we first establish the following properties of those six objects.

Proposition 2. Under Assumption 1 and the null hypothesis H0 : β = β0, it holds that

(i) S̄|T̄ = t ∼ N(0, Ik) and S̄′T̄ |T̄ = t ∼ N(0, t′t),

(ii) S̄, T̄ , and (S̃, T̃ ) are mutually independent,

(iii)

 S̃′S̃ S̃′T̃

T̃ ′S̃ T̃ ′T̃

∣∣∣∣∣∣ T̄ = t ∼ Wishart(n− k, I2).

Remark 1. Moreira (2003) builds a conditional inference framework for the conventional CLR

test based on two sufficient statistics, S̄ and T̄ . We add two more statistics, S̃ and T̃ , which

we show are mutually independent of S̄ and T̄ . We need to formally establish the properties

of S̃ and T̃ because we explicitly focus on the case of unknown Ω, as stated in Assumption

1. On the other hand, Moreira (2003) defines the conventional CLR test using LR0 and later

establishes that using a plug-in consistent estimator for Ω is asymptotically valid under weak

(but a fixed number of) instruments. Since this will not be the case under Assumption 2, we

directly consider LR1. Moreover, under many weak instruments asymptotics, the dimensions of

all four of our statistics S̄, T̄ , S̃ and T̃ grow to ∞, which explains why the six objects we focus

on are inner-products. As we will see in Section 3, T̄ will play the most important role in our

conditional inference approach, since it is a sufficient statistic for π2. Moreover, T̄ ′T̄ is centered

at the concentration parameter µ2, and therefore is a measure of how strongly identified the

coefficients on the instruments in the first-stage are. We will use this fact in Section 4.
2More precisely, ψ1(d1, . . . , d6) = d1

d4
− λ(d1, . . . , d6), where λ(d1, . . . , d6) is the solution of∣∣∣∣( d1 d2

d2 d3

)
− λ

(
d4 d5
d5 d6

)∣∣∣∣ = 0 for λ.
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3 Conditional likelihood ratio test with many weak instruments

Based on the test statistic LR1 and its properties, we now develop our conditional inference

method. To begin with, recall that T̄ is a sufficient statistic for π2, and consider the critical

value function for given T̄ = t:

c1,η(t) ≡ (1− η)-th quantile of ψ1(S ′S,S ′t, t′t,W1,W2,W3),

where ψ1 is defined in Proposition 1, and S ∼ N(0, Ik) and

 W1 W2

W2 W3

 ∼ Wishart(n− k, I2)

are independent. Propositions 1 and 2 directly imply the following property of c1,η(t).

Theorem 1. Under Assumption 1 and the null hypothesis H0 : β = β0, it holds that

Pr

{
LR1

n− k
≥ c1,η(T̄ )

}
= η. (9)

This theorem says that if T̄ is observable, the LR test using LR1
n−k with the critical value c1,η(T̄ )

is exactly similar. Note that c1,η(t) depends only on τ = t′t. However, since T̄ is unobservable

for the case of unknown Ω, a test based on (9) is infeasible.

To develop a feasible version, we estimate T̄ by

T̂ = (Z ′Z)−1/2Z ′Y Ω̂−1a0(a
′
0Ω̂

−1a0)
−1/2, (10)

where Ω̂ is as defined in (7). Based on this estimator, our proposed rejection rule is defined as:

Reject H0 if
LR1

n− k
≥ c1,η(T̂ ). (11)

The next theorem is the main result of our paper, and it establishes asymptotic validity of the

MCLR test in (11).

Theorem 2. Consider the setup in Section 2.1. Under Assumptions 1 and 2, it holds that

Pr

{
LR1

n− k
≥ c1,η(T̂ )

}
→ η as n→ ∞. (12)

Compared to Theorem 1, this theorem requires an additional condition (Assumption 2). For

the case of k/n → α ∈ (0, 1) (Assumption 2 (a)), an additional condition on the concentration

parameter, µ2/
√
k → ∞, is required to obtain (18) in Appendix A, which guarantees that

replacing T̄ with T̂ does not change the limiting distribution of the test statistic. For the case of
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k/n→ 0 (Assumption 2 (b)), such a requirement on µ2 is unnecessary because the key asymptotic

equivalence in (33) is guaranteed without any requirement on µ2.

This theorem is derived under the normality assumption (Assumption 1). For non-normal

errors, as long as k/n → 0, we can also establish asymptotic validity of the MCLR test by

requiring an additional moment condition. Let Pii be the (i, i)-th element of PZ = Z(Z ′Z)−1Z ′.

Theorem 3. Consider the setup in Section 2.1. The rows of V are independent and identically

distributed with finite fourth moments. Under Assumption 2 (b) and 1
k

∑n
i=1 P

2
ii → 0, (12) is

true.

Specifically, as long as the number of instruments k grows slower than the sample size n and

the projection matrix of instruments satisfies 1
k

∑n
i=1 P

2
ii → 0, our MCLR test is asymptotically

valid even when the reduced form errors are non-normal. The condition 1
k

∑n
i=1 P

2
ii → 0, which is

termed the design balance assumption in Cattaneo, Jansson, and Ma (2019), is used to guarantee

that the limiting variance in (34) becomes identical to the Gaussian case. Note that Assumption

2 (b) is still more general than k = o(n1/3), which is imposed by Andrews and Stock (2007b) to

establish the asymptotic validity of the CLR test with non-normal errors.

Remark 2. [Lack of similarity and validity of conventional CLR test] When Ω is known, the

critical value function of the test statistic LR0 in (6) for testing H0 : β = β0 can be obtained as

c0,η(t) = (1− η)-th quantile of ψ0(S ′S,S ′t, t′t),

where S ∼ N(0, Ik). As shown by Moreira (2003), the test I{LR0 ≥ c0,η(T̄ )} is exactly similar

for the case of known Ω (i.e., Pr{LR0 ≥ c0,η(T̄ )} = η). When Ω is unknown, Moreira (2003)

suggested to plug-in the estimator Ω̂ to the test statistic LR0 (which yields LR1) and use c0,η(T̂ ),

that is:

Reject H0 if LR1 ≥ c0,η(T̂ ). (13)

However, since LR1 is evidently different from LR0, we cannot guarantee similarity for LR1

when Ω is unknown, i.e.,

Pr{LR1 ≥ c0,η(T̄ )} ≠ Pr{LR0 ≥ c0,η(T̄ )} = η.

Therefore, even if we ignore the estimation error arising from using T̂ instead of T̄ , the conven-

tional CLR test in (13) is asymptotically invalid in our setup.
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4 Numerical illustrations

In this section, we compare the critical value function of the MCLR test, c1,η(t), with c0,η(t) of

the conventional CLR test (Section 4.1). We then use Monte Carlo simulations to evaluate the

finite sample performance of our MCLR test relative to existing alternatives. Finally, we employ

our MCLR test to propose a two-step pre-test for homoskedasticity and weak identification.

4.1 Critical value function

The critical value function of our MCLR test c1,η(t) does not have a closed form, as is the case

with Moreira’s (2003) CLR critical value function, c0,η(t). Panel A of Table 1 presents critical

values (n−k)c1,η(t) of the MCLR test, for the 5% significance level. Critical values are calculated

using 5000 Monte Carlo replications with n = 100, for different values of τ = T̄ ′T̄ . We choose

to vary τ because it is directly indicative of identification strength and aids comparison with

Moreira (2003), who presents critical values which are a function of τ .

As shown in Panel A of Table 1, when k = 1 the critical value function of the MCLR test

is constant at 3.93 for all values of τ ; the slight variation in the final row is attributable to

numerical error. Interestingly, 3.93 is the 95th percentile of F (1, 99). This is in contrast to the

critical value of the CLR test for k = 1, which is 3.84 and equal to the 95th percentile of χ2(1).

We suspect this difference arises because we use the likelihood ratio statistic with unknown Ω;

when written in terms of sufficient statistics, LR0 is the sum of chi-squared variables, whose

degrees of freedom sum to 1 for k = 1, while LR1 sums across ratios of chi-squared distributed

random variables.

Similar to the CLR test, the critical value function of the MCLR test for any given k has

an approximately exponential shape. Figure 4.1 illustrates this with a plot of the critical value

function of our MCLR test when k = 4. When instruments are weak (i.e. τ is small), critical

values are larger. When τ is large, the test behaves as if it were unconditional with critical values

stable around 3.93.

For comparison, in Panel B of Table 1, we present the critical value function of the conven-

tional CLR test, (n− k)c0,η(t) . As per Theorem 2, this test predictably runs into size problems

when there are many weak instruments. This has consequences for the critical value function -

once the number of instruments exceeds a tenth of the sample size, the critical values of the CLR

test lie everywhere below those of our MCLR test. This suggests that the conventional CLR test

would over-reject the null hypothesis H0 : β = β0 when the number of weak instruments is large.
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Table 1: Critical value functions

Panel A: MCLR
τ k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 50

1 3.93 5.72 7.46 9.13 10.75 18.45 33.09 78.94
5 3.93 4.72 5.71 6.86 8.12 15.02 29.30 74.91
10 3.93 4.34 4.85 5.46 6.19 11.40 24.79 70.00
20 3.93 4.14 4.37 4.63 4.93 7.20 16.87 60.48
50 3.93 4.02 4.11 4.20 4.30 4.91 7.02 35.25
75 3.93 3.99 4.05 4.11 4.18 4.55 5.66 20.18
100 3.93 3.98 4.02 4.06 4.10 4.38 5.14 12.84

50000 3.94 3.94 3.94 3.94 4.10 3.94 3.96 4.04

Panel B: CLR
τ k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 50

1 3.84 5.54 7.18 8.76 10.29 17.41 30.46 66.51
5 3.84 4.57 5.48 6.53 7.68 14.00 26.70 62.59
10 3.84 4.22 4.67 5.20 5.85 10.40 22.17 57.73
20 3.84 4.02 4.23 4.46 4.71 6.51 14.18 48.10
50 3.84 3.91 3.99 4.08 4.16 4.65 6.05 21.62
75 3.84 3.89 3.94 4.00 4.05 4.35 5.10 10.27
100 3.84 3.88 3.92 3. 3.99 4.21 4.72 7.35

50000 3.84 3.84 3.84 3.84 3.99 3.84 3.84 3.84

Figure 1: Critical value function of MCLR test with k = 4
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In practice, we suggest the following algorithm to compute the MCLR critical values, c1,η(t̂).
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Algorithm 1 Computing MCLR critical values
Input Y,Z from data
Hypothesis H0 : β = β0
Compute t̂ = (Z ′Z)−1/2Z ′Y Ω̂−1a0(a

′
0Ω̂

−1a0)
−1/2 for Ω̂ =

1
n−kY

′(In − Z(Z ′Z)−1Z ′)Y and a0 = (β0, 1)
′.

For m in 1, . . . ,M

(i) Independently draw S ∼
N(0, Ik), a k × 1 vector of normal random variables, and W ∼
Wishart(n− k, I2). Define W11 as the (1, 1)-element of W.

(ii) Compute λ̂ as the minimum eigenvalue of W−1

(
S ′S S ′t̂

t̂′S t̂′t̂

)
(iii) Compute c1,s = (n− k)[S ′S/W11 − λ̂]

Obtain {c1,m}Mm=1 and set c1,η(t̂) as the (1−
η)-th quantile of {c1,m}Mm=1. This is the critical value for LR1

at significance level η.

4.2 Simulation

We now turn to a simulation study, which is based on Design I of Staiger and Stock (1997). We

allow for a single endogenous regressor and set β0 = 0. Instruments are stochastic – Z comprises

of a constant, Z1, and i.i.d. draws from N(0, Ik−1). In line with Assumption 1, the rows of (u, v2)

are i.i.d. normal random vectors with unit variances and correlation ρ. The latter parameter

captures the degree of endogeneity of Y2 in (1). Our sample size is n = 100 throughout.

Our simulations focus on the size and power performance of MCLR, relative to comparable

hypothesis tests. We deviate from Staiger and Stock (1997)’s original design in two ways. First,

we vary the number of instruments relative to the sample size to differentiate between cases

which fall under Assumption 2 (a) versus Assumption 2 (b). Second, we vary the strength of our

instruments. To do so, we use a population version of Stock and Yogo’s (2005) pre-test for weak

instruments. We use three different values of π2 such that δ2 = π′2Z
′Zπ2/ω22 takes the values

2 (very weak instruments), 10 (weak instruments), and 30 (strong instruments), for different

values of k. The population first-stage F-statistic corresponds to δ2/k, and δ2 = µ2

ω22(a′0Ω
−1a0)

is proportional to the concentration parameter µ2.3 The number of Monte Carlo replications is

5000 for analyzing size and power, as well as for computing critical values.

For the null hypothesis H0 : β = 0, Table 2 investigates the size properties of six tests: (i)

3Furthermore, note that in this design and under the null H0 : β = 0, δ2 = µ2

ω22(a
′
0Ω

−1a0)
can be written as

µ2 =
π′
2Z

′Zπ2

1−ρ2
= δ2

1−ρ2
. In this paper, ρ is treated as a constant in (−1, 1) so that the condition µ2

√
k

→ ∞ is

equivalent to δ2√
k
→ ∞. However, if we consider the case of ρ2 → 1, δ2√

k
→ ∞ is sufficient, but not necessary, for

µ2
√
k
→ ∞.
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the t-test with the heteroskedasticity robust limited information maximum likelihood estimator

by Hausman et al. (2012) (H-LIML), (ii) the conditional likelihood ratio test by Moreira (2003)

(CLR), (iii) the homoskedastic Anderson-Rubin test (AR), (iv) the modified Lagrange multiplier

test by Hansen, Hausman, and Newey (2008) (mKLM), (v) the jackknife version of the Anderson–

Rubin (AR) test by Mikusheva and Sun (2022) (J-AR) and (vi) our proposed modified CLR test

(MCLR). We vary ρ, δ2 and k across rows in Table 2.

We note that the size distortions of H-LIML are large, except when δ2 and ρ2 are large. The

degree of endogeneity of Y2 also seems to matter; when ρ = 0.2, the t-test tends to under-reject

the null hypothesis, while when ρ = 0.6, the null is over-rejected. The distortions of the test are

most severe when δ2 is small relative to k, and k is large.

The CLR test attains roughly the correct size when k/n = 5/100, even when identification

is weak and the extent of endogeneity is high. However, size distortions can be observed when

k/n > 0.1. Surprisingly, this is not visibly exacerbated by low δ2, reaffirming that it is the

existence of many instruments in the presence of some level of weak identification that has

severe empirical consequences on the conventional CLR test. Overall, even when the CLR test

experiences little size distortion, it always has empirical rejection frequency farther from 5% than

our proposed MCLR test.

The AR test consistently under-rejects the null hypothesis; while the distortions are not as

severe as the H-LIML test, they are present across all combinations of δ2, k and ρ. We still

investigate the power properties of this test, as we wish to investigate the power cost of ignoring

the information in λ̂ in the presence of many weak instruments.

The mKLM test works well. Although it tends to over-reject in some cases (e.g. high δ2 and

ρ = 0.2), its size distortions never exceed 2%. The J-AR test also appears robust to many weak

instruments, and exhibits no distinct patterns of under- or over-rejection.

Compared to the other tests that we consider, the rejection frequencies of our MCLR test

are on average closest to the nominal 5% level. As our theory in Section 3 suggests, the MCLR

test is robust to weak instruments, many instruments, and many weak instruments.

Figure 2 presents calibrated (or size-adjusted) power curves for the MCLR, AR, J-AR and

mKLM tests for H0 : β = 0, under the alternative hypotheses H1 : β = ∆. These power curves

are plotted with respect to the 5% significance level; the critical values for these four tests are

given by the 95th percentiles of their respective test statistics under H0, computed via 5,000

Monte Carlo replications. Each curve is plotted for n = 100 and β0 = 0. We present four

different cases, with ρ = 0.2 and different values of δ2/k. As we move from left to right, and top

to bottom, the figures show the cases of δ2/k = 1/3, 1/2, 1, and 2. We set k = 30 in all cases.
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Table 2: Empirical rejection frequencies at 5% significance level
ρ δ2 k H-LIML CLR AR mKLM J-AR M-CLR

0.2 30 5 0.041 0.057 0.028 0.052 0.050 0.051
0.2 30 10 0.030 0.060 0.036 0.057 0.054 0.057
0.2 30 30 0.031 0.089 0.047 0.051 0.057 0.052
0.2 10 5 0.032 0.060 0.025 0.049 0.052 0.047
0.2 10 10 0.018 0.064 0.031 0.051 0.052 0.051
0.2 10 30 0.016 0.084 0.036 0.060 0.049 0.049
0.2 2 5 0.008 0.050 0.026 0.049 0.048 0.041
0.2 2 10 0.007 0.057 0.030 0.050 0.050 0.041
0.2 2 30 0.013 0.100 0.044 0.055 0.051 0.055
0.6 30 5 0.054 0.057 0.029 0.062 0.051 0.051
0.6 30 10 0.058 0.057 0.034 0.060 0.053 0.051
0.6 30 30 0.052 0.081 0.042 0.051 0.049 0.057
0.6 10 5 0.077 0.059 0.027 0.053 0.044 0.053
0.6 10 10 0.069 0.053 0.034 0.046 0.052 0.049
0.6 10 30 0.081 0.093 0.047 0.049 0.054 0.059
0.6 2 5 0.091 0.042 0.024 0.045 0.049 0.035
0.6 2 10 0.092 0.057 0.034 0.047 0.055 0.047
0.6 2 30 0.086 0.089 0.040 0.052 0.052 0.046

Our MCLR test is uniformly more powerful at all values of δ2/k, and the gain is more

pronounced for low δ2/k (that is, when instruments are weaker). The mKLM test experiences

spurious declines in power under alternative hypotheses that are further away from the null,

and has consistently low power when δ2/k = 1/3.4 When δ2/k is high, i.e., identification is the

strongest among the cases we examine, the AR and J-AR have similar, although everywhere

lower power, than our M-CLR test. Our simulations suggest that, in the presence of many weak

instruments, the power cost of ignoring the information in λ̂ (as the AR test statistic does) is

greater than the power cost of being robust to heteroskedasticity – indeed, the power of the

AR test is much more comparable to that of the J-AR test than our MCLR test. While we

do not present theoretical results on power, these findings suggest that the MCLR test shares

the superior power properties of the conventional CLR test, which has near optimal power with

small k (Andrews, Moreira, and Stock 2006).
4This lack of power is caused by the fact that those LM statistics are equal to zero at the maximum as well

as the minimum of the concentrated log-likelihood since both Kleibergen’s LM statistics and its modification are
quadratic forms of the score of the concentrated likelihood (see, p. 1788 of Kleibergen (2002)).
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Figure 2: Calibrated Power Curves
hello
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Note: From left to right, and top to bottom, these figures plot power curves for: δ2/k = 1/3,
δ2/k = 1/2, δ2/k = 1 and δ2/k = 2, with ρ = 0.2, k = 30 and n = 100.

4.3 Pre-Test for homoskedasticity and weak identification

Based on our simulation study, in this subsection we propose a two-step pre-test for H0 : β = 0.

The first step is to test whether V = (v1, v2) is homoskedastic. For this, first we regress

Y = (Y1, y2) on the full matrix of instruments, retaining fitted values Ŷ = (Ŷ1, ŷ2) and squared

residuals V̂ 2 = (v̂21, v̂
2
2). Then, we construct a bivariate regression model of v̂21 on Ŷ1 and Ŷ 2

1 ,

and v̂22 on ŷ2 and ŷ22, and use a Wald test (at the 2.5% level, based on a Bonferroni correction)

with the null hypothesis that the coefficients on Ŷ1, Ŷ 2
1 , ŷ2, and ŷ22 are equal to zero.

If the null of homoskedasticity is rejected, we apply the pre-test for weak identification out-

lined in Mikusheva and Sun (2022). For this, the authors propose the following test-statistic

F̃ =
1√
kΥ̂

n∑
i=1

∑
j ̸=i

Pijy2iy2j ,
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where Υ = 2
k

∑n
i=1

∑
j ̸=i

P 2
ij

MiiMjj+M2
ij
y2iMiy2y2jMjy2, Pij and Mij are the (i, j)-th element of PZ

and MZ , respectively, and Mi is the i-th column of MZ . To achieve an overall size of 5% for this

pre-test, the decision rule is as follows: if F̃ > 9.98, use the JIVE-Wald test, while for F̃ ≤ 9.98,

use the J-AR test, both at the 2% significance level5.

If the null of homoskedasticity is not rejected, we also suggest to pre-test for weak identi-

fication but propose an alternative decision rule. If F̃ ≤ 9.98, use our MCLR test (at the 2%

significance level). If F̃ > 9.98, implement a t-test with the LIML estimator for β, also at the

2% significance level. For the t-test, we use the standard errors proposed by Hansen, Hausman,

and Newey (2008), which are robust to many instruments. Such a t-test has been shown to be

powerful in the case of strong identification and homoskedastic errors (Anderson, Kunitomo, and

Matsushita 2010).

To assess the performance of our two-step pre-test (henceforth, the MCLR pre-test), we

compare its performance with the one-step pre-test of Mikusheva and Sun (2022) (the MS pre-

test). Both pre-test procedures correspond to a nominal size of 5%, with a tolerance level of 5%.

Table 3 reports the empirical size of both pre-tests for various combinations of ρ, δ2 and, k. The

empirical size of the MCLR pre-test is always within 2% of the nominal size, whereas for the

MS pre-test, empirical size exceeds 7% when ρ = 0.6 and δ2/k ≤ 1 (that is, when the degree of

endogeneity of Y2 is high and identification is relatively weak). For the other cases, there is little

difference in empirical size between the two pre-testing procedures.

We assess the power of our MCLR pre-test in two ways. First, note that our results in Section

4.2 suggest that our pre-test should have a power advantage (in cases where F̃ < 9.98) based

on the uniformly greater power of the MCLR test compared to the J-AR test. To investigate

whether this is the case, we analyze a one-step version of the MCLR pre-test (named MCLR one-

step pre-test), which only tests for homoskedasticity - if the null of homoskedasticity is rejected,

the J-AR test is used, and otherwise use the MCLR test. This will highlight any power gain

from testing for homoskedasticity. To implement this analysis, we set (u, v2) to be a function

of the instruments (Z), instead of homoskedastic, with probability 0.5. We then compare the

power of the MCLR one-step pre-test with the J-AR test. The latter would be the appropriate

choice when there are many weak instruments and errors may be heteroskedastic.
5The relevant significance levels and critical values for achieving an overall size of 5% are given in Table 2 in

Mikusheva and Sun (2022).
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Table 3: Empirical rejection frequencies of Pre-Test
ρ δ2 k M-CLR Pre-Test MS Pre-Test

0.2 30 5 0.049 0.053
0.2 30 10 0.046 0.054
0.2 30 30 0.051 0.060
0.2 10 5 0.044 0.051
0.2 10 10 0.050 0.057
0.2 10 30 0.042 0.051
0.2 2 5 0.046 0.052
0.2 2 10 0.052 0.057
0.2 2 30 0.047 0.060
0.6 30 5 0.047 0.048
0.6 30 10 0.065 0.072
0.6 30 30 0.058 0.071
0.6 10 5 0.047 0.051
0.6 10 10 0.060 0.070
0.6 10 30 0.056 0.070
0.6 2 5 0.057 0.060
0.6 2 10 0.052 0.053
0.6 2 30 0.069 0.084

Figure 3: Power Curves - MCLR One-Step Pre-Test and J-AR Test
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Note: From left to right, and top to bottom, these figures plot power curves for: δ2/k = 1/3,
δ2/k = 1/2, δ2/k = 1 and δ2/k = 2, with ρ = 0.2, k = 30 and n = 100.

17



Figure 3 presents the size-adjusted power curves from this comparison for H0 : β = 0, under

the alternative hypotheses H1 : β = ∆. Each curve is plotted at the 5% significance level for

n = 100 and β0 = 0. Analogous to Section 4.2, we present four different cases, with ρ = 0.2,

k = 30, and δ2/k = 1/3, 1/2, 1, 2. The most relevant cases are δ2/k ≤ 1, which is when F̃ < 9.98.

In all cases, pre-testing for homoskedasticity results in at least as much power as simply using

the J-AR test. Indeed, for all but the lowest value of δ2/k, the MCLR one-step pre-test is

slightly more powerful. For δ2/k = 1/3, the Wald test for homoskedasticity performs poorly

in simulations, which is why the the MCLR one-step pre-test and the J-AR test have nearly

identical statistical power.

Figure 4: Power Curves - MCLR and MS Pre-Tests
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Note: Power curves for the case of k = 30. We randomly select δ2 from a uniform distribution
U [30, 45] for each simulation draw.

Figure 4 demonstrates the overall power advantage of the MCLR pre-test, relative to the MS

pre-test. Instead of comparing these two procedures for different levels of identification strength

(δ2/k), we set k = 30 and randomly select δ2 from a uniform distribution U [30, 45] for each

simulation draw.6 As Figure 4 shows, the MCLR pre-test is at least as powerful as the MS

pre-test, and is strictly more powerful for certain alternative hypotheses.
6We decide on this range because it ensures some cases have F̃ > 9.98, while others have F̃ ≤ 9.98, all without

creating large discontinuities in the plotted curves. Comparable ranges produce nearly identical power curves.
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5 Conclusion

In this paper, we propose a modification of Moreira’s (2003) conditional likelihood ratio (CLR)

test, namely the MCLR test. We prove that in instrumental variable regression models with

unknown error variance, the MCLR test is asymptotically valid under many weak instrument

asymptotics, unlike the CLR test. This is true even when the number of instruments grows

proportionally to the sample size, and identification is weak. Our simulations suggest that the

MCLR test has superior size properties to the CLR test and is more powerful than competing

tests that are robust to many weak instruments, including the modified Lagrange multiplier test

by Hansen, Hausman, and Newey (2008) and jackknife AR test by Mikusheva and Sun (2022).

An important direction of future research is to extend our methodology to the case of multiple

endogenous regressors. Although the model with a single endogenous regressor which we consider

in this paper covers many relevant examples in applied research (as mentioned in Andrews and

Stock (2007a) and Andrews, Stock, and Sun (2019)), models with multiple endogenous regressors

have become increasingly important. To this end, our exact similarity result in Theorem 1

under the normality assumption must first be extended to the case of multiple endogenous

regressors. Phillips (1980) extends the results for a single endogenous regressor presented in

Sawa (1969), providing results for the exact distribution of the instrumental variable regression

estimator with multiple endogenous regressors. The finite sample analysis developed by Phillips

(1980) allows arbitrarily weak and many instruments; thus, a promising direction for future

work would be to adapt his analytical framework to our MCLR test statistic. For the case of

multiple endogenous regressors, the next step would be to drop the normality assumption and

generalize the asymptotic results in Theorems 2-3. To this end, the asymptotic theory developed

by Phillips (1989) establishes the invariance principle (i.e., that exact distribution theory under

the assumption of normality applies to a much wider class of errors by invoking the central limit

theorem) for the arbitrarily weak and many instruments setup. By observing similarity of the

statements of Phillips (1989)’s Theorem 2.4 and our main theorem (Theorem 3), we expect that

his general theory can be adapted to drop the normality assumption for the case of multiple

endogenous regressors.

As other directions of future research, it would be interesting to extend our MCLR test to be

robust for the cases of heteroskedastic errors (i.e., a many instruments robust version of Moreira

and Moreira (2019)), and many included exogenous regressors as studied in Anatolyev (2013).
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A Mathematical appendix

Notation: Hereafter, let n1 = n− k and ℓ = k
n1

.

A.1 Proof of Proposition 1

Let (D1, . . . , D6) = (S̄′S̄, S̄′T̄ , T̄ ′T̄ , S̃′S̃, S̃′T̃ , T̃ ′T̃ ). Recall that n−1
1 LR1 =

b′0Y
′PZY b0

b′0Y
′MZY b0

− λ̂, where

λ̂ is the smallest eigenvalue of n−1
1 Ω̂−1/2Y ′PZY Ω̂−1/2. The numerator of the first term can be

written as

b′0Y
′PZY b0 = (b′0Ωb0)S̄

′S̄ = (b′0Ωb0)D1,

where the first equality follows from the definition of S̄. Similarly, the denominator of the first

term of n−1
1 LR1 can be written as

b′0Y
′MZY b0 = (b′0Ωb0)S̃

′S̃ = (b′0Ωb0)D4,

where the first equality follows from the definition of S̃. Thus the first term of n−1
1 LR1 is written

as D1
D4

.

We now consider the second term of n−1
1 LR1. Observe that λ̂ is the minimum eigenvalue

solution of |Ω̂−1/2Y ′PZY Ω̂−1/2 − n1λ̂I| = 0, or equivalently

|F ′Y ′PZY F − λ̂F ′Y ′MZY F | = 0,

for any nonsingular matrix F . By setting F = [b0(b
′
0Ωb0)

−1/2 : Ω−1a0(a
′
0Ω

−1a0)
−1/2], the above

equation can be written as

0 =

∣∣∣∣∣∣
 S̄′S̄ S̄′T̄

T̄ ′S̄ T̄ ′T̄

− λ̂

 S̃′S̃ S̃′T̃

T̃ ′S̃ T̃ ′T̃

∣∣∣∣∣∣ =
∣∣∣∣∣∣
 D1 D2

D2 D3

− λ̂

 D4 D5

D5 D6

∣∣∣∣∣∣ .
Therefore, λ̂ can be solved for as a function of (D1, . . . , D6). Combining these results, we obtain

the conclusion.

A.2 Proof of Proposition 2

A.2.1 Proof of (i)

As shown in Moreira (2003), S̄ ∼ N(0, Ik) and S̄ and T̄ are independent.
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A.2.2 Proof of (ii)

Since S̄ and T̄ are independent, it is sufficient to show that (S̄, T̄ ) and (S̃, T̃ ) are independent.

Note that [S̃ : T̃ ] =MZW , where the i-th row of W is written as

W ′
i = [V ′

i b0(b
′
0Ωb0)

−1/2 : V ′
iΩ

−1a0(a
′
0Ω

−1a0)
−1/2], (14)

and the i-th row V ′
i of V satisfies Vi ∼ N(0,Ω). Since

S̄ = (b′0Ωb0)
−1/2(Z ′Z)−1/2Z ′(v1 − v2β0),

T̄ = (Z ′Z)−1/2Z ′(ZΠ+ V )Ω−1a0(a
′
0Ω

−1a0)
−1/2,

we can see that (S̄′, T̄ ′) is uncorrelated with (S̃′, T̃ ′). Also since both (S̄′, T̄ ′) and (S̃′, T̃ ′) are

normally distributed, we obtain independence of (S̄, T̄ ) and (S̃, T̃ ).

A.2.3 Proof of (iii)

Observe that  S̃′S̃ S̃′T̃

T̃ ′S̃ T̃ ′T̃

 =W ′MZW,

where W = (W1, . . . ,Wn)
′ = [V b0(b

′
0Ωb0)

−1/2 : V Ω−1a0(a
′
0Ω

−1a0)
−1/2]. Since MZ is an n × n

non-random idempotent matrix with rank(MZ) = n1, it is sufficient for the conclusion to show

that given T̄ = t, the rows of W are i.i.d. N(0, I2).

Thus, we can see that Var(V ′
i b0(b

′
0Ωb0)

−1/2) = 1, Var(V ′
iΩ

−1a0(a
′
0Ω

−1a0)
−1/2) = 1, and

Cov(V ′
i b0(b

′
0Ωb0)

−1/2, V ′
iΩ

−1a0(a
′
0Ω

−1a0)
−1/2) = 0, and the conclusion follows.

A.3 Proof of Theorem 2

We first introduce some notation. Hereafter, let µ2 be the concentration parameter defined in

Assumption 2 (a). Also let

S ∼ N(0, Ik),

 W1 W2

W2 W3

 ∼ Wishart(n1, I2), (15)

be drawn independently, and define

Ψ(t) = ψ1(S ′S,S ′t, t′t,W1,W2,W3),
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so that the critical value function for given T̄ = t is given by c1,η(t), the (1 − η)-th quantile of

Ψ(t). To analyze Ψ(T̄ ), we standardize its arguments as

Z1 =
S ′S − k√

k
, Z2 =

S ′T̄√
k
, ZT̄ =

T̄ ′T̄ − k − µ2√
k

,

Q1 =
W1 − n1√

n1
, Q2 =

W2√
n1
, Q3 =

W3 − n1√
n1

, (16)

where µ2 is defined in (3). For the proof of Theorem 2, we use the following lemma.

Lemma 1. Under Assumptions 1 and 2, it holds

Z1,Z2,ZT̄ ,Q1,Q2,Q3 = Op(1),

S̄′S̄

k
,
S̃′S̃

n1
,
T̃ ′T̃

n1

p→ 1,
S ′S̄√
k
,
S̄′T̄√
k
,
S̃′T̃
√
n1

= Op(1).

Proof of Lemma 1. All the statements are obtained by Markov’s inequality using the

definitions in (15) and the fact that S̄, S̃, T̄ , T̃ are standardized normal vectors.

A.3.1 Proof under Assumption 2 (a)

For the conclusion in (12), it is sufficient to show that

n1
µ2

k
Ψ(T̄ ) converges to some non-degenerate distribution, (17)

n1
µ2

k
{Ψ(T̂ )−Ψ(T̄ )} p→ 0, (18)

by utilizing µ2
√
k
→ ∞ in Assumption 2 (a).

For (17), Lemma 2 implies

n1
µ2

k
Ψ(T̄ ) = ℓQ2

2 +

√
k

n1

µ2

k
Z1Q2

1 − 2
√
ℓZ2Q2 + Z2

2 + op(1)

=

(
Z2 −

√
α

1− α
Q2

)2

+ op(1), (19)

where the second equality follows from k
n → α and µ2

k = O(1). Since (Z2,Q2) converges to a

non-degenerate distribution, we obtain (17).

For (18), we need to ask what is the effect of using feasible T̂ instead of T̄ . If we replace

T̄ with T̂ , only the terms {Z2,ZT̄ } need to be replaced with {Ẑ2,ZT̂ }, where Ẑ2 = S′T̂√
k

and

ZT̂ = T̂ ′T̂−k−µ2
√
k

. By repeating the same argument in the proof of Lemma 2, we can see that the
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(deterministic) coefficients on ZT̂ will be zero. Therefore, similar to (19), we have

n1
µ2

k
Ψ(T̂ ) =

(
Ẑ2 −

√
α

1− α
Q2

)2

+ op(1). (20)

Thus it is sufficient for (18) to show that

Ẑ2 = Z2 + op(1). (21)

By using the definitions of T̂ and Ω̂ and the relation

(Y ′MZY )−1 = F

 S̃′S̃ S̃′T̃

T̃ ′S̃ T̃ ′T̃

−1

F ′, (22)

with F = [b0(b
′
0Ωb0)

−1/2 : Ω−1a0(a
′
0Ω

−1a0)
−1/2], direct calculations yield

Ẑ2 = ℓ−1/2S ′(Z ′Z)−1/2Z ′Y (Y ′MZY )−1a0(a
′
0(Y

′MZY )−1a0)
−1/2

=
−(S ′S̄)(S̃′T̃ )(S̃′S̃)−1/2 + (S ′T̄ )(S̃′S̃)1/2

√
ℓ
√
(S̃′S̃)(T̃ ′T̃ )− (S̃′T̃ )2

=
S ′T̄√
k

+ op(1) = Z2 + op(1),

where the third equality follows from Lemma 1. Therefore, we obtain (21) which implies (18).

Since (17) and (18) are satisfied, the conclusion follows.

Lemma 2. Recall the definitions in (16). Under Assumptions 1 and 2, it holds

Ψ(T̄ ) =
k

n21

(
µ2

k

)−1

Q2
2 +

1

n1

(
µ2

k

)−1

Z2
2 +

√
k

n21
Z1Q2

1 −
2
√
k

n
3/2
1

(
µ2

k

)−1

Z2Q2 + op(n
−1).

Proof of Lemma 2: By explicitly computing the smallest eigenvalue in Ψ(t), Ψ(T̄ ) can be

written as

Ψ(T̄ ) =
S ′S
W1

+
b+

√
b2 − 4ac

2a
, (23)
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where the terms a, b, and c can be written as

a =
1

n21
(W1W3 −W2

2 ) = 1 +
Q1 +Q3√

n1
+

Q1Q3 −Q2
2

n1
,

b =
1

n21
{−W1(T̄

′T̄ )− (S ′S)W3 + 2(S ′T̄ )W2}

= −ℓ


(
2 +

µ2

k

)
+

(
1 + µ2

k

)
Q1 +Q3

√
n1

+
Z1 + ZT̄√

k
+

ZT̄Q1 + Z1Q3
√
n1

√
k

− 2Z2Q2√
ℓn1

 ,

c =
1

n21
{(S ′S)(T̄ ′T̄ )− (S ′T̄ )2}

= ℓ2


(
1 +

µ2

k

)
+

(
1 + µ2

k

)
Z1 + ZT̄

√
k

+
Z1ZT̄ −Z2

2

k

 .

By (16) and a Taylor expansion, the first term of (2) is written as

S ′S
W1

= ℓ

(
1 +

Z1√
k

)(
1− Q1√

n1
+

Q2
1

n1

)
+ op(n

−1). (24)

Based on these expressions and by using µ2
√
k
→ ∞ (Assumption 2 (a)), which guarantees that

the term B1 dominates B2 (B1 and B2 are defined below), we can expand the second term of

(23) as follows.

First, by lengthy but straightforward calculations and ignoring the terms of lower orders, we

have

b2 − 4ac = 4B2
0(1 +B1 +B2) + op(n

−1), (25)

where B0 =
ℓ
2
µ2

k and

B1 =

(
µ2

k

)−1{
−2Z1√

k
+

2ZT̄√
k

+

(
1 +

µ2

K

)
2Q1√
n1

− 2Q3√
n1

}
,

B2 =

(
µ2

k

)−2
[
Z2
1

k
+

Z2
T̄

k
+

(
1 +

µ2

k

)2 Q2
1

n1
+

Q2
3

n1

−2
Z1ZT̄

k
− 2

(
1 +

µ2

k

)
Z1Q1√
k
√
n1

+ 2

(
1− µ2

k

)
Z1Q3√
k
√
n1

+

(
2 +

4µ2

k

)
ZT̄Q1√
k
√
n1

− 2
ZT̄Q3√
k
√
n1

− 2

(
1 +

µ2

k

)
Q1Q3√
n1

√
n1

+4
Z2
2

k
− 4

(
2 +

µ2

k

)
Z2Q2√
k
√
n1

+ 4

(
1 +

µ2

k

)
Q2

2

n1

]
.
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Also express a and b as

a = 1 + C1 + C2, b = −2(A0 +A1 +A2), (26)

where

C1 =
Q1 +Q3√

n1
, C2 =

Q1Q3 −Q2
2

n1
,

A0 =
ℓ

2

(
2 +

µ2

k

)
, A1 =

ℓ

2


(
1 + µ2

k

)
Q1 +Q3

√
n1

+
Z1 + ZT̄√

k

 ,

A2 =
ℓ

2

(
ZT̄Q1 + Z1Q3

√
n1

√
k

− 2Z2Q2√
ℓn1

)
.

Second, by (17) and (18) combine with expansions
√
1 + z = 1 + 1

2z − 1
8z

2 + o(z2) and
1
z = 1− (z − 1) + (z − 1)2 + o(z2), the second term of (23) can be expanded as

b+
√
b2 − 4ac

2a

=
−(A0 +A1 +A2) +B0

√
1 +B1 +B2 + op(k

−1)

1 + C1 + C2

= −(A0 −B0)−
{
A1 −

1

2
B0B1 − (A0 −B0)C1

}
−A2 +

1

2
B0B2 −

1

8
B0B

2
1 + (A0 −B0)(C2 − C2

1 ) +

(
A1 −

1

2
B0B1

)
C1 + op(n

−1).

Finally, by inserting the definitions of (A0, A1, A2, B0, B1, B2, C1, C2) to the above display

and ignoring the terms of order op(n−1) by Lemma 1, lengthy but straightforward calculations

yield the conclusion of this lemma.

A.3.2 Technical remark on Assumption 2 (a)

In this subsection, we clarify the point in the remark of Assumption 2 (a): If µ2
√
k
= O(1), the

result in (17) will be satisfied with a different normalization. However, under this normalization,

the result in (18) is typically violated. More precisely, in the case of µ2
√
k
= O(1), we show that

√
kΨ(T̄ ) converges to some non-degenerate distribution, (27)

but
√
k{Ψ(T̂ )−Ψ(T̄ )} p↛ 0, (28)

25



when k
n → α ∈ (0, 1).

To see this, under µ2
√
k
= O(1), proceed as in the proof of Lemma 2, the second term of Ψ(T̄ )

in (16) is expanded as

b+
√
b2 − 4ac

2a
= −(ℓ+A∗ +D∗)(1− C1) +Op(n

−1), (29)

where C1 is defined in (18) and

A∗ =
ℓ

2

{
µ2

k
+

Q1 +Q3√
n1

+
Z1 + ZT̄√

k

}
,

D∗ = − ℓ
2

√(
µ2

k
− Z1 −ZT̄√

k
+

Q1 −Q3√
n1

)2

+ 4

(
Z2√
k
− Q2√

n1

)2

.

By (24) and (29), an expansion of Ψ(T̄ ) is obtained as

Ψ(T̄ ) =
ℓ

2

(
Z1 −ZT̄√

k
− µ2

k
− Q1 −Q3√

n1

)

+
ℓ

2

√(
µ2

k
− Z1 −ZT̄√

k
+

Q1 −Q3√
n1

)2

+ 4

(
Z2√
k
− Q2√

n1

)2

+Op(k
−1).

So, by Lemma 1, we can see that
√
kΨ(T̄ ) converges to some non-degenerate distribution, but

the coefficient on ZT̄ is nonzero unlike in the case of µ2
√
k
→ ∞.

On the other hand, by using the definitions of T̂ and Ω̂ and the relation in (22), direct

calculations yield

T̂ ′T̂

k
= ℓ−1(a′0(Y

′MZY )−1a0)
−1/2a′0(Y

′MZY )−1Y ′PZY (Y ′MZY )−1a0(a
′
0(Y

′MZY )−1a0)
−1/2

=
(S̄′S̄)(S̃′T̃ )2(S̃′S̃)−1 − 2(S̄′T̄ )(S̃′T̃ ) + (T̄ ′T̄ )(S̃′S̃)

ℓ{(S̃′S̃)(T̃ ′T̃ )− (S̃′T̃ )2}

=

(
1 +

µ2

k

)
+

(
T̄ ′T̄ − µ2 − k

k

)
−
(
1 +

µ2

k

)(
T̃ ′T̃ − n1

n1

)
+Op(k

−1),

where the third equality follows from Lemma 1. Thus, an expansion of ZT̂ = T̂ ′T̂−µ2−k√
k

is

obtained as

ZT̂ =
√
k

{(
T̄ ′T̄ − µ2 − k

k

)
−
(
1 +

µ2

k

)(
T̃ ′T̃ − n1

n1

)}
+ op(1)

= ZT̄ −
√
ℓQ∗

3 + op(1), (30)

where Q∗
3 = T̃ ′T̃−n1√

n1
= Op(1). Note that if k

n → 0 as in Assumption 2 (b), then ℓ = k
n−k → 0
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and we can guarantee ZT̂ = ZT̄ + op(1). However, under Assumption 2 (a), ZT̂ and ZT̄ are

not asymptotically equivalent due to the additional term Q∗
3. By inserting this, an expansion of

Ψ(T̂ ) is obtained as

Ψ(T̂ ) =
ℓ

2

(
−ZT̄√

k
− µ2

k
− Q1√

n1
+

Q3 +Q∗
3√

n1
+

Z1√
k

)

+
ℓ

2

√(
ZT̄√
k
+
µ2

k
+

Q1√
n1

− Q3 +Q∗
3√

n1
− Z1√

k

)2

+ 4

(
Z2√
k
− Q2√

n1

)2

+Op(k
−1),

and thus
√
k{Ψ(T̂ )−Ψ(T̄ )} p↛ 0 due to the terms involving Q∗

3.

A.3.3 Proof under Assumption 2 (b)

Recall Ẑ2 = S′T̂√
k

and ZT̂ = T̂ ′T̂−k−µ2
√
k

, where T̂ is defined in (10). By an analogous argument in

the proof of Moreira (2003, Theorem 2), we can see that the conclusion under Assumption 2 (b)

follows by:

Ẑ2 = Z2 + op(1), (31)

ZT̂ = ZT̄ + op(1). (32)

For (31), we can apply the same argument as the proof of (21) (since it does not use the condition

on µ2). For (32), by using the definitions of T̂ and Ω̂ and the relation in (22), direct calculations

yield

T̂ ′T̂

k
= n1(a

′
0(Y

′MZY )−1a0)
−1/2a′0(Y

′MZY )−1Y ′PZY (Y ′MZY )−1a0(a
′
0(Y

′MZY )−1a0)
−1/2

= ℓ−1{(S̃′S̃)(T̃ ′T̃ )− (S̃′T̃ )2}−1
{
(S̄′S̄)(S̃′T̃ )2(S̃′S̃)−1 − 2(S̄′T̄ )(S̃′T̃ ) + (T̄ ′T̄ )(S̃′S̃)

}
=

(
1 +

µ2

k

)
+
T̄ ′T̄ − µ2 − k

k
+

(
1 +

µ2

k

)
S̃′S̃ − n1

n1
+Op(n

−1),

where the third equality follows from Lemma 1. Therefore, (32) is verified as:

ZT̂ = ZT̄ +
√
ℓ

(
µ2

k
+ 1

)
S̃′S̃ − n1√

n1
+ op(1) = ZT̄ + op(1), (33)

where the second equality follows from ℓ = k/(n− k) → 0 (Assumption 2 (b)).

27



A.4 Proof of Theorem 3

Under k/n→ 0 (Assumption 2 (b)),
(
S̃′S̃−n1√

n1
, S̃′T̃√

n1
, T̃

′T̃−n1√
n1

)
are of smaller order than (Z̄1, Z̄2,ZT̄ ) :=(

S̄′S̄−k√
k
, S̄

′T̄√
k
, T̄

′T̄−k−µ2
√
k

)
. A central limit theorem under the fourth moment assumption on V

yields the asymptotic normality of (Z̄1, Z̄2,ZT̄ ) with the limiting variance

Var(Z̄1, Z̄2,ZT̄ ) →


2 0 0

0 1 0

0 0 2

 . (34)

To see (34), let ui = Y ′
i b0, wi = Y ′

iΩ
−1a0, σ2u = Var(ui), κu = E[u4i ], and Pij be the (i, j)-th

element of PZ . We have

Var(Z̄1) =
1

kσ4u

E
 n∑

i=1

n∑
j=1

uiujPij

2−

E
 n∑

i=1

n∑
j=1

uiujPij

2
=

1

kσ4u

E
 n∑

i=1

n∑
j ̸=i

u2iu
2
j (2P

2
ij + PiiPjj) +

n∑
i=1

u4iP
2
ii

−

(
E

[
n∑

i=1

u2iPii

])2


=
1

kσ4u

σ4u


n∑
i=1

n∑
j=1

(2P 2
ij + PiiPjj)− 3

n∑
i=1

P 2
ii

+ κu

n∑
i=1

P 2
ii − σ4u

(
n∑

i=1

Pii

)2


=
1

kσ4u

{
2kσ4u + (κu − 3σ4u)

n∑
i=1

P 2
ii

}
→ 2,

where the fourth equality follows from
∑n

i=1

∑n
j=1 P

2
ij =

∑n
i=1 Pii = k, and the convergence

follows from the assumption 1
k

∑n
i=1 P

2
ii → 0. Similarly, letting σ2w = Var(wi), we have

Cov(Z̄1, Z̄2) =
1

kσ3uσw

E
 n∑

i=1

n∑
j=1

uiujPij

 n∑
i=1

n∑
j=1

uiwjPij


−E

 n∑
i=1

n∑
j=1

uiujPij

E
 n∑

i=1

n∑
j=1

uiwjPij


=

1

kσ3uσw
E

 n∑
i=1

n∑
j=1

uiujPij

 n∑
i=1

n∑
j=1

uiwjPij


=

1

kσ3uσw
E

[
n∑

i=1

u3iwiP
2
ii

]
=
E[u3iwi]

σ2uσuw

1

k

n∑
i=1

P 2
ii → 0,

where the second equality follows from E[uiwi] = 0. The limits of the other elements can be

shown in the same manner, so we obtain (34).
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Therefore, since the limiting distribution of (Z̄1, Z̄2,ZT̄ ) is identical to (Z1,Z2,ZT̄ ) for the

Gaussian case, we obtain

Pr

{
LR1

n1
≥ c1,η(T̄ )

}
→ η.

Finally, by repeating the same argument for the proof of Theorem 2 (under Assumption 2

(b)) with the fourth moment assumption on V , we obtain the conclusion.
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