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Abstract 
A startling fact of firm level productivity analysis is the large and persistent differences in both labour 
productivity and total factor productivity (TFP) between firms in narrowly defined sectoral classes. 
The competitiveness of an industry is potentially an important factor explaining this productivity 
dispersion. The degree of competition has also implications for the measurement of TFP at the firm 
level. This paper firstly develops a novel control function approach to production function and TFP 
estimation explicitly taking imperfect competition into account. This addresses a number of issues 
with the control function approach to productivity estimation. Secondly, applying this new approach 
to UK data it shows that productivity dispersion on average is about 50 percent higher than with 
standard TFP measures. It also shows that accounting for imperfect competition matters for estimates 
of the persistence of TFP. Thirdly, the paper finds a negative relationship between competition and 
productivity dispersion. 
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“As we have examined this data we have been impressed by the diversity among
plants and among industries.” Baily et al. (1992)

1 Introduction

An intriguing feature of firm level productivity studies is the large and persistent differences
in productivity between firms that operate in the same industry. For example Bartelsman
and Doms (2000) find that top firms are at least twice as productive as bottom firms within
narrow (4-digit) industrial classes surveying a wide range of studies. There is a long list of
possible explanations for productivity dispersion.1 These range from capital vintage effects,
over learning and uncertainty to measurement error. Many of these explanations are in line
with a Schumpeterian view2 on the economy where there is a continuous process of entry,
learning, selection and creative destruction. An alternative view is that productivity dispersion
could be driven by lacking or imperfect competition in an industry; i.e. if competition is not
very strong, then lagging firms which, otherwise would be forced to exit, continue to stay in
the market thereby increasing productivity dispersion.

Interestingly, imperfect competition has not only - potentially - an impact on productivity
dispersion, it also introduces biases and errors into conventional estimates of TFP (Klette and
Griliches, 1996). Existing studies on productivity dispersion have not paid much attention to
this kind of measurement problem.3

In this paper I make three contributions: Firstly, I develop a novel control function approach
to TFP estimation that explicitly takes imperfect competition into account. This approach also
addresses a number of concerns with existing control function approaches, such as identifiability
(Ackerberg et al., 2007; Bond and Söderbom, 2005) or the plausibility of investment as a proxy
for un-observed heterogeneity(Levinsohn and Petrin, 2003; Griliches and Mairesse, 1995). I
compare this new approach to alternative approaches, using both, actual data for the UK and
artificial Monte Carlo data. I find that it provides more precise estimates and is more robust
to a number of misspecification issues than other approaches.4

Secondly, I use this approach to examine productivity dispersion across UK industries. I
find that accounting for imperfect competition matters for the measurement of productivity
dispersion. Correctly measured dispersion is on average 50 percent higher than using standard
TFP estimates. It also affects the persistence of TFP over time. High persistence of firm level
TFP is an important stylised fact in the analysis of productivity dispersion. If productivity
dispersion is primarily driven by Schumpeterian selection, we would expect that TFP is not
very persistent and firms at the bottom of the productivity distribution either exit or move up
in the distribution. I find that correctly measuring TFP leads to dispersion estimates that are
much more in line with this latter kind of explanation for productivity dispersion; i.e. compared
to standard TFP estimates, persistence becomes weaker at the bottom and stronger at the top
of the productivity distribution.

Thirdly, I examine if there is a link between dispersion and competition. Using a measure of

1Baily et al. (1992) and Bartelsman and Doms (2000) provide comprehensive discussions.
2See Aghion and Howitt (1998) Chapter 2 for a discussion
3e.g. Baily et al. (1992), Bartelsman and Dhrymes (1998) and Syverson (2004) all rely on TFP estimates

that assume perfect competition and constant returns to scale.
4The framework I am proposing is available as an easy to use STATA programme under

http://www.mondpanther.org/pubtwik/bin/view/MP/TrueMethod.
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competition derived from the estimation approach developed in this paper, I find a significantly
negative correlation between competition and productivity dispersion.
The reminder of this paper is organised as follows: Section 2 develops the new estimation
framework formally. Section 3 discusses the dataset I am using which is the Annual Respondents
Survey (ARD) provided by the UK Office of National Statistics (ONS).5 Section 4 reports
dispersion estimates based on the new productivity measure and discusses how they compare
to dispersion estimates based on traditional productivity measures. Section 5, looks at the
dynamic characteristics of the new productivity measure as well as the link between productivity
dispersion and the competitiveness of an industry. Section 6 concludes.

2 A framework to estimate firm level TFP

Standard productivity analysis normally starts by assuming a production function; i.e. a map-
ping from input quantities to output quantities. In order to identify its coefficients on the
basis of that assumption alone we require data on these quantities. Unfortunately this is rarely
available at the firm or plant6 level. Most business level datasets only contain data on revenues
and - with the exception of labour - expenditure on various inputs. In order to proceed despite
these data deficiencies, it is common practice to assume perfect competition in product mar-
kets. As a consequence output prices should be equal across businesses in a sector and revenues
deflated with a sectoral price index become indexes of relative output quantities. Similarly, an
assumption on equal factor prices across firms ensures that factor expenditure can be used as
an index for factor quantities.7 In the following I relax the assumption on perfect competition
in product markets. Ideally we would like to have a framework which relaxes both assumptions.
Eslava et al. (2005) using Columbian data is one few studies having both, detailed input and
output prices. They find that ignoring variation in input prices has only a minor effect on
resulting TFP estimates whereas the effect of ignoring output prices is large. This justifies
focusing on output prices first.8

Starting with what we actually observe at the plant level in absence of plant level prices9,
we can write revenue as

rit − pt = qit + pit − pt (1)

where all variables are in terms of log deviations from the industry median firm in terms of
revenue per worker. Thus, rit is the deviation of revenue10 from the revenue of the median

5Access to this data is restricted. However, researchers with access to the UK Office of National Statistics
Datalab find all data to reproduce the results on the standard data lab server under t:/ceriba/spreadpublish/.

6Below I apply my framework to plant level data. However this general discussion applies for both firms and
plants. I will therefore use the terms interchangeably.

7Note that while perfect competition in factor markets would be a sufficient condition for equal factor prices
it is not necessary.

8Ignoring output prices only leads to correlation coefficient of 0.66 with the “perfect” TFP measure ac-
counting for both input and output prices. Ignoring input prices only, leads to a correlation coefficient of
0.98

9Here I follow Klette and Griliches (1996)
10Quantity produced in a given year at a given plant times price. Because plants might have inventories,

reported revenue might not exactly refer to quantities produced in a given year. Theoretically this offers firms
another choice variable which could be considered in our model of the firm. For the time being I am abstracting
from this however and simply use a revenue measure that is adjusted for inventory changes. See also the
discussion in the data section 3
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plant; i.e. rit = log Rit − log RMedian,t, pit is the plant level output price, pi is a sectoral price
index and qit the output quantity. Writing and estimating the model in terms of deviations
from the median is sufficient given our focus on productivity dispersion. It is a very convenient
technique because it allows a log linear representation of a flexible form production function as
will become clear below. It also implies that we can ignore all terms which are constant across
all firms in an industry at a given point in time. This means that the industry price index, for
example, becomes pt = 0.

To proceed we must introduce assumptions regarding technology and market structure. For
the production function assume that it is of a general form but homogenous of degree γ, i.e.

Qit = Ait [f(Xit)]
γ (2)

where f(·) is a general differentiable linear homogenous function11, Ait is a Hicks neutral shift
parameter12 and Xit is a vector of factor inputs. Avoiding any further assumptions on the
form13 of the production function we can invoke the mean value theorem to write a plants
output relative to the median plant as

qit = ait +
∑

x

αxxit (3)

where

αx = γfx(X̄it)
X̄it

f(X̄it)
(4)

fx(·) denotes the partial derivative of f(·) with respect to factor x, X̄it is some point in the
convex hull spanned by Xit and XMedian,t and all input variables and output quantity are in
terms of deviations from the median plant.14

For the market structure I follow Klette and Griliches and assume a Dixit-Stiglitz monopolistic
competition setting; i.e. assuming a utility function for goods from a particular sector

Ut =

[∑
i

(ΛitQit)
η−1

η

] η
η−1

(5)

plant level demand becomes

Qit =
Rt

Pt

Λη−1
it

(
Pit

Pt

)−η

(6)

where Rt is the sectoral revenue, Pt the sectoral price index and Pit the price of the individual
firm. Λit is a shift parameter which captures differences across plants in product characteristics
such as quality or simply consumer valuation.

A key assumption implied by 6 is that the elasticity of demand η is constant across plants.
This is quite restrictive for a number of reasons. It might well be possible that different plants

11All estimations reported later are calculated for each 3 digit industry separately. Thus, the production
function and – unless specified differently – all other parameters are constant within each industry but free to
vary between industries. To avoid notational clutter I abstain from using industry indices.

12Also known as TFP.
13Except for differentiability that is.
14This transformation has been used in a similar way by Klette (1999) and Baily et al. (1992).
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face different demand elasticities 15 In the appendix I discuss how my framework might be
extended to allow for varying markups. This is an issue for some additional research and for
the time being I maintain this assumption despite its caveats. Section 2.4 has further discussion
on how it might affect my results.

With or without varying markups, profit maximization under demand function 6 implies a
markup pricing rule

Pitγ
Qit

f(Xit)
fx(Xit) = µWzit (7)

i.e. prices must be such that the marginal value product is µ times the marginal cost of each
factor, where µ = 1

1− 1
η

.

As pointed out by Klette (1999), equation 7 can only be expected to hold for production factors
which are easily adjustable. I distinguish in the following between 3 types of inputs: labour,
intermediates and capital. I assume that labour and material can be adjusted immediately to
their optimal value while capital is fixed in the short term.16 As a consequence equation 7
holds for labour L and intermediates M , conditional on the level of the capital stock K. For
intermediates and labour we can therefore write

αj = µ
WxtXit

PitQit

= µsxit (8)

where sxit is the revenue share of factor X. Further because we assumed linear homogeneity of
f(·)

αK = γ − αL − αM (9)

We have that
qit = ait + µviit + µςit + γkit (10)

where
viit =

∑

x 6=k

s̄xit(xit − kit) (11)

is an index of factor usage and ςit is an iid error introduced by the fact that the first order
conditions might not hold exactly. Theoretically – as a consequence of the invocation of the
mean value theorem in equation 3 – s̄xit is the factor share which prevails at some point in
the convex hull spanned by Xit and XMedian,t. If we are willing to follow common practice in
productivity analysis17 and approximate this implied factor share by the average factor share
at plant i and the share at the median plant – i.e.

s̄xit ≈ sit + sMedian,t

2
(12)

– then viit can be directly calculated from the data without estimation.

15Katayama et al. (2003) are the only study to the best of my knowledge, that go beyond constant markups
in a productivity context, however - as discussed in more detail later - at the cost of restrictive assumptions on
the shape of the production function.

16It is no problem to have additional fixed factors. It would however impose some additional restrictions on
the shape of the production function. For comparability with the related approaches by Levinsohn and Petrin
(2003) and Olley and Pakes (1996) I stick with the current assumption for the time being.

17see for example Baily et al. (1992).
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Using a logged version of the demand function 6 to get rid of the plant level price, pit in
equation 1 yields18

rit =
1

µ
qit +

1

µ
λit (13)

Combining that with equation 10 results in

rit − viit =
γ

µ
kit + ωit + ςit (14)

where

ωit =
1

µ
(ait + λit) (15)

Equation 14 is essentially an extension of standard factor share methods to a situation of
imperfect competition and non constant returns to scale. We can use it to make explicit what
we actually measure when using standard TFP methods in such a situation. Measured TFP
(MTFP) then becomes

MTFPit =

(
γ

µ
− 1

)
kit + ωit + ςit (16)

i.e. while standard TFP tries to measure ait what we actually obtain is a composite of technical
efficiency, ait, the demand shock λit and a factor involving capital. Is there any hope of
recovering ait? It will be difficult without plant level prices. However, do we really want
to estimate ait? This depends of course to some extent on the research objective in mind.
However, generally economists are interested in TFP because – at least implicitly – they want
to assess the relative welfare contributions of different plants. It turns out that under the
current model ωit is the correct measure to seek. To see this more clearly note that given
the welfare function in equation 5 (the log median deviation of) the welfare contribution of
a particular plant i is λit + qit. Now we can undertake the thought experiment of examining
what this welfare contribution would be if the resources used to operate plant i were used in
conjunction with the entrepreneurial skills and technical efficiency prevailing at some other
plant, 0 say. Thus holding the input vector fixed we get a welfare contribution of

λ0t + a0t + γlogf(Xit) (17)

Or put differently, λit + ait – and with constant markups in turn ωit – indexes the welfare
contribution of plants conditional on their factor inputs. The difference between firm i and 0 in
ω is thus an index of the marginal impact of having firm i rather than firm 0. In the reminder I
will refer to the composite of demand and technical shock ω as Total Factor Value Productivity
(TFVP).
To get an estimate of ωit under constant markups µ across firms all that is needed is an estimate
of γ

µ
. In principle this could be obtained by a regression of rit − viit on capital. However, the

concern is that such a regression would be biased because of two kinds of endogeneity problems.
Firstly, there might be a correlation between the unobserved shocks ωit and the input variables
viit and kit. This is the classical production function endogeneity problem19. Secondly, in plant
level data, endogeneity is introduced through a correlation between the exit decision of plants
and the observed explanatory variables. In the next two sections I will develop a modification
of the framework suggested by Olley and Pakes (1996)(OP) in order to address these issues.

18Recall that all aggregate variables such as Pt and Rt vanish if we write the system in terms of deviations
from the median

19see Griliches and Mairesse (1995)
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2.1 How to account for endogeneity

Formally the endogeneity problem follows from the profit maximisation problem of plants. If
plants maximise profits conditional on the state variables capital kit and plant specific demand
and TFP shock composite, ωit, then the variable factors are functions of kit and ωit as well as
factor costs and various aggregate variables which form the information set of plants about the
future. I follow OP in assuming that factor costs are uniform across plants. Formally we can
write:20 lit = l(kit, ωit) and mit = m(kit, ωit). Equally the firms short term net revenue function
– i.e. revenue minus variable costs – is a function of ωit and capital:

Πit = Rit − Cit = Π(ωit, kit) (18)

In the appendix A I show that under the assumptions made so far about market structure and
production technology, this function is monotone in ωit. This implies that we can invert it and
write

ωit = φω(Πit, kit) (19)

where φω(·) = Π−1(·). Consequently, we can use net revenues in a similar way as OP have used
investment and Levinsohn and Petrin (2003) (LP in what follows) materials to control for ωit in
order to estimate equation 14. The following further steps are needed for that purpose. Start
by assuming that ωit evolves as a Markov process:

ωit = E{ωit|ωit−1}+ νit (20)

where νit is iid. Consequently our regression equation 14 can be rewritten as

rit − viit =
γ

µ
kit + E{ωit|ωit−1}+ νit + ςit (21)

If we can assume that kit is only correlated with the expected component of ωit but not with
νit then it is sufficient to control for E{ωit|ωit−1} in order to estimate γ

µ
consistently. OP get

this condition by assuming that investment in t only affects the capital stock in t + 1. An
alternative assumptions – which OP cannot make because they use investment in t to predict
ωit – is that investment in t is predetermined in period t.
But how should we control for E{ωit|ωit−1}? We do not know which functional form E{ωit|·}
takes, but we have found in equation 19 a way to express its argument as a function of observ-
ables. We can therefore rewrite equation 14 as

rit − viit =
γ

µ
kit + g(kit−1, Πit−1) + νit + ςit (22)

where g(·) = E{ωit|φω(·)}. If are willing to approximate g(·) by a higher order polynomial 22
reduces to a simple least squares problem. Alternatively we could use equation 22 to get initial
values for a more challenging but more efficient – in the econometric sense – procedure: Start
with a first stage nonparametric regression

rit − viit = φ(kit, Πit) + ςit (23)

20For conciseness I only focus on what actually varies at the plant level; e.g. employment might also depend
on the wage level, the business cycle, etc. However to the extent that these things do not vary across firms in
a sector all this cancels out because of the analysis in relative terms.
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where φ(kit, Πit) = γ
µ
kit + φω(Πit, kit) because as long as we do not know the functional form of

φω(·) we cannot identify γ
µ

separately in such a regression. This provides an estimate of φ̂it for
each observation. Equation 22 can then be restated as a nonlinear least squares problem:

rit − viit =
γ

µ
kit + h(φ̂it − γ

µ
kit−1) + νit + ςit (24)

where h(·) = E{ωit|·} is approximated again by a polynomial.

2.2 Accounting for exit

The fact that input factors are functions of ωit is not the only factor that leads to endogeneity
in regressions of equation 14. Because plants can exit the industry or die all together there is
an additional endogeneity problem from a dependance of this exit decision on the current level
of the capital stock. Ericson and Pakes (1995) provide an elaborate model that formalises this
idea. What is required intuitively is that the scrap value upon exiting increases more slowly
than profits upon continuation, with increasing capital stock. For the empirical application it
suffices to note that there is some lower threshold level of ω that is a function of kit

ωit = ωit(kit) (25)

If a plant i’s level of ωit drops below ωit it exits. Consequently our regression equation 21
becomes

rit − viit =
γ

µ
kit + E{ωit|ωit−1, ωit}+ νit + ςit (26)

Thus to run this equation we need some form to control for ωit as well as for ωit. I follow
Olley and Pakes (1996) and apply one of their derivations to my framework. Note that for the
probability that a plant stays in the market:

P (Stay after period t) = P (ωit > ωit+1(kit+1)|ωit(kit), ωit)

= p(ωit(kit), ωit)

= p(kit, Πit) = Pit

(27)

where the third equality follows from equation 19. Thus we can a run a Probit on continuation
with capital and profits as explanatory variables. This gives an estimate of Pit. Now if Pit, the
probability that a plant stays in the market, increases monotonically with ωit, p(·) is invertible,
and we can write

ωit = p−1(Pit, kit, Πit) (28)

This means that we can control for ωit using the estimate of Pit. Consequently, equation 22
becomes

rit − viit =
γ

µ
kit + g(Πit−1, kit−1, P̂it−1) + ν̃it + εit (29)

and we can proceed as outlined in the last section.
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2.3 The measurement error problem

Another issue with productivity dispersion arises from measurement error in input factor vari-
ables. Specifically with the UK data I am using a concern is the labour input variable which
is a headcount measure of the people employed without any correction for different skill lev-
els. This is the only employment measure which is consistently available over the time period
studied. However, the control function approach outlined can easily be extended to account
for this under the assumption that similarly skilled people are paid the same wage across firms
and the production function is separable in labour.21 The argument is as follows: under the
assumptions of the control function approach effective labour input is a function of ωit and
capital which in turn implies that it is a function of the control variable - πit in our case - and
capital. Thus we can write observed labour input as

l̃it = φL(Πit, kit) + %L
it (30)

where %L
it is a measurement error. Approximating φL(Πit, kit) by a polynomial we can run a

preliminary regression to get an estimate of effective labour

l̂it = φ̂L(Πit, kit) (31)

This can be used to calculate the variable factor index.

v̂iit =
∑

z 6=K

s̄j(x̂zit − kit) (32)

Next we can proceed as described in Section 2.1 to get an estimate of γ
µ

and φ(·). Eventually
we can compute the corrected estimate of ωit as

ω̂it = φ̂(Πit, kit)−
(̂

γ

µ

)
kit (33)

An estimate of TFVP affected by measurement error we can get as

ˆ̃ωit = ṽiit −
(̂

γ

µ

)
kit − ς̂it (34)

where ς̂it is derived from the first stage regression in equation 23. Note that this procedure
is similar to but more general than the common practice of accounting for skill by including
average wage as an additional explanatory variable in a production function regression.

2.4 Discussion

This section contains further discussion of the assumptions of the framework introduced in the
previous sections and compares it with other TFP estimation frameworks.

21i.e. the impact of the different skill types on output can be captured by single index composite function
capturing the joint effective labour input of the different skill types. Formally Qit = Q(Xit, Ξ(Vit)) where Xit is
a vector with all production factors apart from labour, Vit is a vector of all skill types and Ξ(·) is differentiable
function.
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Standard TFP Equation 16 showed what the standard factor share based TFP measure
captures if the assumptions of the new framework hold. Is there any prior expectation about
how dispersion measures derived from the new framework and standard TFP compare? Recall
from equation 16, that the difference between the standard measure and the new TFVP is
captured by the capital stock term (

γ

µ
− 1

)
(35)

Notice that γ
µ

is the elasticity of revenue with respect to an increase in the factor index f(Xit).
22

This elasticity is positive because more inputs always means more revenue. The elasticity
is higher, the higher the returns to scale, but it is lower the higher the markup. This is
because with a lower demand elasticity (higher markup) the plant has to reduce prices more
in order to sell all the additional output from the increased factor input. The standard TFP
measure ignores this revenue reducing aspect and therefore assigns too high a weight to capital.23

Consequently, if there is a positive correlation between ω and capital24 then standard TFP
underestimates TFVP for high productivity plants.

Varying markups How would estimates of ω and productivity dispersion be affected if –
contrary to my current assumption – markups vary between different plants? A somewhat
counterintuitive result that emerges is that plants with higher markups (lower η) would – all
else equal – have lower measured ω. Why is this the case? The argument is very similar to
the discussion in the last paragraph. If plants have different markups µi but we nevertheless
impose a regression model such as equation 14, then the resulting parameter estimate we get
for βK = γ

µ
is likely to be too high for high markup plants:25

γ

µ
>

γ

µi

(36)

Again the intuition is that a marginal increase in capital would have a smaller impact on
revenue because the price drop required to clear markets would have to be larger. Hence again
we would attribute too much of the revenue variation to capital for high markup plants. This
effect would be reinforced if higher markups are correlated with higher capital stocks. Also,
if variations in markup are positively correlated with variations in consumer valuation λ, then
for plants with high λ measured values of TFVP would tend to underestimate true TFVP and
vice versa for low λ plants. As a consequence dispersion estimates would be too low. Is there a
way to account for varying markups at the plant level? 26Appendix C suggests an extension of

22To see this note that rit = qit + pit = 1
µqit + OtherExogenousFactorsit. Because qit = ait + γ ln fit we get

∂rit

∂ ln fit
=

∂[ γ
µ ln fit]

∂ ln fit
.

23Notice that this follows from expression 35 because we must have that γ
µ < 1. This is a requirement for

the existence of a long run equilibrium (after capital has fully adjusted) with positive production. If the scale
parameter is too high the required price drop would shrink revenues so fast that the firm could never achieve
positive profits. A formal prove of this is in appendix B

24i.e. better plants also invest more
25While the estimate would be bound by the most extreme coefficient values in the sample there is not

guarantee that it would be a consistent estimate of the average coefficient value. Compare the discussion in
Dumouchel and Duncan (1983)

26? develop a test of constant markups across firms which can help deciding if such an extension is necessary
in specific cases.
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the estimation framework introduced in this paper to do precisely that. The key idea is to use
a control function approach using both net revenues and the factor share of a variable factor
as arguments of the control function.

Differences to other control function approaches What are the differences of the ap-
proach introduced in this study compared (M-approach) to other control function approaches?
Three points are worth pointing out: Firstly, the M approach does not suffer from the identi-
fication problems discussed by both Ackerberg et al. (2007) (ACF) and Bond and Söderbom
(2005) (BS). Their criticism is as follows: both OP and LP have to assume that variable inputs
are functions of ωit and kit only. If this was not the case, then those variables would enter as
additional state variables in the control function. However when the assumption is true e.g.
OP can derive the following first stage regression equation:

rit = βLl(ωit, kit) + βMm(ωit, kit) + φ(iit, kit) + ςit (37)

OP suggest that this equation can be used to estimate βL and βM . Writing the equation as in
37, however, makes it clear that such a regression would suffer from a multi-colinearity problem
because all variable production factors are driven by the same variation and are therefore
perfectly correlated. Thus, the fact that in practice many studies were able to estimate versions
of equation 37 probably implies that these models were misspecified for the data at hand. The
M-approach avoids this issue by not estimating the coefficients on variable factors at all but
rather using the factor share approach.

Secondly, consider the implications of using net revenue πit as a proxy for unobserved
heterogeneity. As with using materials27 it addresses one of the major criticisms of the OP
approach. Among others Griliches and Mairesse (1995) expressed concern that investment
might only react to the longer term components of the unobserved heterogeneity. Formally,
OP manage to get the required results by their particular assumptions on the dynamics of
investment and TFP. Given their assumptions, investment in t is a function of expected TFP:

iit = ι(Et{ωt+1}) (38)

Thus investment only becomes a function of ωt today under the Markov assumption 20, which
ensures that the complete shock in t feeds into the expectation of ωit in t + 1. Consequently,
OP’s framework would not work with a simple shock process such as

ωit = µ + νit (39)

where νit represents an iid process. Because Etωit+1 = µ, iit would be a poor index of ωit.
Note that although I also made assumption 20 it is not generic to my framework. I use it to
mimic OP but if necessary I could just as well accommodate assumptions such as 39. While
the exact type of shock process might be debatable there is another problem with investment
as shock process that is clearly of empirical relevance. Even allowing all assumptions of OP
the monotonicity between ωit and iit breaks down if adjustment costs are non-convex and firms
might simply not react to all shocks in the short term.

Relative to LP who use material or energy inputs as proxy using net revenues offers the
following advantage: to have monotonicity between material input and ωit, LP show that a

27As LP do.

11



condition on the cross derivative of labour and materials must hold. The intuition for this is
that labour and materials should be complements. If they are substitutes we might have a
situation in which a higher ω leads to higher labour usage but lower material usage because
some of the material input is substituted by labour. While this is not an implausible condition,
using net revenues instead does not require any such condition at all. In a Monte Carlo Study
in the appendix I further find that using net revenue, rather than materials makes the control
function approach less sensitive to misspecification; i.e. if the variable factors - labour and
materials - are not fully flexible, then the production function estimates become bias. However
the bias is less severe when using net revenue as compared to using materials as proxy.

Fourth and finally, what is the difference compared to the suggestions of ACF and BS to
address the identification problem discussed as point 2? ACF assume that labour is not variable
but continue with the control function approach whereas BS assume that all production factors
adjust slowly and devise an approach that rests solely on lagged input factors as instruments.
More formally, ACF end up with the following stage 2 equation

rit = βLlit + βMmit + βKkit + g(φ̂(mit−1, kit−1)− βLlit−1 − βMmit−1 − βKkit−1) + νit + ςit (40)

which is identified from the nonlinear restrictions and zero moment conditions between lagged
input factors and νit as well as a zero moment condition between kit and νit. BS on the other
hand, assuming zero variation in ςit and a linear form for g(·) end up with the following equation:

rit = βLlit + βMmit + βKkit + ρ(rit−1 − βLlit−1 − βMmit−1 − βKkit−1) + νit (41)

which again they identify from zero moment conditions in lagged variables. Both of these equa-
tions raise a number of issues. Firstly, identification: Equation 40 is identified as represented
above.28 However suppose we have several material input factors which adjust without delay;
e.g. different types of intermediates. Then 40 suffers from similar collinearity problems as
those encountered in equation 37. Further, even if there is only one variable factor - (materials
as above), identification - while theoretically established - is difficult in practice because the
nonlinear moment conditions have several local solutions. One strategy adopted for example
by ACF to avoid these problems is to analyse the production function in terms of value added;
Note however, that this imposes a Cobb-Douglas production function as we implicitly require
that all firms have the same factor shares.29 While identification is difficult if material inputs
do not vary, both approaches will fail or be numerically challenging if there is not sufficient in-
dependent variation in labour inputs. Secondly, biases: BS assume that material inputs adjust
with delay. If this is the case then all the control function approaches based on material inputs
are misspecified and potentially biased. In addition, the LP, OP and M approach might all be
biased if labour is not sufficiently flexible. The BS framework is subject to biases on the other
hand if the ςit-shock term matters. Further it assumes a linear AR dynamic process in TFP.
Thirdly, efficiency: irrespective of biases, because the different approaches require estimation
of different numbers of parameters and impose not only different but also different numbers
of restrictions, the precision of the resulting estimates might vary considerably. In summary,

28A more detailed discussion on this can be obtained from the author on request.
29Although related, the issue is somewhat different from the concerns in the macro literature discussed for

example by Basu and Fernald (1997). They are looking at a divisia index of value added growth; i.e. the
differential between two points in time. In that case more general production functions that are separable in
materials can be approximated using a value added approach.
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none of the approaches is perfect under all circumstances. Which approach is the most appro-
priate depends on which assumptions apply in particular cases. Another issue is that even if
some assumptions do not apply it might not matter too much for the actual estimates of the
production function parameters. In appendix D I will shed some light on this last issue by
providing Monte Carlo Evidence on the different frameworks. This shows that the M approach
suffers from modest biases even if the assumption of perfectly flexible material inputs or labour
inputs is strongly violated. Because it requires estimation of fewer parameters the M approach
provides estimates with vastly lower standard errors. Any biases that might arise are therefore
well within the range of the much wider confidence intervals of most other approaches.

Relation to other production function estimation approaches The idea of solving
the production function endogeneity problem by way of control functions described above is
a rather late addition to applied econometric methodology. Most earlier approaches relied on
implementations of dynamic panel data models using GMM estimators.30 The BS framework
discussed above is most closely related to those models in that a linear dynamic process in TFP
is assumed. In addition the GMM models suggest that TFP contains a fixed effect αi so that

ωit = αi + vit (42)

where
vit = ρvit + νit (43)

To estimate the resulting model we have to rely on dynamic panel data methods; i.e. we
estimate a differenced version of an equation such as 41 with second lags of the revenue and
production factor variables as instruments. Note that in order to handle fixed effects we must
assume that the shock process evolves linearly. Another implication is that we need at least 3
periods of data to implement this approach. This might be a problem particularly in samples
that are subject to random sampling.

Another, related framework was recently put forward by Katayama et al. (2003) (KLT).
They suggest using the nested logit demand framework proposed by Berry (1994) to come up
with plant level demand functions. This allows them to identify technical efficiency shocks and
demand shocks separately which leads to the interesting and intuitive result that they are neg-
atively correlated31. However, an important assumption in their strategy is that marginal costs
are constant which not only requires a long run constant returns to scale production technology
but also that capital adjusts instantly so that we are always in the long-run equilibrium. This
might be restrictive in some applications.

3 The Data

I am using data from the Annual Respondents Database (ARD), the UK census of plants32. For
plants of smaller firms, productivity data is collected on a random basis.33. I am using annual

30Compare the discussion in Griliches and Mairesse (1995).
31i.e. to produce better quality is more costly.
32More extensive descriptions of the ARD can be found in Barnes and Martin (2002), Criscuolo et al. (2003)

Griffith (1999) and Oulton (1997)
33The threshold for random sampling has varied over the years. Firms with more than 250 employees are

included fully in all years.
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Table 1: Descriptive statistics
(1) (2) (3)

year obs mean employment mean va
l

1980 11712 346.35 19.14
1985 11109 296.32 23.04
1990 11085 279.03 26.53
1995 10734 228.65 33.44
1999 8958 188.15 33.85
2000 8632 182.60 33.88
Source: Author’s calculations based on ARD data.
Notes: column 1 reports the number of observations with the full set of required variables.

data for the years 1980 to 2000. Because the econometric model outlined in section 2 requires
current and lagged productivity data the sample reduces further. Table 1 reports sample sizes
along with descriptive statistics for selected years. Because the ONS increased the plant size
threshold for random sampling of plants the sample size is somewhat lower in later years34.
The variables I am using are the standard revenue, employment head count, total labour costs
and total intermediate purchases from the ARD. In the ARD survey plants are only asked to
report their investments but not their capital stocks. I am therefore relying on a standard
perpetual inventory method (PIM) to estimate plant level capital stocks.35 Besides being
dependant on assumptions about depreciation, this method requires a lot of interpolation:
Firstly, we have to interpolate initial capital stock levels because some plants are born before
our sample started and because plants might have already undertaken considerable amounts of
investment by the time they are first surveyed. Secondly, we have to interpolate the investment
levels of the randomly sampled smaller firms in the years when they are not sampled. A concern
with this is that it introduces a source of measurement error into the capital stock variable that
is typically ignored in most plant level productivity studies. I will leave a rigorous treatment
of these issues for later research.36 As a control for the severity of measurement of this kind I
will use the following two variables: CENS measures the share of plants in a 3 digit sector that
are born before the sample starts ; i.e. the share of plants that are subject to left censoring.
INTERPOL measures the share of observations per sector that are interpolated because of
random sampling.

4 Results

This section looks first at point estimates of γ
µ
, the coefficient on capital in equation 21. The

estimation approach introduced in section 2 and the various alternative approaches discussed
in section 2.4 differ primarily in the value they suggest for this parameter.

34What happened is that although the threshold was increased the actual sample size increased because more
plants were sampled. But as a consequence of this the share of plants in the sample which is not observed
consecutively in the sample has increased.

35For details see Martin (2002). Note that this is equivalent to the standard ARD capital stock series provided
by the ONS.

36See Martin (2005) for a possible approach.
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Table 2: Estimates of γ
µ

(1) (2) (3) (4) (5)

Sector Mπ OLS LP NoExit MM

Food 0.87 0.97 0.90 0.87 0.87
Textile 0.87 0.96 0.85 0.86 0.87
Apparel 0.83 0.96 0.75 0.84 0.84
Leather 0.87 0.95 1.04 0.87 0.88
Wood 0.86 0.93 0.83 0.86 0.84
Paper 0.84 0.98 0.91 0.85 0.87

Publishing 0.88 0.95 0.92 0.89 0.97
Chemical 0.78 0.97 0.87 0.79 0.81
Plastic 0.76 0.96 0.98 0.77 0.81
Mineral 0.84 0.96 0.87 0.85 0.82

BasicMetalls 0.89 0.97 0.93 0.88 0.91
FabricatedMetalls 0.90 0.96 0.89 0.91 0.92
MachineryOther 0.85 0.97 0.92 0.86 0.85
OfficeMachinery 0.97 0.97 0.88 0.98 0.91

ElectricalMachineryOther 0.87 0.96 0.91 0.86 0.87
TVCommunication 0.88 0.95 0.85 0.88 0.87
OpticalPrecision 0.87 0.95 0.99 0.87 0.87

Vehicles 0.87 0.96 0.94 0.87 0.85
OtherTransport 0.85 0.97 0.99 0.85 0.88

Furniture 0.80 0.93 0.83 0.82 0.83
Average 0.86 0.96 0.90 0.86 0.87

Notes: Coefficients were estimated at the 3 digit level and then averaged up to 2 digit sectors. Mπ refers to the
capital coefficient obtained with the productivity estimator described in section 2, using net revenues to control
for endogeneity and accounting for exit as well as measurement error in labour. OLS is a simple OLS estimator
of equation 21. LPR is the original LP using their levpet.ado Stata programme in term of revenue. NoExit is
Mπ without accounting for exit. MM is Mπ but using material inputs to control for endogeneity.
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Table 3: Estimates of productivity dispersion

(1) (2) (3) (4) (5) (6) (7) (8)

Sector Mπ V A
L TFP Err OLS LPR NoExit MM

Food 0.63 1.40 0.38 0.68 0.46 0.82 0.62 0.49
Textile 0.50 0.91 0.34 0.60 0.48 0.61 0.51 0.44
Apparel 0.68 1.01 0.44 0.79 0.61 1.01 0.66 0.61
Leather 0.42 0.89 0.33 0.52 0.43 0.38 0.42 0.33
Wood 0.47 0.98 0.41 0.55 0.54 0.63 0.48 0.44
Paper 0.57 1.03 0.30 0.61 0.39 0.45 0.57 0.42

Publishing 1.34 1.33 0.63 1.39 0.79 0.97 1.38 1.67
Chemical 0.97 1.38 0.43 0.99 0.52 0.89 0.93 0.78
Plastic 0.84 0.98 0.37 0.91 0.53 0.44 0.84 0.59
Mineral 0.66 1.11 0.45 0.78 0.63 0.73 0.63 0.63

BasicMetalls 0.47 1.00 0.32 0.55 0.46 0.43 0.48 0.33
FabricatedMetalls 0.50 0.94 0.44 0.64 0.57 0.67 0.47 0.32
MachineryOther 0.62 0.94 0.37 0.73 0.52 0.61 0.59 0.53
OfficeMachinery 0.41 1.26 0.50 0.54 0.69 0.87 0.41 0.35

ElectricalMachineryOther 0.58 0.99 0.41 0.69 0.55 0.59 0.62 0.50
TVCommunication 0.59 1.23 0.49 0.67 0.60 0.94 0.59 0.57
OpticalPrecision 0.64 1.10 0.46 0.73 0.65 0.57 0.63 0.50

Vehicles 0.63 0.95 0.33 0.70 0.47 0.91 0.61 0.62
OtherTransport 0.75 0.98 0.46 0.87 0.68 0.59 0.75 0.52

Furniture 0.72 1.12 0.45 0.81 0.59 0.75 0.66 0.54
Average 0.64 1.08 0.41 0.72 0.54 0.69 0.63 0.54

Notes: The dispersion measure reported is the log difference between 90iest and 10th percentile. Dispersion
measures were estimated at the 3 digit level and then averaged up to 2 digit sectors. V A

L refers to labour
productivity. TFP is standard factor share TFP as implicitly defined in equation 16. Err is TFVP based on
the Mπ approach but not correcting for measurement error in labour. For other column definitions see notes
of table 2.
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4.1 Estimates of γ
µ

Table 2 reports estimates for estimates for γ
µ

across sectors and different estimation methods.
All figures are averages of estimates computed at the 3-digit level. For clarity they are reported
at the 2-digit level.37

The last row reports averages for the economy as a whole. Column 1 uses my preferred
method; i.e. employing net revenues to control for endogeneity, and accounting for exit and
measurement error in labour inputs as described in section 2 (Mπ). Using standard factor share
methods to compute TFP assumes that this coefficient is equal to 1. In column 1 we get an
economy wide average of 0.86 suggesting that imperfect competition is an issue. Compared to a
simple OLS regression of equation 21 reported in column 2 – i.e. ignoring any endogeneity issues
– the coefficients are lower both for the economy wide as well as the 2 digit sectoral averages.
This is in line with what one would expect: TFVP should be positively correlated with capital
stocks. Not controlling for this endogeneity should then bias estimates upward. Column 3
reports results using the LP estimator which does not control for exit and uses material inputs
as proxy for un-observed heterogeneity. This set of parameter estimates generally lies for the
whole economy average in between the OLS estimates and my preferred specification. However
in some sectors it actually leads to lower values than in column. I conclude therefore that
the estimates are different rather than biased in a particular direction. Column 3 repeats the
calculations of column 1 without accounting for exit. This leads to virtually the same results.
Column 5 finally reports results from running my preferred specification using material inputs
rather than net revenues as an argument in the control function for unobserved heterogeneity
as suggested by LP. Again this leads to very similar estimates as column 1. Recall that the
standard LP estimator as reported in column 3 differs from my estimator of column 1 in three
respects:

1. Usage of materials rather than net revenues.

2. Not accounting for endogeneity through exit

3. Estimation of coefficient estimates on variable factors from a first stage regression rather
than using the factor share based index in equation 11.

The last two columns of table 2 thus relax points 1 and 2 in my framework. As this does
not affect estimates much differences between columns 1 and 3 must be driven by point 3.
Two implications of point 3 are firstly, that the LP estimate uses a more restrictive production
function with fixed factor shares and secondly it’s estimates might be biased because of the
identification issues pointed out in Ackerberg et al. (2007)

Table 4 reports correlations between the γ
µ

coefficient estimates at the 3digit level. This
leads to similar conclusions as we just derived from table 2; i.e. OLS estimates are the most
different from my preferred specification (Mπ). LP type (LPR) estimates are more similar
although the correlation is not strong. Not accounting for exit (NoExit) or using materials as
control (MM) does lead to very similar estimates.

37Table 13 give a sense of the variation in γ
µ by reporting standard deviations across 3 digit sectors. Table 15

reports results for selected 3 digit sectors.
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4.2 Estimates of productivity dispersion

Table 3 reports dispersion estimates for various productivity measures and TFP estimation
methods. I measure dispersion by the log difference between the plant at the 90th and 10th
percentile for 3digit sectors. The table reports averages of those for the 2-digit sectors and the
economy as a whole.38 Consider first the columns 1 to 3 which report the results based on the
Mπ approach, labour productivity and standard factor share TFP. Overall and for the various
2-digit averages labour productivity dispersion is largest. Mπ dispersion ranges at 60 percent39

of labour productivity dispersion on average. TFP leads to the smallest estimates averaging
at 38 percent of labour productivity dispersion. This is what one would expect: the labour
productivity measure does not account for plant level variations in the intensity of the different
production factors. TFP on the other hand implicitly assumes that the coefficient on capital
in equation 21 is equal to 1; i.e. too large. If capital is positively correlated with the composite
of TFP and demand shock then this compresses the measured dispersion as too much of the
variation in output is attributed to variation on capital stocks. Therefore, on average, Mπ
dispersion is 50 percent higher than TFP dispersion.

Column 4 reports dispersion estimates without correction for measurement error in labour
as discussed in section 2.3. Dispersion not accounting for measurement error is on average
0.08 log points higher than the dispersion measure from column 1. This is much less than the
deviation of 0.24 log points induced by measuring dispersion using standard TFP. Moreover it
turns out that in some 3-digit sectors, not accounting for measurement error actually leads to
lower dispersion.40 The remaining columns of table 3 report dispersion estimates using different
approaches to estimate equation 21 as already discussed in the previous sub section. We saw
there that the estimates for the γ

µ
parameter using a simple OLS estimate are rather high and

very close to 1. Not surprisingly this leads to dispersion levels in column 5 that are close to
the standard TFP levels in column 3. The LP estimator leads to comparatively very similar
dispersion averages as the Mπ estimator. However, from table 5 which reports correlations
of dispersion measures at the 3-digit sectoral level, we see that this is result is an artefact of
aggregation. At the 3-digit level the LP based results are only related to Mπ results with a
correlation coefficient of 0.629. Table 6 reporting correlations between the various productivity
measures at the firm level reveals further that the correlation between LP and Mπ productivity
is rather weak with a correlation coefficient of 0.52.

Table 4: Correlation between various estimates of γ
µ

across 3 digit sectors

(1) (2) (3) (4) (5)

Mπ OLS LPR NoExit MM
Mπ 1.000 0.207 0.389 0.989 0.901
OLS 0.207 1.000 0.112 0.213 0.206
LPR 0.389 0.112 1.000 0.347 0.390

NoExit 0.989 0.213 0.347 1.000 0.907
MM 0.901 0.206 0.390 0.907 1.000

Notes: For definitions of the labels see the notes of table 2

38Table 14 provides standard deviations of the dispersion measures across 3digit sectors.
390.61 over 1.08
40See table 15 in the appendix.
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Table 5: Correlation between various dispersion measures across 3 digit sectors
(1) (2) (3) (4) (5) (6) (7) (8)

Mπ V A
L

TFP Err OLS LPR NoExit MM
Mπ 1.000 0.476 0.664 0.989 0.571 0.629 0.985 0.838
V A
L

0.476 1.000 0.446 0.435 0.201 0.432 0.466 0.438
TFP 0.664 0.446 1.000 0.704 0.887 0.505 0.671 0.576
Err 0.989 0.435 0.704 1.000 0.640 0.623 0.972 0.825
OLS 0.571 0.201 0.887 0.640 1.000 0.373 0.571 0.453
LPR 0.629 0.432 0.505 0.623 0.373 1.000 0.588 0.596

NoExit 0.985 0.466 0.671 0.972 0.571 0.588 1.000 0.856
MM 0.838 0.438 0.576 0.825 0.453 0.596 0.856 1.000

Notes: for descriptions of the columns and rows see the notes for table 2.

Table 6: Correlation between various TFP measures
(1) (2) (3) (4) (5) (6) (7) (8)

Mπ V A
L

TFP Err OLS LPR NoExit MM
Mπ 1.00 0.53 0.35 0.88 0.47 0.52 1.00 0.82
V A
L

0.53 1.00 0.64 0.68 0.37 0.44 0.53 0.31
TFP 0.35 0.64 1.00 0.37 0.78 0.47 0.36 0.03
Err 0.88 0.68 0.37 1.00 0.20 0.47 0.88 0.71
OLS 0.47 0.37 0.78 0.20 1.00 0.46 0.47 0.17
LPR 0.52 0.44 0.47 0.47 0.46 1.00 0.51 0.41

NoExit 1.00 0.53 0.36 0.88 0.47 0.51 1.00 0.82
MM 0.82 0.31 0.03 0.71 0.17 0.41 0.82 1.00

Notes: for descriptions of the columns and rows see the notes for tables 2 and 3.

5 Why is productivity dispersed?

So far the paper has focused on the measurement of productivity and productivity dispersion.
In this section I re-visit evidence that can help us to understand why there is productivity
dispersion. Firstly, I look at transition matrices to examine the persistence of productivity over
time. Then I look at the link between productivity dispersion and competition across sectors.

5.1 Dynamic characteristics of the productivity distribution

If productivity dispersion is driven by Schumpeterian factors such as selection, learning or
vintage effects, then we expect that the position of a specific plant within the productivity
distribution is not very persistent over time. We can examine this using transition matrices.
Table 7 shows a three year transition matrix for the distribution of value added over employ-
ment; i.e. the cells of table 7 contain estimates of the probability that a plant that is in the
bottom quintile in year t, say, moves to the second quintile in t + 3 (row 1 column 2). The
last column of table 7 contains estimates of the probability that a plant exits between t and
t + 3. What can table 7 tell us about the quality of the productivity dispersion? The striking
feature concerning the plant level productivity distribution is its persistence.41 The diagonal

41This is a result stressed by other authors before. Compare Baily et al. (1992), Bartelsman and Dhrymes
(1998) or Haskel (2000).
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Table 7: Transition matrix for V A
L

20 40 60 80 100 exit
20 0.34 0.17 0.08 0.04 0.02 0.34
40 0.17 0.24 0.17 0.10 0.04 0.28
60 0.08 0.18 0.22 0.18 0.07 0.27
80 0.04 0.10 0.19 0.26 0.16 0.25
100 0.02 0.04 0.08 0.18 0.40 0.28

entry 0.22 0.19 0.18 0.19 0.21 0.00
Source: Author’s calculations based on ARD data. Notes: The cells report estimates of transition probabilities;
e.g. the cell in column 2 of row 1 reports what fraction of plants that were in the bottom quintile in a given year
managed to move to the second quintile three years later. The exit column report what fraction exited over
the three year interval. The entry row reports how entering plants are distributed across productivity quintiles.
The switching of the 3 digit industry by a plant was treated as an exit with consecutive entry.

Table 8: Transition matrix for TFP
20 40 60 80 100 exit

20 0.33 0.18 0.11 0.06 0.03 0.30
40 0.18 0.22 0.18 0.11 0.04 0.27
60 0.10 0.18 0.21 0.18 0.08 0.25
80 0.06 0.12 0.18 0.23 0.14 0.27
100 0.03 0.06 0.10 0.18 0.30 0.33

entry 0.22 0.18 0.17 0.19 0.24 0.00
Notes: see notes of table 7

Table 9: Transition matrix for TFVP
20 40 60 80 100 exit

20 0.29 0.17 0.07 0.03 0.01 0.44
40 0.14 0.27 0.19 0.07 0.02 0.32
60 0.05 0.17 0.28 0.19 0.04 0.27
80 0.02 0.06 0.18 0.35 0.16 0.23
100 0.01 0.02 0.04 0.16 0.56 0.21

entry 0.29 0.20 0.18 0.17 0.16 0.00
Notes: see notes of table 7
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Table 10: Regressions of productivity dispersion on markup (µ
γ
)

Productivity measure: Mπ LPR OLS V A
L

markup 1.765*** 0.359**
(0.185) (0.175)

markupLevPet 1.538***
(0.135)

markupOLS 1.019
(0.653)

R-squared 0.533 0.643 0.030 0.050
N 82 74 82 81

Source: Authors calculations based on ARD.
Notes: Dependant variable is the productivity dispersion for various productivity measures. For a description
of the dispersion measure and the dependant variable “markup” see notes of figure 1.

elements of the matrix in table 7 are much higher than the off diagonal elements, suggesting
that plants are most likely to remain at their current position, rather than move up or down.
Further, while the exit probability for bottom plants is highest the differences in exit probabil-
ities are not very pronounced across quintiles. Thus the evidence seems to be at odds with a
Schumpeterian view.

Table 8 shows the transition matrix for TFP.42 It turns out that persistence does not change
much, and the exit probability of top plants is now actually higher than for bottom plants, which
is rather implausible. So what happens if we use TFVP, the productivity measure proposed
in section 2 instead? Table 9 shows the probability that bottom plants stay in their position
– i.e. persistence – is 5 percentage points lower and persistence of top plants 16 points higher
compared to the labour productivity case. Exit probability of bottom plants is twice as high
as that of top plants.

Overall, the transition matrix results suggest two things: Firstly, the TFVP productivity
measure leads to more plausible dynamic features than standard TFP measures. Secondly, the
persistence problem might be less serious than previously thought if plant level productivity is
measured correctly.

5.2 Productivity dispersion and imperfect competition

Is there a link between competition and productivity dispersion? In my current framework
the degree of (un)competitiveness is measured by µ the markup parameter. Unfortunately we
can only estimate the ratio between the markup parameter µ and the scale parameter γ rather
µ separately. However, if we are willing to assume that the variation of µ

γ
across sectors is

dominated by movements of µ then it might be worthwhile to look at the relation between
µ
γ

and productivity dispersion. Indeed, finding a positive correlation between markup and
dispersion could be seen as a consistency of my framework. The left panel of figure 1 shows
a scatter plot of TFVP dispersion and markups across 82 3digit sectors in my sample. With

42as defined in equation 16.
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Figure 1: Productivity dispersion and markups across sectors

Source: Authors calculations based on ARD.
Notes: Dispersion is measured as the log difference between the productivity of the plant at the 90iest and
the plant at the 10th percentile in 82 three digit manufacturing sectors. The percentiles are calculated on the
pooled sample of median relative firm level productivity across the years. The median values are sector and
time specific. Markup is the ratio between markup and scale parameter; i.e. µ

γ . Thus, strictly speaking this
corresponds to markup only under constant returns to scale. As discussed in section 2, with the current data it
is not possible to identify the two parameters separately.
The left panel shows the result for the true spread (TVFP) estimator. The right panel shows the result applying
an OLS estimator to equation 21.

22



Table 11: Measurement error and other factors affecting dispersion (µ
γ
)

Productivity measure: Mπ Mπ Mπ Mπ Mπ V A
L

markup 2.038*** 1.608*** 1.927***
(0.169) (0.176) (0.179)

INTERPOL -0.165*** -0.134** -0.037
(0.054) (0.057) (0.089)

CENS -1.345*** -1.142*** 0.160
(0.252) (0.277) (0.396)

SUNK -0.043 -0.019 -0.073* -0.080** -0.038*
(0.026) (0.025) (0.038) (0.039) (0.020)

ADMIN 0.305 -0.032 0.601 0.602 0.407**
(0.266) (0.257) (0.380) (0.398) (0.202)

TRANS -1.125 -1.603 0.421 0.380 2.920**
(1.672) (1.531) (2.394) (2.418) (1.273)

ADV 4.426*** 3.445** 5.976*** 5.790** 7.885***
(1.499) (1.406) (2.143) (2.209) (1.139)

R-squared 0.660 0.623 0.694 0.209 0.215 0.493
N 82 82 82 82 82 82

Notes: See also the notes for table 10. INTERPOL is the share of observations in a 3digit sector where
investment had to be interpolated (See section 3). CENS is the share of plants that were born before the
start of the sample. SUNK is the measure of sunk costs in a sector as proposed by Sutton (1991) (see text for
definition). ADMIN is the share of administrative workers. TRANS and ADV are the output share spend on
road transport services and advertising, respectively.

the exception of an outlier43 with high dispersion and low markup parameter, the relation
appears very much as expected. Table 10 confirms this with a regression of markups of on
productivity dispersion.44 Column 1 corresponds to the relation in the figure. It implies that
a 1 percent higher markup increases the distance between 90th and the 10th percentile plant
by 1.7 percent. Column 2 repeats the exercise for dispersion estimates and markups derived
from LP’s framework. The coefficient is slightly smaller, but equally positive and significant.
Column 3 suggests that these results might be sensitive to controlling for endogeneity in the
regression step. Regressing dispersion on markups as derived from a simple OLS regression of
equation 14 does not lead to a significant relationship between dispersion and markups. The
right panel of figure 1 gives an illustration of this relation.

One concern with these results could be that they are spurious; i.e. as both, the dispersion
and the markup measure depends on the underlying econometric framework, misspecification
of the framework could generate both results even if there is no such relationship in reality.
Measurement error in capital could be such a misspecification. Suppose that capital stocks
in equation 14 are measured with error. This corresponds to a classical measurement error
problem which would bias our estimate of the associated parameter - γ

µ
in this case - downward.

Then, if firms at the top end of the distribution have higher capital stocks, this would imply
that the downward bias of the capital coefficient induces an upward bias in the dispersion
measure. If the severity of this type of measurement error varies across sectors this could
explain our results above. In table 11 I therefore repeat the regression of column 1 of table 10

43Sector 223, reproduction of recorded media
44Formally the regression model is ωp90− ωp10 = bµ

γ + ε

23



introducing two variables that control for potential measurement error in capital. INTERPOL
measures the share of observations in a sector that rely on interpolated investment figures
whereas CENS measures the share of left censored observations.45 The results in column 1
show that these variables are indeed strongly correlated with measured dispersion, however
negatively. As a consequence it turns out that the relationship between estimated markup
and dispersion becomes even stronger. Further evidence that the relationship is not driven by
spurious reasons comes from the last column of table 10. It shows the result of a regression of
dispersion in labour productivity46 on estimated markups. While the relationship appears less
strong it is still there.47

In a related study with US data Syverson (2004) refrains from computing substitution or
markup parameters. Instead he links productivity dispersion to a number of other observed
variables such as sunk costs, advertising intensity and transport costs. Some of these might
affect dispersion by exerting an influence on product substitutability. Others might affect
dispersion through other channels. The remaining columns of table 10 examine what happens
if some of the factors that are important in Syverson’s study are included in the analysis here.
I am using a measure of the relevance of sunk costs (SUNK) defined as the market share of
the median sized plant times the industry level capital-output ratio.48 ADMIN is the average
share of administrative employees in the industry. Syverson suggests that this is a measure
of fixed costs. TRANS is the average output share of expenditure for road transport services.
ADV is the average share of output spent on advertising. Column 3 of table 11 shows that
only ADV is positive and significant when included as control in the dispersion regressions.
Theoretically the relationship between advertising spending and dispersion could go either
way. A positive relationship is consistent with the idea that more advertising leads to products
being perceived by consumers as more differentiated. Also note that the coefficient on markup
becomes somewhat lower which suggests that some of our controls affect dispersion by affecting
markups. Column 449 examines this by repeating the regression without including markups. In
addition to ADV, SUNK turns now out to be significant50 as well however negatively. This is
different from Syverson’s result who found a positive relation. His theoretical motivation of this
is that firms do not know about their specific productivity until they have paid the sunk cost.
As a consequence there is less entry in markets with higher sunk costs but no stricter selection
based on the quality of entrants. If firms have information on their productivity before paying
the sunk cost there will still be less entry but at the same time their will be a stronger selection
of entrants. Thus the relationship between sunk costs and dispersion can become negative.
While this motivates my results the question remains for future research why we find diverge
with UK vs US data.

Finally, column 6 repeats the regression of column 4 with labour productivity dispersion.
This reveals that the positive relation with ADV and the negative relation with SUNK does
not depend on my econometric model or measurement problems in capital. Interestingly, now
the relation between transport cost shares and dispersion turns out to be significantly positive.
This is in line with Syverson’s findings although I use a different measure for transport costs.

45See also the discussion in the section 3
46i.e. value added over employment
47The result is only significant when dropping the outlier sector 223
48This is the same measure as Syverson uses who follows a suggestion by Sutton (1991).
49Column 3 repeats column 2 including controls for measurement error in capital. This leads to the same

qualitative conclusions.
50At the 10 percent level that is.
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Finally, ADMIN becomes positively significant. This is different from Syverson who finds
in some of his specifications a negative relation. An explanation could be that the share of
administrative employment is not so much a measure of the importance of fixed costs for an
industry – as suggested by Syverson – but possibly more an indication of product differentiation
and marketing efforts in addition to mere spending on advertising.51 Still, the question remains
why the results are different in the UK and US.

6 Conclusion

This paper proposes a novel framework for computing TFP by combining a refined version of
the methodology of Olley and Pakes (1996) with the revenue production framework introduced
by Klette and Griliches (1996). The framework allows for imperfect competition, a flexible pro-
duction technology, non constant returns to scale, addresses the endogeneity of inputs problem
in production function estimation and controls for measurement error in labour inputs. I pro-
vide Monte Carlo evidence showing that the suggested framework is more precise and robust to
misspecification than competing approaches. Examining productivity dispersion across 3 digit
sectors with this new framework I find that compared to standard TFP estimation methods
measured dispersion increases on average by more than 50 percent. Further I find that the
dynamic characteristics of the new TFP measure are more in line with a Schumpeterian view
on productivity dispersion. Further work needs to consider more flexible specification for the
demand structure. I outline in the Appendix how this could be done.

Examining the link between competition and dispersion across sectors I find that sectors
with less competition – measured by less product substitutability – tend to have higher disper-
sion measured either in terms of the new TFP measure or labour productivity.
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A The monotone relationship between net revenues and

shocks

Start by noting that given our assumption of a homogenous production function 2 we can write
the cost minimization problem as

C̃(K̃it,wV it) = min
X̃V it

∑

z 6=K

wzitX̃zit s.t. 1 = f
(
K̃it, X̃V it

)
(44)

where K̃it = Kit

Q̃it
with Q̃it =

(
Qit

Ait

) 1
γ
. X̃V it collects the same transformation for all variable

production factors in a vector. Total cost become in terms of equation 44

Cit = C̃itQ̃it (45)

Next consider the profit function.

Πit(Kit, λit, ait,wit) = Rit − Cit

Given the demand function 6 and the cost function 45 we can write it as

Πit(Kit, λit, ait,wit) =

(
ΛitRt

Pt

) 1
η

PtQ
1− 1

η

it − C̃itQ̃it (46)

Note that the firm’s profit maximization first order condition is

(
1− 1

η

)
Rit

Qit

=
1

γ
z(Q̃it, K̃it)

Ỹit

Qit

(47)

where

z(Q̃it, K̃it) =
∂C̃it

∂Q̃it

Q̃it + C̃it (48)

Finally, note that the derivatives of profit with respect to changes in λit and ait are

∂Πit

∂λit

= µ−1Rit

and
∂Πit

∂ait

= z(Q̃it, K̃it)
1

γ

(
Qit

Ait

) 1
γ

= µ−1Rit (49)
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where the last equality follows from the first order condition 4752 and

µ =

(
1− 1

η

)−1

As a consequence of all these results we get for the total differential of profits

dΠit = Rit
1

µ
(dλit + dait) = Ritdωit (50)

which establishes that there is a positive relationship between net revenues and the composite
shock index ωit.

B Existence of equilibrium with positive output

In section 2.4 I suggested that for the existence of a profit maximising equilibrium in which
plants actually produce any output in a Dixit-Stiglitz setting we need that µ > γ in the long
run equilibrium where capital stocks have fully adjusted; i.e. returns to scale must not be too
high. This section shows this formally. With markup pricing equilibrium profits can be written
as53

Π = µ ·MC ·Q− C

where C = Q
1
γ w are total costs, MC = 1

γ
Q

1
γ
−1w marginal costs and w is a composite index of

the price of a cost minimising input bundle f 54, so that we get

Π =

(
µ

γ
− 1

)
Q

1
γ

Hence only for µ > γ profits would be positive. Consequently plants would not produce
anything if this condition does not hold.

C Allowing for varying markups

This section outlines how the productivity estimation framework introduced in section 2 can
be extended to account for more general demand specifications implying varying demand elas-
ticities across plants. The basic idea is most easily grasped for a Cobb Douglas Production
function. Note that for a variable production factor X, profit maximisation implies that

αX

sxi

= µi (51)

Thus, because αX is constant in the Cobb-Douglas case, variations in revenue share sxi are a
proxy for variations in markup µi. With a more general production function the first order
condition (Equation 7 ) implies that

∂lnQi

∂lnXi

1

sxi

= µi (52)

52This is an application of the envelope theorem
53To avoid notional clutter I drop plant and time indices in this section
54compare equation 2
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Notice that with a Hicks neutral technology shock the log derivative of output with respect to
a production factor is just a function of production factors; i.e.

∂lnQi

∂lnXi

= ΨQ (Xi) (53)

Importantly, all un-observed heterogeneity from variations in technical efficiency (ait) vanishes.
Thus markups are simply a function of observed production factors and the revenue share of a
variable factor:

µi = Ψ (Xi, sxi) =
1

sxi

ΨQ (Xi) = gµ (Xi, sxi) (54)

We can use this to augment the control function approach developed in the main section. The
equivalent of equation 21 would become

rit − viit = gµ (Xit, sxit) kit + g (Xit−1, sxit−1, Πit−1) + νit + ςit (55)

To implement this equation we can approximate gµ(·) by a polynomial in Xit and sxit. This adds
the complication that the variable factors entering as arguments in gµ(·) are potentially corre-
lated with the error term νit. Therefore to identify equation 55 we need to rely on a methods
moments approach. The following conditions provide sufficient restrictions for identification:

E
{[

Xit−1kit sxit−1kit Xit−1 sxit−1 πit−1

]′
νit

}
= 0 (56)

To recover an index of firm level markups and thus the distribution of markups we can conse-
quently compute

µi

γ
=

kit

̂gµ (Xit, sxit) kit

(57)

D Monte Carlo Analysis

This section examines various production function estimation approaches which were discussed
in section 2.4 using Monte Carlo Analysis. The model used to draw Monte Carlo samples uses
a Cobb Douglas production function and a Dixit Stiglitz demand function with the following
parametrisation: capital coefficient in the production function αK = 0.15, labour and inter-
mediates coefficients αL = αM = 0.425, markup parameter µ = 2, the standard error of the
shock to TF(V)P σν = 0.01, standard error of the additional noise term σς = 0.002. I model
persistence by assuming that input factors evolve as follows

xit = (1− ρx)) x∗it + ρx (xit−1 + εxit) (58)

where x∗it is the myopic optimal input demand conditional on capital and TFVP and εxit is an
iid shock.55 In the case of capital k∗it is calculated as k∗it = k(Et−1{ωit}); i.e. the optimal capital
stock in period t based on the expectation in t−1 about TFVP. I examine 3 different scenarios.

1. High persistence in both material inputs and labour with ρM = 0.6 and ρl = 0.6.

55This is somewhat ad hoc but suffices for the purpose here. Bond and Söderbom (2005) show how this could
be extended using dynamic optimisation.
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2. Little persistence in material inputs with ρM = 0.06 and ρl = 0.6.

3. Little persistence in both material and labour inputs with ρM = 0.06 and ρl = 0.1.

For each scenario I draw a sample with 200 firms over 10 time periods 100 times. Each time I
estimate production function coefficients using 8 different models:

• Simple OLS (OLS)

• The M approach discussed above once using material inputs (MM) and once using net
revenue as proxy (Mπ).

• The Levinsohn and Petrin approach with material inputs as proxy, once in a revenue
production framework context (LPR) and once in terms of value added (LPVA)

• The framework proposed by Ackerberg, Caves and Frazer once in revenue (ACFR) and
once in value added (ACFVA) terms.

• The approach suggested in Bond and Söderbom (2005) in terms of a revenue production
function only (BS).

Table 12 reports statistics on the resulting estimates for the scale parameter which corresponds
under imperfect competition to γ

µ
- i.e. in the current context the true parameter value takes on

a value of 0.5 - and the coefficient on capital which is equal to αK

µ
= 0.075. For each coefficient

the table reports the mean point estimate over the 100 sample draws, the standard error of
that mean as well as the 5th and 95th percentile of the 100 draws; i.e. the boundaries of a 90
percent confidence interval.

Consider first scenario 1. Persistence of all production factors is fairly strong. The esti-
mator which does best under these conditions is BS with a bias of 0.078-0.075=0.003 for the
capital coefficient and 0.037.56 This is not surprising as for all estimators the persistence of
materials introduces biases. In the case of the M and the LP estimators, however, persistence
of labour introduces an additional reason for biases. Interestingly, the effect of this seems to
be fairly strong for MM but not so strong for MΠ. Also note that the standard error of the M
estimators are an order of magnitude lower than those of ACF or BS estimators and the biased
MΠ is well within the 90 percent confidence interval around the BS estimate. Thus in finite
samples this could imply that the probability of being wrong with the less biased estimate is
much higher than with the more biased one. In Scenario 1 the persistence of material inputs
is reduced to ρM = 0.06. Notice how this drives up the bias on the capital coefficient of the
OLS estimate which now averages at -0.002 (column 5). This improves the performance of the
M, the ACFVA and the LPVA. However, it creates massive problems for revenue (rather than
value added version of ACF and LPV (ACFR,LPVR) because it becomes increasingly difficult
to identify all the parameters. Notice that these estimators become increasingly biased towards
the OLS estimator which reflects that the lagged values of the factor input variables become
weaker as instruments. The last scenario finally, also reduces the persistence in labour inputs.
This give the M estimates an additional boost as their biases are now greatly reduced. At the
same time, the estimates that rely on value added production function start to deteriorate as
they are not identified. In summary, the M estimators perform well if the underlying assump-
tions are approximately met. The biases introduced by persistence in labour and or materials

56The only bias for BS comes from the ς shock term.
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Figure 2: Density plots of the coefficient estimates for αK

µ

Source: Authors calculations based on Monte Carlo data.
Notes: Each panel refers to a different Monte Carlo scenario as discussed in the text and in table 12.

seem small compared to the errors that are introduced by the lower precision of alternative
estimators. Figure summarises this graphically by reporting density plots of estimates using
different methods for the 3 scenarios considered.
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Table 12: Results from a Monte Carlo Analysis
(1) (2) (3) (4) (5) (6) (7) (8)

γ
µ

αK
µ

Model mean error p5 p95 mean error p5 p95
Scenario 1: High persistence in M and L; ρM=0.6 ρl=0.6

OLS 0.728 0.002 0.705 0.759 0.071 0.001 0.055 0.087
MM 0.529 0.001 0.511 0.549 0.104 0.001 0.086 0.124
M Π 0.511 0.001 0.496 0.524 0.086 0.001 0.071 0.099

LP R 0.810 0.029 0.427 1.294 0.084 0.005 0.021 0.179
LP VA 0.632 0.001 0.608 0.656 0.093 0.001 0.078 0.109

ACF 0.756 0.014 0.473 0.987 0.065 0.002 0.029 0.097
ACF VA 0.698 0.011 0.518 0.883 0.067 0.002 0.032 0.106

BS 0.537 0.006 0.431 0.624 0.078 0.002 0.049 0.106
Scenario 2: Low persistence in M; ρM=0.06 ρL=0.6

OLS 1.006 0.000 0.998 1.013 -0.002 0.000 -0.006 0.002
MM 0.501 0.001 0.483 0.518 0.076 0.001 0.058 0.093
M Π 0.504 0.001 0.486 0.520 0.079 0.001 0.061 0.095

LP R 1.001 0.025 0.435 1.214 0.018 0.004 0.000 0.088
LP VA 0.500 0.001 0.483 0.517 0.078 0.001 0.062 0.092

ACF 0.770 0.024 0.414 1.170 0.033 0.004 -0.041 0.093
ACF VA 0.537 0.009 0.359 0.655 0.068 0.001 0.046 0.092

BS 0.716 0.014 0.496 0.940 0.050 0.002 0.012 0.092
Scenario 3: Low persistence in M and L; ρM=0.06 ρL=0.1

OLS 1.010 0.001 1.001 1.019 -0.003 0.000 -0.008 0.002
MM 0.501 0.001 0.481 0.517 0.076 0.001 0.056 0.092
M Π 0.503 0.001 0.484 0.520 0.078 0.001 0.059 0.095

LP R 1.069 0.024 0.635 1.362 0.012 0.002 0.000 0.051
LP VA 0.621 0.002 0.592 0.651 0.058 0.001 0.043 0.072

ACF 0.795 0.023 0.450 1.120 0.026 0.004 -0.029 0.081
ACF VA 0.698 0.023 0.390 1.220 0.037 0.003 -0.044 0.079

BS 0.747 0.012 0.552 0.961 0.036 0.002 0.004 0.068
Notes: The table reports descriptive statistics from parameter estimates of 100 replications of a sample with
200 firms over 10 years. There are three scenarios and 8 models. MM and M π are the M approach using
materials and net revenue as proxy in the control function, LPR and LPVA are the LP framework in a revenue
and value added production function context, ACF refers to the ACF framework and BS to the BS framework.
The sample was created using a Cobb Douglas production function and a Dixit Stiglitz demand structure. For
more details on the underlying model see the text. The true parameter values for the scale parameter and the
capital coefficient are 0.5 and 0.075.
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E Additional Results

Table 13: Standard deviation of γ
µ

estimates across 3digit sectors

(1) (2) (3) (4) (5)
Sector Mπ OLS LP NoExit MM
Food 0.11 0.02 0.21 0.11 0.08

Textile 0.10 0.01 0.11 0.10 0.10
Apparel . . . . .
Leather 0.05 0.02 0.05 0.06 0.05
Wood 0.07 0.01 0.05 0.07 0.05
Paper 0.04 0.00 0.03 0.03 0.04

Publishing 0.31 0.02 0.09 0.33 0.44
Chemical 0.10 0.01 0.16 0.08 0.08
Plastic 0.04 0.01 0.08 0.05 0.09
Mineral 0.13 0.03 0.17 0.12 0.14

BasicMetalls 0.02 0.01 0.08 0.02 0.03
FabricatedMetalls 0.09 0.02 0.11 0.09 0.09
MachineryOther 0.09 0.01 0.11 0.09 0.08
OfficeMachinery . . . . .

ElectricalMachineryOther 0.08 0.01 0.11 0.10 0.08
TVCommunication 0.08 0.02 0.13 0.07 0.11
OpticalPrecision 0.06 0.01 0.10 0.06 0.06

Vehicles 0.04 0.02 0.17 0.04 0.03
OtherTransport 0.08 0.01 0.05 0.08 0.10

Furniture 0.07 0.02 0.17 0.06 0.08
Average 0.10 0.02 0.13 0.10 0.11

Notes: For column definitions see table 2. The table reports the standard deviation of estimates of γ
µ across the

3digit sectors within a 2digit category with sufficient observations to conduct a separate analysis. Note that
Apparel and OfficeMachinery consist only of one such 3digit sector and therefore no standard deviation can be
computed.
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Table 14: Standard deviation of dispersion measures across 3digit sectors

(1) (2) (3) (4) (5) (6) (7) (8)

Sector Mπ V A
L TFP Err OLS LPR NoExit MM

Food 0.54 0.29 0.22 0.52 0.21 0.68 0.54 0.38
Textile 0.24 0.12 0.04 0.22 0.04 0.25 0.26 0.21
Apparel . . . . . . . .
Leather 0.19 0.16 0.12 0.21 0.10 0.09 0.20 0.16
Wood 0.09 0.07 0.09 0.09 0.11 0.06 0.11 0.09
Paper 0.14 0.13 0.00 0.09 0.04 0.02 0.11 0.14

Publishing 0.26 0.33 0.10 0.21 0.05 0.37 0.35 1.09
Chemical 0.53 0.20 0.11 0.53 0.13 0.61 0.42 0.40
Plastic 0.12 0.15 0.02 0.14 0.07 0.06 0.13 0.28
Mineral 0.34 0.09 0.07 0.26 0.06 0.41 0.31 0.37

BasicMetalls 0.09 0.16 0.03 0.08 0.04 0.16 0.10 0.15
FabricatedMetalls 0.23 0.07 0.07 0.19 0.10 0.21 0.19 0.19
MachineryOther 0.29 0.08 0.06 0.24 0.06 0.21 0.29 0.32
OfficeMachinery . . . . . . . .

ElectricalMachineryOther 0.32 0.13 0.05 0.28 0.08 0.14 0.42 0.29
TVCommunication 0.21 0.14 0.05 0.24 0.06 0.37 0.22 0.36
OpticalPrecision 0.24 0.08 0.05 0.19 0.07 0.04 0.24 0.17

Vehicles 0.27 0.17 0.03 0.24 0.02 0.68 0.19 0.32
OtherTransport 0.23 0.14 0.06 0.18 0.11 0.06 0.22 0.31

Furniture 0.23 0.15 0.04 0.19 0.05 0.41 0.20 0.24
Total 0.34 0.22 0.11 0.31 0.12 0.36 0.33 0.39

Notes: For column definitions see table 3. The table reports the standard deviation of estimates of the produc-
tivity spread across 3digit sectors within a 2digit category with sufficient observations to conduct a separate
analysis. Note that Apparel and OfficeMachinery consist only of one such 3digit sector and therefore no standard
deviation can be computed.
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Table 15: The 5 sectors where the dispersion is highest and lowest

(1) (2) (3) (4) (5) (6) (7) (8)
Sectors with highest true spread

Sector obs. γ
µ

log
(

VA
L

)
(ω + %) ω %Meas.Error %True spread

Pharmaceuticals (244) 1231 0.622 1.534 1.879 1.851 0.018 1.207
Beverages (159) 2399 0.625 1.815 1.777 1.794 -0.009 0.988

Reproduction of Recorded Media (223) 85 1.244 1.706 1.620 1.627 -0.004 0.954
Printing (222) 3862 0.678 1.090 1.349 1.282 0.061 1.177

Bricks, Tiles (264) 508 0.619 1.083 1.224 1.226 -0.002 1.132
Sectors with lowest true spread

Sector obs. γ
µ

log
(

VA
L

)
(ω + %) ω %Meas.Error %True spread

Knitted and Crocheted Fabrics (176) 114 1.030 0.740 0.290 0.199 0.123 0.270
Tanning of leather (191) 224 0.921 0.859 0.293 0.219 0.087 0.255

Batteries (314) 193 0.960 0.895 0.387 0.264 0.137 0.295
Fish processing (152) 438 0.929 1.229 0.357 0.273 0.068 0.222

Weapons and Amunition (296) 264 0.964 0.859 0.521 0.285 0.275 0.331

Notes: Column 2 reports the number of observations in the sample, column 3 the capital coefficient using the
TFVP procedure outlined in section 2, column 3 to 6 report productivity spread (ln(90th)-ln(10th) percentile)
for labour productivity, TFVP without accounting for measurement error in labour inputs and TFVP. Column
7 is (5-6)/4. Column 8 is 6/4.
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